1
|
Owen MD, Kennedy MG, Quilang RC, Scott EM, Forbes K. The role of microRNAs in pregnancies complicated by maternal diabetes. Clin Sci (Lond) 2024; 138:1179-1207. [PMID: 39289953 PMCID: PMC11409017 DOI: 10.1042/cs20230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
With the global prevalence of diabetes increasing, more people of reproductive age are experiencing hyperglycaemic pregnancies. Maternal Type 1 (T1DM) or Type 2 (T2DM) diabetes mellitus, and gestational diabetes mellitus (GDM) are associated with maternal cardiovascular and metabolic complications. Pregnancies complicated by maternal diabetes also increase the risk of short- and long-term health complications for the offspring, including altered fetal growth and the onset of T2DM and cardiometabolic diseases throughout life. Despite advanced methods for improving maternal glucose control, the prevalence of adverse maternal and offspring outcomes associated with maternal diabetes remains high. The placenta is a key organ at the maternal-fetal interface that regulates fetal growth and development. In pregnancies complicated by maternal diabetes, altered placental development and function has been linked to adverse outcomes in both mother and fetus. Emerging evidence suggests that microRNAs (miRNAs) are key molecules involved in mediating these changes. In this review, we describe the role of miRNAs in normal pregnancy and discuss how miRNA dysregulation in the placenta and maternal circulation is associated with suboptimal placental development and pregnancy outcomes in individuals with maternal diabetes. We also discuss evidence demonstrating that miRNA dysregulation may affect the long-term health of mothers and their offspring. As such, miRNAs are potential candidates as biomarkers and therapeutic targets in diabetic pregnancies at risk of adverse outcomes.
Collapse
Affiliation(s)
- Manon D Owen
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Margeurite G Kennedy
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Anthony Nolan Research Institute, Royal Free Hospital, Hampstead, London, U.K
- UCL Cancer Institute, Royal Free Campus, London, U.K
| | - Rachel C Quilang
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Eleanor M Scott
- Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| |
Collapse
|
2
|
Ayipo YO, Chong CF, Abdulameed HT, Mordi MN. Bioactive alkaloidal and phenolic phytochemicals as promising epidrugs for diabetes mellitus 2: A review of recent development. Fitoterapia 2024; 175:105922. [PMID: 38552806 DOI: 10.1016/j.fitote.2024.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/16/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Type 2 diabetes (T2D) remains a major chronic metabolic disorder affecting hundreds of millions of the global population, mostly among adults, engendering high rates of morbidity and mortality. It is characterized by complex aetiologies including insulin deficiency and resistance, and hyperglycemia, and these significantly constitute therapeutic challenges. Several pathways have been implicated in its pathophysiology and treatment including the epigenetic regulatory mechanism, notably, deoxyribonucleic acid (DNA) methylation/demethylation, histone modification, non-coding ribonucleic acid (ncRNA) modulation and other relevant pathways. Many studies have recently documented the implications of phytochemicals on the aforementioned biomarkers in the pathogenesis and treatment of T2D. In this review, the cellular and molecular mechanisms of the epigenetic effects of some bioactive alkaloidal and phenolic phytochemicals as potential therapeutic alternatives for T2D have been overviewed from the recent literature (2019-2024). From the survey, the natural product-based compounds, C1-C32 were curated as potent epigenetic modulators for T2D. Their cellular and molecular mechanisms of anti-T2D activities with relevant epigenetic biomarkers were revealed. Although, more comprehensive experimental analyses are observably required for validating their activity and toxicological indices. Thus, perspectives and challenges were enumerated for such demanding future translational studies. The review reveals advances in scientific efforts towards reversing the global trend of T2D through epigenetic phytotherapeutics.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Department of Chemistry and Industrial Chemistry, Kwara State University, P. M. B., 1530, Malete, Ilorin, Nigeria; Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| | - Chien Fung Chong
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Hassan Taiye Abdulameed
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia; Department of Biochemistry, Kwara State University, P. M. B., 1530, Malete, Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
Jiang S, Ma F, Lou J, Li J, Shang X, Li Y, Wu J, Xu S. Naringenin reduces oxidative stress and necroptosis, apoptosis, and pyroptosis in random-pattern skin flaps by enhancing autophagy. Eur J Pharmacol 2024; 970:176455. [PMID: 38423240 DOI: 10.1016/j.ejphar.2024.176455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Random skin flap grafting is one of the most commonly used techniques in plastic and orthopedic surgery. However, necrosis resulting from ischemia and ischemia-reperfusion injury in the distal part of the flap can severely limit the clinical application of the flap. Studies have revealed that naringenin reduces pyroptosis, apoptosis, and necroptosis, inhibits oxidative stress, and promotes autophagy. In this study, the effects of Naringenin on flap viability and its underlying mechanism were evaluated. METHODS Mice with random skin flaps were randomly allocated to control, Naringenin, and Naringenin + 3-methyladenine groups. On postoperative day 7, flap tissues were collected to estimate angiogenesis, necroptosis, apoptosis, pyroptosis, oxidative stress, and autophagy via hematoxylin and eosin staining, immunofluorescence, and immunohistochemistry. RESULTS The results revealed that naringenin promoted the viability of the random flaps as well as angiogenesis, while inhibiting oxidative stress and decreasing pyroptosis, apoptosis, and necroptosis. These effects were reversed by the autophagy inhibitor 3-methyladenine. CONCLUSIONS The findings indicated that naringenin treatment could promote flap survival by inhibiting pyroptosis, apoptosis, necroptosis, and alleviating oxidative stress, caused by the activation of autophagy.
