1
|
Hidalgo-Gutierrez A, Shintaku J, Ramon J, Barriocanal-Casado E, Pesini A, Saneto RP, Garrabou G, Milisenda JC, Matas-Garcia A, Gort L, Ugarteburu O, Gu Y, Koganti L, Wang T, Tadesse S, Meneri M, Sciacco M, Wang S, Tanji K, Horwitz MS, Dorschner MO, Mansukhani M, Comi GP, Ronchi D, Marti R, Ribes A, Tort F, Hirano M. Guanylate Kinase 1 Deficiency: A Novel and Potentially Treatable Mitochondrial DNA Depletion/Deletions Disease. Ann Neurol 2024; 96:1209-1224. [PMID: 39230499 PMCID: PMC11563867 DOI: 10.1002/ana.27071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE Mitochondrial DNA (mtDNA) depletion/deletions syndrome (MDDS) comprises a group of diseases caused by primary autosomal defects of mtDNA maintenance. Our objective was to study the etiology of MDDS in 4 patients who lack pathogenic variants in known genetic causes. METHODS Whole exome sequencing of the probands was performed to identify pathogenic variants. We validated the mitochondrial defect by analyzing mtDNA, mitochondrial dNTP pools, respiratory chain activities, and GUK1 activity. To confirm pathogenicity of GUK1 deficiency, we expressed 2 GUK1 isoforms in patient cells. RESULTS We identified biallelic GUK1 pathogenic variants in all 4 probands who presented with ptosis, ophthalmoparesis, and myopathic proximal limb weakness, as well as variable hepatopathy and altered T-lymphocyte profiles. Muscle biopsies from all probands showed mtDNA depletion, deletions, or both, as well as reduced activities of mitochondrial respiratory chain enzymes. GUK1 encodes guanylate kinase, originally identified as a cytosolic enzyme. Long and short isoforms of GUK1 exist. We observed that the long isoform is intramitochondrial and the short is cytosolic. In probands' fibroblasts, we noted decreased GUK1 activity causing unbalanced mitochondrial dNTP pools and mtDNA depletion in both replicating and quiescent fibroblasts indicating that GUK1 deficiency impairs de novo and salvage nucleotide pathways. Proband fibroblasts treated with deoxyguanosine and/or forodesine, a purine phosphatase inhibitor, ameliorated mtDNA depletion, indicating potential pharmacological therapies. INTERPRETATION Primary GUK1 deficiency is a new and potentially treatable cause of MDDS. The cytosolic isoform of GUK1 may contribute to the T-lymphocyte abnormality, which has not been observed in other MDDS disorders. ANN NEUROL 2024;96:1209-1224.
Collapse
Affiliation(s)
| | - Jonathan Shintaku
- Department of Neurology, Columbia University Irving Medical Center; New York, NY, USA
| | - Javier Ramon
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Vall d’Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Alba Pesini
- Department of Neurology, Columbia University Irving Medical Center; New York, NY, USA
| | | | - Gloria Garrabou
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Inherited Metabolic Diseases and Muscle Disorder’s Lab, Cellex – IDIBAPS. Faculty of Medicine and Health Science – University of Barcelona (UB); Barcelona, Spain
| | - Jose Cesar Milisenda
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Inherited Metabolic Diseases and Muscle Disorder’s Lab, Cellex – IDIBAPS. Faculty of Medicine and Health Science – University of Barcelona (UB); Barcelona, Spain
- Department of Internal Medicine, Hospital Clínic of Barcelona; Barcelona, Spain
| | - Ana Matas-Garcia
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Inherited Metabolic Diseases and Muscle Disorder’s Lab, Cellex – IDIBAPS. Faculty of Medicine and Health Science – University of Barcelona (UB); Barcelona, Spain
- Department of Internal Medicine, Hospital Clínic of Barcelona; Barcelona, Spain
| | - Laura Gort
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Section of Inborn Errors of Metabolism-IBC. Department of Biochemistry and Molecular Genetics. Hospital Clinic de Barcelona-IDIBAPS; Barcelona, Spain
| | - Olatz Ugarteburu
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Section of Inborn Errors of Metabolism-IBC. Department of Biochemistry and Molecular Genetics. Hospital Clinic de Barcelona-IDIBAPS; Barcelona, Spain
| | - Yue Gu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center; New York, NY, USA
| | - Lahari Koganti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center; New York, NY, USA
| | - Tian Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University; New York, NY, USA
| | - Saba Tadesse
- Department of Neurology, Columbia University Irving Medical Center; New York, NY, USA
| | - Megi Meneri
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan; Milan, Italy
- IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit; Milan, Italy
| | - Monica Sciacco
- IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit; Milan, Italy
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University; New York, NY, USA
| | - Kurenai Tanji
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center; New York, NY, USA
