1
|
Zhang J, Liu C, Li J, Yu T, Ruan J, Yang F. Advanced Piezoelectric Materials, Devices, and Systems for Orthopedic Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410400. [PMID: 39665130 PMCID: PMC11744659 DOI: 10.1002/advs.202410400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Harnessing the robust electromechanical couplings, piezoelectric materials not only enable efficient bio-energy harvesting, physiological sensing and actuating but also open enormous opportunities for therapeutic treatments through surface polarization directly interacting with electroactive cells, tissues, and organs. Known for its highly oriented and hierarchical structure, collagen in natural bones produces local electrical signals to stimulate osteoblasts and promote bone formation, inspiring the application of piezoelectric materials in orthopedic medicine. Recent studies showed that piezoelectricity can impact microenvironments by regulating molecular sensors including ion channels, cytoskeletal elements, cell adhesion proteins, and other signaling pathways. This review thus focuses on discussing the pioneering applications of piezoelectricity in the diagnosis and treatment of orthopedic diseases, aiming to offer valuable insights for advancing next-generation medical technologies. Beginning with an introduction to the principles of piezoelectricity and various piezoelectric materials, this review paper delves into the mechanisms through which piezoelectric materials accelerated osteogenesis. A comprehensive overview of piezoelectric materials, devices, and systems enhancing bone tissue repair, alleviating inflammation at infection sites, and monitoring bone health is then provided, respectively. Finally, the major challenges faced by applications of piezoelectricity in orthopedic conditions are thoroughly discussed, along with a critical outlook on future development trends.
Collapse
Affiliation(s)
- Jingkai Zhang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chang Liu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Jun Li
- Department of Materials Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Tao Yu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jing Ruan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Fan Yang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Research Institute of Frontier ScienceSouthwest Jiaotong UniversityChengduSichuan610031China
| |
Collapse
|
2
|
Li S, Liu H, Li M, Zhang C. Multiscale simulation of the effect of low-intensity pulsed ultrasound on the mechanical properties distribution of osteocytes. Comput Methods Biomech Biomed Engin 2024; 27:2058-2070. [PMID: 37842824 DOI: 10.1080/10255842.2023.2270103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) is a potential effective means for the prevention and treatment of disuse osteoporosis. In this paper, the effect of LIPUS exposure on the mechanical properties distribution of the osteocyte system (osteocyte body contains nucleus, osteocyte process, and primary cilia) is simulated. The results demonstrate that the mechanical micro-environment of the osteocyte is significantly improved by ultrasound exposure, and the mean von Mises stress of the osteocyte system increases linearly with the excitation sound pressure amplitude. The mechanical effect of LIPUS on osteocytes is enhanced by the stress amplification mechanism of the primary cilia and osteocyte processes.
Collapse
Affiliation(s)
- Shenggang Li
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| | - Haiying Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| | - Mingzhi Li
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| |
Collapse
|
3
|
Budde-Sagert K, Krueger S, Sehlke C, Lemcke H, Jonitz-Heincke A, David R, Bader R, Uhrmacher AM. detectCilia: An R Package for Automated Detection and Length Measurement of Primary Cilia. Bioinform Biol Insights 2024; 18:11779322241280431. [PMID: 39430098 PMCID: PMC11490958 DOI: 10.1177/11779322241280431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 07/23/2024] [Indexed: 10/22/2024] Open
Abstract
Background and objective The primary cilium is a small protrusion found on most mammalian cells. It acts as a cellular antenna, being involved in various cell signaling pathways. The length of the primary cilium affects its function. To study the impact of physical or chemical stimuli on cilia, their lengths must be determined easily and reproducibly. Methods We have developed and evaluated an open-source R package called detectCilia to detect and measure primary cilia automatically. As a case study to demonstrate the capability of our tool, we compared the influence of 4 different cell culture media compositions on the lengths of primary cilia in human chondrocytes. These media compositions include (1) insulin-transferrin-selenium (ITS); (2) ITS and dexamethasone (Dexa); (3) ITS, Dexa, insulin-like growth factor 1 (IGF-1), and transforming growth factor beta 1 (TGF-β1); and (4) fetal bovine serum (FBS). Results The assessment of detectCilia included a comparison with 2 similar tools: ACDC (Automated Cilia Detection in Cells) and CiliaQ. Several differences and advantages of our package make it a valuable addition to these tools. In the case study, we have observed variations in the ciliary lengths associated with using different media compositions. Conclusions We conclude that detectCilia can automatically and reproducibly detect and measure primary cilia in confocal microscopy images with low false-positive rates without requiring extensive user interaction.