Collapse
Affiliation(s)
- Shuai Jiang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Feixia Ma
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Hangzhou, 310060, China
| | - Junsheng Lou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Jiafeng Li
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Xiushuai Shang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Yifan Li
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Junsong Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China.
| | - Sanzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Kamiński M, Mierzyński R, Poniedziałek-Czajkowska E, Sadowska A, Sotowski M, Leszczyńska-Gorzelak B. Comparative Evaluation of Adipokine Metrics for the Diagnosis of Gestational Diabetes Mellitus. Int J Mol Sci 2023; 25:175. [PMID: 38203346 PMCID: PMC10778639 DOI: 10.3390/ijms25010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common medical disorders in pregnancy. Adipokines, predominantly secreted by adipose tissue, are involved in numerous metabolic processes. The exact role of adipokines in the pathogenesis of GDM is still not well known, and numerous adipokines have been analysed throughout pregnancy and proposed as biomarkers of GDM. This study aimed to evaluate serum adiponectin, chemerin, lipocalin and apelin levels in GDM and non-GDM women, to assess them as clinically useful biomarkers of the occurrence of GDM and to demonstrate the correlation between the levels of the above adipokines in the blood serum and the increased risk of the development of GDM. The role of these adipokines in the pathogenesis of GDM was also analysed. The statistically significant differences between the levels of adiponectin (7234.6 vs. 9837.5 ng/mL, p < 0.0001), chemerin (264.0 vs. 206.7 ng/mL, p < 0.0001) and lipocalin (39.5 vs. 19.4 ng/mL, p < 0.0001) were observed between pregnant women with GDM and healthy ones. The diagnostic usefulness of the tested adipokines in detecting GDM was also assessed. The research results confirm the hypothesis on the significance of adiponectin, chemerin, lipocalin and apelin in the pathophysiological mechanisms of GDM. We speculate that these adipokines could potentially be established as novel biomarkers for the prediction and early diagnosis of GDM.
Collapse
Affiliation(s)
| | - Radzisław Mierzyński
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-954 Lublin, Poland; (M.K.); (A.S.); (M.S.); (B.L.-G.)
| | - Elżbieta Poniedziałek-Czajkowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-954 Lublin, Poland; (M.K.); (A.S.); (M.S.); (B.L.-G.)
| | | | | | | |
Collapse
|
5
|
Zhao L, Chang Q, Cong Z, Zhang Y, Liu Z, Zhao Y. Effects of dietary polyphenols on maternal and fetal outcomes in maternal diabetes. Food Funct 2023; 14:8692-8710. [PMID: 37724008 DOI: 10.1039/d3fo02048g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The incidences of short-term or long-term adverse maternal and fetal outcomes caused by maternal diabetes are increasing. Due to toxicity or side effects, economic pressures, and other problems associated with injections or oral hypoglycemic drugs, many researchers have investigated natural treatment methods. Polyphenols can protect against chronic pathologies by regulating numerous physiological processes and provide many health benefits. Moreover, polyphenols have anti-diabetic properties and can be used to treat diabetic complications. Diets rich in polyphenols are beneficial to pregnant women with diabetes. Here, we review the epidemiological and experimental evidence on the impact of dietary polyphenols on maternal and fetal outcomes in pregnant women with diabetes, and the effects of polyphenols on biological changes and possible mechanisms. Previous data (mainly from in vitro and animal experiments) showed that polyphenols can alleviate gestational diabetes mellitus and diabetic embryopathy by reducing maternal hyperglycemia and insulin resistance, alleviating inflammation and oxidative stress, and regulating related signaling pathways. Although polyphenols have shown many health benefits, further research is needed to better understand the complex interactions between polyphenols and maternal diabetes.
Collapse
Affiliation(s)
- Lu Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qing Chang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhangzhao Cong
- Department of Teaching Affairs, China Medical University, Shenyang, China
| | - Yalin Zhang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhuxi Liu
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yuhong Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
da Silva PHCM, Santos KDF, da Silva L, da Costa CCP, Santos RDS, Reis AADS. MicroRNAs Associated with the Pathophysiological Mechanisms of Gestational Diabetes Mellitus: A Systematic Review for Building a Panel of miRNAs. J Pers Med 2023; 13:1126. [PMID: 37511739 PMCID: PMC10381583 DOI: 10.3390/jpm13071126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
miRNAs, a class of small non-coding RNAs, play a role in post-transcriptional gene expression. Therefore, this study aimed to conduct a systematic review of miRNAs associated with GDM to build a panel of miRNAs. A bibliographic search was carried out in the PubMed/Medline, Virtual Health Library (VHL), Web of Science, and EMBASE databases, selecting observational studies in English without time restriction. The protocol was registered on the PROSPERO platform (number CRD42021291791). Fifty-five studies were included in this systematic review, and 82 altered miRNAs in GDM were identified. In addition, four miRNAs were most frequently dysregulated in GDM (mir-16-5p, mir-20a-5p, mir-222-3p, and mir-330-3p). The dysregulation of these miRNAs is associated with the mechanisms of cell cycle homeostasis, growth, and proliferation of pancreatic β cells, glucose uptake and metabolism, insulin secretion, and resistance. On the other hand, identifying miRNAs associated with GDM and elucidating its main mechanisms can assist in the characterization and definition of potential biomarkers for the diagnosis and treatment of GDM.
