1
|
Nagy RN, Makkos A, Baranyai T, Giricz Z, Szabó M, Kravcsenko-Kiss B, Bereczki Z, Ágg B, Puskás LG, Faragó N, Schulz R, Gyöngyösi M, Lukovic D, Varga ZV, Görbe A, Ferdinandy P. Cardioprotective microRNAs (protectomiRs) in a pig model of acute myocardial infarction and cardioprotection by ischaemic conditioning: MiR-450a. Br J Pharmacol 2025; 182:396-416. [PMID: 39294819 DOI: 10.1111/bph.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/05/2024] [Accepted: 07/04/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND AND PURPOSE Cardioprotective miRNAs (protectomiRs) are promising therapeutic tools. Here, we aimed to identify protectomiRs in a translational porcine model of acute myocardial infarction (AMI) and to validate their cardiocytoprotective effect. EXPERIMENTAL APPROACH ProtectomiR candidates were selected after systematic analysis of miRNA expression changes in cardiac tissue samples from a closed-chest AMI model in pigs subjected to sham operation, AMI and ischaemic preconditioning, postconditioning or remote preconditioning, respectively. Cross-species orthologue protectomiR candidates were validated in simulated ischaemia-reperfusion injury (sI/R) model of isolated rat ocardiomyocytes and in human AC16 cells as well. For miR-450a, we performed target prediction and analysed the potential mechanisms of action by GO enrichment and KEGG pathway analysis. KEY RESULTS Out of the 220 detected miRNAs, four were up-regulated and 10 were down-regulated due to all three conditionings versus AMI. MiR-450a and miR-451 mimics at 25 nM were protective in rat cardiomyocytes, and miR-450a showed protection in human cardiomyocytes as well. MiR-450a has 3987 predicted mRNA targets in pigs, 4279 in rats and 8328 in humans. Of these, 607 genes are expressed in all three species. A total of 421 common enriched GO terms were identified in all three species, whereas KEGG pathway analysis revealed 13 common pathways. CONCLUSION AND IMPLICATIONS This is the first demonstration that miR-450a is associated with cardioprotection by ischaemic conditioning in a clinically relevant porcine model and shows cardiocytoprotective effect in human cardiomyocytes, making it a promising drug candidate. The mechanism of action of miR-450a involves multiple cardioprotective pathways. LINKED ARTICLES This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Grants
- OTKA ANN 107803 Hungarian Scientific Research Fund
- OTKA K-105555 Hungarian Scientific Research Fund
- 2018-1.3.1-VKE-2018-00024 National Research, Development and Innovation Office
- NVKP-16-1-2016-0017 National Heart Program National Research, Development and Innovation Office
- OTKA-FK 134751 National Research, Development and Innovation Office
- TKP/ITM/NFKIH National Research, Development and Innovation Office
- OTKAK21-139105 National Research, Development and Innovation Office
- RRF-2.3.1-21-2022-00003 European Union
- EU COST Action CardioRNA.eu, Cardioprotection.eu
- 88öu1 Austrian-Hungarian Action Scholarship
- 739593 European Union's Horizon 2020
- 2019-1.1.1-PIACI-KFI-2019-00367 National Research, Development and Innovation Fund
- 2020-1.1.5-GYORSÍTÓSÁV-2021-00011 National Research, Development and Innovation Fund
- ÚNKP-20-5 National Research, Development and Innovation Fund
- ÚNKP-23-4-II-SE-34 National Research, Development and Innovation Fund
- János Bolyai Research Scholarship of Hungarian Academy of Sciences
Collapse
Affiliation(s)
- Regina N Nagy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Tamás Baranyai
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Márta Szabó
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bernadett Kravcsenko-Kiss
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Bereczki
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bence Ágg
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - László G Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
| | - Nóra Faragó
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Zoltán V Varga
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Anikó Görbe
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
2
|
Svagusa T, Matic N, Mirosevic V, Maldini K, Siljeg M, Milicic D, Gasparovic H, Rudez I, Urlic M, Tokic T, Ivankovic S, Tjesic-Drinkovic D, Sepac A, Muller D, Lucijanic M, Svalina F, Gojmerac L, Zic K, Baric D, Unic D, Kulic A, Bakovic P, Skoric B, Fabijanovic D, Planinc I, Cikes M, Sedlic F. Myocardial deposition of aluminum, arsenic, cadmium, and lead accelerates heart failure and alters UPRmt in humans. Toxicology 2024; 511:154033. [PMID: 39674396 DOI: 10.1016/j.tox.2024.154033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
In the myocardium of control subjects and patients undergoing heart transplantation or left ventricular assist device implantation (LVAD), we analyzed concentrations of Al, As, Cd, Pb, and Ni using inductively coupled plasma mass spectrometry. Myocardial generation of oxidative-stress-induced lipid peroxidation was analyzed by quantifying concentration of 4-Hydroxynonenal (4-HNE) with ELISA and pro-apoptotic DAPK2 gene expression was determined with quantitative RT-PCR. Compared to six control hearts, myocardial samples of 128 individuals undergoing heart transplantation or LVAD implantation exhibited a moderate increase in deposition of five tested non-essential elements, which was significantly increased only for Cd and cumulative deposition of Al, As, Cd, and Pb. Patients with higher cumulative deposition of Al, As, Cd, and Pb, underwent heart transplantation or LVAD implantation at a younger age than those with lower cumulative deposition, which was not observed in individual elements. Also, Al, As, and Ni exhibited a positive correlation with DAPK2 expression. Moreover, Al, As, Cd, and Ni showed positive correlations and Pb negative correlations with several mitochondrial quality control (MQC) genes. None of the elements showed correlation with 4-HNE generation in the myocardium. There was no difference in tested non-essential element deposition between dilated and ischemic cardiomyopathy. In conclusion, patients with higher cumulative deposition of Al, As, Cd, and Pb in the myocardium underwent heart transplantation or LVAD implantation at a younger age, indicating that they may accelerate heart failure, which is associated with induction of DAPK2 expression. Deposition of Al, As, Cd, Ni, and Pb also altered the expression of several MQC genes.