Collapse
Affiliation(s)
- Kai Budde-Sagert
- Institute of Communications Engineering, University of Rostock, Rostock, Germany
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Simone Krueger
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
- Department of Life, Light, and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Clemens Sehlke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | - Heiko Lemcke
- Department of Life, Light, and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Reference and Translation Center for Cardiac Stem Cell Therapy, Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany
| | - Anika Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | - Robert David
- Department of Life, Light, and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
- Reference and Translation Center for Cardiac Stem Cell Therapy, Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany
| | - Rainer Bader
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
- Department of Life, Light, and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Adelinde M Uhrmacher
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
- Department of Life, Light, and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Wu S, Zhou H, Ling H, Sun Y, Luo Z, Ngo T, Fu Y, Wang W, Kong Y. LIPUS regulates the progression of knee osteoarthritis in mice through primary cilia-mediated TRPV4 channels. Apoptosis 2024; 29:785-798. [PMID: 38517601 PMCID: PMC11055729 DOI: 10.1007/s10495-024-01950-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2024] [Indexed: 03/24/2024]
Abstract
Osteoarthritis (OA) is a common disease in middle-aged and elderly people. An imbalance in calcium ion homeostasis will contribute to chondrocyte apoptosis and ultimately lead to the progression of OA. Transient receptor potential channel 4 (TRPV4) is involved in the regulation of intracellular calcium homeostasis. TRPV4 is expressed in primary cilia, which can sense mechanical stimuli from outside the cell, and its abnormal expression is closely related to the development of OA. Low-intensity pulsed ultrasound (LIPUS) can alleviate chondrocyte apoptosis while the exact mechanism is unclear. In this project, with the aim of revealing the mechanism of action of LIPUS, we proposed to use OA chondrocytes and animal models, LIPUS intervention, inhibition of primary cilia, use TRPV4 inhibitors or TRPV4 agonist, and use Immunofluorescence (IF), Immunohistochemistry (IHC), Western Blot (WB), Quantitative Real-time PCR (QP) to detect the expression of cartilage synthetic matrix and endoplasmic reticulum stress markers. The results revealed that LIPUS altered primary cilia expression, promoted synthetic matrix metabolism in articular chondrocytes and was associated with primary cilia. In addition, LIPUS exerted a active effect on OA by activating TRPV4, inducing calcium inward flow, and facilitating the entry of NF-κB into the nucleus to regulate synthetic matrix gene transcription. Inhibition of TRPV4 altered primary cilia expression in response to LIPUS stimulation, and knockdown of primary cilia similarly inhibited TRPV4 function. These results suggest that LIPUS mediates TRPV4 channels through primary cilia to regulate the process of knee osteoarthritis in mice.
Collapse
Affiliation(s)
- Sha Wu
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haiqi Zhou
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huixian Ling
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuyan Sun
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziyu Luo
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - ThaiNamanh Ngo
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuanyuan Fu
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wen Wang
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Kong
- Department of Rehabilitation, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
5
|
Zhang Y, Tawiah GK, Wu X, Zhang Y, Wang X, Wei X, Qiao X, Zhang Q. Primary cilium-mediated mechanotransduction in cartilage chondrocytes. Exp Biol Med (Maywood) 2023; 248:1279-1287. [PMID: 37897221 PMCID: PMC10625344 DOI: 10.1177/15353702231199079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent joint disorders associated with the degradation of articular cartilage and an abnormal mechanical microenvironment. Mechanical stimuli, including compression, shear stress, stretching strain, osmotic challenge, and the physical properties of the matrix microenvironment, play pivotal roles in the tissue homeostasis of articular cartilage. The primary cilium, as a mechanosensory and chemosensory organelle, is important for detecting and transmitting both mechanical and biochemical signals in chondrocytes within the matrix microenvironment. Growing evidence indicates that primary cilia are critical for chondrocytes signaling transduction and the matrix homeostasis of articular cartilage. Furthermore, the ability of primary cilium to regulate cellular signaling is dynamic and dependent on the cellular matrix microenvironment. In the current review, we aim to elucidate the key mechanisms by which primary cilia mediate chondrocytes sensing and responding to the matrix mechanical microenvironment. This might have potential therapeutic applications in injuries and OA-associated degeneration of articular cartilage.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Histology and Embryology, Shanxi Medical University, Jinzhong 030604, Shanxi, China
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Godfred K Tawiah
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yanjun Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Xiaohu Wang
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xiaochun Wei
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xiaohong Qiao
- Department of Histology and Embryology, Shanxi Medical University, Jinzhong 030604, Shanxi, China
- Department of Orthopaedics, Lvliang Hospital Affiliated to Shanxi Medical University, Lvliang 033099, Shanxi, China
| | - Quanyou Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| |
Collapse
|
6
|
Zheng J, Wyse Jackson T, Fortier LA, Bonassar LJ, Delco ML, Cohen I. STRAINS: A big data method for classifying cellular response to stimuli at the tissue scale. PLoS One 2022; 17:e0278626. [PMID: 36480531 PMCID: PMC9731430 DOI: 10.1371/journal.pone.0278626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Cellular response to stimulation governs tissue scale processes ranging from growth and development to maintaining tissue health and initiating disease. To determine how cells coordinate their response to such stimuli, it is necessary to simultaneously track and measure the spatiotemporal distribution of their behaviors throughout the tissue. Here, we report on a novel SpatioTemporal Response Analysis IN Situ (STRAINS) tool that uses fluorescent micrographs, cell tracking, and machine learning to measure such behavioral distributions. STRAINS is broadly applicable to any tissue where fluorescence can be used to indicate changes in cell behavior. For illustration, we use STRAINS to simultaneously analyze the mechanotransduction response of 5000 chondrocytes-over 20 million data points-in cartilage during the 50 ms to 4 hours after the tissue was subjected to local mechanical injury, known to initiate osteoarthritis. We find that chondrocytes exhibit a range of mechanobiological responses indicating activation of distinct biochemical pathways with clear spatial patterns related to the induced local strains during impact. These results illustrate the power of this approach.
