1
|
Zhang S, Sun Z, Li Y, Du X, Qian K, Yang L, Jia G, Yin J, Liao S, Zhou Z. Agmatine attenuates the severity of immunometabolic disorders by suppressing macrophage polarization: an in vivo study using an ulcerative colitis mouse model. Biomed Pharmacother 2024; 180:117549. [PMID: 39413617 DOI: 10.1016/j.biopha.2024.117549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Agmatine, an endogenous polyamine generated by the gut microbiota, positively affects host lifespan by regulating mononuclear cell or macrophage function. Although the regulatory pathways governing monocyte/macrophage differentiation have been well studied, the influence of the microbiome and its metabolites on monocyte/macrophage function have not been fully elucidated. To address this, we aimed to investigate the mechanisms whereby agmatine inhibits immunometabolic disorders using the colon of ulcerative colitis (UC) model mice. Agmatine (10 mM) attenuated pathological damage to colonic tissue and significantly improved the survival rate of UC model mice. In particular, treatment of UC model mice with 0.4, 2, and 10 mM agmatine resulted in mortality rates of 70 %, 20 %, 10 %, and 0 %, respectively. In a macrophage-depletion model, agmatine regulated the inflammatory microenvironment by affecting macrophages: it reduced the proportion of M1 macrophages and increased that of M2 macrophages in UC model mice. In cultured macrophages, agmatine inhibited lipopolysaccharide-induced inflammatory cytokine and NO secretion, as detected by enzyme-linked immunosorbent assay and the Griess assay, respectively. Agmatine partially reduced inflammatory factor production by inhibiting histone deacetylase, as detected by fluorometric assay. These findings provide evidence that agmatine efficiently suppresses macrophage polarization in UC mice, highlighting its potential as an anti-inflammatory agent against UC.
Collapse
Affiliation(s)
- Suyue Zhang
- Bioinformatics Center of AMMS, 27 Taiping Road, Beijing 100850, PR China
| | - Zhen Sun
- Bioinformatics Center of AMMS, 27 Taiping Road, Beijing 100850, PR China
| | - Yajuan Li
- Beijing Institute of Pharmacology & Toxicology, 27 Taiping Road, Beijing 100850, PR China
| | - Xinjian Du
- Bioinformatics Center of AMMS, 27 Taiping Road, Beijing 100850, PR China
| | - Kun Qian
- Bioinformatics Center of AMMS, 27 Taiping Road, Beijing 100850, PR China
| | - Le Yang
- Beijing Institute of Pharmacology & Toxicology, 27 Taiping Road, Beijing 100850, PR China
| | - Guangyan Jia
- Bioinformatics Center of AMMS, 27 Taiping Road, Beijing 100850, PR China
| | - Jiye Yin
- Beijing Institute of Pharmacology & Toxicology, 27 Taiping Road, Beijing 100850, PR China
| | - Sha Liao
- Beijing Institute of Pharmacology & Toxicology, 27 Taiping Road, Beijing 100850, PR China.
| | - Zhe Zhou
- Bioinformatics Center of AMMS, 27 Taiping Road, Beijing 100850, PR China.
| |
Collapse
|
2
|
Gou H, Zeng R, Lau HCH, Yu J. Gut microbial metabolites: Shaping future diagnosis and treatment against gastrointestinal cancer. Pharmacol Res 2024; 208:107373. [PMID: 39197712 DOI: 10.1016/j.phrs.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Gastrointestinal cancer is a worldwide health challenge due to its dramatically increasing prevalence and as a leading cause of cancer-related mortality. Increasing evidence has illustrated the vital role of gut microbes-derived metabolites in gastrointestinal cancer progression and treatment. Microbial metabolites are produced by the gut microbiota that utilizes both extrinsic dietary components and intrinsic host-generated compounds. Meanwhile, certain categories of metabolites such as short-chain fatty acids, bile acids, tryptophan, and indole derivatives, are linked to gastrointestinal malignancy. In this review, the major classes of microbial metabolites and their impacts on various gastrointestinal cancers including colorectal cancer, gastric cancer, and hepatocellular carcinoma, have been introduced. The application of microbial metabolites as predictive biomarkers for early diagnosis and prognosis of gastrointestinal cancer has also been explored. In addition, therapeutic potential of strategies that target microbial metabolites against gastrointestinal cancer is further evaluated.
Collapse
Affiliation(s)
- Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ruijie Zeng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
3
|
Li S, Feng W, Wu J, Cui H, Wang Y, Liang T, An J, Chen W, Guo Z, Lei H. A Narrative Review: Immunometabolic Interactions of Host-Gut Microbiota and Botanical Active Ingredients in Gastrointestinal Cancers. Int J Mol Sci 2024; 25:9096. [PMID: 39201782 PMCID: PMC11354385 DOI: 10.3390/ijms25169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The gastrointestinal tract is where the majority of gut microbiota settles; therefore, the composition of the gut microbiota and the changes in metabolites, as well as their modulatory effects on the immune system, have a very important impact on the development of gastrointestinal diseases. The purpose of this article was to review the role of the gut microbiota in the host environment and immunometabolic system and to summarize the beneficial effects of botanical active ingredients on gastrointestinal cancer, so as to provide prospective insights for the prevention and treatment of gastrointestinal diseases. A literature search was performed on the PubMed database with the keywords "gastrointestinal cancer", "gut microbiota", "immunometabolism", "SCFAs", "bile acids", "polyamines", "tryptophan", "bacteriocins", "immune cells", "energy metabolism", "polyphenols", "polysaccharides", "alkaloids", and "triterpenes". The changes in the composition of the gut microbiota influenced gastrointestinal disorders, whereas their metabolites, such as SCFAs, bacteriocins, and botanical metabolites, could impede gastrointestinal cancers and polyamine-, tryptophan-, and bile acid-induced carcinogenic mechanisms. GPRCs, HDACs, FXRs, and AHRs were important receptor signals for the gut microbial metabolites in influencing the development of gastrointestinal cancer. Botanical active ingredients exerted positive effects on gastrointestinal cancer by influencing the composition of gut microbes and modulating immune metabolism. Gastrointestinal cancer could be ameliorated by altering the gut microbial environment, administering botanical active ingredients for treatment, and stimulating or blocking the immune metabolism signaling molecules. Despite extensive and growing research on the microbiota, it appeared to represent more of an indicator of the gut health status associated with adequate fiber intake than an autonomous causative factor in the prevention of gastrointestinal diseases. This study detailed the pathogenesis of gastrointestinal cancers and the botanical active ingredients used for their treatment in the hope of providing inspiration for research into simpler, safer, and more effective treatment pathways or therapeutic agents in the field.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Jiaqi Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Herong Cui
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Yiting Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Tianzhen Liang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wanling Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| |
Collapse
|
4
|
González A, Odriozola I, Fullaondo A, Odriozola A. Microbiota and detrimental protein derived metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:255-308. [PMID: 39396838 DOI: 10.1016/bs.adgen.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third leading cancer in incidence and the second leading cancer in mortality worldwide. There is growing scientific evidence to support the crucial role of the gut microbiota in the development of CRC. The gut microbiota is the complex community of microorganisms that inhabit the host gut in a symbiotic relationship. Diet plays a crucial role in modulating the risk of CRC, with a high intake of red and processed meat being a risk factor for the development of CRC. The production of metabolites derived from protein fermentation by the gut microbiota is considered a crucial element in the interaction between red and processed meat consumption and the development of CRC. This paper examines several metabolites derived from the bacterial fermentation of proteins associated with an increased risk of CRC. These metabolites include ammonia, polyamines, trimethylamine N-oxide (TMAO), N-nitroso compounds (NOC), hydrogen sulphide (H2S), phenolic compounds (p-cresol) and indole compounds (indolimines). These compounds are depicted and reviewed for their association with CRC risk, possible mechanisms promoting carcinogenesis and their relationship with the gut microbiota. Additionally, this paper analyses the evidence related to the role of red and processed meat intake and CRC risk and the factors and pathways involved in bacterial proteolytic fermentation in the large intestine.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
5
|
Chamoto K, Zhang B, Tajima M, Honjo T, Fagarasan S. Spermidine - an old molecule with a new age-defying immune function. Trends Cell Biol 2024; 34:363-370. [PMID: 37723019 DOI: 10.1016/j.tcb.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/20/2023]
Abstract
Polyamines - putrescine, spermidine, and spermine - are widely distributed aliphatic compounds known to regulate important biological processes in prokaryotic and eukaryotic cells. Therefore, spermidine insufficiency is associated with various physio-pathological processes, such as aging and cancers. Recent advances in immuno-metabolism and immunotherapy shed new light on the role of spermidine in immune cell regulation and anticancer responses. Here, we review novel works demonstrating that spermidine is produced by collective metabolic pathways of gut bacteria, bacteria-host co-metabolism, and by the host cells, including activated immune cells. We highlight the effectiveness of spermidine in enhancing antitumor responses in aged animals otherwise nonresponsive to immune checkpoint therapy and propose that spermidine supplementation could be used to enhance the efficacy of anti-PD-1 treatment.
