1
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
2
|
Saadane A, Du Y, Thoreson WB, Miyagi M, Lessieur EM, Kiser J, Wen X, Berkowitz BA, Kern TS. Photoreceptor Cell Calcium Dysregulation and Calpain Activation Promote Pathogenic Photoreceptor Oxidative Stress and Inflammation in Prodromal Diabetic Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1805-1821. [PMID: 34214506 PMCID: PMC8579242 DOI: 10.1016/j.ajpath.2021.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/20/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
This study tested the hypothesis that diabetes promotes a greater than normal cytosolic calcium level in rod cells that activates a Ca2+-sensitive protease, calpain, resulting in oxidative stress and inflammation, two pathogenic factors of early diabetic retinopathy. Nondiabetic and 2-month diabetic C57Bl/6J and calpain1 knockout (Capn1-/-) mice were studied; subgroups were treated with a calpain inhibitor (CI). Ca2+ content was measured in photoreceptors using Fura-2. Retinal calpain expression was studied by quantitative RT-PCR and immunohistochemistry. Superoxide and expression of inflammatory proteins were measured using published methods. Proteomic analysis was conducted on photoreceptors isolated from untreated diabetic mice or treated daily with CI for 2 months. Cytosolic Ca2+ content was increased twofold in photoreceptors of diabetic mice as compared with nondiabetic mice. Capn1 expression increased fivefold in photoreceptor outer segments of diabetic mice. Pharmacologic inhibition or genetic deletion of Capn1 significantly suppressed diabetes-induced oxidative stress and expression of proinflammatory proteins in retina. Proteomics identified a protein (WW domain-containing oxidoreductase [WWOX]) whose expression was significantly increased in photoreceptors from mice diabetic for 2 months and was inhibited with CI. Knockdown of Wwox using specific siRNA in vitro inhibited increase in superoxide caused by the high glucose. These results suggest that reducing Ca2+ accumulation, suppressing calpain activation, and/or reducing Wwox up-regulation are novel targets for treating early diabetic retinopathy.
Collapse
Affiliation(s)
- Aicha Saadane
- Department of Ophthalmology, University of California, Irvine, Irvine, California.
| | - Yunpeng Du
- Department of Ophthalmology, University of California, Irvine, Irvine, California
| | - Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Emma M Lessieur
- Department of Ophthalmology, University of California, Irvine, Irvine, California
| | - Jianying Kiser
- Department of Ophthalmology, University of California, Irvine, Irvine, California
| | - Xiangyi Wen
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Timothy S Kern
- Department of Ophthalmology, University of California, Irvine, Irvine, California; Veterans Administration Medical Center Research Service, Long Beach, California
| |
Collapse
|
3
|
Samokhina LM, Lomako VV. Activity of Chymase, Tonin, and Calpains in Tissues of Male and Female Rats of Different Ages. ADVANCES IN GERONTOLOGY 2021. [DOI: 10.1134/s2079057021030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Schroder EA, Wang L, Wen Y, Callahan LAP, Supinski GS. Skeletal muscle-specific calpastatin overexpression mitigates muscle weakness in aging and extends life span. J Appl Physiol (1985) 2021; 131:630-642. [PMID: 34197232 DOI: 10.1152/japplphysiol.00883.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calpain activation has been postulated as a potential contributor to the loss of muscle mass and function associated with both aging and disease, but limitations of previous experimental approaches have failed to completely examine this issue. We hypothesized that mice overexpressing calpastatin (CalpOX), an endogenous inhibitor of calpain, solely in skeletal muscle would show an amelioration of the aging muscle phenotype. We assessed four groups of mice (age in months): 1) young wild type (WT; 5.71 ± 0.43), 2) young CalpOX (5.6 ± 0.5), 3) old WT (25.81 ± 0.56), and 4) old CalpOX (25.91 ± 0.60) for diaphragm and limb muscle (extensor digitorum longus, EDL) force frequency relations. Aging significantly reduced diaphragm and EDL peak force in old WT mice, and decreased the force-time integral during a fatiguing protocol by 48% and 23% in aged WT diaphragm and EDL, respectively. In contrast, we found that CalpOX mice had significantly increased diaphragm and EDL peak force in old mice, similar to that observed in young mice. The impact of aging on the force-time integral during a fatiguing protocol was abolished in the diaphragm and EDL of old CalpOX animals. Surprisingly, we found that CalpOX had a significant impact on longevity, increasing median survival from 20.55 mo in WT mice to 24 mo in CalpOX mice (P = 0.0006).NEW & NOTEWORTHY This is the first study to investigate the role of calpastatin overexpression on skeletal muscle specific force in aging rodents. Muscle-specific overexpression of calpastatin, the endogenous calpain inhibitor, prevented aging-induced reductions in both EDL and diaphragm specific force and, remarkably, increased life span. These data suggest that diaphragm dysfunction in aging may be a major factor in determining longevity. Targeting the calpain/calpastatin pathway may elucidate novel therapies to combat skeletal muscle weakness in aging.