Collapse
Affiliation(s)
- Jingyang Zheng
- Department of Physics, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| | - Thomas Wyse Jackson
- Department of Physics, Cornell University, Ithaca, NY, United States of America
| | - Lisa A. Fortier
- College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Lawrence J. Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
| | - Michelle L. Delco
- College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
7
|
Nix Z, Kota D, Ratnayake I, Wang C, Smith S, Wood S. Spectral characterization of cell surface motion for mechanistic investigations of cellular mechanobiology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:3-15. [PMID: 36108781 DOI: 10.1016/j.pbiomolbio.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Understanding the specific mechanisms responsible for anabolic and catabolic responses to static or dynamic force are largely poorly understood. Because of this, most research groups studying mechanotransduction due to dynamic forces employ an empirical approach in deciding what frequencies to apply during experiments. While this has been shown to elucidate valuable information regarding how cells respond under controlled provocation, it is often difficult or impossible to determine a true optimal frequency for force application, as many intracellular complexes are involved in receiving, propagating, and responding to a given stimulus. Here we present a novel adaptation of an analytical technique from the fields of civil and mechanical engineering that may open the door to direct measurement of mechanobiological cellular frequencies which could be used to target specific cell signaling pathways leveraging synergy between outside-in and inside-out mechanotransduction approaches. This information could be useful in identifying how specific proteins are involved in the homeostatic balance, or disruption thereof, of cells and tissue, furthering the understanding of the pathogenesis and progression of many diseases across a wide variety of cell types, which may one day lead to the development of novel mechanobiological therapies for clinical use.
Collapse
Affiliation(s)
- Zachary Nix
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Divya Kota
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Ishara Ratnayake
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Congzhou Wang
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Steve Smith
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Scott Wood
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA.
| |
Collapse
|
8
|
Lim J, Liu YC, Chu YC, Lin YX, Hwang WH, Wang JL. Piezoelectric effect stimulates the rearrangement of chondrogenic cells and alters ciliary orientation via atypical PKCζ. Biochem Biophys Rep 2022; 30:101265. [PMID: 35540436 PMCID: PMC9079777 DOI: 10.1016/j.bbrep.2022.101265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/08/2022] [Accepted: 04/15/2022] [Indexed: 11/19/2022] Open
Abstract
Therapeutic ultrasound was administered to patients suffering from bone fracture with FDA approval. Bone and cartilage are piezoelectric materials. To investigate the effects of piezoelectricity on the cells of chondrogenic lineage, we applied ultrasound stimulation on an AT-cut quartz coverslip to generate electric field fluctuations. The bone-marrow-derived mesenchymal stem cells (BMMSC) and primary chondrocytes were cultured on either glass or quartz coverslips for ultrasound stimulation. The cells were immunofluorescent-labeled for the assessment of cell arrangement and ciliary orientation. Ultrasound and piezoelectricity both stimulate cell migration and disrupt ciliary orientation induced by directional migration. In particular, piezoelectric effects on cell rearrangement can be abolished by the inhibitor specifically targeting atypical Protein kinase C zeta (PKCζ). Our findings shed light on the possibility of cellular modulation by using piezoelectric manipulation. Separating the effect of piezoelectric stimulation from ultrasound stimulation. Cell migration accelerates upon ultrasound and piezoelectric stimulation. Piezoelectric stimulation influences cell polarity of chondrogenic lineage. Piezoelectric stimulation induces cell rearrangement via PKCζ. Novel strategy for modulating cell growth, cell differentiation or tissue engineering via piezoelectric stimulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Jaw-Lin Wang
- Corresponding author. Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, 602 Jen-Su Hall, 1 Section 4, Roosevelt Road, Taipei, 10617, Taiwan, ROC.
| |
Collapse
|
9
|
Zhang Z, Sa G, Wang Z, Wei Z, Zheng L, Zhang R, Zhu X, Yang X. Piezo1 and IFT88 synergistically regulate mandibular condylar chondrocyte differentiation under cyclic tensile strain. Tissue Cell 2022; 76:101781. [PMID: 35279604 DOI: 10.1016/j.tice.2022.101781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE(S) Mandibular condyle chondrocytes (MCCs) are exposed to various mechanical environments. Primary cilia, as a carrier for ion channels, can sense mechanical signals. Intraflagellar transport protein 88 (IFT88) is crucial for the assembly and function of primary cilia. Piezo1 is a mechanically activated ion channel that mediates mechanical signal transduction. This study aimed to identify the possible synergistic effect between Piezo1 and IFT88 in MCC differentiation during mechanical conduction. MATERIALS AND METHODS Confocal immunofluorescence staining was used to reveal the Piezo1 localization. Small interfering RNA (siRNA) technology was used to knock down the expression levels of Piezo1 and IFT88. The chondrogenic differentiation ability of MCCs was evaluated by Alcian blue staining, and the early differentiation ability was evaluated by Western blot of SOX9 and COL2A1. RESULTS Confocal immunofluorescence results showed that Piezo1 localized in the root of primary cilia. Without cyclic tensile strain (CTS) stimuli, Alcian blue staining showed that Piezo1 knockdown had a marginal effect on the chondrogenic differentiation of MCCs, while IFT88 knockdown inhibited the chondrogenic differentiation. The protein levels of SOX9 and COL2A1 decreased significantly with CTS stimuli. However, these protein levels were restored when Piezo1 was knocked down. In addition, IFT88 knockdown decreased the protein level of Piezo1 with or without CTS. CONCLUSION Piezo1 and IFT88 might play a synergistic role in regulating MCC differentiation under CTS stimuli.