Collapse
Affiliation(s)
- Tomo Svagusa
- Department of Cardiovascular Diseases, Dubrava University Hospital, Croatia
| | - Natalija Matic
- Croatian Waters, Department of Development and Water Management, Croatia
| | - Vid Mirosevic
- Department of Pathophysiology, University of Zagreb School of Medicine, Croatia
| | - Kresimir Maldini
- Main Water Laboratory, Department of Monitoring, Josip Juraj Stossmayer Water Institute, Croatia
| | | | - Davor Milicic
- University of Zagreb School of Medicine, Zagreb, Croatia; Department of Cardiovascular Diseases, University Hospital Centre Zagreb, Croatia
| | - Hrvoje Gasparovic
- Department of Surgery, University of Zagreb School of Medicine, Croatia; Department of Cardiac Surgery, University Hospital Centre Zagreb, Croatia
| | - Igor Rudez
- Department of Surgery, University of Zagreb School of Medicine, Croatia; Department of Cardiac and Transplant Surgery, Dubrava University Hospital, Croatia
| | - Marjan Urlic
- Department of Cardiac Surgery, University Hospital Centre Zagreb, Croatia
| | - Tomislav Tokic
- Department of Cardiac Surgery, University Hospital Centre Zagreb, Croatia
| | - Stjepan Ivankovic
- Department of Cardiac Surgery, University Hospital Centre Split, Croatia
| | - Duska Tjesic-Drinkovic
- Department of Pediatrics, University of Zagreb School of Medicine, Croatia; Department of Pediatrics, University Hospital Centre Zagreb, Croatia
| | - Ana Sepac
- Department of Pathology, University of Zagreb, School of Medicine, Zagreb, Croatia; Ljudevit Jurak Department of Pathology, Sestre milosrdnice University Hospital Centre, Croatia
| | - Danko Muller
- Department of Pathology, University of Zagreb, School of Medicine, Zagreb, Croatia; Department of Pathology and Cytology, Dubrava University Hospital, Croatia
| | - Marko Lucijanic
- University of Zagreb School of Medicine, Zagreb, Croatia; Department of Hematology, Dubrava University Hospital, Croatia
| | | | | | - Katarina Zic
- University of Rijeka, School of Medicine, Croatia
| | - Davor Baric
- Department of Cardiac and Transplant Surgery, Dubrava University Hospital, Croatia
| | - Daniel Unic
- Department of Cardiac and Transplant Surgery, Dubrava University Hospital, Croatia
| | - Ana Kulic
- Department of Oncology, University Hospital Centre Zagreb, Croatia
| | - Petra Bakovic
- Department of Pathophysiology, University of Zagreb School of Medicine, Croatia
| | - Bosko Skoric
- University of Zagreb School of Medicine, Zagreb, Croatia; Department of Cardiovascular Diseases, University Hospital Centre Zagreb, Croatia
| | - Dora Fabijanovic
- Department of Cardiovascular Diseases, University Hospital Centre Zagreb, Croatia
| | - Ivo Planinc
- University of Zagreb School of Medicine, Zagreb, Croatia; Department of Cardiovascular Diseases, University Hospital Centre Zagreb, Croatia
| | - Maja Cikes
- University of Zagreb School of Medicine, Zagreb, Croatia; Department of Cardiovascular Diseases, University Hospital Centre Zagreb, Croatia
| | - Filip Sedlic
- Department of Pathophysiology, University of Zagreb School of Medicine, Croatia.
| |
Collapse
|
3
|
Saberiyan M, Zarei M, Safi A, Movahhed P, Khorasanian R, Adelian S, Mousavi P. The role of DAPK2 as a key regulatory element in various human cancers: a systematic review. Mol Biol Rep 2024; 51:886. [PMID: 39105958 DOI: 10.1007/s11033-024-09761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024]
Abstract
Cancer is considered the uncontrolled growth and spread of cells into neighboring tissues, a process governed at the molecular level by many different factors, including abnormalities in the protein family's death-associated kinase (DAPK). DAPK2 is a member of the DAPK protein family, which plays essential roles in several cellular processes. DAPK2 acts as a tumor suppressor, interacting with several proteins, such as TNF, IFN, etc. during apoptosis and autophagy. Expression of DAPK2 causes changes in the structure of the cell, ultimately leading to cell death by apoptosis. In this essay, studies are obtained from Scopus, PubMed, and the Web of Science. According to these investigations, DAPK2 activates autophagy by interacting with AMPK, mTORC1, and p73. Furthermore, DAPK2 induces apoptosis pathway via interacting with the p73 family and JNK. In general, due to the vital role of DAPK2 in cell physiology and its effect on various factors and signaling pathways, it can be a potent target in the treatment of various cancers, including gastric, ovarian, breast, and other prominent cancers.
Collapse
Affiliation(s)
- Mohammadreza Saberiyan
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahboobeh Zarei
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Safi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Movahhed
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, ShahidBeheshti University of Medical Sciences, Tehran, Iran
| | - Reihane Khorasanian
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
4
|
Li C, Weng J, Yang L, Gong H, Liu Z. Development of an anoikis-related gene signature and prognostic model for predicting the tumor microenvironment and response to immunotherapy in colorectal cancer. Front Immunol 2024; 15:1378305. [PMID: 38779664 PMCID: PMC11109372 DOI: 10.3389/fimmu.2024.1378305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
The effect of anoikis-related genes (ARGs) on clinicopathological characteristics and tumor microenvironment remains unclear. We comprehensively analyzed anoikis-associated gene signatures of 1057 colorectal cancer (CRC) samples based on 18 ARGs. Anoikis-related molecular subtypes and gene features were identified through consensus clustering analysis. The biological functions and immune cell infiltration were assessed using the GSVA and ssGSEA algorithms. Prognostic risk score was constructed using multivariate Cox regression analysis. The immunological features of high-risk and low-risk groups were compared. Finally, DAPK2-overexpressing plasmid was transfected to measure its effect on tumor proliferation and metastasis in vitro and in vivo. We identified 18 prognostic ARGs. Three different subtypes of anoikis were identified and demonstrated to be linked to distinct biological processes and prognosis. Then, a risk score model was constructed and identified as an independent prognostic factor. Compared to the high-risk group, patients in the low-risk group exhibited longer survival, higher enrichment of checkpoint function, increased expression of CTLA4 and PD-L1, higher IPS scores, and a higher proportion of MSI-H. The results of RT-PCR indicated that the expression of DAPK2 mRNA was significantly downregulated in CRC tissues compared to normal tissues. Increased DAPK2 expression significantly suppressed cell proliferation, promoted apoptosis, and inhibited migration and invasion. The nude mice xenograft tumor model confirmed that high expression of DAPK2 inhibited tumor growth. Collectively, we discovered an innovative anoikis-related gene signature associated with prognosis and TME. Besides, our study indicated that DAPK2 can serve as a promising therapeutic target for inhibiting the growth and metastasis of CRC.
Collapse
Affiliation(s)
- Chuanchang Li
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junyong Weng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Le Yang
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hangjun Gong
- Department of Gastrointestinal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaolong Liu
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Zhang T, Kim BM, Lee TH. Death-associated protein kinase 1 as a therapeutic target for Alzheimer's disease. Transl Neurodegener 2024; 13:4. [PMID: 38195518 PMCID: PMC10775678 DOI: 10.1186/s40035-023-00395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly and represents a major clinical challenge in the ageing society. Neuropathological hallmarks of AD include neurofibrillary tangles composed of hyperphosphorylated tau, senile plaques derived from the deposition of amyloid-β (Aβ) peptides, brain atrophy induced by neuronal loss, and synaptic dysfunctions. Death-associated protein kinase 1 (DAPK1) is ubiquitously expressed in the central nervous system. Dysregulation of DAPK1 has been shown to contribute to various neurological diseases including AD, ischemic stroke and Parkinson's disease (PD). We have established an upstream effect of DAPK1 on Aβ and tau pathologies and neuronal apoptosis through kinase-mediated protein phosphorylation, supporting a causal role of DAPK1 in the pathophysiology of AD. In this review, we summarize current knowledge about how DAPK1 is involved in various AD pathological changes including tau hyperphosphorylation, Aβ deposition, neuronal cell death and synaptic degeneration. The underlying molecular mechanisms of DAPK1 dysregulation in AD are discussed. We also review the recent progress regarding the development of novel DAPK1 modulators and their potential applications in AD intervention. These findings substantiate DAPK1 as a novel therapeutic target for the development of multifunctional disease-modifying treatments for AD and other neurological disorders.