Collapse
Affiliation(s)
- Kenji Chamoto
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Immuno-Oncology PDT, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Baihao Zhang
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan; Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Tajima
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sidonia Fagarasan
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan; Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
6
|
Xiao Y, Feng Y, Zhao J, Chen W, Lu W. Achieving healthy aging through gut microbiota-directed dietary intervention: Focusing on microbial biomarkers and host mechanisms. J Adv Res 2024:S2090-1232(24)00092-4. [PMID: 38462039 DOI: 10.1016/j.jare.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Population aging has become a primary global public health issue, and the prevention of age-associated diseases and prolonging healthy life expectancies are of particular importance. Gut microbiota has emerged as a novel target in various host physiological disorders including aging. Comprehensive understanding on changes of gut microbiota during aging, in particular gut microbiota characteristics of centenarians, can provide us possibility to achieving healthy aging or intervene pathological aging through gut microbiota-directed strategies. AIM OF REVIEW This review aims to summarize the characteristics of the gut microbiota associated with aging, explore potential biomarkers of aging and address microbiota-associated mechanisms of host aging focusing on intestinal barrier and immune status. By summarizing the existing effective dietary strategies in aging interventions, the probability of developing a diet targeting the gut microbiota in future is provided. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key notions: Firstly, gut microbiota has become a new target for regulating health status and lifespan, and its changes are closely related to age. Thus, we summarized aging-associated gut microbiota features at the levels of key genus/species and important metabolites through comparing the microbiota differences among centenarians, elderly people and younger people. Secondly, exploring microbiota biomarkers related to aging and discussing future possibility using dietary regime/components targeted to aging-related microbiota biomarkers promote human healthy lifespan. Thirdly, dietary intervention can effectively improve the imbalance of gut microbiota related to aging, such as probiotics, prebiotics, and postbiotics, but their effects vary among.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| | - Yingxuan Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
7
|
Lee DF, Atencio N, Bouchey S, Shoemaker MR, Dodd JS, Satre M, Miller KA, McFarlane JS. Kinetic and structural characterization of carboxyspermidine dehydrogenase of polyamine biosynthesis. J Biol Chem 2023; 299:105033. [PMID: 37437886 PMCID: PMC10413350 DOI: 10.1016/j.jbc.2023.105033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Polyamines are positively charged alkylamines ubiquitous among eukaryotes, prokaryotes, and archaea. Humans obtain polyamines through dietary intake, metabolic production, or uptake of polyamines made by gut microbes. The polyamine biosynthetic pathway used by most gut microbes differs from that used by human cells. This alternative pathway employs carboxyspermidine dehydrogenase (CASDH), an enzyme with limited characterization. Here, we solved a 1.94 Å X-ray crystal structure of Bacteroides fragilis CASDH by molecular replacement. BfCASDH is composed of three domains with a fold similar to saccharopine dehydrogenase but with a distinct active site arrangement. Using steady-state methods, we determined kcat and kcat/Km for BfCASDH and Clostridium leptum CASDH using putrescine, diaminopropane, aspartate semi-aldehyde, NADH, and NADPH as substrates. These data revealed evidence of cooperativity in BfCASDH. Putrescine is the likely polyamine substrate and NADPH is the coenzyme used to complete the reaction, forming carboxyspermidine as a product. These data provide the first kinetic characterization of CASDH-a key enzyme in the production of microbial polyamines.
Collapse
Affiliation(s)
- Danielle F Lee
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado, USA
| | - Niko Atencio
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado, USA
| | - Shade Bouchey
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado, USA
| | - Madeline R Shoemaker
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado, USA
| | - Joshua S Dodd
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado, USA
| | - Meredith Satre
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado, USA
| | - Kenneth A Miller
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado, USA
| | - Jeffrey S McFarlane
- Department of Chemistry and Biochemistry, Fort Lewis College, Durango, Colorado, USA.
| |
Collapse
|
8
|
Hirano R, Nishita I, Nakai R, Bito A, Sasabe R, Kurihara S. Development of culture methods capable of culturing a wide range of predominant species of intestinal bacteria. Front Cell Infect Microbiol 2023; 13:1056866. [PMID: 37520440 PMCID: PMC10374021 DOI: 10.3389/fcimb.2023.1056866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/16/2023] [Indexed: 08/01/2023] Open
Abstract
In recent years, with the development of non-cultivation approaches, it has become evident that intestinal bacteria have a significant impact on human health. However, because one-third of the genes cannot be annotated, it is difficult to elucidate the function of all intestinal bacteria by in silico analysis, and it is necessary to study the intestinal bacteria by culturing them. In addition, various media recommended for each individual bacterium have been used for culturing intestinal bacteria; however, the preparation of each medium is complex. To simultaneously culture many bacteria and compare bacterial phenotypes under the same conditions, a medium capable of culturing a wide range of bacteria is needed. In this study, we developed GAM + blood medium (GB medium), which consists of Gifu anaerobic medium containing 5% (v/v) horse blood; it is easy to prepare and it allowed the successful cultivation of 85% of the available predominant species in the human intestinal microbiota.
Collapse
Affiliation(s)
- Rika Hirano
- Host Microbe Interaction Research Laboratory, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Japan
- Laboratory of Food Immunology, Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Izumi Nishita
- Host Microbe Interaction Research Laboratory, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Japan
| | - Riho Nakai
- Laboratory of Food Immunology, Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Ayaka Bito
- Laboratory of Food Immunology, Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Ryunosuke Sasabe
- Laboratory of Food Immunology, Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Shin Kurihara
- Host Microbe Interaction Research Laboratory, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Japan
- Laboratory of Food Immunology, Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| |
Collapse
|
9
|
Ami Y, Kodama N, Umeda M, Nakamura H, Shirasawa H, Koyanagi T, Kurihara S. Levilactobacillus brevis with High Production of Putrescine Isolated from Blue Cheese and Its Application. Int J Mol Sci 2023; 24:ijms24119668. [PMID: 37298617 DOI: 10.3390/ijms24119668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Polyamine intake has been reported to help extend the lifespan of animals. Fermented foods contain high concentrations of polyamines, produced by fermenting bacteria. Therefore, the bacteria, isolated from fermented foods that produce large amounts of polyamines, are potentially used as a source of polyamines for humans. In this study, the strain Levilactobacillus brevis FB215, which has the ability to accumulate approximately 200 µM of putrescine in the culture supernatant, was isolated from fermented foods, specifically the Blue Stilton cheese. Furthermore, L. brevis FB215 synthesized putrescine from agmatine and ornithine, which are known polyamine precursors. When cultured in the extract of Sakekasu, a byproduct obtained during the brewing of Japanese rice wine containing high levels of both agmatine and ornithine, L. brevis FB215 grew to OD600 = 1.7 after 83 h of cultivation and accumulated high concentrations (~1 mM) of putrescine in the culture supernatant. The fermentation product also did not contain histamine or tyramine. The Sakekasu-derived ingredient fermented by the food-derived lactic acid bacteria developed in this study could contribute to increasing polyamine intake in humans.