Collapse
Affiliation(s)
- Zhuoyu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Guoliang Sa
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China; Department of Orthognathic & Cleft Lip and Palate Plastic Surgery, Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Zhuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Zequan Wei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China; Hebei Med Univ, Hosp 3, Dept Oral & Maxillofacial Surg, Shijiazhuang, Hebei, PR China
| | - Liwu Zheng
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ruochen Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Xinbiao Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Xuewen Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, PR China; Department of Orthognathic & Cleft Lip and Palate Plastic Surgery, Hospital of Stomatology, Wuhan University, Wuhan, PR China.
| |
Collapse
|
10
|
Abstract
The primary cilium is a nonmotile microtubule-based organelle in most vertebrate cell types. The primary cilium plays a critical role in tissue development and homeostasis by sensing and transducing various signaling pathways. Ciliary proteins such as intraflagellar transport (IFT) proteins as well as ciliary motor proteins, kinesin and dynein, comprise a bidirectional intraflagellar transport system needed for cilia formation and function. Mutations in ciliary proteins that lead to loss or dysfunction of primary cilia cause ciliopathies such as Jeune syndrome and Ellis-van Creveld syndrome and cause abnormalities in tooth development. These diseases exhibit severe skeletal and craniofacial dysplasia, highlighting the significance of primary cilia in skeletal development. Cilia are necessary for the propagation of hedgehog, transforming growth factor β, platelet-derived growth factor, and fibroblast growth factor signaling during osteogenesis and chondrogenesis. Ablation of ciliary proteins such as IFT80 or IFT20 blocks cilia formation, which inhibits osteoblast differentiation, osteoblast polarity, and alignment and reduces bone formation. Similarly, cilia facilitate chondrocyte differentiation and production of a cartilage matrix. Cilia also play a key role in mechanosensing and are needed for increased bone formation in response to mechanical forces.
Collapse
Affiliation(s)
- Z. Chinipardaz
- Department of Basic and
Translational Sciences, University of Pennsylvania, School of Dental
Medicine, Philadelphia, PA, USA,Department of Periodontics,
School of Dental Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - M. Liu
- Department of Periodontics,
School of Dental Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - D.T. Graves
- Department of Periodontics,
School of Dental Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - S. Yang
- Department of Basic and
Translational Sciences, University of Pennsylvania, School of Dental
Medicine, Philadelphia, PA, USA,Center for Innovation &
Precision Dentistry, School of Dental Medicine, School of Engineering and
Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA,The Penn Center for
Musculoskeletal Disorders, School of Medicine, University of Pennsylvania,
Philadelphia, PA, USA,S. Yang, Department of Basic and
Translational Sciences, University of Pennsylvania, School of Dental
Medicine, 240 S 40th Street, Philadelphia, PA 19104-6243, USA.
| |
Collapse
|
11
|
Wang Y, Akintoye SO. Primary Cilia Enhance Osteogenic Response of Jaw Mesenchymal Stem Cells to Hypoxia and Bisphosphonate. J Oral Maxillofac Surg 2021; 79:2487-2498. [PMID: 34480853 DOI: 10.1016/j.joms.2021.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Primary cilia play a significant role in mesenchymal stem cell (MSC) lineage commitment, skeletal development, and bone homeostasis. MSC responsiveness to metabolic stress is associated with radiation and drug-induced jaw osteonecrosis. Therefore, we hypothesize that orofacial MSCs (OFMSCs) osteogenic commitment in response to cellular stressors hypoxia and bisphosphonates is a survival response coupled to primary cilia biogenesis. MATERIALS AND METHODS Human OFMSCs were subjected to cellular stress using severe hypoxia, nitrogen-containing bisphosphonate (pamidronate) and low serum starvation. OFMSC primary cilia formation, as well as cell survival and proliferation, were detected using immunofluorescence, CellTitre-Glo, and WST-1 assays respectively. OFMSC differentiation was tested using Alizarin Red S staining. OFMSCs survival and osteogenic markers were assessed by western blotting relative to primary cilia number and associated acetylated tubulin levels. RESULTS Baseline OFMSC proliferation was stable under short-term severe hypoxia and pamidronate treatments whether combined with or without serum starvation. Hypoxia and pamidronate decreased the number of OFMSCs positive for primary cilia that was consistent with increased HIF-1α and caspase 3 but decreased cyclin D1. Combined effects of hypoxia and pamidronate on OFMSCs significantly reduced ciliation but did not completely abrogate it. Combination of serum deprivation, hypoxia, and pamidronate promoted OFMSCs osteogenic differentiation that was consistent with upregulated HIF-1α levels. CONCLUSIONS Partial rather than complete loss of OFMSC ciliation and enhanced osteogenic commitment represent adaptive survival response of OFMSCs to severe hypoxia and pamidronate-induced metabolic stress. Hypoxia and drug-induced OFMSC stress may be significant events governing the pathogenesis and clinical outcomes of jaw osteonecrosis.