Collapse
Affiliation(s)
- Elizabeth A Schroder
- Pulmonary Division, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Lin Wang
- Pulmonary Division, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Yuan Wen
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Leigh Ann P Callahan
- Pulmonary Division, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Gerald S Supinski
- Pulmonary Division, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
5
|
Witkowski JM, Bryl E, Fulop T. Proteodynamics and aging of eukaryotic cells. Mech Ageing Dev 2021; 194:111430. [PMID: 33421431 DOI: 10.1016/j.mad.2021.111430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
All aspects of each protein existence in the eukaryotic cells, starting from the pre-translation events, through translation, multiple different post-translational modifications, functional life and eventual proteostatic removal after loss of functionality and changes in physico-chemical properties, can be collectively called the proteodynamics. With aging, passing of time as well as accumulating effects of exposures, interactions and wearing-off lead to problems at each of the above mentioned stages, eventually leading to general malfunction of the proteome. This work briefly reviews and summarizes current knowledge concerning this important topic.
Collapse
Affiliation(s)
- Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland.
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdańsk, Gdańsk, Poland
| | - Tamas Fulop
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
6
|
Purslow PP, Gagaoua M, Warner RD. Insights on meat quality from combining traditional studies and proteomics. Meat Sci 2020; 174:108423. [PMID: 33422773 DOI: 10.1016/j.meatsci.2020.108423] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
Following a century of major discoveries on the mechanisms determining meat colour and tenderness using traditional scientific methods, further research into complex and interactive factors contributing to variations in meat quality is increasingly being based on data-driven "omics" approaches such as proteomics. Using two recent meta-analyses of proteomics studies on beef colour and tenderness, this review examines how knowledge of the mechanisms and factors underlying variations in these meat qualities can be both confirmed and extended by data-driven approaches. While proteomics seems to overlook some sources of variations in beef toughness, it highlights the role of post-mortem energy metabolism in setting the conditions for development of meat colour and tenderness, and also points to the complex interplay of energy metabolism, calcium regulation and mitochondrial metabolism. In using proteomics as a future tool for explaining variations in meat quality, the need for confirmation by further hypothesis-driven experimental studies of post-hoc explanations of why certain proteins are biomarkers of beef quality in data-driven studies is emphasised.
Collapse
Affiliation(s)
- Peter P Purslow
- Tandil Centre for Veterinary Investigation (CIVETAN), National University of Central Buenos Aires Province, Tandil B7001BBO, Argentina; School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia.
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia
| |
Collapse
|
7
|
Auxerre-Plantié E, Nielsen T, Grunert M, Olejniczak O, Perrot A, Özcelik C, Harries D, Matinmehr F, Dos Remedios C, Mühlfeld C, Kraft T, Bodmer R, Vogler G, Sperling SR. Identification of MYOM2 as a candidate gene in hypertrophic cardiomyopathy and Tetralogy of Fallot, and its functional evaluation in the Drosophila heart. Dis Model Mech 2020; 13:dmm045377. [PMID: 33033063 PMCID: PMC7758640 DOI: 10.1242/dmm.045377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/01/2020] [Indexed: 01/11/2023] Open
Abstract
The causal genetic underpinnings of congenital heart diseases, which are often complex and multigenic, are still far from understood. Moreover, there are also predominantly monogenic heart defects, such as cardiomyopathies, with known disease genes for the majority of cases. In this study, we identified mutations in myomesin 2 (MYOM2) in patients with Tetralogy of Fallot (TOF), the most common cyanotic heart malformation, as well as in patients with hypertrophic cardiomyopathy (HCM), who do not exhibit any mutations in the known disease genes. MYOM2 is a major component of the myofibrillar M-band of the sarcomere, and a hub gene within interactions of sarcomere genes. We show that patient-derived cardiomyocytes exhibit myofibrillar disarray and reduced passive force with increasing sarcomere lengths. Moreover, our comprehensive functional analyses in the Drosophila animal model reveal that the so far uncharacterized fly gene CG14964 [herein referred to as Drosophila myomesin and myosin binding protein (dMnM)] may be an ortholog of MYOM2, as well as other myosin binding proteins. Its partial loss of function or moderate cardiac knockdown results in cardiac dilation, whereas more severely reduced function causes a constricted phenotype and an increase in sarcomere myosin protein. Moreover, compound heterozygous combinations of CG14964 and the sarcomere gene Mhc (MYH6/7) exhibited synergistic genetic interactions. In summary, our results suggest that MYOM2 not only plays a critical role in maintaining robust heart function but may also be a candidate gene for heart diseases such as HCM and TOF, as it is clearly involved in the development of the heart.This article has an associated First Person interview with Emilie Auxerre-Plantié and Tanja Nielsen, joint first authors of the paper.