Collapse
Affiliation(s)
- Pedro Henrique Costa Matos da Silva
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Kamilla de Faria Santos
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Laura da Silva
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Caroline Christine Pincela da Costa
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
| | - Rodrigo da Silva Santos
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil
| | - Angela Adamski da Silva Reis
- Laboratory of Molecular Pathology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil (K.d.F.S.)
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-090, GO, Brazil
| |
Collapse
|
7
|
Chen Q, Hu K, Shi J, Li H, Li W. Hesperidin inhibits methylation and autophagy in LPS and high glucose-induced human villous trophoblasts. Biochem Biophys Res Commun 2023; 671:278-285. [PMID: 37311265 DOI: 10.1016/j.bbrc.2023.05.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) is the first occurrence of diabetes due to abnormal maternal sugar metabolism after pregnancy, which may lead to adverse pregnancy outcomes. Hesperidin is known to decrease in the cord blood of GDM with obesity, but its role is unknown. This study aims to explore the potential function of hesperidin in GDM with obesity to develop new therapeutic ideas. METHODS Peripheral blood and placental tissues from GDM and GDM with obesity patients were collected to isolate human villous trophoblasts and detection. Bioinformatics was used to analyze the differential methylation genes between GDM and GDM with obesity. Immunofluorescence was applied for the detection of CK7 expression. Cells vitality was detected by CCK8 and transwell. Molecular docking was applied to predict the binding of hesperidin and ATG7 protein. Inflammation and m6A levels was analyzed by ELISA. ATG7, LC3, TLR4 and P62 proteins was analyzed by Western blot. RESULTS The methylation of ATG7 gene was up-regulated in GDM with obesity compared with GDM. The m6A and autophagy proteins levels in GDM with obesity were higher than that in GDM. LPS with 2.5-25 mM glucose induced the increase of autophagy proteins, inflammation and m6A levels in human villous trophoblasts. Hesperidin formed hydrogen bonds and hydrophobic interactions with ATG7 proteins. Hesperidin (0.25 μM) inhibited the autophagy proteins and m6A level in LPS and 25 mM glucose-induced human villous trophoblasts. DISCUSSION GDM with obesity followed the increase of autophagy proteins and m6A levels. Hesperidin inhibited the autophagy proteins and m6A level in LPS and glucose-induced human villous trophoblasts.
Collapse
Affiliation(s)
- Qiuling Chen
- Department of Obstetrics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 41700, Hunan, China
| | - Ke Hu
- Department of Obstetrics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 41700, Hunan, China
| | - Jun Shi
- Department of Obstetrics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 41700, Hunan, China
| | - Hua Li
- Department of Obstetrics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 41700, Hunan, China
| | - Wenxia Li
- Department of Obstetrics, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 41700, Hunan, China.
| |
Collapse
|
8
|
Deckmann I, Santos-Terra J, Martel F, Vieira Carletti J. Common pregnancy complications and polyphenols intake: an overview. Crit Rev Food Sci Nutr 2023; 64:5924-5957. [PMID: 36597650 DOI: 10.1080/10408398.2022.2160960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During pregnancy, the body undergoes a great amount of changes in order to support a healthy developing fetus. In this context, maternal dietary supplementation is widely encouraged to provide adequate nutrition for the newborn. In the past few years, studies have emerged highlighting the benefits of polyphenols intake during pregnancy. Indeed, despite differences among reports, such as experimental model, polyphenol employed, dosage and regimen of administration, there is no doubt that the ingestion of these molecules has a protective effect in relation to three pregnancy-associated diseases or conditions: preeclampsia, gestational diabetes and fetal growth restriction. In this review, we describe the effects of different polyphenols and polyphenol-rich extracts or juices on the main outcomes of these common pregnancy-associated complications, obtained in human, animal and in vitro studies. Therefore, this work provides a critical analysis of the literature, and a summary of evidences, from which future research using polyphenols can be designed and evaluated.