Collapse
Affiliation(s)
- Yufan Wang
- Attending Doctor Visiting Scholar, Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, P.R. China
| | - Sunday O Akintoye
- Associate Professor and Director of Oral Medicine Residents Research Program, Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
12
|
Rickert KD, Arrigoni P, Guzel CR, Barber HF, Alman BA, Lark RK. Growth Modulation by Stimulating the Growth Plate: A Pilot Study. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2339-2345. [PMID: 34016487 DOI: 10.1016/j.ultrasmedbio.2021.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
This study investigates the ability of low-intensity pulsed ultrasound (LIPUS) or direct injection of recombinant growth hormone (rGH) to stimulate local growth of long bones. In a randomized controlled animal trial, healthy immature rabbits were allocated to 1 of the following 4 conditions: epiphyseal rGH periosteal injection, transdermal LIPUS, saline periosteal injection, or no treatment. New bone deposition was labeled with calcein at days 1 and 18, and microscopic measurements of growth were conducted by blinded observers. Statistically significant differences in growth were observed between the LIPUS and rGH stimulated legs compared with contralateral control legs (35% p = 0.04 and 41% p = 0.04, respectively); whereas no difference was observed between the 4 control groups (p = 0.37). There was no evidence of physeal bar formation, suggesting that direct injection of rGH and application of LIPUS around the distal femoral physis in rabbits may have a positive effect on microscopic growth without short-term adverse sequelae.
Collapse
Affiliation(s)
- Kathleen D Rickert
- Department of Orthopaedics, Duke University Medical Center, Durham, NC, USA; Department of Orthopedics, Rady Children's Hospital, San Diego, California, USA
| | - Paolo Arrigoni
- Department of Orthopaedics, Duke University Medical Center, Durham, NC, USA; Department of Orthopaedics, Universita' delgi Studi di Pavia, Pavia, Italy
| | - Camille R Guzel
- Department of Orthopaedics, Duke University Medical Center, Durham, NC, USA
| | - Helena F Barber
- Department of Orthopaedics, Duke University Medical Center, Durham, NC, USA
| | - Benjamin A Alman
- Department of Orthopaedics, Duke University Medical Center, Durham, NC, USA; Department of Orthopaedics, Hospital for Sick Kids, Toronto, ON, Canada
| | - Robert K Lark
- Department of Orthopaedics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
13
|
Park HJ, Fan Z, Bai Y, Ren Q, Rbaibi Y, Long KR, Gliozzi ML, Rittenhouse N, Locker JD, Poholek AC, Weisz OA. Transcriptional Programs Driving Shear Stress-Induced Differentiation of Kidney Proximal Tubule Cells in Culture. Front Physiol 2020; 11:587358. [PMID: 33192601 PMCID: PMC7662153 DOI: 10.3389/fphys.2020.587358] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Cultured cell models are an essential complement to dissecting kidney proximal tubule (PT) function in health and disease but do not fully recapitulate key features of this nephron segment. We recently determined that culture of opossum kidney (OK) cells under continuous orbital shear stress (OSS) significantly augments their morphological and functional resemblance to PTs in vivo. Here we used RNASeq to identify temporal transcriptional changes upon cell culture under static or shear stress conditions. Comparison of gene expression in cells cultured under static or OSS conditions with a database of rat nephron segment gene expression confirms that OK cells cultured under OSS are more similar to the PT in vivo compared with cells maintained under static conditions. Both improved oxygenation and mechanosensitive stimuli contribute to the enhanced differentiation in these cells, and we identified temporal changes in gene expression of known mechanosensitive targets. We observed changes in mRNA and protein levels of membrane trafficking components that may contribute to the enhanced endocytic capacity of cells cultured under OSS. Our data reveal pathways that may be critical for PT differentiation in vivo and validate the utility of this improved cell culture model as a tool to study PT function.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zhenjiang Fan
- Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yulong Bai
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qidong Ren
- School of Medicine, Tsinghua University, Beijing, China
| | - Youssef Rbaibi
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kimberly R Long
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Megan L Gliozzi
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Natalie Rittenhouse
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Joseph D Locker
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amanda C Poholek
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Barsch F, Niedermair T, Mamilos A, Schmitt VH, Grevenstein D, Babel M, Burgoyne T, Shoemark A, Brochhausen C. Physiological and Pathophysiological Aspects of Primary Cilia-A Literature Review with View on Functional and Structural Relationships in Cartilage. Int J Mol Sci 2020; 21:ijms21144959. [PMID: 32674266 PMCID: PMC7404129 DOI: 10.3390/ijms21144959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cilia are cellular organelles that project from the cell. They occur in nearly all non-hematopoietic tissues and have different functions in different tissues. In mesenchymal tissues primary cilia play a crucial role in the adequate morphogenesis during embryological development. In mature articular cartilage, primary cilia fulfil chemo- and mechanosensitive functions to adapt the cellular mechanisms on extracellular changes and thus, maintain tissue homeostasis and morphometry. Ciliary abnormalities in osteoarthritic cartilage could represent pathophysiological relationships between ciliary dysfunction and tissue deformation. Nevertheless, the molecular and pathophysiological relationships of ‘Primary Cilia’ (PC) in the context of osteoarthritis is not yet fully understood. The present review focuses on the current knowledge about PC and provide a short but not exhaustive overview of their role in cartilage.