| | - Marshall S. Horwitz
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, USA
| | - Michael O. Dorschner
- Department of Laboratory Medicine and Pathology, University of Washington; Seattle, USA
| | - Mahesh Mansukhani
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center; New York, NY, USA
| | - Giacomo Pietro Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan; Milan, Italy
- IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit; Milan, Italy
| | - Dario Ronchi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan; Milan, Italy
- IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit; Milan, Italy
| | - Ramon Marti
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Vall d’Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Antonia Ribes
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Section of Inborn Errors of Metabolism-IBC. Department of Biochemistry and Molecular Genetics. Hospital Clinic de Barcelona-IDIBAPS; Barcelona, Spain
| | - Frederic Tort
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III; Madrid, Spain
- Section of Inborn Errors of Metabolism-IBC. Department of Biochemistry and Molecular Genetics. Hospital Clinic de Barcelona-IDIBAPS; Barcelona, Spain
| | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center; New York, NY, USA
| |
Collapse
|
2
|
Lu A, Dukovski I, Segrè D. Dynamic metabolic modeling of ATP allocation during viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623198. [PMID: 39605584 PMCID: PMC11601281 DOI: 10.1101/2024.11.12.623198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Viral pathogens, like SARS-CoV-2, hijack the host's macromolecular production machinery, imposing an energetic burden that is distributed across cellular metabolism. To explore the dynamic metabolic tension between the host's survival and viral replication, we developed a computational framework that uses genome-scale models to perform dynamic Flux Balance Analysis of human cell metabolism during virus infections. Relative to previous models, our framework addresses the physiology of viral infections of non-proliferating host cells through two new features. First, by incorporating the lipid content of SARS-CoV-2 biomass, we discovered activation of previously overlooked pathways giving rise to new predictions of possible drug targets. Furthermore, we introduce a dynamic model that simulates the partitioning of resources between the virus and the host cell, capturing the extent to which the competition depletes the human cells from essential ATP. By incorporating viral dynamics into our COMETS framework for spatio-temporal modeling of metabolism, we provide a mechanistic, dynamic and generalizable starting point for bridging systems biology modeling with viral pathogenesis. This framework could be extended to broadly incorporate phage dynamics in microbial systems and ecosystems.
Collapse
Affiliation(s)
- Alvin Lu
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Yale University, New Haven, CT, USA
| | - Ilija Dukovski
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University, Skopje, N. Macedonia
| | - Daniel Segrè
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
3
|
Thiele I, Fleming RM. Whole-body metabolic modelling predicts isoleucine dependency of SARS-CoV-2 replication. Comput Struct Biotechnol J 2022; 20:4098-4109. [PMID: 35874091 PMCID: PMC9296228 DOI: 10.1016/j.csbj.2022.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/10/2022] [Indexed: 11/21/2022] Open
Abstract
We aimed at investigating host-virus co-metabolism during SARS-CoV-2 infection. Therefore, we extended comprehensive sex-specific, whole-body organ resolved models of human metabolism with the necessary reactions to replicate SARS-CoV-2 in the lung as well as selected peripheral organs. Using this comprehensive host-virus model, we obtained the following key results: 1. The predicted maximal possible virus shedding rate was limited by isoleucine availability. 2. The supported initial viral load depended on the increase in CD4+ T-cells, consistent with the literature. 3. During viral infection, the whole-body metabolism changed including the blood metabolome, which agreed well with metabolomic studies from COVID-19 patients and healthy controls. 4. The virus shedding rate could be reduced by either inhibition of the guanylate kinase 1 or availability of amino acids, e.g., in the diet. 5. The virus variants differed in their maximal possible virus shedding rates, which could be inversely linked to isoleucine occurrences in the sequences. Taken together, this study presents the metabolic crosstalk between host and virus and emphasises the role of amino acid metabolism during SARS-CoV-2 infection, in particular of isoleucine. As such, it provides an example of how computational modelling can complement more canonical approaches to gain insight into host-virus crosstalk and to identify potential therapeutic strategies.