Collapse
Affiliation(s)
- Emilie Auxerre-Plantié
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Tanja Nielsen
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Marcel Grunert
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Olga Olejniczak
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Andreas Perrot
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Cemil Özcelik
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Dennis Harries
- Medical School of Hannover, Institute of Molecular and Cell Physiology, 30625 Hannover, Germany
| | - Faramarz Matinmehr
- Medical School of Hannover, Institute of Molecular and Cell Physiology, 30625 Hannover, Germany
| | - Cristobal Dos Remedios
- Anatomy and Histology, School of Medical Sciences, Bosch Institute, University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
| | - Theresia Kraft
- Medical School of Hannover, Institute of Molecular and Cell Physiology, 30625 Hannover, Germany
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Georg Vogler
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Silke R Sperling
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
8
|
Huang C, Hou C, Ijaz M, Yan T, Li X, Li Y, Zhang D. Proteomics discovery of protein biomarkers linked to meat quality traits in post-mortem muscles: Current trends and future prospects: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Gagaoua M, Terlouw C, Richardson I, Hocquette JF, Picard B. The associations between proteomic biomarkers and beef tenderness depend on the end-point cooking temperature, the country origin of the panelists and breed. Meat Sci 2019; 157:107871. [PMID: 31254803 DOI: 10.1016/j.meatsci.2019.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/15/2019] [Accepted: 06/15/2019] [Indexed: 12/21/2022]
Abstract
Steaks of 74 animals from 3 young bull breeds (Aberdeen Angus, Limousin and Blond d'Aquitaine) were cooked at two end-point cooking temperatures (55 and 74 °C) and evaluated for tenderness by trained panelists from France (FR) and the United Kingdom (UK). Using principal component regressions, the tenderness scores of each breed, country origin of the panelists and cooking temperature were linked with the abundances of 21 protein biomarkers belonging to five biological pathways. Twelve regression equations were built and explained 68 to 95% of tenderness variability. A high dissimilarity in the retained biomarkers was observed among the equations and differences exist among breeds, cooking temperatures and country origin of the panelists. Among the 21 biomarkers, 6 proteins including structural (MyHC-I, MyHC-IIa, MyHC-IIx), oxidative stress (DJ-1, PRDX6) and proteolysis (CAPN1) were retained robustly in positive or negative directions in the tenderization process of Longissimus thoracis, regardless the breed, the end-point cooking temperature or the country origin of the panelist.
Collapse
Affiliation(s)
- Mohammed Gagaoua
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - Claudia Terlouw
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Ian Richardson
- Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Langford, Bristol, BS40 5DU, UK
| | - Jean-François Hocquette
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Brigitte Picard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
10
|
Randriamboavonjy V, Kyselova A, Fleming I. Redox Regulation of Calpains: Consequences on Vascular Function. Antioxid Redox Signal 2019; 30:1011-1026. [PMID: 30266074 DOI: 10.1089/ars.2018.7607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Calpains (CAPNs) are a family of calcium-activated cysteine proteases. The ubiquitous isoforms CAPN1 and CAPN2 have been involved in the maintenance of vascular integrity, but uncontrolled CAPN activation plays a role in the pathogenesis of vascular diseases. Recent Advances: It is well accepted that chronic and acute overproduction of reactive oxygen species (ROS) is associated with the development of vascular diseases. There is increasing evidence that ROS can also affect the CAPN activity, suggesting CAPN as a potential link between oxidative stress and vascular disease. CRITICAL ISSUES The physiopathological relevance of ROS in regulating the CAPN activity is not fully understood but seems to involve direct effects on CAPNs, redox modifications of CAPN substrates, as well as indirect effect on CAPNs via changes in Ca2+ levels. Finally, CAPNs can also stimulate ROS production; however, data showing in which context ROS are the causes or the consequences of CAPN activation are missing. FUTURE DIRECTIONS Detailed characterization of the molecular mechanisms underlying the regulation of the different members of the CAPN system by specific ROS would help understanding the pathophysiological role of CAPN in the modulation of the vascular function. Moreover, given that CAPNs have been found in different cellular compartments such as mitochondria and nucleus as well as in the extracellular space, identification of new CAPN targets as well as their functional consequences would add new insights in the function of these enigmatic proteases.