Collapse
Affiliation(s)
- Friedrich Barsch
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany and Institute of Exercise and Occupational Medicine, Department of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Tanja Niedermair
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
| | - Andreas Mamilos
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
| | - Volker H. Schmitt
- Cardiology I, Centre for Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany;
| | - David Grevenstein
- Department for Orthopedic and Trauma Surgery, University of Cologne, 50923 Köln, Germany;
| | - Maximilian Babel
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
| | - Thomas Burgoyne
- Royal Brompton Hospital and Harefield NHS Trust, SW3 6NP London and UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
| | - Amelia Shoemark
- Royal Brompton Hospital and Harefield NHS Trust, University of Dundee, Dundee DD1 4HN, UK;
| | - Christoph Brochhausen
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
- Correspondence: ; Tel.: +49-941-944-6636
| |
Collapse
|
15
|
Horne DA, Jones PD, Adams MS, Lotz JC, Diederich CJ. LIPUS far-field exposimetry system for uniform stimulation of tissues in-vitro: development and validation with bovine intervertebral disc cells. Biomed Phys Eng Express 2020; 6:035033. [PMID: 33438678 DOI: 10.1088/2057-1976/ab8b26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Therapeutic Low-intensity Pulsed Ultrasound (LIPUS) has been applied clinically for bone fracture healing and has been shown to stimulate extracellular matrix (ECM) metabolism in numerous soft tissues including intervertebral disc (IVD). In-vitro LIPUS testing systems have been developed and typically include polystyrene cell culture plates (CCP) placed directly on top of the ultrasound transducer in the acoustic near-field (NF). This configuration introduces several undesirable acoustic artifacts, making the establishment of dose-response relationships difficult, and is not relevant for targeting deep tissues such as the IVD, which may require far-field (FF) exposure from low frequency sources. The objective of this study was to design and validate an in-vitro LIPUS system for stimulating ECM synthesis in IVD-cells while mimicking attributes of a deep delivery system by delivering uniform, FF acoustic energy while minimizing reflections and standing waves within target wells, and unwanted temperature elevation within target samples. Acoustic field simulations and hydrophone measurements demonstrated that by directing LIPUS energy at 0.5, 1.0, or 1.5 MHz operating frequency, with an acoustic standoff in the FF (125-350 mm), at 6-well CCP targets including an alginate ring spacer, uniform intensity distributions can be delivered. A custom FF LIPUS system was fabricated and demonstrated reduced acoustic intensity field heterogeneity within CCP-wells by up to 93% compared to common NF configurations. When bovine IVD cells were exposed to LIPUS (1.5 MHz, 200 μs pulse, 1 kHz pulse frequency, and ISPTA = 120 mW cm-2) using the FF system, sample heating was minimal (+0.81 °C) and collagen content was increased by 2.6-fold compared to the control and was equivalent to BMP-7 growth factor treatment. The results of this study demonstrate that FF LIPUS exposure increases collagen content in IVD cells and suggest that LIPUS is a potential noninvasive therapeutic for stimulating repair of tissues deep within the body such as the IVD.
Collapse
Affiliation(s)
- Devante A Horne
- Department of Orthopaedic Surgery, University of California, San Francisco, United States of America. The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, United States of America. Thermal Therapy Research Group, Radiation Oncology Department, University of California, San Francisco, United States of America
| | | | | | | | | |
Collapse
|
16
|
Hafsia N, Forien M, Renaudin F, Delacour D, Reboul P, Van Lent P, Cohen-Solal M, Lioté F, Poirier F, Ea HK. Galectin 3 Deficiency Alters Chondrocyte Primary Cilium Formation and Exacerbates Cartilage Destruction via Mitochondrial Apoptosis. Int J Mol Sci 2020; 21:ijms21041486. [PMID: 32098291 PMCID: PMC7073077 DOI: 10.3390/ijms21041486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 12/24/2019] [Accepted: 02/20/2020] [Indexed: 12/01/2022] Open
Abstract
Mechanical overload and aging are the main risk factors of osteoarthritis (OA). Galectin 3 (GAL3) is important in the formation of primary cilia, organelles that are able to sense mechanical stress. The objectives were to evaluate the role of GAL3 in chondrocyte primary cilium formation and in OA in mice. Chondrocyte primary cilium was detected in vitro by confocal microscopy. OA was induced by aging and partial meniscectomy of wild-type (WT) and Gal3-null 129SvEV mice (Gal3−/−). Primary chondrocytes were isolated from joints of new-born mice. Chondrocyte apoptosis was assessed by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), caspase 3 activity and cytochrome c release. Gene expression was assessed by qRT-PCR. GAL3 was localized at the basal body of the chondrocyte primary cilium. Primary cilia of Gal3−/− chondrocytes were frequently abnormal and misshapen. Deletion of Gal3 triggered premature OA during aging and exacerbated joint instability-induced OA. In both aging and surgery-induced OA cartilage, levels of chondrocyte catabolism and hypertrophy markers and apoptosis were more severe in Gal3−/− than WT samples. In vitro, Gal3 knockout favored chondrocyte apoptosis via the mitochondrial pathway. GAL3 is a key regulator of cartilage homeostasis and chondrocyte primary cilium formation in mice. Gal3 deletion promotes OA development.