Collapse
Affiliation(s)
- Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Byeong Mo Kim
- Research Center for New Drug Development, AgingTarget Inc., 10F Ace Cheonggye Tower, 53, Seonggogae-Ro, Uiwang-Si, 16006, Gyeonggi-Do, Korea.
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
6
|
Sakarin S, Rungsipipat A, Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Charoenlappanit S, Thaisakun S, Surachetpong SD. Proteomic analysis of pulmonary arteries and lung tissues from dogs affected with pulmonary hypertension secondary to degenerative mitral valve disease. PLoS One 2024; 19:e0296068. [PMID: 38181036 PMCID: PMC10769092 DOI: 10.1371/journal.pone.0296068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
In dogs with degenerative mitral valve disease (DMVD), pulmonary hypertension (PH) is a common complication characterized by abnormally elevated pulmonary arterial pressure (PAP). Pulmonary arterial remodeling is the histopathological changes of pulmonary artery that has been recognized in PH. The underlying mechanisms that cause this arterial remodeling are poorly understood. This study aimed to perform shotgun proteomics to investigate changes in protein expression in pulmonary arteries and lung tissues of DMVD dogs with PH compared to normal control dogs and DMVD dogs without PH. Tissue samples were collected from the carcasses of 22 small-sized breed dogs and divided into three groups: control (n = 7), DMVD (n = 7) and DMVD+PH groups (n = 8). Differentially expressed proteins were identified, and top three upregulated and downregulated proteins in the pulmonary arteries of DMVD dogs with PH including SIK family kinase 3 (SIK3), Collagen type I alpha 1 chain (COL1A1), Transforming growth factor alpha (TGF-α), Apoptosis associated tyrosine kinase (AATYK), Hepatocyte growth factor activator (HGFA) and Tyrosine-protein phosphatase non-receptor type 13 (PTPN13) were chosen. Results showed that some of the identified proteins may play a role in the pathogenesis of pulmonary arterial remodeling. This study concluded shotgun proteomics has potential as a tool for exploring candidate proteins associated with the pathogenesis of PH secondary to DMVD in dogs.
Collapse
Affiliation(s)
- Siriwan Sakarin
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Janthima Jaresitthikunchai
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Siriwan Thaisakun
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | | |
Collapse
|
7
|
Lin C, Zeng M, Song J, Li H, Feng Z, Li K, Pei Y. PRRSV alters m 6A methylation and alternative splicing to regulate immune, extracellular matrix-associated function. Int J Biol Macromol 2023; 253:126741. [PMID: 37696370 DOI: 10.1016/j.ijbiomac.2023.126741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
The alternative splicing and N6-methyladenosine (m6A) modifications occurring during porcine reproductive and respiratory syndrome virus (PRRSV) infections remain poorly understood. Transcriptome and MeRIP-seq analyses were performed to identify the gene expression changes, splicing and m6A modifications in the lungs of PRRSV-infected pigs. In total, 1624 differentially expressed genes (DEGs) were observed between PRRSV-infected and uninfected pigs. We observed significant alterations in alternative splicing (54,367 events) and m6A modifications (2265 DASEs) in numerous genes, including LMO7, SLC25A27, ZNF185, and ECM1, during PRRSV infection. LMO7 and ZNF185 exhibited alternative splicing variants and reduced mRNA expression levels following PRRSV infection. Notably, LMO7 inhibited c-JUN, SMAD3, and FAK expression, whereas ZNF185 affected the expression of FAK, CDH1, and GSK3β downstream. Additionally, ECM1 influenced FAK expression by targeting ITGB3 and AKT2, suggesting its involvement in extracellular matrix accumulation through the ITGB3-AKT2/FAK pathway. These changes may facilitate viral invasion and replication by modulating the expression of genes and proteins participating in crucial cellular processes associated with immunity and the extracellular matrix. We highlight the importance of these genes and their associated pathways in PRRSV infections and suggest that targeting these may be a promising therapeutic approach for treating viral infections.
Collapse
Affiliation(s)
- Chenghong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Mu Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jia Song
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
| | - Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
8
|
Zhou Q, Greene LA. Dpep Inhibits Cancer Cell Growth and Survival via Shared and Context-Dependent Transcriptome Perturbations. Cancers (Basel) 2023; 15:5318. [PMID: 38001578 PMCID: PMC10669862 DOI: 10.3390/cancers15225318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Dpep is a cell-penetrating peptide targeting transcription factors ATF5, CEBPB, and CEBPD, and that selectively promotes the apoptotic death of multiple tumor cell types in vitro and in vivo. As such, it is a potential therapeutic. To better understand its mechanism of action, we used PLATE-seq to compare the transcriptomes of six cancer cell lines of diverse origins before and after Dpep exposure. This revealed a context-dependent pattern of regulated genes that was unique to each line, but that exhibited a number of elements that were shared with other lines. This included the upregulation of pro-apoptotic genes and tumor suppressors as well as the enrichment of genes associated with responses to hypoxia and interferons. Downregulated transcripts included oncogenes and dependency genes, as well as enriched genes associated with different phases of the cell cycle and with DNA repair. In each case, such changes have the potential to lie upstream of apoptotic cell death. We also detected the regulation of unique as well as shared sets of transcription factors in each line, suggesting that Dpep may initiate a cascade of transcriptional responses that culminate in cancer cell death. Such death thus appears to reflect context-dependent, yet shared, disruption of multiple cellular pathways as well as of individual survival-relevant genes.
Collapse
Affiliation(s)
| | - Lloyd A. Greene
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA;
| |
Collapse
|
9
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
10
|
Zhang L, Luo B, Lu Y, Chen Y. Targeting Death-Associated Protein Kinases for Treatment of Human Diseases: Recent Advances and Future Directions. J Med Chem 2023; 66:1112-1136. [PMID: 36645394 DOI: 10.1021/acs.jmedchem.2c01606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The death-associated protein kinase (DAPK) family is a member of the calcium/calmodulin-regulated serine/threonine protein kinase family, and studies have shown that its role, as its name suggests, is mainly to regulate cell death. The DAPK family comprises five members, including DAPK1, DAPK2, DAPK3, DRAK1 and DRAK2, which show high homology in the common N-terminal kinase domain but differ in the extra-catalytic domain. Notably, previous research has suggested that the DAPK family plays an essential role in both the development and regulation of human diseases. However, only a few small-molecule inhibitors have been reported. In this Perspective, we mainly discuss the structure, biological function, and role of DAPKs in diseases and the currently discovered small-molecule inhibitors, providing valuable information for the development of the DAPK field.
Collapse
Affiliation(s)
- Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Boqin Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
11
|
dos Santos CG, Sousa MF, Vieira JIG, de Morais LR, Fernandes AAS, de Oliveira Littiere T, Itajara Otto P, Machado MA, Silva MVGB, Bonafé CM, Braga Magalhães AF, Verardo LL. Candidate genes for tick resistance in cattle: a systematic review combining post-GWAS analyses with sequencing data. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2096035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Cassiane Gomes dos Santos
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Mariele Freitas Sousa
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - João Inácio Gomes Vieira
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Luana Rafaela de Morais
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | | | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | | | - Cristina Moreira Bonafé
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | | | - Lucas Lima Verardo
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| |
Collapse
|
12
|
Zheng Y, Li X, Kuang L, Wang Y. New insights into the characteristics of DRAK2 and its role in apoptosis: From molecular mechanisms to clinically applied potential. Front Pharmacol 2022; 13:1014508. [PMID: 36386181 PMCID: PMC9649744 DOI: 10.3389/fphar.2022.1014508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
Abstract
As a member of the death-associated protein kinase (DAPK) family, DAP kinase-associated apoptosis-inducing kinase 2 (DRAK2) performs apoptosis-related functions. Compelling evidence suggests that DRAK2 is involved in regulating the activation of T lymphocytes as well as pancreatic β-cell apoptosis in type I diabetes. In addition, DRAK2 has been shown to be involved in the development of related tumor and non-tumor diseases through a variety of mechanisms, including exacerbation of alcoholic fatty liver disease (NAFLD) through SRSF6-associated RNA selective splicing mechanism, regulation of chronic lymphocytic leukemia and acute myeloid leukemia, and progression of colorectal cancer. This review focuses on the structure, function, and upstream pathways of DRAK2 and discusses the potential and challenges associated with the clinical application of DRAK2-based small-molecule inhibitors, with the aim of advancing DRAK2 research.