Collapse
Affiliation(s)
- Iohanna Deckmann
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Júlio Santos-Terra
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Jaqueline Vieira Carletti
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
9
|
Zhang L, Jin G, Zhang W, Wang X, Li Z, Dong Q. Silencing circ_0080425 alleviates high-glucose-induced endothelial cell dysfunction in diabetic nephropathy by targeting miR-140-3p/FN1 axis. Clin Exp Nephrol 2023; 27:12-23. [PMID: 36083527 DOI: 10.1007/s10157-022-02273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Hsa_circ_0080425 (circ_0080425) is newly identified to correlate with the progression of diabetic nephropathy (DN). However, its role and mechanism in DN process is not very clear. METHODS Cell counting kit-8 assay, flow cytometry, scratch wound assay, and western blotting were performed to measure endothelial cell dysfunction. Expression of circ_0080425, microRNA (miR)-140-3p and fibronectin 1 (FN1) were determined by quantitative real-time PCR and western blotting. The direct interaction was confirmed by dual-luciferase reporter assay. RESULTS High-glucose (HG) treatment could induce inhibition of cell proliferation, cell cycle entrance and wound healing rate in human umbilical vein endothelial cells (HRGEC), and enhancement of apoptosis rate. Circ_0080425 expression was upregulated by HG, and exhausting circ_0080425 could attenuate HG-induced above effects in HRGEC. MiR-140-3p was sponged by circ_0080425, and its inhibitor reversed the regulation of circ_0080425 knockdown on HG-induced HRGEC injury. FN1 was targeted by miR-140-3p, and its overexpression also restored the inhibitory effect of miR-140-3p on HC-induced HRGEC injury. CONCLUSION Circ_0080425 expression might contribute to HG-induced endothelial cell injury, and circ_0080425/miR-140-3p/FN1 axis was a potential therapeutic approach to interfere DN process.
Collapse
Affiliation(s)
- Linping Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Gang Jin
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Wei Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Xiaoming Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Zhenjiang Li
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Qianlan Dong
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
10
|
Zhou Y, Suo W, Zhang X, Yang Y, Zhao W, Li H, Ni Q. Targeting epigenetics in diabetic cardiomyopathy: Therapeutic potential of flavonoids. Biomed Pharmacother 2023; 157:114025. [PMID: 36399824 DOI: 10.1016/j.biopha.2022.114025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
The pathophysiological mechanisms of diabetic cardiomyopathy have been extensively studied, but there is still a lack of effective prevention and treatment methods. The ability of flavonoids to protect the heart from diabetic cardiomyopathy has been extensively described. In recent years, epigenetics has received increasing attention from scholars in exploring the etiology and treatment of diabetes and its complications. DNA methylation, histone modifications and non-coding RNAs play key functions in the development, maintenance and progression of diabetic cardiomyopathy. Hence, prevention or reversal of the epigenetic alterations that have occurred during the development of diabetic cardiomyopathy may alleviate the personal and social burden of the disease. Flavonoids can be used as natural epigenetic modulators in alternative therapies for diabetic cardiomyopathy. In this review, we discuss the epigenetic effects of different flavonoid subtypes in diabetic cardiomyopathy and summarize the evidence from preclinical and clinical studies that already exist. However, limited research is available on the potential beneficial effects of flavonoids on the epigenetics of diabetic cardiomyopathy. In the future, clinical trials in which different flavonoids exert their antidiabetic and cardioprotective effects through various epigenetic mechanisms should be further explored.
Collapse
Affiliation(s)
- Yutong Zhou
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Wendong Suo
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinai Zhang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Yanan Yang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Weizhe Zhao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100105, China
| | - Hong Li
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qing Ni
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China.
| |
Collapse
|
11
|
Fu J, Niu H, Gao G, Wang L, Yu K, Guo R, Zhang J. Naringenin promotes angiogenesis of ischemic myocardium after myocardial infarction through miR-223-3p/IGF1R axis. Regen Ther 2022; 21:362-371. [PMID: 36161098 PMCID: PMC9471969 DOI: 10.1016/j.reth.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Naringenin exerts a protective effect on myocardial ischemia and reperfusion. It has been reported that miR-223-3p is a potential target for the treatment of myocardial infarction (MI). In view of the unreported correlation between Naringenin and miR-223-3p, this study was designed to confirm that the ameliorative effects of Naringenin on MI is directly related to the regulation of miR-223-3p. Methods Through electrocardiogram detection, Masson pathological staining and immunohistochemistry of angiogenesis-related factors, alleviative effects of Naringenin on heart function, myocardial injury and angiogenesis in MI mice were observed individually. Hypoxic HUVECs were selected in the in vitro experimental model. The cell viability, angiogenesis and migration ability were analyzed to fathom out the pro-angiogenesis potential of Naringenin. The effect of Naringenin on miR-223-3p, as well as the downstream molecular mechanism was verified through bioinformatics analysis and rescue experiments. Results Naringenin improved heart functions of MI mice, reduced degree of myocardial fibrosis, stimulated expressions of angiogenic factors and down-regulated level of miR-223-3p in myocardial tissue. In in vitro experiments, Naringenin increased the viability of hypoxic HUVECs, as well as the abilities of tube formation and migration, and further inhibited the expression of miR-223-3p. In the rescue trial, miR-223-3p mimic reversed the therapeutic effect of Naringenin. Type 1 insulin-like growth factor receptor (IGF1R), as a downstream target gene of miR-223-3p, partially offset the cellular regulatory effects of miR-223-3p after overexpression of IGF1R. Conclusions Naringenin improves the angiogenesis of hypoxic HUVECs by regulating the miR-223-3p/IGF1R axis, and has the potential to promote myocardial angiogenesis in MI mice.