Collapse
Affiliation(s)
- Ines Thiele
- School of Medicine, National University of Galway, Galway, Ireland
- Ryan Institute, National University of Galway, Galway, Ireland
- Division of Microbiology, National University of Galway, Galway, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Ronan M.T. Fleming
- School of Medicine, National University of Galway, Galway, Ireland
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
4
|
Maillard M, Gong L, Nishii R, Yang JJ, Whirl-Carrillo M, Klein TE. PharmGKB summary: acyclovir/ganciclovir pathway. Pharmacogenet Genomics 2022; 32:201-208. [PMID: 35665708 PMCID: PMC9179945 DOI: 10.1097/fpc.0000000000000474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Maud Maillard
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Li Gong
- Departments of Biomedical Data Science
| | - Rina Nishii
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Teri E Klein
- Departments of Biomedical Data Science
- Medicine (BMIR), Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Zhang SM, Rehling D, Jemth AS, Throup A, Landázuri N, Almlöf I, Göttmann M, Valerie NCK, Borhade SR, Wakchaure P, Page BDG, Desroses M, Homan EJ, Scobie M, Rudd SG, Berglund UW, Söderberg-Nauclér C, Stenmark P, Helleday T. NUDT15-mediated hydrolysis limits the efficacy of anti-HCMV drug ganciclovir. Cell Chem Biol 2021; 28:1693-1702.e6. [PMID: 34192523 DOI: 10.1016/j.chembiol.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
Ganciclovir (GCV) is the first-line therapy against human cytomegalovirus (HCMV), a widespread infection that is particularly dangerous for immunodeficient individuals. Closely resembling deoxyguanosine triphosphate, the tri-phosphorylated metabolite of GCV (GCV-TP) is preferentially incorporated by the viral DNA polymerase, thereby terminating chain extension and, eventually, viral replication. However, the treatment outcome of GCV varies greatly among individuals, therefore warranting better understanding of its metabolism. Here we show that NUDT15, a Nudix hydrolase known to metabolize thiopurine triphosphates, can similarly hydrolyze GCV-TP through biochemical studies and co-crystallization of the NUDT15/GCV-TP complex. More critically, GCV efficacy was potentiated in HCMV-infected cells following NUDT15 depletion by RNAi or inhibition by an in-house-developed, nanomolar NUDT15 inhibitor, TH8321, suggesting that pharmacological targeting of NUDT15 is a possible avenue to improve existing anti-HCMV regimens. Collectively, the data further implicate NUDT15 as a broad-spectrum metabolic regulator of nucleoside analog therapeutics, such as thiopurines and GCV.
Collapse
Affiliation(s)
- Si Min Zhang
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 17165 Stockholm, Sweden
| | - Daniel Rehling
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 17165 Stockholm, Sweden
| | - Adam Throup
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 17165 Stockholm, Sweden; Sygnature Discovery Limited, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Natalia Landázuri
- Microbial Pathogenesis Unit, Department of Medicine, Karolinska Institutet, 17164 Stockholm, Sweden; DIS Stockholm, Melodislingan 21, 11551 Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 17165 Stockholm, Sweden
| | - Mona Göttmann
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 17165 Stockholm, Sweden; German Cancer Research Center (DKFZ), Division of Brain Tumor Translational Targets, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Nicholas C K Valerie
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 17165 Stockholm, Sweden; Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, 14152 Huddinge, Sweden
| | - Sanjay R Borhade
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 17165 Stockholm, Sweden; Red Glead Discovery AB, Scheelevägen 2, 22363 Lund, Sweden
| | - Prasad Wakchaure
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 17165 Stockholm, Sweden; Recipharm OT Chemistry AB, Virdings Alle 16, 75450 Uppsala, Sweden
| | - Brent D G Page
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 17165 Stockholm, Sweden; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthieu Desroses
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 17165 Stockholm, Sweden; Sprint Bioscience AB, Hälsovägen 7, 14157 Huddinge, Sweden
| | - Evert J Homan
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 17165 Stockholm, Sweden
| | - Martin Scobie
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 17165 Stockholm, Sweden
| | - Sean G Rudd
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 17165 Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 17165 Stockholm, Sweden
| | - Cecilia Söderberg-Nauclér
- Microbial Pathogenesis Unit, Department of Medicine, Karolinska Institutet, 17164 Stockholm, Sweden; Division of Neurology, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden.