Collapse
Affiliation(s)
- Yuta Ami
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Narumi Kodama
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Masahiro Umeda
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Hanae Nakamura
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Hideto Shirasawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Takashi Koyanagi
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
| | - Shin Kurihara
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| |
Collapse
|
10
|
Duizer C, de Zoete MR. The Role of Microbiota-Derived Metabolites in Colorectal Cancer. Int J Mol Sci 2023; 24:8024. [PMID: 37175726 PMCID: PMC10178193 DOI: 10.3390/ijms24098024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The impact of bacterial members of the microbiota on the development of colorectal cancer (CRC) has become clear in recent years. However, exactly how bacteria contribute to the development of cancer is often still up for debate. The impact of bacteria-derived metabolites, which can influence the development of CRC either in a promoting or inhibiting manner, is undeniable. Here, we discuss the effects of the most well-studied bacteria-derived metabolites associated with CRC, including secondary bile acids, short-chain fatty acids, trimethylamine-N-oxide and indoles. We show that the effects of individual metabolites on CRC development are often nuanced and dose- and location-dependent. In the coming years, the array of metabolites involved in CRC development will undoubtedly increase further, which will emphasize the need to focus on causation and mechanisms and the clearly defined roles of bacterial species within the microbiota.
Collapse
Affiliation(s)
| | - Marcel R. de Zoete
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
11
|
Shimokawa H, Sakanaka M, Fujisawa Y, Ohta H, Sugiyama Y, Kurihara S. N-Carbamoylputrescine Amidohydrolase of Bacteroides thetaiotaomicron, a Dominant Species of the Human Gut Microbiota. Biomedicines 2023; 11:biomedicines11041123. [PMID: 37189741 DOI: 10.3390/biomedicines11041123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023] Open
Abstract
Polyamines are bioactive amines that play a variety of roles, such as promoting cell proliferation and protein synthesis, and the intestinal lumen contains up to several mM polyamines derived from the gut microbiota. In the present study, we conducted genetic and biochemical analyses of the polyamine biosynthetic enzyme N-carbamoylputrescine amidohydrolase (NCPAH) that converts N-carbamoylputrescine to putrescine, a precursor of spermidine in Bacteroides thetaiotaomicron, which is one of the most dominant species in the human gut microbiota. First, ncpah gene deletion and complemented strains were generated, and the intracellular polyamines of these strains cultured in a polyamine-free minimal medium were analyzed using high-performance liquid chromatography. The results showed that spermidine detected in the parental and complemented strains was depleted in the gene deletion strain. Next, purified NCPAH-(His)6 was analyzed for enzymatic activity and found to be capable of converting N-carbamoylputrescine to putrescine, with a Michaelis constant (Km) and turnover number (kcat) of 730 µM and 0.8 s-1, respectively. Furthermore, the NCPAH activity was strongly (>80%) inhibited by agmatine and spermidine, and moderately (≈50%) inhibited by putrescine. This feedback inhibition regulates the reaction catalyzed by NCPAH and may play a role in intracellular polyamine homeostasis in B. thetaiotaomicron.
Collapse
Affiliation(s)
- Hiromi Shimokawa
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Mikiyasu Sakanaka
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
| | - Yuki Fujisawa
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
| | - Hirokazu Ohta
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
| | - Yuta Sugiyama
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
| | - Shin Kurihara
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| |
Collapse
|
12
|
Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother 2023; 160:114295. [PMID: 36709600 DOI: 10.1016/j.biopha.2023.114295] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Metabolites produced by the host and microbiota play a crucial role in how human bodies develop and remain healthy. Most of these metabolites are produced by microbiota and hosts in the digestive tract. Metabolites in the gut have important roles in energy metabolism, cellular communication, and host immunity, among other physiological activities. Although numerous host metabolites, such as free fatty acids, amino acids, and vitamins, are found in the intestine, metabolites generated by gut microbiota are equally vital for intestinal homeostasis. Furthermore, microbiota in the gut is the sole source of some metabolites, including short-chain fatty acids (SCFAs). Metabolites produced by microbiota, such as neurotransmitters and hormones, may modulate and significantly affect host metabolism. The gut microbiota is becoming recognized as a second endocrine system. A variety of chronic inflammatory disorders have been linked to aberrant host-microbiota interplays, but the precise mechanisms underpinning these disturbances and how they might lead to diseases remain to be fully elucidated. Microbiome-modulated metabolites are promising targets for new drug discovery due to their endocrine function in various complex disorders. In humans, metabolotherapy for the prevention or treatment of various disorders will be possible if we better understand the metabolic preferences of bacteria and the host in specific tissues and organs. Better disease treatments may be possible with the help of novel complementary therapies that target host or bacterial metabolism. The metabolites, their physiological consequences, and functional mechanisms of the host-microbiota interplays will be highlighted, summarized, and discussed in this overview.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Rui Chen
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China.
| | - Shuang Qi
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
13
|
Yoon JH, Do JS, Velankanni P, Lee CG, Kwon HK. Gut Microbial Metabolites on Host Immune Responses in Health and Disease. Immune Netw 2023; 23:e6. [PMID: 36911800 PMCID: PMC9995988 DOI: 10.4110/in.2023.23.e6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023] Open
Abstract
Intestinal microorganisms interact with various immune cells and are involved in gut homeostasis and immune regulation. Although many studies have discussed the roles of the microorganisms themselves, interest in the effector function of their metabolites is increasing. The metabolic processes of these molecules provide important clues to the existence and function of gut microbes. The interrelationship between metabolites and T lymphocytes in particular plays a significant role in adaptive immune functions. Our current review focuses on 3 groups of metabolites: short-chain fatty acids, bile acids metabolites, and polyamines. We collated the findings of several studies on the transformation and production of these metabolites by gut microbes and explained their immunological roles. Specifically, we summarized the reports on changes in mucosal immune homeostasis represented by the Tregs and Th17 cells balance. The relationship between specific metabolites and diseases was also analyzed through latest studies. Thus, this review highlights microbial metabolites as the hidden treasure having potential diagnostic markers and therapeutic targets through a comprehensive understanding of the gut-immune interaction.
Collapse
Affiliation(s)
- Jong-Hwi Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jun-Soo Do
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Priyanka Velankanni
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
| | - Choong-Gu Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology, Seoul 02792, Korea
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
14
|
Chen Y, León-Letelier RA, Abdel Sater AH, Vykoukal J, Dennison JB, Hanash S, Fahrmann JF. c-MYC-Driven Polyamine Metabolism in Ovarian Cancer: From Pathogenesis to Early Detection and Therapy. Cancers (Basel) 2023; 15:623. [PMID: 36765581 PMCID: PMC9913358 DOI: 10.3390/cancers15030623] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
c-MYC and its paralogues MYCN and MYCL are among the most frequently amplified and/or overexpressed oncoproteins in ovarian cancer. c-MYC plays a key role in promoting ovarian cancer initiation and progression. The polyamine pathway is a bona fide target of c-MYC signaling, and polyamine metabolism is strongly intertwined with ovarian malignancy. Targeting of the polyamine pathway via small molecule inhibitors has garnered considerable attention as a therapeutic strategy for ovarian cancer. Herein, we discuss the involvement of c-MYC signaling and that of its paralogues in promoting ovarian cancer tumorigenesis. We highlight the potential of targeting c-MYC-driven polyamine metabolism for the treatment of ovarian cancers and the utility of polyamine signatures in biofluids for early detection applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
15
|
SHIRASAWA H, NISHIYAMA C, HIRANO R, KOYANAGI T, OKUDA S, TAKAGI H, KURIHARA S. Isolation of the high polyamine-producing bacterium Staphylococcus epidermidis FB146 from fermented foods and identification of polyamine-related genes. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:24-33. [PMID: 36660601 PMCID: PMC9816048 DOI: 10.12938/bmfh.2022-011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 01/22/2023]
Abstract
It has been reported that the intake of polyamines contributes to the extension of healthy life span in animals. Fermented foods contain high concentrations of polyamines thought to be derived from fermentation bacteria. This suggests that bacteria that produce high levels of polyamines could be isolated from fermented foods and utilized as a source of polyamines for human nutrition. In this study, Staphylococcus epidermidis FB146 was isolated from miso, a Japanese fermented bean paste, and found to have a high concentration of putrescine in its culture supernatant (452 μM). We analyzed the presence of polyamines in the culture supernatants and cells of the type strains of 21 representative Staphylococcus species in addition to S. epidermidis FB146, and only S. epidermidis FB146 showed high putrescine productivity. Furthermore, whole-genome sequencing of S. epidermidis FB146 was performed, and the ornithine decarboxylase gene (odc), which is involved in putrescine synthesis, and the putrescine:ornithine antiporter gene (potE), which is thought to contribute to the release of putrescine into the culture supernatant, were present on plasmid DNA harbored by S. epidermidis FB146.