Collapse
Affiliation(s)
- Jinguo Fu
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Heping Niu
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Guangren Gao
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Lei Wang
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Kai Yu
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Run Guo
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Jun Zhang
- Department of Cardiology, Cangzhou Central Hospital, China
| |
Collapse
|
12
|
Rong W, Shukun W, Xiaoqing W, Wenxin H, Mengyuan D, Chenyang M, Zhang H. Regulatory roles of non-coding RNAs and m6A modification in trophoblast functions and the occurrence of its related adverse pregnancy outcomes. Crit Rev Toxicol 2022; 52:681-713. [PMID: 36794364 DOI: 10.1080/10408444.2022.2144711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Adverse pregnancy outcomes, such as preeclampsia, gestational diabetes mellitus, fetal growth restriction, and recurrent miscarriage, occur frequently in pregnant women and might further induce morbidity and mortality for both mother and fetus. Increasing studies have shown that dysfunctions of human trophoblast are related to these adverse pregnancy outcomes. Recent studies also showed that environmental toxicants could induce trophoblast dysfunctions. Moreover, non-coding RNAs (ncRNAs) have been reported to play important regulatory roles in various cellular processes. However, the roles of ncRNAs in the regulation of trophoblast dysfunctions and the occurrence of adverse pregnancy outcomes still need to be further investigated, especially with exposure to environmental toxicants. In this review, we analyzed the regulatory mechanisms of ncRNAs and m6A methylation modification in the dysfunctions of trophoblast cells and the occurrence of adverse pregnancy outcomes and also summarized the harmful effects of environmental toxicants. In addition to DNA replication, mRNA transcription, and protein translation, ncRNAs and m6A modification might be considered as the fourth and fifth elements that regulate the genetic central dogma, respectively. Environmental toxicants might also affect these processes. In this review, we expect to provide a deeper scientific understanding of the occurrence of adverse pregnancy outcomes and to discover potential biomarkers for the diagnosis and treatment of these outcomes.
Collapse
Affiliation(s)
- Wang Rong
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Wan Shukun
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wang Xiaoqing
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huang Wenxin
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dai Mengyuan
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Mi Chenyang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
13
|
Gao M, Lan J, Zhang Y, Yu S, Bao B, Yao W, Cao Y, Shan M, Cheng F, Zhang L, Chen P. Discovery of processing-associated Q-marker of carbonized traditional Chinese medicine: An integrated strategy of metabolomics, systems pharmacology and in vivo high-throughput screening model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154152. [PMID: 35636167 DOI: 10.1016/j.phymed.2022.154152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Carbonized traditional Chinese medicine (TCM) is a kind of distinctive traditional medicine, which has been widely used to cure various bleeding syndromes in clinic for over 2000 years. However, there are no effective quality control methods developed on carbonized TCM so far. PURPOSE This study aimed at developing a processing-associated quality marker (Q-marker) discovery strategy, which would enable to promote the quality control study of carbonized TCM. METHODS Carbonized Typhae Pollen (CTP), a typical carbonized TCM with fantastic efficacy of stanching bleeding and removing blood stasis, was used as an example. First, a ultraperformance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) method was established to characterize four types of CTP in different processing degrees. Second, chemometric method was applied to screen candidate Q-markers. Third, peak area changes and Aratio changes of each candidate markers in 57 batches samples were described (Traceability and Transitivity). Fourth, systems pharmacology and two high-throughput zebrafish models: cerebral hemorrhage model and thrombus model were used to furtherly screen Q-markers (Effectiveness). Finally, a ultraperformance liquid chromatographic coupled with triple quadrupole tandem mass spectrometry (UPLC-TQ-MS) method was established and applied to quantify Q-markers in additional 10 batches of CTP samples (Measurability). RESULTS The chemical profiles of Typhae Pollen during the carbonized process were investigated. Then, 12 candidate compounds were screened in chemometric part. Six Q-markers (isorhamnetin-3-O-neohesperidoside, isorhamnetin-3-O-rutinoside, kaempferol-3-O-neohesperidoside, naringenin, quercetin and isorhamnetin) were subsequently screened out using three principles of Q-markers combined with content changes and two in vivo zebrafish models. Their average contents in additional 10 batches of CTP were 316.8 μg/g, 13.7 μg/g, 6.1 μg/g, 197.8 μg/g, 12.9 μg/g and 199.3 μg/g, respectively. Their content proportion was about 25: 1: 0.5: 15: 1: 15. CONCLUSION A processing-associated Q-marker discovery strategy was developed for carbonized TCM. It might provide a novel insight to solve the problem of 'Chao Tan Cun Xing' in carbonized process.
Collapse
Affiliation(s)
- Mingliang Gao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Jinshan Lan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Yusong Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Sheng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Yudan Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Fangfang Cheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China.
| | - Peidong Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China.