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 17165 Stockholm, Sweden; Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK.
| |
Collapse
|
6
|
Renz A, Widerspick L, Dräger A. Genome-Scale Metabolic Model of Infection with SARS-CoV-2 Mutants Confirms Guanylate Kinase as Robust Potential Antiviral Target. Genes (Basel) 2021; 12:796. [PMID: 34073716 PMCID: PMC8225150 DOI: 10.3390/genes12060796] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
The current SARS-CoV-2 pandemic is still threatening humankind. Despite first successes in vaccine development and approval, no antiviral treatment is available for COVID-19 patients. The success is further tarnished by the emergence and spreading of mutation variants of SARS-CoV-2, for which some vaccines have lower efficacy. This highlights the urgent need for antiviral therapies even more. This article describes how the genome-scale metabolic model (GEM) of the host-virus interaction of human alveolar macrophages and SARS-CoV-2 was refined by incorporating the latest information about the virus's structural proteins and the mutant variants B.1.1.7, B.1.351, B.1.28, B.1.427/B.1.429, and B.1.617. We confirmed the initially identified guanylate kinase as a potential antiviral target with this refined model and identified further potential targets from the purine and pyrimidine metabolism. The model was further extended by incorporating the virus' lipid requirements. This opened new perspectives for potential antiviral targets in the altered lipid metabolism. Especially the phosphatidylcholine biosynthesis seems to play a pivotal role in viral replication. The guanylate kinase is even a robust target in all investigated mutation variants currently spreading worldwide. These new insights can guide laboratory experiments for the validation of identified potential antiviral targets. Only the combination of vaccines and antiviral therapies will effectively defeat this ongoing pandemic.
Collapse
Affiliation(s)
- Alina Renz
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Lina Widerspick
- Bernhard Nocht Institute for Tropical Medicine, Virus Immunology, 20359 Hamburg, Germany;
| | - Andreas Dräger
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Renz A, Widerspick L, Dräger A. FBA reveals guanylate kinase as a potential target for antiviral therapies against SARS-CoV-2. Bioinformatics 2021; 36:i813-i821. [PMID: 33381848 PMCID: PMC7773487 DOI: 10.1093/bioinformatics/btaa813] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Motivation The novel coronavirus (SARS-CoV-2) currently spreads worldwide, causing the disease COVID-19. The number of infections increases daily, without any approved antiviral therapy. The recently released viral nucleotide sequence enables the identification of therapeutic targets, e.g. by analyzing integrated human-virus metabolic models. Investigations of changed metabolic processes after virus infections and the effect of knock-outs on the host and the virus can reveal new potential targets. Results We generated an integrated host–virus genome-scale metabolic model of human alveolar macrophages and SARS-CoV-2. Analyses of stoichiometric and metabolic changes between uninfected and infected host cells using flux balance analysis (FBA) highlighted the different requirements of host and virus. Consequently, alterations in the metabolism can have different effects on host and virus, leading to potential antiviral targets. One of these potential targets is guanylate kinase (GK1). In FBA analyses, the knock-out of the GK1 decreased the growth of the virus to zero, while not affecting the host. As GK1 inhibitors are described in the literature, its potential therapeutic effect for SARS-CoV-2 infections needs to be verified in in-vitro experiments. Availability and implementation The computational model is accessible at https://identifiers.org/biomodels.db/MODEL2003020001.