Collapse
Affiliation(s)
| | | | | | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Chen HM, MacDonald JA. Death-associated protein kinases and intestinal epithelial homeostasis. Anat Rec (Hoboken) 2022; 306:1062-1087. [PMID: 35735750 DOI: 10.1002/ar.25022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The family of death-associated protein kinases (DAPKs) and DAPK-related apoptosis-inducing protein kinases (DRAKs) act as molecular switches for a multitude of cellular processes, including apoptotic and autophagic cell death events. This review summarizes the mechanisms for kinase activity regulation and discusses recent molecular investigations of DAPK and DRAK family members in the intestinal epithelium. In general, recent literature convincingly supports the importance of this family of protein kinases in the homeostatic processes that govern the proper function of the intestinal epithelium. Each of the DAPK family of proteins possesses distinct biochemical properties, and we compare similarities in the information available as well as those cases where functional distinctions are apparent. As the prototypical member of the family, DAPK1 is noteworthy for its tumor suppressor function and association with colorectal cancer. In the intestinal epithelium, DAPK2 is associated with programmed cell death, potential tumor-suppressive functions, and a unique influence on granulocyte biology. The impact of the DRAKs in the epithelium is understudied, but recent studies support a role for DRAK1 in inflammation-mediated tumor growth and metastasis. A commentary is provided on the potential importance of DAPK3 in facilitating epithelial restitution and wound healing during the resolution of colitis. An update on efforts to develop selective pharmacologic effectors of individual DAPK members is also supplied.
Collapse
Affiliation(s)
- Huey-Miin Chen
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Chen F, Gong E, Ma J, Lin J, Wu C, Chen S, Hu S. Prognostic score model based on six m6A-related autophagy genes for predicting survival in esophageal squamous cell carcinoma. J Clin Lab Anal 2022; 36:e24507. [PMID: 35611939 PMCID: PMC9279981 DOI: 10.1002/jcla.24507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Prognostic signatures based on autophagy genes have been proposed for esophageal squamous cell carcinoma (ESCC). Autophagy genes are closely associated with m6A genes. Our purpose is to identify m6A-related autophagy genes in ESCC and develop a survival prediction model. METHODS Differential expression analyses for m6A genes and autophagy genes were performed based on TCGA and HADd databases followed by constructing a co-expression network. Uni-variable Cox regression analysis was performed for m6A-related autophagy genes. Using the optimal combination of feature genes by LASSO Cox regression model, a prognostic score (PS) model was developed and subsequently validated in an independent dataset. RESULTS The differential expression of 13 m6A genes and 107 autophagy genes was observed between ESCC and normal samples. The co-expression network contained 13 m6A genes and 96 autophagy genes. Of the 12 m6A-related autophagy genes that were significantly related to survival, DAPK2, DIRAS3, EIF2AK3, ITPR1, MAP1LC3C, and TP53 were used to construct a PS model, which split the training set into two risk groups with significant different survival ratios (p = 0.015, 1-year, 3-year, and 5-year AUC = 0.873, 0.840, and 0.829). Consistent results of GSE53625 dataset confirmed predictive ability of the model (p = 0.024, 1-year, 3-year, and 5-year AUC = 0.793, 0.751, and 0.744). The six-gene PS score was an independent prognostic factor from clinical factors (HR, 2.362; 95% CI, 1.390-7.064; p-value = 0.012). CONCLUSION Our study recommends 6 m6A-related autophagy genes as promising prognostic biomarkers and develops a PS model to predict survival in ESCC.
Collapse
Affiliation(s)
- Funan Chen
- Department of Cardiothoracic Surgery, Longyan First Hospital, Longyan City, China
| | - Erxiu Gong
- Department of Cardiothoracic Surgery, Longyan First Hospital, Longyan City, China
| | - Jun Ma
- Department of Cardiothoracic Surgery, Longyan First Hospital, Longyan City, China
| | - Jiehuan Lin
- Department of Cardiothoracic Surgery, Longyan First Hospital, Longyan City, China
| | - Canxing Wu
- Department of Cardiothoracic Surgery, Longyan First Hospital, Longyan City, China
| | - Shanshan Chen
- Priority Ward, Longyan First Hospital, Longyan City, China
| | - Shuqiao Hu
- Department of Cardiothoracic Surgery, Longyan First Hospital, Longyan City, China
| |
Collapse
|
15
|
Gao Q, Ma C, Meng S, Wang G, Xing Q, Xu Y, He X, Wang T, Cao Y. Exploration of molecular features of PCOS with different androgen levels and immune-related prognostic biomarkers associated with implantation failure. Front Endocrinol (Lausanne) 2022; 13:946504. [PMID: 36060967 PMCID: PMC9439868 DOI: 10.3389/fendo.2022.946504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), the most common heterogeneous reproductive disease afflicting women of childbearing age, has been recognized as a chronic inflammatory disease recently. Most PCOS patients have hyperandrogenism, indicating a poor prognosis and poor pregnancy outcomes. The molecular mechanism underlying PCOS development is still unknown. In the present study, we investigated the gene expression profiling characteristics of PCOS with hyperandrogenism (HA) or without hyperandrogenism (NHA) and identified immune-related factors that correlated with embryo implantation failure. METHODS PCOS and recurrent implantation failure (RIF) microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. ClueGO software was used to perform enrichment analysis of differentially expressed genes (DEGs) in PCOS with varying androgen levels. The Weighted Co-Expression Network Analysis (WGCNA) was used to identify co-expressed modules and shared gene signatures between HA PCOS and RIF. Moreover, the upregulated DEGs of HA PCOS and RIF were intersected with shared gene signatures screening by WGCNA to excavate further key prognostic biomarkers related to implantation failure of HA PCOS. The selected biomarker was verified by qRT-PCR. RESULTS A total of 271 DEGs were found in HA PCOS granulosa cell samples, and 720 DEGs were found in NHA PCOS. According to CuleGO enrichment analysis, DEGs in HA PCOS are enriched in immune activation and inflammatory response. In contrast, DEGs in NHA PCOS are enriched in mesenchymal cell development and extracellular space. Using WGCNA analysis, we discovered 26 shared gene signatures between HA PCOS and RIF, which were involved in corticosteroid metabolism, bone maturation and immune regulation. DAPK2 was furtherly screened out and verified to be closely related with the development of HA PCOS, acting as an independent predictor biomarker of the embryo implantation failure. DAPK2 expression was negatively correlated to the embryo implantation rate (r=-0.474, P=0.003). The immune infiltration results suggested that upregulated DAPK2 expression was closely related with NK cell infiltration and macrophage M2, playing an essential role in the pathogenesis of implantation failure in HA PCOS. CONCLUSION Our research revealed the expression profiling of PCOS with different androgen levels and identified DAPK2 as a critical prognostic biomarker for implantation failure in PCOS.