| |
Collapse
|
14
|
Krga I, Corral-Jara KF, Barber-Chamoux N, Dubray C, Morand C, Milenkovic D. Grapefruit Juice Flavanones Modulate the Expression of Genes Regulating Inflammation, Cell Interactions and Vascular Function in Peripheral Blood Mononuclear Cells of Postmenopausal Women. Front Nutr 2022; 9:907595. [PMID: 35694160 PMCID: PMC9178201 DOI: 10.3389/fnut.2022.907595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Grapefruit is a rich source of flavanones, phytochemicals suggested excreting vasculoprotective effects. We previously showed that flavanones in grapefruit juice (GFJ) reduced postmenopausal women’s pulse-wave velocity (PWV), a measure of arterial stiffness. However, mechanisms of flavanone action in humans are largely unknown. This study aimed to decipher molecular mechanisms of flavanones by multi-omics analysis in PBMCs of volunteers consuming GFJ and flavanone-free control drink for 6 months. Modulated genes and microRNAs (miRNAs) were identified using microarrays. Bioinformatics analyses assessed their functions, interactions and correlations with previously observed changes in PWV. GFJ modified gene and miRNA expressions. Integrated analysis of modulated genes and miRNA-target genes suggests regulation of inflammation, immune response, cell interaction and mobility. Bioinformatics identified putative mediators of the observed nutrigenomic effect (STAT3, NF-κB) and molecular docking demonstrated potential binding of flavanone metabolites to transcription factors and cell-signaling proteins. We also observed 34 significant correlations between changes in gene expression and PWV. Moreover, global gene expression was negatively correlated with gene expression profiles in arterial stiffness and hypertension. This study revealed molecular mechanisms underlying vasculoprotective effects of flavanones, including interactions with transcription factors and gene and miRNA expression changes that inversely correlate with gene expression profiles associated with cardiovascular risk factors.
Collapse
Affiliation(s)
- Irena Krga
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | | | - Claude Dubray
- Institut National de la Santé et de la Recherche Médicale (INSERM), CIC 501, UMR 766, Clermont-Ferrand, France
| | - Christine Morand
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
- Department of Nutrition, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
- *Correspondence: Dragan Milenkovic,
| |
Collapse
|
15
|
Du R, Wu N, Bai Y, Tang L, Li L. circMAP3K4 regulates insulin resistance in trophoblast cells during gestational diabetes mellitus by modulating the miR-6795-5p/PTPN1 axis. J Transl Med 2022; 20:180. [PMID: 35449053 PMCID: PMC9022258 DOI: 10.1186/s12967-022-03386-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background Insulin resistance (IR) during gestational diabetes mellitus (GDM) has been linked to dysregulated insulin-PI3K/Akt pathway. A defective insulin-PI3K/Akt pathway and dysregulated circular RNA (circRNA) levels have been observed in the placentas of patients with GDM; however, the mechanisms underlying this association remain unclear. Methods circRNAs potentially associated with GDM were selected through bioinformatics analysis and initially identified by quantitative real-time PCR (qPCR) in 9 GDM patients and 9 healthy controls, of which circMAP3K4 was further validated in additional 84 samples by qPCR. circMAP3K4 identity and localization were verified. Pearson correlation analysis was applied to evaluate the correlation between circMAP3K4 expression in the placental tissues of GDM patients and IR-related indicators. An IR model of trophoblasts was constructed using glucosamine. Interactions between miR-6795-5p and circMAP3K4 or PTPN1 were confirmed using a dual-luciferase reporter assay. The circMAP3K4/miR-6795-5p/PTPN1 axis and key markers in the insulin-PI3K/Akt pathway in placentas and trophoblasts were evaluated through qRT-PCR, immunofluorescence, and western blotting. The role of circMAP3K4 in glucose metabolism and cell growth in trophoblasts was determined using the glucose uptake and CCK8 assay, respectively. Results circMAP3K4 was highly expressed in the placentas of patients with GDM and the IR trophoblast model; this was associated with a dysregulated insulin-PI3K/Akt pathway. circMAP3K4 in the placentas of GDM patients was positively correlated with weight gain during pregnancy and time-glucose area under the curve of OGTT. circMAP3K4 and PTPN1 could both bind to miR-6795-5p. miR-6795-5p and PTPN1 were downregulated and upregulated, respectively, in the placentas of GDM patients and the IR trophoblast model. circMAP3K4 silencing or miR-6795-5p overexpression partially reversed the decrease in glucose uptake, inhibition in cell growth, and downregulated IRS1 and Akt phosphorylation in IR-trophoblasts; this restoration was reversed upon co-transfection with an miR-6795-5p inhibitor or PTPN1. Conclusion circMAP3K4 could suppress the insulin-PI3K/Akt signaling pathway via miR-6795-5p/PTPN1 axis, probably contributing to GDM-related IR. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03386-8.
Collapse
Affiliation(s)
- Runyu Du
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Bai
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lei Tang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
16
|
Yang X, Wu N. MicroRNAs and Exosomal microRNAs May Be Possible Targets to Investigate in Gestational Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:321-330. [PMID: 35140490 PMCID: PMC8820256 DOI: 10.2147/dmso.s330323] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as glucose intolerance that occurs during the second or third trimester of pregnancy. As the incidence of GDM rises, so does the risk of maternal and fetal complications with short- and long-term consequences. As a result, early diagnosis and treatment of this condition are important to avoiding adverse pregnancy outcomes. Exosomes are tiny vesicles secreted by living cells which contain a variety of bioactive substances. They are released by cells to facilitate cell-to-cell communication and regulate a variety of biological processes such as cellular immune response, inflammatory response, and apoptosis, among others. Many studies have recently confirmed that changes in the expression and secretion of exosomal miRNAs can be used as novel markers for the diagnosis, prognosis, and treatment of GDM. In this review, we summarized the various roles of exosomal miRNAs and circulating miRNAs in GDM. We found that the changes in the expression of certain miRNAs could be used to diagnosing GDM. Exosomal miRNAs target metabolic pathways, resulting in insulin resistance. We also highlighted the potential for miRNAs and exosomal miRNAs to be used as biomarkers for diagnosis or therapeutic agents.