Collapse
Affiliation(s)
- Alina Renz
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI).,Department of Computer Science, University of Tübingen, Tübingen 72076, Germany
| | - Lina Widerspick
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI)
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI).,Department of Computer Science, University of Tübingen, Tübingen 72076, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Germany
| |
Collapse
|
8
|
Pedro L, Cross M, Hofmann A, Mak T, Quinn RJ. Development of an HPLC-based guanosine monophosphate kinase assay and application to Plasmodium vivax guanylate kinase. Anal Biochem 2019; 575:63-69. [PMID: 30943378 PMCID: PMC6494078 DOI: 10.1016/j.ab.2019.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 11/12/2022]
Abstract
The development of a high-performance liquid chromatography (HPLC)-based method, for guanosine monophosphate kinase activity assays, is presented. The method uses the intrinsic UV absorption (at 260 nm) of substrates and products of the enzymatic reaction (GMP, ATP, ADP and GDP) to unambiguously determine percent conversion of substrate into product. It uses a commercially available C18 column which can separate reaction samples by elution under isocratic conditions in 12 min per run. The kinetics of the forward reaction catalyzed by Plasmodium vivax guanylate kinase (PvGK), a potential drug target against malaria, was determined. The relative concentrations of the two substrates (GMP and ATP) have a distinct effect on reaction velocity. Kinetic analyses showed the PvGK-catalyzed reaction to be associated with atypical kinetics, where substrate inhibition kinetics and non-Michaelis-Menten (sigmoidal) kinetics were found with respect to GMP and ATP, respectively. Additionally, the method was used in inhibition assays to screen twenty fragment-like compounds. The assays were robust and reproducible, with a signal window of 3.8 and a Z’ factor of 0.6. For the best inhibitor, an IC50 curve was generated. Simple HPLC separation of nucleotides involved in the guanylate kinase reaction. Direct and unambiguous determination of percent conversion of substrate into product. Successful application to Plasmodium vivax guanylate kinase (PvGK) activity studies. Reaction catalyzed by PvGK found to be associated with atypical kinetics. Robust and reproducible inhibition assay for compound screening.
Collapse
Affiliation(s)
- Liliana Pedro
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Megan Cross
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Andreas Hofmann
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Tin Mak
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia.
| |
Collapse
|
9
|
Khan N, Shah PP, Ban D, Trigo-Mouriño P, Carneiro MG, DeLeeuw L, Dean WL, Trent JO, Beverly LJ, Konrad M, Lee D, Sabo TM. Solution structure and functional investigation of human guanylate kinase reveals allosteric networking and a crucial role for the enzyme in cancer. J Biol Chem 2019; 294:11920-11933. [PMID: 31201273 DOI: 10.1074/jbc.ra119.009251] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/12/2019] [Indexed: 01/13/2023] Open
Abstract
Human guanylate kinase (hGMPK) is the only known enzyme responsible for cellular GDP production, making it essential for cellular viability and proliferation. Moreover, hGMPK has been assigned a critical role in metabolic activation of antiviral and antineoplastic nucleoside-analog prodrugs. Given that hGMPK is indispensable for producing the nucleotide building blocks of DNA, RNA, and cGMP and that cancer cells possess elevated GTP levels, it is surprising that a detailed structural and functional characterization of hGMPK is lacking. Here, we present the first high-resolution structure of hGMPK in the apo form, determined with NMR spectroscopy. The structure revealed that hGMPK consists of three distinct regions designated as the LID, GMP-binding (GMP-BD), and CORE domains and is in an open configuration that is nucleotide binding-competent. We also demonstrate that nonsynonymous single-nucleotide variants (nsSNVs) of the hGMPK CORE domain distant from the nucleotide-binding site of this domain modulate enzymatic activity without significantly affecting hGMPK's structure. Finally, we show that knocking down the hGMPK gene in lung adenocarcinoma cell lines decreases cellular viability, proliferation, and clonogenic potential while not altering the proliferation of immortalized, noncancerous human peripheral airway cells. Taken together, our results provide an important step toward establishing hGMPK as a potential biomolecular target, from both an orthosteric (ligand-binding sites) and allosteric (location of CORE domain-located nsSNVs) standpoint.
Collapse
Affiliation(s)
- Nazimuddin Khan
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - Parag P Shah
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - David Ban
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - Pablo Trigo-Mouriño
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Marta G Carneiro
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Lynn DeLeeuw
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - William L Dean
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - John O Trent
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - Levi J Beverly
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - Manfred Konrad
- Enzyme Biochemistry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Donghan Lee
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| | - T Michael Sabo
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
10
|
Khan N, Ban D, Trigo-Mourino P, Carneiro MG, Konrad M, Lee D, Sabo TM. 1H, 13C and 15N resonance assignment of human guanylate kinase. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:11-14. [PMID: 28861857 DOI: 10.1007/s12104-017-9771-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Human guanylate kinase (hGMPK) is a critical enzyme that, in addition to phosphorylating its physiological substrate (d)GMP, catalyzes the second phosphorylation step in the conversion of anti-viral and anti-cancer nucleoside analogs to their corresponding active nucleoside analog triphosphates. Until now, a high-resolution structure of hGMPK is unavailable and thus, we studied free hGMPK by NMR and assigned the chemical shift resonances of backbone and side chain 1H, 13C, and 15N nuclei as a first step towards the enzyme's structural and mechanistic analysis with atomic resolution.