Collapse
Affiliation(s)
- Qinyu Gao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
| | - Cong Ma
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Shuyu Meng
- Molecular Pharmacology and Therapeutics, University of Minnesota, Twin Cities, MN, United States
| | - Guanxiong Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Qiong Xing
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Yuping Xu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Xiaojin He
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics (Anhui Medical University), Hefei, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center (Anhui Medical University), Hefei, China
| | - Tianjuan Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
- *Correspondence: Tianjuan Wang, ; Yunxia Cao,
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- National Health Commission (NHC) Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, China
- *Correspondence: Tianjuan Wang, ; Yunxia Cao,
| |
Collapse
|
16
|
Logie E, Novo CP, Driesen A, Van Vlierberghe P, Vanden Berghe W. Phosphocatalytic Kinome Activity Profiling of Apoptotic and Ferroptotic Agents in Multiple Myeloma Cells. Int J Mol Sci 2021; 22:ijms222312731. [PMID: 34884535 PMCID: PMC8657914 DOI: 10.3390/ijms222312731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 01/13/2023] Open
Abstract
Through phosphorylation of their substrate proteins, protein kinases are crucial for transducing cellular signals and orchestrating biological processes, including cell death and survival. Recent studies have revealed that kinases are involved in ferroptosis, an iron-dependent mode of cell death associated with toxic lipid peroxidation. Given that ferroptosis is being explored as an alternative strategy to eliminate apoptosis-resistant tumor cells, further characterization of ferroptosis-dependent kinase changes might aid in identifying novel druggable targets for protein kinase inhibitors in the context of cancer treatment. To this end, we performed a phosphopeptidome based kinase activity profiling of glucocorticoid-resistant multiple myeloma cells treated with either the apoptosis inducer staurosporine (STS) or ferroptosis inducer RSL3 and compared their kinome activity signatures. Our data demonstrate that both cell death mechanisms inhibit the activity of kinases classified into the CMGC and AGC families, with STS showing a broader spectrum of serine/threonine kinase inhibition. In contrast, RSL3 targets a significant number of tyrosine kinases, including key players of the B-cell receptor signaling pathway. Remarkably, additional kinase profiling of the anti-cancer agent withaferin A revealed considerable overlap with ferroptosis and apoptosis kinome activity, explaining why withaferin A can induce mixed ferroptotic and apoptotic cell death features. Altogether, we show that apoptotic and ferroptotic cell death induce different kinase signaling changes and that kinome profiling might become a valid approach to identify cell death chemosensitization modalities of novel anti-cancer agents.
Collapse
Affiliation(s)
- Emilie Logie
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
| | - Claudina Perez Novo
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
| | - Amber Driesen
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
| | | | - Wim Vanden Berghe
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
- Correspondence: ; Tel.: +32-32-65-26-57
| |
Collapse
|
17
|
Li W, Yu W, Xu W, Xiong J, Zhong X, Hu S, Yu J. Death-associated Protein Kinase 1 Regulates Oxidative Stress In Cardiac Ischemia Reperfusion Injury. Cells Tissues Organs 2021; 210:380-390. [PMID: 34348268 DOI: 10.1159/000518248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Wentong Li
- Cardiovascular and Thoracic Surgery Department 2, The First Affiliated Hospital of Gannan Medical University, Gannan, China
| | - Wenjuan Yu
- Neurological Medical Department 1, The First Affiliated Hospital of Gannan Medical University, Gannan, China
| | - Weichang Xu
- Cardiovascular and Thoracic Surgery Department 2, The First Affiliated Hospital of Gannan Medical University, Gannan, China
| | - Jianxian Xiong
- Cardiovascular and Thoracic Surgery Department 2, The First Affiliated Hospital of Gannan Medical University, Gannan, China
| | - Xuehong Zhong
- Cardiovascular and Thoracic Surgery Department 2, The First Affiliated Hospital of Gannan Medical University, Gannan, China
| | - Shuo Hu
- Cardiovascular and Thoracic Surgery Department 2, The First Affiliated Hospital of Gannan Medical University, Gannan, China
| | - Junjian Yu
- Cardiovascular and Thoracic Surgery Department 2, The First Affiliated Hospital of Gannan Medical University, Gannan, China
| |
Collapse
|
18
|
Wang Z, Wang X, Cheng F, Wen X, Feng S, Yu F, Tang H, Liu Z, Teng X. Rapamycin Inhibits Glioma Cells Growth and Promotes Autophagy by miR-26a-5p/DAPK1 Axis. Cancer Manag Res 2021; 13:2691-2700. [PMID: 33790644 PMCID: PMC7997605 DOI: 10.2147/cmar.s298468] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Background Glioma is a common intracranial malignant tumor with high rates of invasiveness and mortality. This study aimed to investigate the mechanism of rapamycin in glioma. Methods U118-MG cells were treated with and without rapamycin in vivo and then collected for RNA sequencing. Differentially expressed miRNAs (DEMs) were screened and verified. MiR-26a-5p was selected for functional verification, and the target gene of miR-26a-5p was identified. The effects of miR-26a-5p on cell proliferation, cell cycle, apoptosis, and autophagy were also investigated. Results In total, 58 up-regulated and 41 down-regulated DEMs were identified between rapamycin-treated and untreated U118-MG cells. MiR-26-5p levels were up-regulated in U118-MG cells treated with 12.5 μM rapamycin, and death-associated protein kinase 1 (DAPK1) expression, a direct miR-26a-5p target gene, was down-regulated. Rapamycin substantially inhibited cell proliferation and cell percentage in the S phase and promoted cell apoptosis; miR-26a-5p inhibitor increased cell proliferation and cell cycle and decreased cell apoptosis; DAPK1 overexpression further induced cell proliferation, increased the cell number in the S phase, and inhibited apoptosis in glioma cells. Notably, rapamycin increased the autophagy-related Beclin1 protein expression levels and the LC3 II/I ratio. Conclusion Rapamycin exerts anti-tumor effects by promoting autophagy in glioma cells, which was dependent on the miR-26a-5p/DAPK1 pathway activation by rapamycin.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Neurology, Hangzhou Seventh People's Hospital, Hangzhou, People's Republic of China
| | - Xiaoxi Wang
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Fei Cheng
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xue Wen
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Shi Feng
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Fang Yu
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hui Tang
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhengjin Liu
- Department of Pathology, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Xiaodong Teng
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
19
|
Yan Q, Nho K, Del-Aguila JL, Wang X, Risacher SL, Fan KH, Snitz BE, Aizenstein HJ, Mathis CA, Lopez OL, Demirci FY, Feingold E, Klunk WE, Saykin AJ, Cruchaga C, Kamboh MI. Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging. Mol Psychiatry 2021; 26:309-321. [PMID: 30361487 PMCID: PMC6219464 DOI: 10.1038/s41380-018-0246-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/31/2018] [Indexed: 12/25/2022]
Abstract
Deposition of amyloid plaques in the brain is one of the two main pathological hallmarks of Alzheimer's disease (AD). Amyloid positron emission tomography (PET) is a neuroimaging tool that selectively detects in vivo amyloid deposition in the brain and is a reliable endophenotype for AD that complements cerebrospinal fluid biomarkers with regional information. We measured in vivo amyloid deposition in the brains of ~1000 subjects from three collaborative AD centers and ADNI using 11C-labeled Pittsburgh Compound-B (PiB)-PET imaging followed by meta-analysis of genome-wide association studies, first to our knowledge for PiB-PET, to identify novel genetic loci for this endophenotype. The APOE region showed the most significant association where several SNPs surpassed the genome-wide significant threshold, with APOE*4 being most significant (P-meta = 9.09E-30; β = 0.18). Interestingly, after conditioning on APOE*4, 14 SNPs remained significant at P < 0.05 in the APOE region that were not in linkage disequilibrium with APOE*4. Outside the APOE region, the meta-analysis revealed 15 non-APOE loci with P < 1E-05 on nine chromosomes, with two most significant SNPs on chromosomes 8 (P-meta = 4.87E-07) and 3 (P-meta = 9.69E-07). Functional analyses of these SNPs indicate their potential relevance with AD pathogenesis. Top 15 non-APOE SNPs along with APOE*4 explained 25-35% of the amyloid variance in different datasets, of which 14-17% was explained by APOE*4 alone. In conclusion, we have identified novel signals in APOE and non-APOE regions that affect amyloid deposition in the brain. Our data also highlights the presence of yet to be discovered variants that may be responsible for the unexplained genetic variance of amyloid deposition.