Collapse
Affiliation(s)
- Xiyao Yang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
- Clinical Skills Practice Teaching Center, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
- Correspondence: Na Wu, Department of Endocrinology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, Shenyang, Liaoning Province, 110004, People’s Republic of China, Tel +86 18940258445, Email
| |
Collapse
|
17
|
Chen Y, Qie X, Quan W, Zeng M, Qin F, Chen J, Adhikari B, He Z. Omnifarious fruit polyphenols: an omnipotent strategy to prevent and intervene diabetes and related complication? Crit Rev Food Sci Nutr 2021:1-37. [PMID: 34792409 DOI: 10.1080/10408398.2021.2000932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a metabolic syndrome which cannot be cured. Recently, considerable interest has been focused on food ingredients to prevent and intervene in complications of diabetes. Polyphenolic compounds are one of the bioactive phytochemical constituents with various biological activities, which have drawn increasing interest in human health. Fruits are part of the polyphenol sources in daily food consumption. Fruit-derived polyphenols possess the anti-diabetic activity that has already been proved either from in vitro studies or in vivo studies. The mechanisms of fruit polyphenols in treating diabetes and related complications are under discussion. This is a comprehensive review on polyphenols from the edible parts of fruits, including those from citrus, berries, apples, cherries, mangoes, mangosteens, pomegranates, and other fruits regarding their potential benefits in preventing and treating diabetes mellitus. The signal pathways of characteristic polyphenols derived from fruits in reducing high blood glucose and intervening hyperglycemia-induced diabetic complications were summarized.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuejiao Qie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
18
|
Visvanathan R, Williamson G. Citrus polyphenols and risk of type 2 diabetes: Evidence from mechanistic studies. Crit Rev Food Sci Nutr 2021; 63:2178-2202. [PMID: 34496701 DOI: 10.1080/10408398.2021.1971945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Citrus fruits are a rich source of (poly)phenols, a group of dietary bioactive compounds that protect against developing type 2 diabetes. Our review critically evaluates how experimental in vitro and animal models have elucidated some of the underlying mechanisms on how citrus (poly)phenols affect the markers of type 2 diabetes. According to animal studies, the beneficial effects derived from consuming citrus compounds appear to be related to long-term effects, rather than acute. There are some notable effects from citrus (poly)phenol metabolites on post-absorptive processes, such as modulation of hepatic glucose metabolism and insulin sensitivity in target tissues, but with a more modest effect on digestion and sugar absorption within the gut. Experimental studies on cells and other systems in vitro have indicated some of the possible mechanisms involved, but ∼70% of the studies utilized unrealistically high concentrations and forms of the compounds, compromising physiological relevance. Future studies should discuss the relevance of concentration used in in vitro experiments, relative to the proposed site of action, and also examine the role of catabolites produced by the gut microbiota. Finally, it is important to examine the relationship between the gut microbiota and bioavailability on the action of citrus (poly)phenols.
Collapse
Affiliation(s)
- Rizliya Visvanathan
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, Notting Hill, VIC, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, Notting Hill, VIC, Australia
| |
Collapse
|
19
|
The Insulin Receptor: A Potential Target of Amarogentin Isolated from Gentiana rigescens Franch That Induces Neurogenesis in PC12 Cells. Biomedicines 2021; 9:biomedicines9050581. [PMID: 34065446 PMCID: PMC8160887 DOI: 10.3390/biomedicines9050581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/19/2023] Open
Abstract
Amarogentin (AMA) is a secoiridoid glycoside isolated from the traditional Chinese medicine, Gentiana rigescens Franch. AMA exhibits nerve growth factor (NGF)-mimicking and NGF-enhancing activities in PC12 cells and in primary cortical neuron cells. In this study, a possible mechanism was found showing the remarkable induction of phosphorylation of the insulin receptor (INSR) and protein kinase B (AKT). The potential target of AMA was predicted by using a small-interfering RNA (siRNA) and the cellular thermal shift assay (CETSA). The AMA-induced neurite outgrowth was reduced by the siRNA against the INSR and the results of the CETSA suggested that the INSR showed a significant thermal stability-shifted effect upon AMA treatment. Other neurotrophic signaling pathways in PC12 cells were investigated using specific inhibitors, Western blotting and PC12(rasN17) and PC12(mtGAP) mutants. The inhibitors of the glucocorticoid receptor (GR), phospholipase C (PLC) and protein kinase C (PKC), Ras, Raf and mitogen-activated protein kinase (MEK) significantly reduced the neurite outgrowth induced by AMA in PC12 cells. Furthermore, the phosphorylation reactions of GR, PLC, PKC and an extracellular signal-regulated kinase (ERK) were significantly increased after inducing AMA and markedly decreased after treatment with the corresponding inhibitors. Collectively, these results suggested that AMA-induced neuritogenic activity in PC12 cells potentially depended on targeting the INSR and activating the downstream Ras/Raf/ERK and PI3K/AKT signaling pathways. In addition, the GR/PLC/PKC signaling pathway was found to be involved in the neurogenesis effect of AMA.