Collapse
Affiliation(s)
- Hideto SHIRASAWA
- Faculty of Biology-oriented Science and Technology, Kindai
University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Chisato NISHIYAMA
- Faculty of Bioresources and Environmental Science, Ishikawa
Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Rika HIRANO
- Faculty of Biology-oriented Science and Technology, Kindai
University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan,Faculty of Bioresources and Environmental Science, Ishikawa
Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Takashi KOYANAGI
- Faculty of Bioresources and Environmental Science, Ishikawa
Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Shujiro OKUDA
- Medical AI Center, Niigata University School of Medicine,
2-5274 Gakkocho-dori, Chuo-ku, Niigata, Niigata 951-8514, Japan
| | - Hiroki TAKAGI
- Faculty of Bioresources and Environmental Science, Ishikawa
Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Shin KURIHARA
- Faculty of Biology-oriented Science and Technology, Kindai
University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan,*Corresponding author. Shin Kurihara (E-mail: )
| |
Collapse
|
16
|
Implication of gut microbes and its metabolites in colorectal cancer. J Cancer Res Clin Oncol 2023; 149:441-465. [PMID: 36572792 DOI: 10.1007/s00432-022-04422-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer with a significant impact on loss of life. In 2020, nearly 1.9 million new cases and over 9,35,000 deaths were reported. Numerous microbes that are abundant in the human gut benefit host physiology in many ways. Although the underlying mechanism is still unknown, their association appears to be crucial in the beginning and progression of CRC. Diet has a significant impact on the microbial composition and may increase the chance of getting CRC. Increasing evidence points to the gut microbiota as the primary initiator of colonic inflammation, which is connected to the development of colonic tumors. However, it is unclear how the microbiota contributes to the development of CRCs. Patients with CRC have been found to have dysbiosis of the gut microbiota, which can be identified by a decline in commensal bacterial species, such as those that produce butyrate, and a concurrent increase in harmful bacterial populations, such as opportunistic pathogens that produce pro-inflammatory cytokines. We believe that using probiotics or altering the gut microbiota will likely be effective tools in the fight against CRC treatment. PURPOSE In this review, we revisited the association between gut microbiota and colorectal cancer whether cause or effect. The various factors which influence gut microbiome in patients with CRC and possible mechanism in relation with development of CRC. CONCLUSION The clinical significance of the intestinal microbiota may aid in the prevention and management of CRC.
Collapse
|
17
|
Abstract
Trillions of microbes are indigenous to the human gastrointestinal tract, together forming an ecological community known as the gut microbiota. The gut microbiota is involved in dietary digestion to produce various metabolites. In healthy condition, microbial metabolites have unneglectable roles in regulating host physiology and intestinal homeostasis. However, increasing studies have reported the correlation between metabolites and the development of colorectal cancer (CRC), with the identification of oncometabolites. Meanwhile, metabolites can also influence the efficacy of cancer treatments. In this review, metabolites derived from microbes-mediated metabolism of dietary carbohydrates, proteins, and cholesterol, are introduced. The roles of pro-tumorigenic (secondary bile acids and polyamines) and anti-tumorigenic (short-chain fatty acids and indole derivatives) metabolites in CRC development are then discussed. The impacts of metabolites on chemotherapy and immunotherapy are further elucidated. Collectively, given the importance of microbial metabolites in CRC, therapeutic approaches that target metabolites may be promising to improve patient outcome.
Collapse
Affiliation(s)
- Yali Liu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| |
Collapse
|
18
|
Eom J, Choi J, Suh SS, Seo JB. SLC3A2 and SLC7A2 Mediate the Exogenous Putrescine-Induced Adipocyte Differentiation. Mol Cells 2022; 45:963-975. [PMID: 36572564 PMCID: PMC9794554 DOI: 10.14348/molcells.2022.0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 12/28/2022] Open
Abstract
Exogenous polyamines are able to induce life span and improve glucose homeostasis and insulin sensitivity. However, the effects of exogenous polyamines on adipocyte differentiation and which polyamine transporters mediate them have not been elucidated yet. Here, we identified for the first time that exogenous polyamines can clearly stimulate adipocyte differentiation through polyamine transporters, solute carrier family 3 member A2 (SLC3A2) and SLC7A1. Exogenous polyamines markedly promote 3T3-L1 adipocyte differentiation by increasing the intracellular lipid accumulation and the expression of both adipogenic and lipogenic genes in a concentration-dependent manner. In particular, exogenous putrescine mainly regulates adipocyte differentiation in the early and intermediate stages. Moreover, we have assessed the expression of polyamine transporter genes in 3T3-L1 preadipocytes and adipocytes. Interestingly, the putrescine-induced adipocyte differentiation was found to be significantly suppressed in response to a treatment with a polyamine transporter inhibitor (AMXT-1501). Furthermore, knockdown experiments using siRNA that specifically targeted SLC3A2 or SLC7A2, revealed that both SLC3A2 and SLC7A2 act as important transporters in the cellular importing of exogenous putrescine. Thus, the exogenous putrescine entering the adipocytes via cellular transporters is involved in adipogenesis through a modulation of both the mitotic clonal expansion and the expression of master transcription factors. Taken together, these results suggest that exogenous polyamines (such as putrescine) entering the adipocytes through polyamine transporters, can stimulate adipogenesis.
Collapse
Affiliation(s)
- Jin Eom
- Department of Biosciences, Mokpo National University, Muan 58554, Korea
| | - Juhyun Choi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Korea
| | - Sung-Suk Suh
- Department of Biosciences, Mokpo National University, Muan 58554, Korea
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Korea
| | - Jong Bae Seo
- Department of Biosciences, Mokpo National University, Muan 58554, Korea
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Korea
| |
Collapse
|
19
|
Sugiyama Y, Mori Y, Nara M, Kotani Y, Nagai E, Kawada H, Kitamura M, Hirano R, Shimokawa H, Nakagawa A, Minami H, Gotoh A, Sakanaka M, Iida N, Koyanagi T, Katayama T, Okamoto S, Kurihara S. Gut bacterial aromatic amine production: aromatic amino acid decarboxylase and its effects on peripheral serotonin production. Gut Microbes 2022; 14:2128605. [PMID: 36217238 PMCID: PMC9553188 DOI: 10.1080/19490976.2022.2128605] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Colonic luminal aromatic amines have been historically considered to be derived from dietary source, especially fermented foods; however, recent studies indicate that the gut microbiota serves as an alternative source of these amines. Herein, we show that five prominent genera of Firmicutes (Blautia, Clostridium, Enterococcus, Ruminococcus, and Tyzzerella) have the ability to abundantly produce aromatic amines through the action of aromatic amino acid decarboxylase (AADC). In vitro cultivation of human fecal samples revealed that a significant positive correlation between aadc copy number of Ruminococcus gnavus and phenylethylamine (PEA) production. Furthermore, using genetically engineered Enterococcus faecalis-colonized BALB/cCrSlc mouse model, we showed that the gut bacterial aadc stimulates the production of colonic serotonin, which is reportedly involved in osteoporosis and irritable bowel syndrome. Finally, we showed that human AADC inhibitors carbidopa and benserazide inhibit PEA production in En. faecalis.