Collapse
Affiliation(s)
- Qi Yan
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jorge L Del-Aguila
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Xingbin Wang
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kang-Hsien Fan
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beth E Snitz
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Alzheimer Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Chester A Mathis
- Alzheimer Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Alzheimer Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - F Yesim Demirci
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Alzheimer Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
- Alzheimer Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Wang L, Xu W, Zhou Q, Xu B, Sheng Y, Sun M, Chen H, Wang Y, Ding G, Duan Y. 2,3',4,4',5-Pentachlorobiphenyl Induced Thyrocyte Autophagy by Promoting Calcium Influx via Store-Operated Ca2+ Entry. Toxicol Sci 2020; 177:483-493. [PMID: 32895711 DOI: 10.1093/toxsci/kfaa116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PCB118, a 2,3',4,4',5-pentachlorobiphenyl, has been shown to destroy thyroidal ultrastructure and induce thyrocyte autophagy. Previously, we reported that PCB118 promoted autophagosome formation in vivo and in vitro, but more details remain to be revealed. To explore the underlying mechanism by which PCB118 regulates thyrocyte autophagy, Fischer rat thyroid cell line-5 (FRTL-5) cells were exposed to different doses of PCB118 at 0, 0.25, 2.5, and 25 nM for 0-48 h. Western blot analysis of autophagy-related proteins P62, BECLIN1, and LC3 demonstrated that PCB118 induced autophagy formation in dose- and time-dependent manner. Moreover, laser scanning confocal microscopy and flow cytometry showed PCB118 treatment led to time- and dose-dependent increase in intracellular calcium concentration ([Ca2+]i). Additionally, PCB118 promoted store-operated Ca2+ entry (SOCE) channel followed by significant increase of ORAI1 and STIM1 protein levels. On the other hand, PCB118 induced thyroidal autophagy via class III β-tubulin (TUBB3)/death-associated protein kinase 2 (DAPK2)/myosin regulatory light chain (MRLC)/autophagy-related 9A (ATG9A) pathway in FRTL-5 cells. Pretreatment with SOCE inhibitor SKF96365 reduced cytosolic Ca2+, ORAI1, STIM1, and BECLIN1 levels as well as LC3 II/LC3 I ratio, while increased P62 expression. SKF96365 also inhibited TUBB3/DAPK2/MRLC/ATG9A pathway in FRTL-5 cells treated by PCB118. Our results provide evidence that PCB118 may induce thyroidal autophagy through TUBB3-related signaling pathway, and these effects are likely to be regulated by calcium influx via SOCE channel.
Collapse
Affiliation(s)
| | | | | | | | - Yunlu Sheng
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Minne Sun
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | | | | - Guoxian Ding
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | |
Collapse
|
21
|
Dapk1 improves inflammation, oxidative stress and autophagy in LPS-induced acute lung injury via p38MAPK/NF-κB signaling pathway. Mol Immunol 2020; 120:13-22. [PMID: 32045770 DOI: 10.1016/j.molimm.2020.01.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/25/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the impact of death-associated protein kinase 1 (Dapk1) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) via p38MAPK/NF-κB pathway. METHODS Dapk1+/+ and Dapk1-/- mice were randomized into Control, LPS, SB203580 (a p38MAPK pathway inhibitor) + LPS, and PDTC (a NF-κB pathway inhibitor) + LPS groups. Cell counts, lung wet to dry weight ratio (W/D weight ratio), as well as indicators of oxidative stress were determined followed by the detection with HE staining, ELISA, qRT-PCR, Western blotting and Immunofluorescence. Besides, to explore whether the effect of Dapk1 on ALI directly mediated via p38MAPK/NF-κB pathway, mice were injected with TC-DAPK 6 (a Dapk1 inhibitor) with or without SB203580/PDTC before LPS administration. RESULTS LPS induced lung injury with increased lung W/D weight ratio, which could be partly reversed by SB203580 and PDTC in LPS-induced mice with activated p38MAPK/NF-κB pathway in lung tissues, especially in Dapk1-/- mice. SB203580 and PDTC reduced total cells and neutrophils in BALF in LPS-induced mice, accompanying with decreased levels of TNF-α, IL-6, MPO, LPO and MDA and the expressions of beclin-1, Atg5 and LC3II, but with the up-regulated activities of SOD and GSH-Px, as well as p62 protein expression. Besides, TC-DAPK 6 aggravated the pathologic injury in LPS-induced ALI with more serious inflammatory response, oxidative stress and autophagy as well as the activated p38MAPK/NF-κB pathway, which were reversed by SB203580 or PDTC. CONCLUSION Dapk1 improved oxidative stress, inhibited autophagy, and reduce inflammatory response of LPS-induced ALI mice by inhibiting p38MAPK/NF-κB pathway.
Collapse
|
22
|
Villalobo A, Berchtold MW. The Role of Calmodulin in Tumor Cell Migration, Invasiveness, and Metastasis. Int J Mol Sci 2020; 21:ijms21030765. [PMID: 31991573 PMCID: PMC7037201 DOI: 10.3390/ijms21030765] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor protein in all eukaryotic cells, that upon binding to target proteins transduces signals encoded by global or subcellular-specific changes of Ca2+ concentration within the cell. The Ca2+/CaM complex as well as Ca2+-free CaM modulate the activity of a vast number of enzymes, channels, signaling, adaptor and structural proteins, and hence the functionality of implicated signaling pathways, which control multiple cellular functions. A basic and important cellular function controlled by CaM in various ways is cell motility. Here we discuss the role of CaM-dependent systems involved in cell migration, tumor cell invasiveness, and metastasis development. Emphasis is given to phosphorylation/dephosphorylation events catalyzed by myosin light-chain kinase, CaM-dependent kinase-II, as well as other CaM-dependent kinases, and the CaM-dependent phosphatase calcineurin. In addition, the role of the CaM-regulated small GTPases Rac1 and Cdc42 (cell division cycle protein 42) as well as CaM-binding adaptor/scaffold proteins such as Grb7 (growth factor receptor bound protein 7), IQGAP (IQ motif containing GTPase activating protein) and AKAP12 (A kinase anchoring protein 12) will be reviewed. CaM-regulated mechanisms in cancer cells responsible for their greater migratory capacity compared to non-malignant cells, invasion of adjacent normal tissues and their systemic dissemination will be discussed, including closely linked processes such as the epithelial–mesenchymal transition and the activation of metalloproteases. This review covers as well the role of CaM in establishing metastatic foci in distant organs. Finally, the use of CaM antagonists and other blocking techniques to downregulate CaM-dependent systems aimed at preventing cancer cell invasiveness and metastasis development will be outlined.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area—Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
- Correspondence: (A.V.); (M.W.B.)