Collapse
|
20
|
Cannataro R, Fazio A, La Torre C, Caroleo MC, Cione E. Polyphenols in the Mediterranean Diet: From Dietary Sources to microRNA Modulation. Antioxidants (Basel) 2021; 10:328. [PMID: 33672251 PMCID: PMC7926722 DOI: 10.3390/antiox10020328] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 02/05/2023] Open
Abstract
It is now well established that polyphenols are a class of natural substance that offers numerous health benefits; they are present in all plants in very different quantities and types. On the other hand, their bioavailability, and efficacy is are not always well proven. Therefore, this work aims to discuss some types of polyphenols belonging to Mediterranean foods. We chose six polyphenols-(1) Naringenin, (2) Apigenin, (3) Kaempferol, (4) Hesperidin, (5) Ellagic Acid and (6) Oleuropein-present in Mediterranean foods, describing dietary source and their chemistry, as well as their pharmacokinetic profile and their use as nutraceuticals/supplements, in addition to the relevant element of their capability in modulating microRNAs expression profile.
Collapse
Affiliation(s)
- Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
| | - Chiara La Torre
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; (R.C.); (A.F.); (C.L.T.); (E.C.)
- GalaScreen Laboratories, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy
| |
Collapse
|
21
|
Du R, Wu N, Li L. Aberrantly Expressed Non-Coding RNAs in the Placenta and Their Role in the Pathophysiology of Gestational Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:3719-3732. [PMID: 34456579 PMCID: PMC8387639 DOI: 10.2147/dmso.s325993] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 11/23/2022] Open
Abstract
Gestational diabetes mellitus (GDM), one of the most common complications during pregnancy, is associated with a high risk of short- and long-term adverse effects on the mother and offspring. Placenta-derived hormones and cytokines aggravate maternal insulin resistance (IR) during pregnancy, which in turn contribute to GDM. The hyperglycemia and IR in GDM result in aberrant placental structure and function adversely affecting fetal growth and well-being. Therefore, it is reasonable to assume that structural and functional alterations in the placenta contribute to the pathogenesis of GDM and GDM-related complications. Increasing evidence suggests that multiple non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, and circular RNAs, are dysregulated in placentas of patients with GDM and linked to abnormal placental structure, metabolism, and function. Manipulation of ncRNA expression led to some key pathophysiological features of GDM, such as trophoblast dysfunction, changes in intracellular glucose metabolism, and inflammation. Moreover, placenta-specific ncRNAs may be potential diagnostic biomarkers and even therapeutic targets for GDM. This review summarizes data published on the involvement of aberrantly expressed placental ncRNAs in GDM and provides information on their role in the pathogenesis of GDM and GDM-associated complications.
Collapse
Affiliation(s)
- Runyu Du
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Correspondence: Ling Li Department of Endocrinology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning Province, 110004, People’s Republic of ChinaTel +86 18940251181Fax +86 24-25944460 Email
| |
Collapse
|
22
|
Zhang TN, Wang W, Huang XM, Gao SY. Non-Coding RNAs and Extracellular Vehicles: Their Role in the Pathogenesis of Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:664287. [PMID: 34093439 PMCID: PMC8173208 DOI: 10.3389/fendo.2021.664287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/06/2021] [Indexed: 12/21/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as glucose intolerance with onset or first recognition in the second or third trimester of pregnancy. GDM has a considerable impact on health outcomes of the mother and offspring during pregnancy, delivery, and beyond. Although the exact mechanism regarding GDM remains unclear, numerous studies have suggested that non-coding RNAs, including long non-coding (lnc)RNAs, microRNAs, and circular RNAs, were involved in the pathogenesis of GDM in which they played vital regulatory roles. Additionally, several studies have revealed that extracellular vehicles also participated in the pathogenesis of GDM, highlighting their important role in this disease. Considering the lack of effective biomarkers for the early identification of and specific treatment for GDM, non-coding RNAs and extracellular vehicles may be promising biomarkers and even targets for GDM therapies. This review provides an update on our understanding of the role of non-coding RNAs and extracellular vehicles in GDM. As our understanding of the function of lncRNAs and extracellular vehicles improves, the future appears promising for their use as potential biomarkers and treatment targets for GDM in clinical practice.
Collapse
Affiliation(s)
- Tie-Ning Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Xin-Mei Huang, ; Shan-Yan Gao,
| | - Shan-Yan Gao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Xin-Mei Huang, ; Shan-Yan Gao,
| |
Collapse
|
23
|
Evaluation of Naringenin as a Promising Treatment Option for COPD Based on Literature Review and Network Pharmacology. Biomolecules 2020; 10:biom10121644. [PMID: 33302350 PMCID: PMC7762561 DOI: 10.3390/biom10121644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease characterized by incompletely reversible airflow limitation and seriously threatens the health of humans due to its high morbidity and mortality. Naringenin, as a natural flavanone, has shown various potential pharmacological activities against multiple pathological stages of COPD, but available studies are scattered and unsystematic. Thus, we combined literature review with network pharmacology analysis to evaluate the potential therapeutic effects of naringenin on COPD and predict its underlying mechanisms, expecting to provide a promising tactic for clinical treatment of COPD.
Collapse
|