Collapse
Affiliation(s)
- Narjès Hafsia
- Université de Paris, BIOSCAR UMR 1132, Inserm, F-75010 Paris, France; (N.H.); (M.F.); (F.R.); (M.C.-S.); (F.L.)
| | - Marine Forien
- Université de Paris, BIOSCAR UMR 1132, Inserm, F-75010 Paris, France; (N.H.); (M.F.); (F.R.); (M.C.-S.); (F.L.)
| | - Félix Renaudin
- Université de Paris, BIOSCAR UMR 1132, Inserm, F-75010 Paris, France; (N.H.); (M.F.); (F.R.); (M.C.-S.); (F.L.)
| | - Delphine Delacour
- UMR 7592 CNRS, Institut Jacques Monod, Univ. Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France; (D.D.); (F.P.)
| | - Pascal Reboul
- UMR 7365, CNRS-Université de Lorraine, IMoPA, F-54000 Vandœuvre-lés-Nancy, France;
| | - Peter Van Lent
- Rheumatology Research and Advanced Therapeutics, Department of Rheumatology, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands;
| | - Martine Cohen-Solal
- Université de Paris, BIOSCAR UMR 1132, Inserm, F-75010 Paris, France; (N.H.); (M.F.); (F.R.); (M.C.-S.); (F.L.)
- Service de Rhumatologie, Centre Viggo Petersen, AP-HP, hôpital Lariboisière, F-75010 Paris, France
| | - Frédéric Lioté
- Université de Paris, BIOSCAR UMR 1132, Inserm, F-75010 Paris, France; (N.H.); (M.F.); (F.R.); (M.C.-S.); (F.L.)
- Service de Rhumatologie, Centre Viggo Petersen, AP-HP, hôpital Lariboisière, F-75010 Paris, France
| | - Françoise Poirier
- UMR 7592 CNRS, Institut Jacques Monod, Univ. Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France; (D.D.); (F.P.)
| | - Hang Korng Ea
- Université de Paris, BIOSCAR UMR 1132, Inserm, F-75010 Paris, France; (N.H.); (M.F.); (F.R.); (M.C.-S.); (F.L.)
- Service de Rhumatologie, Centre Viggo Petersen, AP-HP, hôpital Lariboisière, F-75010 Paris, France
- Correspondence:
| |
Collapse
|
17
|
Tao F, Jiang T, Tao H, Cao H, Xiang W. Primary cilia: Versatile regulator in cartilage development. Cell Prolif 2020; 53:e12765. [PMID: 32034931 PMCID: PMC7106963 DOI: 10.1111/cpr.12765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/21/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023] Open
Abstract
Cartilage is a connective tissue in the skeletal system and has limited regeneration ability and unique biomechanical reactivity. The growth and development of cartilage can be affected by different physical, chemical and biological factors, such as mechanical stress, inflammation, osmotic pressure, hypoxia and signalling transduction. Primary cilia are multifunctional sensory organelles that regulate diverse signalling transduction and cell activities. They are crucial for the regulation of cartilage development and act in a variety of ways, such as react to mechanical stress, mediate signalling transduction, regulate cartilage‐related diseases progression and affect cartilage tumorigenesis. Therefore, research on primary cilia‐mediated cartilage growth and development is currently extremely popular. This review outlines the role of primary cilia in cartilage development in recent years and elaborates on the potential regulatory mechanisms from different aspects.
Collapse
Affiliation(s)
- Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ting Jiang
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hui Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Relucenti M, Miglietta S, Covelli E, Familiari P, Battaglione E, Familiari G, Barbara M. Ciliated cell observation by SEM on the surface of human incudo-malleolar-joint articular cartilage: are they a new chondrocyte phenotype? Acta Otolaryngol 2019; 139:439-443. [PMID: 30806116 DOI: 10.1080/00016489.2019.1575520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Scanning electron microscopy (SEM) study of the human incus bone is scanty whilst, to our knowledge, no information regarding human incudo-malleolar joint articular-cartilage morphology has previously been provided. AIMS/OBJECTIVES Our aim was to shed some light on this morphological issue and to propose some theoretical perspectives on its functional role. MATERIAL AND METHODS The human incudo-malleolar joint was documented with field emission SEM on samples recovered during ear surgery procedures after patients' informed consent. RESULTS Normal articular cartilage chondrocytes, flattened cells with prominent nucleus and short microvilli were observed. Interestingly, cells provided with long cilia were identified. Type A cilia are arranged in a pyramidal formation with extra-long cilia stemming from the cluster, projecting upwards in an antenna-like formation ending with a dilated structure that as a whole, resembles the stereocilia with kinocilium. Types B, C and D cilia resemble those of the genital and respiratory tracts. CONCLUSIONS AND SIGNIFICANCE It is therefore possible to hypothesize that the observed ciliated cells may be a new chondrocyte phenotype with sensory function. Motile cilia confer the ability to distinguish variations in synovial fluid chemical composition and, in addition, they perhaps may also play some role in the mechanism of sound transmission.