| | - Martin W. Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark
- Correspondence: (A.V.); (M.W.B.)
| |
Collapse
|
23
|
Shiloh R, Bialik S, Kimchi A. Ser289 phosphorylation activates both DAPK1 and DAPK2 but in response to different intracellular signaling pathways. Cell Cycle 2019; 18:1169-1176. [PMID: 31116076 DOI: 10.1080/15384101.2019.1617616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DAPK1 and DAPK2 are calmodulin (CaM)-regulated protein kinases that share a high degree of homology in their catalytic and CaM regulatory domains. Both kinases function as tumor suppressors, and both have been implicated in autophagy regulation. Over the years, common regulatory mechanisms for the two kinases as well as kinase-specific ones have been identified. In a recent work, we revealed that DAPK2 is phosphorylated on Ser289 by the metabolic sensor AMPK, and that this phosphorylation enhances DAPK2 catalytic activity. Notably, Ser289 is conserved between DAPK1 and DAPK2, and was previously found to be phosphorylated in DAPK1 by RSK. Intriguingly, Ser289 phosphorylation was conversely reported to inhibit the pro-apoptotic activity of DAPK1 in cells. However, as the direct effect of this phosphorylation on DAPK1 catalytic activity was not tested, indirect effects were not excluded. Here, we compared Ser289 phosphorylation of the two kinases in the same cells and found that the intracellular signaling pathways that lead to Ser289 phosphorylation are mutually-exclusive and different for each kinase. In addition, we found that Ser289 phosphorylation in fact enhances DAPK1 catalytic activity, similar to the effect on DAPK2. Thus, Ser289 phosphorylation activates both DAPK1 and DAPK2, but in response to different intracellular signaling pathways.
Collapse
Affiliation(s)
- Ruth Shiloh
- a Department of Molecular Genetics , Weizmann Institute of Science , Rehovot , Israel
| | - Shani Bialik
- a Department of Molecular Genetics , Weizmann Institute of Science , Rehovot , Israel
| | - Adi Kimchi
- a Department of Molecular Genetics , Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
24
|
Wang Y, Liu LL, Tian Y, Chen Y, Zha WH, Li Y, Wu FJ. Upregulation of DAPK2 ameliorates oxidative damage and apoptosis of placental cells in hypertensive disorder complicating pregnancy by suppressing human placental microvascular endothelial cell autophagy through the mTOR signaling pathway. Int J Biol Macromol 2018; 121:488-497. [PMID: 30243997 DOI: 10.1016/j.ijbiomac.2018.09.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/27/2018] [Accepted: 09/19/2018] [Indexed: 12/17/2022]
Abstract
Death-associated protein kinase 2 (DAPK2) has indicated functional roles in cellular processes, including survival, apoptosis, and autophagy. This study is aimed to identify the effect of DAPK2 on oxidative damage and apoptosis of placental cells in hypertensive disorder complicating pregnancy (HDCP) through mTOR pathway. Microarray-based gene expression analysis was performed to predict the differentially expressed genes related to HDCP. To investigate the specific mechanism of DAPK2 in HDCP cells, placental microvascular endothelial cells were treated with mimic or siRNA of DAPK2 and mTOR to detect the expression of related genes, cell autophagy and apoptosis and oxidative damage. Finally, rats were modeled with HDCP to verify the cell experiment results. DAPK2 was downregulated in HDCP, and could activate mTOR. Besides, DAPK2 overexpression led to decreases in autophagy in HPVECs as well as apoptosis and oxidative damage in placental cells indicated by a substantial decrease in Beclin-1, LC3 II/LC3 I and Bax along with an increase in Bcl-2, 4EBP1 and p70S6K. It also ameliorates blood pressure elevation in HDCP rats. The study defined remission effect of DAPK2 on placental cell oxidative damage and apoptosis in HDCP via mTOR activation. Together, DAPK2 regulating mTOR pathway presents a promising therapy for HDCP treatment.
Collapse
Affiliation(s)
- Yan Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Lian-Lian Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yuan Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yang Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Wen-Hui Zha
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Fu-Ju Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
25
|
|
26
|
Shiloh R, Gilad Y, Ber Y, Eisenstein M, Aweida D, Bialik S, Cohen S, Kimchi A. Non-canonical activation of DAPK2 by AMPK constitutes a new pathway linking metabolic stress to autophagy. Nat Commun 2018; 9:1759. [PMID: 29717115 PMCID: PMC5931534 DOI: 10.1038/s41467-018-03907-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
Autophagy is an intracellular degradation process essential for adaptation to metabolic stress. DAPK2 is a calmodulin-regulated protein kinase, which has been implicated in autophagy regulation, though the mechanism is unclear. Here, we show that the central metabolic sensor, AMPK, phosphorylates DAPK2 at a critical site in the protein structure, between the catalytic and the calmodulin-binding domains. This phosphorylation activates DAPK2 by functionally mimicking calmodulin binding and mitigating an inhibitory autophosphorylation, providing a novel, alternative mechanism for DAPK2 activation during metabolic stress. In addition, we show that DAPK2 phosphorylates the core autophagic machinery protein, Beclin-1, leading to dissociation of its inhibitor, Bcl-XL. Importantly, phosphorylation of DAPK2 by AMPK enhances DAPK2’s ability to phosphorylate Beclin-1, and depletion of DAPK2 reduces autophagy in response to AMPK activation. Our study reveals a unique calmodulin-independent mechanism for DAPK2 activation, critical to its function as a novel downstream effector of AMPK in autophagy. DAPK2 is a calmodulin-regulated protein kinase implicated in autophagy regulation, but how physiological stress leads to its activation is yet unknown. Here, the authors show that the central metabolic sensor AMPK phosphorylates DAPK2 to promote autophagy in a calmodulin-independent mechanism.