Collapse
Affiliation(s)
- Yuta Sugiyama
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan,Gunma University Center for Food Science and Wellness, Gunma University, Maebashi, Japan
| | - Yumiko Mori
- Department of Clinical Laboratory Sciences, Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Misaki Nara
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Yusuke Kotani
- Department of Clinical Laboratory Sciences, Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Emiko Nagai
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Japan
| | - Hiroki Kawada
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Mayu Kitamura
- Department of Clinical Laboratory Sciences, Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Rika Hirano
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Hiromi Shimokawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Akira Nakagawa
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Hiromichi Minami
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Aina Gotoh
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Mikiyasu Sakanaka
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Noriho Iida
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Takashi Koyanagi
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan
| | - Takane Katayama
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shigefumi Okamoto
- Department of Clinical Laboratory Sciences, Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan,Advanced Health Care Science Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Shin Kurihara
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, 921-8836, Japan,Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan,CONTACT Shin Kurihara Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama649-6493, Japan
| |
Collapse
|
20
|
Lian J, Liang Y, Zhang H, Lan M, Ye Z, Lin B, Qiu X, Zeng J. The role of polyamine metabolism in remodeling immune responses and blocking therapy within the tumor immune microenvironment. Front Immunol 2022; 13:912279. [PMID: 36119047 PMCID: PMC9479087 DOI: 10.3389/fimmu.2022.912279] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The study of metabolism provides important information for understanding the biological basis of cancer cells and the defects of cancer treatment. Disorders of polyamine metabolism is a common metabolic change in cancer. With the deepening of understanding of polyamine metabolism, including molecular functions and changes in cancer, polyamine metabolism as a new anti-cancer strategy has become the focus of attention. There are many kinds of polyamine biosynthesis inhibitors and transport inhibitors, but not many drugs have been put into clinical application. Recent evidence shows that polyamine metabolism plays essential roles in remodeling the tumor immune microenvironment (TIME), particularly treatment of DFMO, an inhibitor of ODC, alters the immune cell population in the tumor microenvironment. Tumor immunosuppression is a major problem in cancer treatment. More and more studies have shown that the immunosuppressive effect of polyamines can help cancer cells to evade immune surveillance and promote tumor development and progression. Therefore, targeting polyamine metabolic pathways is expected to become a new avenue for immunotherapy for cancer.
Collapse
Affiliation(s)
- Jiachun Lian
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Hailiang Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Minsheng Lan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Ziyu Ye
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- Dongguan Metabolite Analysis Engineering Technology Center of Cells for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan, China
| | - Bihua Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, Collaborative Innovation Center for Antitumor Active Substance Research and Development, Zhanjiang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xianxiu Qiu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, Collaborative Innovation Center for Antitumor Active Substance Research and Development, Zhanjiang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| | - Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Dongguan Metabolite Analysis Engineering Technology Center of Cells for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, Collaborative Innovation Center for Antitumor Active Substance Research and Development, Zhanjiang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
21
|
Putrescine Production by Latilactobacillus curvatus KP 3-4 Isolated from Fermented Foods. Microorganisms 2022; 10:microorganisms10040697. [PMID: 35456748 PMCID: PMC9026525 DOI: 10.3390/microorganisms10040697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Polyamines are aliphatic hydrocarbons with terminal amino groups and are essential for biological activities. It has been reported that polyamines have health-promoting effects in animals, such as the extension of lifespan by polyamine intake. The identification of a high polyamine-producing bacterium from foods could lead to the development of a novel probiotic candidate. We aimed to identify high polyamine-producing bacteria from food, and isolated and collected bacteria from vegetables and fermented foods produced in Japan. We successfully acquired Latilactobacillus curvatus KP 3-4 isolated from Kabura-zushi as a putrescine producing lactic acid bacteria. Comparing the polyamine synthesis capability of L. curvatus KP 3-4 with that of typical probiotic lactic acid bacteria and L. curvatus strains available from the Japan Collection of Microorganisms, it was found that only L. curvatus KP 3-4 was capable of exporting high levels of putrescine into the culture supernatant. The enhancement of putrescine production by the addition of ornithine, and whole-genome analysis of L. curvatus KP 3-4, suggest that putrescine is synthesized via ornithine decarboxylase. The administration of L. curvatus KP 3-4 to germ-free mice increased the concentration of putrescine in the feces.
Collapse
|
22
|
Health-Promoting Effects of Dietary Polyamines. Med Sci (Basel) 2021; 9:medsci9010008. [PMID: 33562765 PMCID: PMC7930991 DOI: 10.3390/medsci9010008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/01/2022] Open
Abstract
The purpose of this paper is to summarize the latest information on the various aspects of polyamines and their health benefits. In recent years, attempts to treat cancer by reducing elevated polyamines levels in cancer cells have been made, with some advancing to clinical trials. However, it has been reported since 2009 that polyamines extend the healthy life span of animals by inducing autophagy, protecting the kidneys and liver, improving cognitive function, and inhibiting the progression of heart diseases. As such, there is conflicting information regarding the relationship between polyamines and health. However, attempts to treat cancer by decreasing intracellular polyamines levels are a coping strategy to suppress the proliferation-promoting effects of polyamines, and a consensus is being reached that polyamine intake does not induce cancer in healthy individuals. To provide further scientific evidence for the health-promoting effects of polyamines, large-scale clinical studies involving multiple groups are expected in the future. It is also important to promote basic research on polyamine intake in animals, including elucidation of the polyamine balance between food, intestinal bacteria, and biosynthesis.
Collapse
|
23
|
Hosseinkhani F, Heinken A, Thiele I, Lindenburg PW, Harms AC, Hankemeier T. The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases. Gut Microbes 2021; 13:1-22. [PMID: 33590776 PMCID: PMC7899087 DOI: 10.1080/19490976.2021.1882927] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 02/04/2023] Open
Abstract
The interaction disorder between gut microbiota and its host has been documented in different non-communicable diseases (NCDs) such as metabolic syndrome, neurodegenerative disease, and autoimmune disease. The majority of these altered interactions arise through metabolic cross-talk between gut microbiota and host immune system, inducing a low-grade chronic inflammation that characterizes all NCDs. In this review, we discuss the contribution of bacterial metabolites to immune signaling pathways involved in NCDs. We then review recent advances that aid to rationally design microbial therapeutics. A deeper understanding of these intersections between host and gut microbiota metabolism using metabolomics-based system biology platform promises to reveal the fundamental mechanisms that drive metabolic predispositions to disease and suggest new avenues to use microbial therapeutic opportunities for NCDs treatment and prevention. Abbreviations: NCDs: non-communicable disease, IBD: inflammatory bowel disease, IL: interleukin, T2D: type 2 diabetes, SCFAs: short-chain fatty acids, HDAC: histone deacetylases, GPCR: G-protein coupled receptors, 5-HT: 5-hydroxytryptamine receptor signaling, DCs: dendritic cells, IECs: intestinal epithelial cells, T-reg: T regulatory cell, NF-κB: nuclear factor κB, TNF-α: tumor necrosis factor alpha, Th: T helper cell, CNS: central nervous system, ECs: enterochromaffin cells, NSAIDs: non-steroidal anti-inflammatory drugs, AhR: aryl hydrocarbon receptor, IDO: indoleamine 2,3-dioxygenase, QUIN: quinolinic acid, PC: phosphatidylcholine, TMA: trimethylamine, TMAO: trimethylamine N-oxide, CVD: cardiovascular disease, NASH: nonalcoholic steatohepatitis, BAs: bile acids, FXR: farnesoid X receptor, CDCA: chenodeoxycholic acid, DCA: deoxycholic acid, LCA: lithocholic acid, UDCA: ursodeoxycholic acid, CB: cannabinoid receptor, COBRA: constraint-based reconstruction and analysis.