Collapse
Affiliation(s)
- Nazimuddin Khan
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, 505 S. Hancock St., Louisville, KY, 40202, USA
- Enzyme Biochemistry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - David Ban
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, 505 S. Hancock St., Louisville, KY, 40202, USA
| | - Pablo Trigo-Mourino
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Marta G Carneiro
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- ZoBio B.V., Biopartner building 2, J.H. Oortweg 19, 2333 CH, Leiden, The Netherlands
| | - Manfred Konrad
- Enzyme Biochemistry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Donghan Lee
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, 505 S. Hancock St., Louisville, KY, 40202, USA
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - T Michael Sabo
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, 505 S. Hancock St., Louisville, KY, 40202, USA.
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
11
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
12
|
Purification and characterization of guanylate kinase, a nucleoside monophosphate kinase of Brugia malayi. Parasitology 2014; 141:1341-52. [DOI: 10.1017/s0031182014000675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYGuanylate kinase, a nucleoside monophosphate kinase of Brugia malayi which is involved in reversible transfer of phosphate groups from ATP to GMP, was cloned, expressed and characterized. The native molecular mass of BmGK was found to be 45 kDa as determined by size exclusion chromatography and glutaraldehyde cross-linking which revealed that the protein is homodimer in nature. This is a unique characteristic among known eukaryotic GKs. GMP and ATP served as the most effective phosphate acceptor and donor, respectively. Recombinant BmGK utilized both GMP and dGMP, as substrates showing Km values of 30 and 38 μm, respectively. Free Mg+2 (un-complexed to ATP) and GTP play a regulatory role in catalysis of BmGK. The enzyme showed higher catalytic efficiency as compared with human GK and showed ternary complex (BmGK-GMP-ATP) formation with sequential substrate binding. The secondary structure of BmGK consisted of 45% α-helices, 18% β-sheets as revealed by CD analysis. Homology modelling and docking with GMP revealed conserved substrate binding residues with slight differences. Differences in kinetic properties and oligomerization of BmGK compared with human GK can provide the way for design of parasite-specific inhibitors.
Collapse
|
13
|
Mikoulinskaia GV, Taran SA, Skoblov YS, Feofanov SA. The study of the bacteriophage T5 deoxynucleoside monophosphate kinase active site by site-directed mutagenesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013. [DOI: 10.1134/s1068162013060071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Kandeel M, Kitade Y. Binding dynamics and energetic insight into the molecular forces driving nucleotide binding by guanylate kinase. J Mol Recognit 2010; 24:322-32. [PMID: 21360614 DOI: 10.1002/jmr.1074] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/16/2010] [Accepted: 07/16/2010] [Indexed: 11/11/2022]
Abstract
Plasmodium deoxyguanylate pathways are an attractive area of investigation for future metabolic and drug discovery studies due to their unique substrate specificities. We investigated the energetic contribution to guanylate kinase substrate binding and the forces underlying ligand recognition. In the range from 20 to 35°C, the thermodynamic profiles displayed marked decrease in binding enthalpy, while the free energy of binding showed little changes. GMP produced a large binding heat capacity change of -356 cal mol(-1) K(-1), indicating considerable conformational changes upon ligand binding. Interestingly, the calculated ΔCp was -32 cal mol(-1) K(-1), indicating that the accessible surface area is not the central change in substrate binding, and that other entropic forces, including conformational changes, are more predominant. The thermodynamic signature for GMP is inconsistent with rigid-body association, while dGMP showed more or less rigid-body association. These binding profiles explain the poor catalytic efficiency and low affinity for dGMP compared with GMP. At low temperature, the ligands bind to the receptor site under the effect of hydrophobic forces. Interestingly, by increasing the temperature, the entropic forces gradually vanish and proceed to a nonfavorable contribution, and the interaction occurs mainly through bonding, electrostatic forces, and van der Waals interactions.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafr El-Shikh University, Kafr El-Shikh 33516, Egypt.