Collapse
Affiliation(s)
- Michela Relucenti
- SAIMLAL Department, Faculty of Pharmacy and Medicine, Laboratory of Electron Microscopy “Pietro Motta”, Sapienza University of Rome, Rome, Italy
| | - Selenia Miglietta
- SAIMLAL Department, Faculty of Pharmacy and Medicine, Laboratory of Electron Microscopy “Pietro Motta”, Sapienza University of Rome, Rome, Italy
| | - Edoardo Covelli
- NESMOS Department, Faculty of Medicine and Psychology, Otolaryngology Clinic, Sapienza University of Rome, Rome, Italy
| | - Pietro Familiari
- NESMOS Department, Faculty of Medicine and Psychology, Neurosurgery Clinic, Sapienza University of Rome, Rome, Italy
| | - Ezio Battaglione
- SAIMLAL Department, Faculty of Pharmacy and Medicine, Laboratory of Electron Microscopy “Pietro Motta”, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Familiari
- SAIMLAL Department, Faculty of Pharmacy and Medicine, Laboratory of Electron Microscopy “Pietro Motta”, Sapienza University of Rome, Rome, Italy
| | - Maurizio Barbara
- NESMOS Department, Faculty of Medicine and Psychology, Otolaryngology Clinic, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Huang X, Lin Z, Meng L, Wang K, Liu X, Zhou W, Zheng H, Niu L. Non-invasive Low-Intensity Pulsed Ultrasound Modulates Primary Cilia of Rat Hippocampal Neurons. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1274-1283. [PMID: 30795858 DOI: 10.1016/j.ultrasmedbio.2018.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 12/18/2018] [Accepted: 12/29/2018] [Indexed: 05/17/2023]
Abstract
Transcranial modulation of primary cilia may provide new opportunities in the treatment of neurodegenerative diseases. This study investigates the effect of non-invasive low-intensity pulsed ultrasound (LIPUS) stimulation on primary cilia of rat hippocampal neurons. Three hours of LIPUS stimulation significantly reduced the incidence rate and length of cilia on cultured neurons (p < 0.01). Similarly, increasing the duration and intensity of LIPUS stimulation decreased the incidence and length of cilia. LIPUS stimulation improved c-fos expression when it was delivered to CA1 of the intact hippocampus of rats. And prolonged LIPUS stimulation (frequency: 0.5 MHz, pulse repetition frequency: 500 Hz, duty cycle: 5%, Ispta: 255 mW/cm2, 10 min/d, 10 d) caused a statistically significant reduction in the incidence rate (p < 0.05) and length of primary cilia (p < 0.01) of neurons in rat CA1 hippocampus. These results indicate the promising potential of LIPUS stimulation in the treatment of primary cilium-related brain diseases.
Collapse
Affiliation(s)
- Xiaowei Huang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Zhengrong Lin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kaiyue Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiufang Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
20
|
Martínez-Moreno D, Jiménez G, Gálvez-Martín P, Rus G, Marchal JA. Cartilage biomechanics: A key factor for osteoarthritis regenerative medicine. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1067-1075. [PMID: 30910703 DOI: 10.1016/j.bbadis.2019.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 11/26/2022]
Abstract
Osteoarthritis (OA) is a joint disorder that is highly extended in the global population. Several researches and therapeutic strategies have been probed on OA but without satisfactory long-term results in joint replacement. Recent evidences show how the cartilage biomechanics plays a crucial role in tissue development. This review describes how physics alters cartilage and its extracellular matrix (ECM); and its role in OA development. The ECM of the articular cartilage (AC) is widely involved in cartilage turnover processes being crucial in regeneration and joint diseases. We also review the importance of physicochemical pathways following the external forces in AC. Moreover, new techniques probed in cartilage tissue engineering for biomechanical stimulation are reviewed. The final objective of these novel approaches is to create a cellular implant that maintains all the biochemical and biomechanical properties of the original tissue for long-term replacements in patients with OA.
Collapse
Affiliation(s)
- D Martínez-Moreno
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| | - G Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada E-18071, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada E-18016, Spain
| | - P Gálvez-Martín
- Advanced Therapies Area, Pharmascience Division, Bioibérica S.A.U., E-08029 Barcelona, Spain; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada E-18071, Spain
| | - G Rus
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Department of Structural Mechanics, University of Granada, Politécnico de Fuentenueva, Granada E-18071, Spain.
| | - J A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada E-18071, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada E-18016, Spain.
| |
Collapse
|