Collapse
Affiliation(s)
- F. Hosseinkhani
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - A. Heinken
- Division of System Biomedicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - I. Thiele
- Division of System Biomedicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - P. W. Lindenburg
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
- Research Group Metabolomics, Faculty Science & Technology, Leiden Centre for Applied Bioscience, University of Applied Sciences, Leiden, Netherlands
| | - A. C. Harms
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - T. Hankemeier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
24
|
Kurihara S. The importance of genetic research on the dominant species of human intestinal indigenous microbiota. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 40:19-26. [PMID: 33520565 PMCID: PMC7817506 DOI: 10.12938/bmfh.2020-011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022]
Abstract
Comparisons of the changes in the gut microbiota and transcriptomes as a result of
changes in diet have demonstrated that the regulation of the gene functions of intestinal
bacteria is fundamental for the regulation of the intestinal environment. However, the
functions of only about half of the genes can be predicted using nucleotide sequences
obtained from the metagenomic data of the human gut microbiota. Therefore, the regulation
of gut bacterial gene functions is hindered. To resolve this issue, the functions of the
genes of intestinal bacteria must be identified. In our previous study, a high-throughput
cultivation system was established for the dominant species of indigenous human intestinal
microbiota. Using this system, we analyzed the synthesis and transport of polyamines by
intestinal bacteria. Comparison of the results with those obtained by in
silico analysis indicated the existence of novel polyamine synthetic enzymes
and transport proteins. Next, strains with gene deletions and complementation for the
polyamine synthetic system of the genus Bacteroides were analyzed.
Furthermore, we co-cultured genetically engineered Escherichia coli and
Enterococcus faecalis strains to demonstrate the presence of a
polyamine synthetic pathway spanning multiple bacterial species. Here, we outline the
trends of research using genetically engineered intestinal bacteria and the ripple effects
of studies in which intestinal bacteria have been analyzed genetically. Moreover, because
studies on intestinal bacteria at the gene level are indispensable for improving our
understanding of their regulation, the importance of this research will continue to
increase in the future.
Collapse
Affiliation(s)
- Shin Kurihara
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| |
Collapse
|
25
|
Abstract
Putrescine, a biogenic amine, is a highly valued compound in medicine, industry, and agriculture. In this study, we report a whole-cell biocatalytic method in Escherichia coli for the production of putrescine, using L-arginine as the substrate. L-arginine decarboxylase and agmatine ureohydrolase were co-expressed to produce putrescine from L-arginine. Ten plasmids with different copy numbers and ordering of genes were constructed to balance the expression of the two enzymes, and the best strain was pACYCDuet-speB-speA. The optimal concentration of L-arginine was determined to be 20 mM for this strain. The optimum pH of the biotransformation was 9.5, and the optimum temperature was 45 °C; under these conditions, the yield of putrescine was 98%. This whole-cell biocatalytic method appeared to have great potential for the production of putrescine.
Collapse
|
26
|
Three Related Enzymes in Candida albicans Achieve Arginine- and Agmatine-Dependent Metabolism That Is Essential for Growth and Fungal Virulence. mBio 2020; 11:mBio.01845-20. [PMID: 32788384 PMCID: PMC7439472 DOI: 10.1128/mbio.01845-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Amino acid metabolism is crucial for fungal growth and development. Ureohydrolases produce amines when acting on l-arginine, agmatine, and guanidinobutyrate (GB), and these enzymes generate ornithine (by arginase), putrescine (by agmatinase), or GABA (by 4-guanidinobutyrase or GBase). Candida albicans can metabolize and grow on arginine, agmatine, or guanidinobutyrate as the sole nitrogen source. Three related C. albicans genes whose sequences suggested that they were putative arginase or arginase-like genes were examined for their role in these metabolic pathways. Of these, Car1 encoded the only bona fide arginase, whereas we provide evidence that the other two open reading frames, orf19.5862 and orf19.3418, encode agmatinase and guanidinobutyrase (Gbase), respectively. Analysis of strains with single and multiple mutations suggested the presence of arginase-dependent and arginase-independent routes for polyamine production. CAR1 played a role in hyphal morphogenesis in response to arginine, and the virulence of a triple mutant was reduced in both Galleria mellonella and Mus musculus infection models. In the bloodstream, arginine is an essential amino acid that is required by phagocytes to synthesize nitric oxide (NO). However, none of the single or multiple mutants affected host NO production, suggesting that they did not influence the oxidative burst of phagocytes.IMPORTANCE We show that the C. albicans ureohydrolases arginase (Car1), agmatinase (Agt1), and guanidinobutyrase (Gbu1) can orchestrate an arginase-independent route for polyamine production and that this is important for C. albicans growth and survival in microenvironments of the mammalian host.
Collapse
|
27
|
Li Y, Shen N, Li J, Hu R, Mo X, Xu L. Changes in Intestinal Flora and Metabolites in Neonates With Breast Milk Jaundice. Front Pediatr 2020; 8:177. [PMID: 32478013 PMCID: PMC7235331 DOI: 10.3389/fped.2020.00177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Breast milk jaundice (BMJ) is the first cause of neonatal jaundice; however, its underlying mechanism is yet to be deciphered. We conducted a study to investigate intestinal flora in neonates with BMJ and used metabolomics to decipher the possible mechanisms by which intestinal flora induces jaundice. Methods: Microbiota collected from the feces of BMJ patients and jaundice-free breastfeeding newborns was used for 16S rRNA sequencing. In addition, differences in fecal metabolites were analyzed using gas chromatography mass spectrometry (GC/MS). The relationship between intestinal microbiota and the differences in fecal metabolites was then analyzed. Results: There was no significant difference in the richness and diversity of intestinal flora between BMJ and the control group; however, there were differences in the structure. At the phylum level, the relative abundance of Firmicutes was higher in the control group compared to the BMJ group, whereas Proteobacteria was higher in the infants with BMJ. Additionally, at the genus level, the relative abundance of Haemophilus was higher in the control group, whereas the relative abundances of Escherichia, Morganella, and Rothia were lower. More remarkably, the major differences in metabolites between the two groups were glyceric acid, succinic acid, and phenylalanine. Additionally, the abundance of Escherichia was positively correlated with succinic acid and cadaverine levels. Conclusions: The intestinal flora colonization status in BMJ patients is immature. This study reports for the first time that the study of intestinal flora, especially Escherichia, plays an important role in BMJ, and found that it may be associated with the regulation of succinic acid metabolic pathways.
Collapse
Affiliation(s)
- Yaxuan Li
- Department of Neonatal Intensive Care Unit, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Shen
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Li
- Department of Neonatology, Shanghai First Maternity and Infant Hospital, Shanghai, China
| | - Rui Hu
- Department of Neonatal Intensive Care Unit, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Mo
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqing Xu
- Department of Neonatal Intensive Care Unit, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Todd KJ, McFarlane J. Carboxyspermidine Dehydrogenase of Spermidine Biosynthesis from
Bacteroides fragilis. FASEB J 2020. [DOI: 10.1096/fasebj.2020.34.s1.04173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Sittipo P, Shim JW, Lee YK. Microbial Metabolites Determine Host Health and the Status of Some Diseases. Int J Mol Sci 2019; 20:ijms20215296. [PMID: 31653062 PMCID: PMC6862038 DOI: 10.3390/ijms20215296] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract is a highly complex organ composed of the intestinal epithelium layer, intestinal microbiota, and local immune system. Intestinal microbiota residing in the GI tract engages in a mutualistic relationship with the host. Different sections of the GI tract contain distinct proportions of the intestinal microbiota, resulting in the presence of unique bacterial products in each GI section. The intestinal microbiota converts ingested nutrients into metabolites that target either the intestinal microbiota population or host cells. Metabolites act as messengers of information between the intestinal microbiota and host cells. The intestinal microbiota composition and resulting metabolites thus impact host development, health, and pathogenesis. Many recent studies have focused on modulation of the gut microbiota and their metabolites to improve host health and prevent or treat diseases. In this review, we focus on the production of microbial metabolites, their biological impact on the intestinal microbiota composition and host cells, and the effect of microbial metabolites that contribute to improvements in inflammatory bowel diseases and metabolic diseases. Understanding the role of microbial metabolites in protection against disease might offer an intriguing approach to regulate disease.