Collapse
Affiliation(s)
- Ruth Shiloh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yuval Gilad
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yaara Ber
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Miriam Eisenstein
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dina Aweida
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, 32000, Israel
| | - Shani Bialik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shenhav Cohen
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, 32000, Israel
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
27
|
Meier-Soelch J, Jurida L, Weber A, Newel D, Kim J, Braun T, Schmitz ML, Kracht M. RNAi-Based Identification of Gene-Specific Nuclear Cofactor Networks Regulating Interleukin-1 Target Genes. Front Immunol 2018; 9:775. [PMID: 29755455 PMCID: PMC5934416 DOI: 10.3389/fimmu.2018.00775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/28/2018] [Indexed: 12/22/2022] Open
Abstract
The potent proinflammatory cytokine interleukin (IL)-1 triggers gene expression through the NF-κB signaling pathway. Here, we investigated the cofactor requirements of strongly regulated IL-1 target genes whose expression is impaired in p65 NF-κB-deficient murine embryonic fibroblasts. By two independent small-hairpin (sh)RNA screens, we examined 170 genes annotated to encode nuclear cofactors for their role in Cxcl2 mRNA expression and identified 22 factors that modulated basal or IL-1-inducible Cxcl2 levels. The functions of 16 of these factors were validated for Cxcl2 and further analyzed for their role in regulation of 10 additional IL-1 target genes by RT-qPCR. These data reveal that each inducible gene has its own (quantitative) requirement of cofactors to maintain basal levels and to respond to IL-1. Twelve factors (Epc1, H2afz, Kdm2b, Kdm6a, Mbd3, Mta2, Phf21a, Ruvbl1, Sin3b, Suv420h1, Taf1, and Ube3a) have not been previously implicated in inflammatory cytokine functions. Bioinformatics analysis indicates that they are components of complex nuclear protein networks that regulate chromatin functions and gene transcription. Collectively, these data suggest that downstream from the essential NF-κB signal each cytokine-inducible target gene has further subtle requirements for individual sets of nuclear cofactors that shape its transcriptional activation profile.
Collapse
Affiliation(s)
- Johanna Meier-Soelch
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Liane Jurida
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Axel Weber
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Doris Newel
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Johnny Kim
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
28
|
Terenina E, Fabre S, Bonnet A, Monniaux D, Robert-Granié C, SanCristobal M, Sarry J, Vignoles F, Gondret F, Monget P, Tosser-Klopp G. Differentially expressed genes and gene networks involved in pig ovarian follicular atresia. Physiol Genomics 2017; 49:67-80. [DOI: 10.1152/physiolgenomics.00069.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 01/08/2023] Open
Abstract
Ovarian folliculogenesis corresponds to the development of follicles leading to either ovulation or degeneration, this latter process being called atresia. Even if atresia involves apoptosis, its mechanism is not well understood. The objective of this study was to analyze global gene expression in pig granulosa cells of ovarian follicles during atresia. The transcriptome analysis was performed on a 9,216 cDNA microarray to identify gene networks and candidate genes involved in pig ovarian follicular atresia. We found 1,684 significantly regulated genes to be differentially regulated between small healthy follicles and small atretic follicles. Among them, 287 genes had a fold-change higher than two between the two follicle groups. Eleven genes ( DKK3, GADD45A, CAMTA2, CCDC80, DAPK2, ECSIT, MSMB, NUPR1, RUNX2, SAMD4A, and ZNF628) having a fold-change higher than five between groups could likely serve as markers of follicular atresia. Moreover, automatic confrontation of deregulated genes with literature data highlighted 93 genes as regulatory candidates of pig granulosa cell atresia. Among these genes known to be inhibitors of apoptosis, stimulators of apoptosis, or tumor suppressors INHBB, HNF4, CLU, different interleukins ( IL5, IL24), TNF-associated receptor ( TNFR1), and cytochrome-c oxidase ( COX) were suggested as playing an important role in porcine atresia. The present study also enlists key upstream regulators in follicle atresia based on our results and on a literature review. The novel gene candidates and gene networks identified in the current study lead to a better understanding of the molecular regulation of ovarian follicular atresia.
Collapse
Affiliation(s)
- Elena Terenina
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Stephane Fabre
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Agnès Bonnet
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Danielle Monniaux
- INRA UMR 0085, CNRS UMR 7247, Université Francois Rabelais de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | - Magali SanCristobal
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Julien Sarry
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Florence Vignoles
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Florence Gondret
- INRA, UMR1348 Pegase, Saint‐Gilles, France; and
- AgroCampus-Ouest, UMR1348 Pegase, Saint‐Gilles, France
| | - Philippe Monget
- INRA UMR 0085, CNRS UMR 7247, Université Francois Rabelais de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | |
Collapse
|
29
|
Gadahi JA, Wang S, Bo G, Ehsan M, Yan R, Song X, Xu L, Li X. Proteomic Analysis of the Excretory and Secretory Proteins of Haemonchus contortus (HcESP) Binding to Goat PBMCs In Vivo Revealed Stage-Specific Binding Profiles. PLoS One 2016; 11:e0159796. [PMID: 27467391 PMCID: PMC4965049 DOI: 10.1371/journal.pone.0159796] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 07/09/2016] [Indexed: 02/06/2023] Open
Abstract
Haemonchus contortus is a parasitic gastrointestinal nematode, and its excretory and secretory products (HcESPs) interact extensively with the host cells. In this study, we report the interaction of proteins from HcESPs at different developmental stages to goat peripheral blood mononuclear cells (PBMCs) in vivo using liquid chromatography-tandem mass spectrometry. A total of 407 HcESPs that interacted with goat PBMCs at different time points were identified from a H. contortus protein database using SEQUEST searches. The L4 and L5 stages of H. contortus represented a higher proportion of the identified proteins compared with the early and late adult stages. Both stage-specific interacting proteins and proteins that were common to multiple stages were identified. Forty-seven interacting proteins were shared among all stages. The gene ontology (GO) distributions of the identified goat PBMC-interacting proteins were nearly identical among all developmental stages, with high representation of binding and catalytic activity. Cellular, metabolic and single-organism processes were also annotated as major biological processes, but interestingly, more proteins were annotated as localization processes at the L5 stage than at the L4 and adult stages. Based on the clustering of homologous proteins, we improved the functional annotations of un-annotated proteins identified at different developmental stages. Some unnamed H. contortus ATP-binding cassette proteins, including ADP-ribosylation factor and P-glycoprotein-9, were identified by STRING protein clustering analysis.
Collapse
Affiliation(s)
- Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shuai Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Gao Bo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - RuoFeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - XiaoKai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - LiXin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
30
|
Identification of Novel Death-Associated Protein Kinase 2 Interaction Partners by Proteomic Screening Coupled with Bimolecular Fluorescence Complementation. Mol Cell Biol 2015; 36:132-43. [PMID: 26483415 DOI: 10.1128/mcb.00515-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/08/2015] [Indexed: 11/20/2022] Open
Abstract
Death-associated protein kinase 2 (DAPK2) is a Ca(2+)/calmodulin-dependent Ser/Thr kinase that possesses tumor-suppressive functions and regulates programmed cell death, autophagy, oxidative stress, hematopoiesis, and motility. As only few binding partners of DAPK2 have been determined, the molecular mechanisms governing these biological functions are largely unknown. We report the identification of 180 potential DAPK2 interaction partners by affinity purification-coupled mass spectrometry, 12 of which are known DAPK binding proteins. A small subset of established and potential binding proteins detected in this screen was further investigated by bimolecular fluorescence complementation (BiFC) assays, a method to visualize protein interactions in living cells. These experiments revealed that α-actinin-1 and 14-3-3-β are novel DAPK2 binding partners. The interaction of DAPK2 with α-actinin-1 was localized at the plasma membrane, resulting in massive membrane blebbing and reduced cellular motility, whereas the interaction of DAPK2 with 14-3-3-β was localized to the cytoplasm, with no impact on blebbing, motility, or viability. Our results therefore suggest that DAPK2 effector functions are influenced by the protein's subcellular localization and highlight the utility of combining mass spectrometry screening with bimolecular fluorescence complementation to identify and characterize novel protein-protein interactions.
Collapse
|