| | | |
Collapse
|
15
|
Deville-Bonne D, El Amri C, Meyer P, Chen Y, Agrofoglio LA, Janin J. Human and viral nucleoside/nucleotide kinases involved in antiviral drug activation: structural and catalytic properties. Antiviral Res 2010; 86:101-20. [PMID: 20417378 DOI: 10.1016/j.antiviral.2010.02.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/31/2010] [Accepted: 02/01/2010] [Indexed: 12/11/2022]
Abstract
Antiviral nucleoside and nucleotide analogs, essential for the treatment of viral infections in the absence of efficient vaccines, are prodrug forms of the active compounds that target the viral DNA polymerase or reverse transcriptase. The activation process requires several successive phosphorylation steps catalyzed by different kinases, which are present in the host cell or encoded by some of the viruses. These activation reactions often are rate-limiting steps and are thus open to improvement. We review here the structural and enzymatic properties of the enzymes that carry out the activation of analogs used in therapy against human immunodeficiency virus and against DNA viruses such as hepatitis B, herpes and poxviruses. Four major classes of drugs are considered: thymidine analogs, non-natural L-nucleosides, acyclic nucleoside analogs and acyclic nucleoside phosphonate analogs. Their efficiency as drugs depends both on the low specificity of the viral polymerase that allows their incorporation into DNA, but also on the ability of human/viral kinases to provide the activated triphosphate active forms at a high concentration at the right place. Two distinct modes of action are considered, depending on the origin of the kinase (human or viral). If the human kinases are house-keeping enzymes that belong to the metabolic salvage pathway, herpes and poxviruses encode for related enzymes. The structures, substrate specificities and catalytic properties of each of these kinases are discussed in relation to drug activation.
Collapse
Affiliation(s)
- Dominique Deville-Bonne
- Enzymologie Moléculaire et Fonctionnelle, UR4 Université Pierre et Marie Curie, 7 quai St Bernard, 75252 Paris Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
16
|
Topalis D, Alvarez K, Barral K, Munier-Lehmann H, Schneider B, Véron M, Guerreiro C, Mulard L, El-Amri C, Canard B, Deville-Bonne D. Acyclic phosphonate nucleotides and human adenylate kinases: impact of a borano group on alpha-P position. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 27:319-31. [PMID: 18404568 DOI: 10.1080/15257770801941952] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Adenylate kinases are involved in the activation of antiviral drugs such as the acyclic phosphonates analogs PMEA and (R)PMPA. We examine the in vitro phosphorylation of PMEA and PMPA bearing a borano- or a H- group on the phosphorus atom. The alpha-borano or alpha-H on PMEA and PMPA were detrimental to the activity of recombinant human AMP kinases 1 and 2. Docking PMEA to the active site of AMP kinase 1 indicated that the borano group may prevent two conserved critical Arg interactions with the alpha-phosphate, resulting in substrate bad positioning.
Collapse
Affiliation(s)
- D Topalis
- Laboratoire d'Enzymologie, Université Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kandeel M, Nakanishi M, Ando T, El-Shazly K, Yosef T, Ueno Y, Kitade Y. Molecular cloning, expression, characterization and mutation of Plasmodium falciparum guanylate kinase. Mol Biochem Parasitol 2008; 159:130-3. [PMID: 18374996 DOI: 10.1016/j.molbiopara.2008.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/31/2008] [Accepted: 02/11/2008] [Indexed: 11/19/2022]
Abstract
The present work describes cloning, expression, purification, characterization, and mutation of Plasmodium falciparum guanylate kinase (PlasmoDB ID PFI1420w). Amino-acid sequence alignment revealed important differences especially in K42-V51, Y73-A77, and F100-L110, which include residues important for kinase activity, and at helix 3, which is important for domain movements. The catalytic efficiency for dGMP was 22-fold lower than that for GMP, whose value is the lowest among known guanylate kinases. dGMP was found to a competitive inhibitor for GMP with K(i)=0.148 mM and a mixed-type inhibitor with regard to ATP with measured K(i)=0.4 mM. The specificity constant (K(cat)/K(m)) of the four examined mutants varied for natural substrate GMP/dGMP, indicating the involvement of different mechanisms in substrate recognition and subsequent loop-domain movement. These results show that P. falciparum guanylate kinase is structurally and biochemically distinct from other guanylate kinases and could be a possible target in drug development.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|