Collapse
Affiliation(s)
- Panida Sittipo
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea.
| | - Jae-Won Shim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea.
| | - Yun Kyung Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea.
| |
Collapse
|
30
|
Abstract
Colibactin-producing Escherichia coli strains are associated with cancerous and precancerous colorectal tissues and are suspected of promoting colorectal carcinogenesis. In this study, we describe a new interplay between the synthesis of the genotoxin colibactin and the polyamine spermidine. Polyamines are highly abundant in cancer tissue and are associated with cell proliferation. The need for spermidine in genotoxic activity provides a new perspective on the role of these metabolites in the pathogenicity of colibactin-producing E. coli strains in colorectal cancer. Colibactin is a polyketide/nonribosomal peptide produced by Escherichia coli strains that harbor the pks island. This toxin induces DNA double-strand breaks and DNA interstrand cross-links in infected eukaryotic cells. Colibactin-producing strains are found associated with colorectal cancer biopsy specimens and promote intestinal tumor progression in various murine models. Polyamines are small polycationic molecules produced by both microorganisms and eukaryotic cells. Their levels are increased in malignancies, where they contribute to disease progression and metastasis. In this study, we demonstrated that the endogenous spermidine synthase SpeE is required for full genotoxic activity of colibactin-producing E. coli. Supplying spermidine in a ΔspeE pks+E. coli strain restored genotoxic activity. Spermidine is involved in the autotoxicity linked to colibactin and is required for direct damaging activity on DNA. The production of the colibactin prodrug motif is impaired in ΔspeE mutants. Therefore, we demonstrated that spermidine has a direct impact on colibactin synthesis. IMPORTANCE Colibactin-producing Escherichia coli strains are associated with cancerous and precancerous colorectal tissues and are suspected of promoting colorectal carcinogenesis. In this study, we describe a new interplay between the synthesis of the genotoxin colibactin and the polyamine spermidine. Polyamines are highly abundant in cancer tissue and are associated with cell proliferation. The need for spermidine in genotoxic activity provides a new perspective on the role of these metabolites in the pathogenicity of colibactin-producing E. coli strains in colorectal cancer.
Collapse
|
31
|
Sánchez-Jiménez F, Medina MÁ, Villalobos-Rueda L, Urdiales JL. Polyamines in mammalian pathophysiology. Cell Mol Life Sci 2019; 76:3987-4008. [PMID: 31227845 PMCID: PMC11105599 DOI: 10.1007/s00018-019-03196-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
Abstract
Polyamines (PAs) are essential organic polycations for cell viability along the whole phylogenetic scale. In mammals, they are involved in the most important physiological processes: cell proliferation and viability, nutrition, fertility, as well as nervous and immune systems. Consequently, altered polyamine metabolism is involved in a series of pathologies. Due to their pathophysiological importance, PA metabolism has evolved to be a very robust metabolic module, interconnected with the other essential metabolic modules for gene expression and cell proliferation/differentiation. Two different PA sources exist for animals: PA coming from diet and endogenous synthesis. In the first section of this work, the molecular characteristics of PAs are presented as determinant of their roles in living organisms. In a second section, the metabolic specificities of mammalian PA metabolism are reviewed, as well as some obscure aspects on it. This second section includes information on mammalian cell/tissue-dependent PA-related gene expression and information on crosstalk with the other mammalian metabolic modules. The third section presents a synthesis of the physiological processes described as modulated by PAs in humans and/or experimental animal models, the molecular bases of these regulatory mechanisms known so far, as well as the most important gaps of information, which explain why knowledge around the specific roles of PAs in human physiology is still considered a "mysterious" subject. In spite of its robustness, PA metabolism can be altered under different exogenous and/or endogenous circumstances so leading to the loss of homeostasis and, therefore, to the promotion of a pathology. The available information will be summarized in the fourth section of this review. The different sections of this review also point out the lesser-known aspects of the topic. Finally, future prospects to advance on these still obscure gaps of knowledge on the roles on PAs on human physiopathology are discussed.
Collapse
Affiliation(s)
- Francisca Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| | - Lorena Villalobos-Rueda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
| | - José Luis Urdiales
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain.
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain.
| |
Collapse
|
32
|
Fiori J, Turroni S, Candela M, Gotti R. Assessment of gut microbiota fecal metabolites by chromatographic targeted approaches. J Pharm Biomed Anal 2019; 177:112867. [PMID: 31614303 DOI: 10.1016/j.jpba.2019.112867] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023]
Abstract
Gut microbiota, the specific microbial community of the gastrointestinal tract, by means of the production of microbial metabolites provides the host with several functions affecting metabolic and immunological homeostasis. Insights into the intricate relationships between gut microbiota and the host require not only the understanding of its structure and function but also the measurement of effector molecules acting along the gut microbiota axis. This article reviews the literature on targeted chromatographic approaches in analysis of gut microbiota specific metabolites in feces as the most accessible biological matrix which can directly probe the connection between intestinal bacteria and the (patho)physiology of the holobiont. Together with a discussion on sample collection and preparation, the chromatographic methods targeted to determination of some classes of microbiota-derived metabolites (e.g., short-chain fatty acids, bile acids, low molecular masses amines and polyamines, vitamins, neurotransmitters and related compounds) are discussed and their main characteristics, summarized in Tables.
Collapse
Affiliation(s)
- Jessica Fiori
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| |
Collapse
|
33
|
Sakanaka M, Sugiyama Y, Nara M, Kitakata A, Kurihara S. Functional analysis of arginine decarboxylase gene speA of Bacteroides dorei by markerless gene deletion. FEMS Microbiol Lett 2019; 365:4793251. [PMID: 29319802 DOI: 10.1093/femsle/fny003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022] Open
Abstract
Polyamine concentrations in the intestine are regulated by their biosynthesis by hundreds of gut microbial species and these polyamines are involved in host health and disease. However, polyamine biosynthesis has not been sufficiently analyzed in major members of the human gut microbiota, possibly owing to a lack of gene manipulation systems. In this study, we successfully performed markerless gene deletion in Bacteroides dorei, one of the major members of the human gut microbiota. The combination of a thymidine kinase gene (tdk) deletion mutant and a counter-selection marker tdk, which has been applied in other Bacteroides species, was used for the markerless gene deletion. Deletion of tdk in B. dorei caused 5-fluoro-2΄-deoxyuridine resistance, suggesting the utility of B. dorei Δtdk as the host for future markerless gene deletions. Compared to parental strains, an arginine decarboxylase gene (speA) deletion mutant generated in this system showed a severe growth defect and decreased concentration of spermidine in the cells and culture supernatant. Collectively, our results indicate the accessibility of gene deletion and the important role of speA in polyamine biosynthesis in B. dorei.
Collapse
Affiliation(s)
- Mikiyasu Sakanaka
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Yuta Sugiyama
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Misaki Nara
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Aya Kitakata
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Shin Kurihara
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| |
Collapse
|
34
|
Ramos-Molina B, Queipo-Ortuño MI, Lambertos A, Tinahones FJ, Peñafiel R. Dietary and Gut Microbiota Polyamines in Obesity- and Age-Related Diseases. Front Nutr 2019; 6:24. [PMID: 30923709 PMCID: PMC6426781 DOI: 10.3389/fnut.2019.00024] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
The polyamines putrescine, spermidine, and spermine are widely distributed polycationic compounds essential for cellular functions. Intracellular polyamine pools are tightly regulated by a complex regulatory mechanism involving de novo biosynthesis, catabolism, and transport across the plasma membrane. In mammals, both the production of polyamines and their uptake from the extracellular space are controlled by a set of proteins named antizymes and antizyme inhibitors. Dysregulation of polyamine levels has been implicated in a variety of human pathologies, especially cancer. Additionally, decreases in the intracellular and circulating polyamine levels during aging have been reported. The differences in the polyamine content existing among tissues are mainly due to the endogenous polyamine metabolism. In addition, a part of the tissue polyamines has its origin in the diet or their production by the intestinal microbiome. Emerging evidence has suggested that exogenous polyamines (either orally administrated or synthetized by the gut microbiota) are able to induce longevity in mice, and that spermidine supplementation exerts cardioprotective effects in animal models. Furthermore, the administration of either spermidine or spermine has been shown to be effective for improving glucose homeostasis and insulin sensitivity and reducing adiposity and hepatic fat accumulation in diet-induced obesity mouse models. The exogenous addition of agmatine, a cationic molecule produced through arginine decarboxylation by bacteria and plants, also exerts significant effects on glucose metabolism in obese models, as well as cardioprotective effects. In this review, we will discuss some aspects of polyamine metabolism and transport, how diet can affect circulating and local polyamine levels, and how the modulation of either polyamine intake or polyamine production by gut microbiota can be used for potential therapeutic purposes.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Maria Isabel Queipo-Ortuño
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain.,Department of Medical Oncology, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain
| | - Ana Lambertos
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Rafael Peñafiel
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
35
|
Affiliation(s)
- Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Simone Cocchi
- Farmacie Comunali di Romano di Lombardia, Bergamo, Italy
| | - Giovanna Suzzi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
36
|
Nirzhor SSR, Khan RI, Neelotpol S. The Biology of Glial Cells and Their Complex Roles in Alzheimer's Disease: New Opportunities in Therapy. Biomolecules 2018; 8:biom8030093. [PMID: 30201881 PMCID: PMC6164719 DOI: 10.3390/biom8030093] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 01/01/2023] Open
Abstract
Even though Alzheimer's disease (AD) is of significant interest to the scientific community, its pathogenesis is very complicated and not well-understood. A great deal of progress has been made in AD research recently and with the advent of these new insights more therapeutic benefits may be identified that could help patients around the world. Much of the research in AD thus far has been very neuron-oriented; however, recent studies suggest that glial cells, i.e., microglia, astrocytes, oligodendrocytes, and oligodendrocyte progenitor cells (NG2 glia), are linked to the pathogenesis of AD and may offer several potential therapeutic targets against AD. In addition to a number of other functions, glial cells are responsible for maintaining homeostasis (i.e., concentration of ions, neurotransmitters, etc.) within the central nervous system (CNS) and are crucial to the structural integrity of neurons. This review explores the: (i) role of glial cells in AD pathogenesis; (ii) complex functionalities of the components involved; and (iii) potential therapeutic targets that could eventually lead to a better quality of life for AD patients.
Collapse
|
37
|
Fernández-Reina A, Urdiales JL, Sánchez-Jiménez F. What We Know and What We Need to Know about Aromatic and Cationic Biogenic Amines in the Gastrointestinal Tract. Foods 2018; 7:E145. [PMID: 30181486 PMCID: PMC6164962 DOI: 10.3390/foods7090145] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022] Open
Abstract
Biogenic amines derived from basic and aromatic amino acids (B/A-BAs), polyamines, histamine, serotonin, and catecholamines are a group of molecules playing essential roles in many relevant physiological processes, including cell proliferation, immune response, nutrition and reproduction. All these physiological effects involve a variety of tissue-specific cellular receptors and signalling pathways, which conforms to a very complex network that is not yet well-characterized. Strong evidence has proved the importance of this group of molecules in the gastrointestinal context, also playing roles in several pathologies. This work is based on the hypothesis that integration of biomedical information helps to reach new translational actions. Thus, the major aim of this work is to combine scientific knowledge on biomolecules, metabolism and physiology of the main B/A-BAs involved in the pathophysiology of the gastrointestinal tract, in order to point out important gaps in information and other facts deserving further research efforts in order to connect molecular information with pathophysiological observations.
Collapse
Affiliation(s)
- Alberto Fernández-Reina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain.
| | - José Luis Urdiales
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain.
- CIBER de Enfermedades Raras & IBIMA, Instituto de Salud Carlos III, 29010 Málaga, Spain.
| | - Francisca Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain.
- CIBER de Enfermedades Raras & IBIMA, Instituto de Salud Carlos III, 29010 Málaga, Spain.
| |
Collapse
|
38
|
Kitada Y, Muramatsu K, Toju H, Kibe R, Benno Y, Kurihara S, Matsumoto M. Bioactive polyamine production by a novel hybrid system comprising multiple indigenous gut bacterial strategies. SCIENCE ADVANCES 2018; 4:eaat0062. [PMID: 29963630 PMCID: PMC6021145 DOI: 10.1126/sciadv.aat0062] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/18/2018] [Indexed: 05/15/2023]
Abstract
Metabolites of the intestinal microbiota are thought to be generated through metabolic pathways spanning multiple taxa of intestinal bacteria. We have previously shown that the level of putrescine, a polyamine found abundantly in the human intestinal lumen, is increased in the colonic lumen following administration of arginine and the probiotic Bifidobacterium sp.; however, the underlying mechanism remained poorly understood. We report a novel pathway for putrescine production from arginine through agmatine involving the collaboration of two bacterial groups, and triggered by environmental acidification (drop in pH to below 6.5 from neutral). This pathway comprises the acid tolerance system of Escherichia coli, representing bacteria that have an arginine-dependent acid resistance system; the energy production system of Enterococcus faecalis, representing bacteria that have an agmatine deiminase system; and the acid production system of the acid-producing bacteria, represented by Bifidobacterium spp. This pathway is unique in that it represents a relationship between the independent survival strategies of multiple bacteria.
Collapse
Affiliation(s)
- Yusuke Kitada
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd., Hinode-machi, Nishitama-gun, Tokyo 190-0182, Japan
| | - Koji Muramatsu
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd., Hinode-machi, Nishitama-gun, Tokyo 190-0182, Japan
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| | - Ryoko Kibe
- Benno Laboratory, RIKEN Innovation Center, Wako, Saitama 351-0198, Japan
| | - Yoshimi Benno
- Benno Laboratory, RIKEN Innovation Center, Wako, Saitama 351-0198, Japan
| | - Shin Kurihara
- Host-Microbe Interaction Research Laboratory, Ishikawa Prefectural University, Nonoich, Ishikawa 921-8836, Japan
| | - Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd., Hinode-machi, Nishitama-gun, Tokyo 190-0182, Japan
- Benno Laboratory, RIKEN Innovation Center, Wako, Saitama 351-0198, Japan
| |
Collapse
|
39
|
Sugiyama Y, Nara M, Sakanaka M, Kitakata A, Okuda S, Kurihara S. Analysis of polyamine biosynthetic- and transport ability of human indigenous Bifidobacterium. Biosci Biotechnol Biochem 2018; 82:1606-1614. [PMID: 29847302 DOI: 10.1080/09168451.2018.1475211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bifidobacteria are members of the human intestinal microbiota, being numerically dominant in the colon of infants, and also being prevalent in the large intestine of adults. In this study, we measured the concentrations of major polyamines (putrescine, spermidine, and spermine) in cells and culture supernatant of 13 species of human indigenous Bifidobacterium at growing and stationary phase. Except for Bifidobacterium bifidum and Bifidobacterium gallicum, 11 species contained spermidine and/or spermine when grown in Gifu-anaerobic medium (GAM). However, Bifidobacterium scardovii and Bifidobacterium longum subsp. infantis, which contain spermidine when grown in GAM, did not contain spermidine when grown in polyamine-free 199 medium. Of the tested 13 Bifidobacterium species, 10 species showed polyamine transport ability. Combining polyamine concentration analysis in culture supernatant and in cells, with basic local alignment search tool analysis suggested that novel polyamine transporters are present in human indigenous Bifidobacterium. ABBREVIATIONS Put: putrescine; Spd: spermidine; Spm: spermine; GAM: Gifu anaerobic medium; BHI: brain-heart infusion.
Collapse
Affiliation(s)
- Yuta Sugiyama
- a Faculty of Bioresources and Environmental Sciences , Ishikawa Prefectural University , Nonoichi , Ishikawa , Japan
| | - Misaki Nara
- a Faculty of Bioresources and Environmental Sciences , Ishikawa Prefectural University , Nonoichi , Ishikawa , Japan
| | - Mikiyasu Sakanaka
- a Faculty of Bioresources and Environmental Sciences , Ishikawa Prefectural University , Nonoichi , Ishikawa , Japan
| | - Aya Kitakata
- a Faculty of Bioresources and Environmental Sciences , Ishikawa Prefectural University , Nonoichi , Ishikawa , Japan
| | - Shujiro Okuda
- b Graduate School of Medical and Dental Sciences , Niigata University , Niigata , Japan
| | - Shin Kurihara
- a Faculty of Bioresources and Environmental Sciences , Ishikawa Prefectural University , Nonoichi , Ishikawa , Japan
| |
Collapse
|