Collapse
Affiliation(s)
- Voahanginirina Randriamboavonjy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Anastasia Kyselova
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
11
|
The effects of Capn1 gene inactivation on the differential expression of genes in skeletal muscle. Gene 2018; 668:54-58. [PMID: 29775750 DOI: 10.1016/j.gene.2018.05.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/06/2018] [Accepted: 05/13/2018] [Indexed: 01/25/2023]
Abstract
Protein turnover is required for muscle growth and regeneration and several proteolytic enzymes, including the calpains, degrade myofibrillar proteins during this process. In a previous experiment, phenotypic differences were observed between μ-calpain knockout (KO) and wild type (WT) mice, including nutrient accretion and fiber type differences. These changes were particularly evident as the animals aged. Thus, we utilized 18 mice (9 KO and 9 WT) to compare transcript abundance to identify differentially expressed genes (DEGs) at 52 wk of age. A total of 55 genes were differentially expressed, including adiponectin, phosphoenolpyruvate carboxykinase 1, uncoupling protein 1, and lysine deficient protein kinase 2. These genes were analyzed for over- and underrepresented gene ontology (GO) terms. Several GO terms, including response to cytokine, response to interferon-beta, regulation of protein phosphorylation, and hydrolase activity, were identified as overrepresented. Pathways related to taurine biosynthesis, nitric oxide synthase signaling, amyloid processing, and L-cysteine degradation were also identified. Our results are consistent with previous experiments, in that identified DEGs may explain, at least in part, some of the phenotypic differences between μ-calpain KO and WT mice. Clearly muscle growth and maintenance are complex, multifaceted processes. Genes affected by the silencing of the μ-calpain gene have been identified, but the relationship between μ-calpain and these pathways requires further investigation.
Collapse
|
12
|
Ni R, Zheng D, Xiong S, Hill DJ, Sun T, Gardiner RB, Fan GC, Lu Y, Abel ED, Greer PA, Peng T. Mitochondrial Calpain-1 Disrupts ATP Synthase and Induces Superoxide Generation in Type 1 Diabetic Hearts: A Novel Mechanism Contributing to Diabetic Cardiomyopathy. Diabetes 2016; 65:255-68. [PMID: 26470784 PMCID: PMC4686953 DOI: 10.2337/db15-0963] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/07/2015] [Indexed: 02/05/2023]
Abstract
Calpain plays a critical role in cardiomyopathic changes in type 1 diabetes (T1D). This study investigated how calpain regulates mitochondrial reactive oxygen species (ROS) generation in the development of diabetic cardiomyopathy. T1D was induced in transgenic mice overexpressing calpastatin, in mice with cardiomyocyte-specific capn4 deletion, or in their wild-type littermates by injection of streptozotocin. Calpain-1 protein and activity in mitochondria were elevated in diabetic mouse hearts. The increased mitochondrial calpain-1 was associated with an increase in mitochondrial ROS generation and oxidative damage and a reduction in ATP synthase-α (ATP5A1) protein and ATP synthase activity. Genetic inhibition of calpain or upregulation of ATP5A1 increased ATP5A1 and ATP synthase activity, prevented mitochondrial ROS generation and oxidative damage, and reduced cardiomyopathic changes in diabetic mice. High glucose concentration induced ATP synthase disruption, mitochondrial superoxide generation, and cell death in cardiomyocytes, all of which were prevented by overexpression of mitochondria-targeted calpastatin or ATP5A1. Moreover, upregulation of calpain-1 specifically in mitochondria induced the cleavage of ATP5A1, superoxide generation, and apoptosis in cardiomyocytes. In summary, calpain-1 accumulation in mitochondria disrupts ATP synthase and induces ROS generation, which promotes diabetic cardiomyopathy. These findings suggest a novel mechanism for and may have significant implications in diabetic cardiac complications.
Collapse
Affiliation(s)
- Rui Ni
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China Department of Medicine, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada Department of Pathology, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Dong Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China Department of Medicine, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada Department of Pathology, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Sidong Xiong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - David J Hill
- Department of Medicine, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Tao Sun
- Department of Medicine, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Richard B Gardiner
- Department of Biology, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - E Dale Abel
- Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Peter A Greer
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Tianqing Peng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China Department of Medicine, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada Department of Pathology, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
13
|
Ni R, Zheng D, Wang Q, Yu Y, Chen R, Sun T, Wang W, Fan GC, Greer PA, Gardiner RB, Peng T. Deletion of capn4 Protects the Heart Against Endotoxemic Injury by Preventing ATP Synthase Disruption and Inhibiting Mitochondrial Superoxide Generation. Circ Heart Fail 2015; 8:988-96. [PMID: 26246018 DOI: 10.1161/circheartfailure.115.002383] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Our recent study has demonstrated that inhibition of calpain by transgenic overexpression of calpastatin reduces myocardial proinflammatory response and dysfunction in endotoxemia. However, the underlying mechanisms remain to be determined. In this study, we used cardiomyocyte-specific capn4 knockout mice to investigate whether and how calpain disrupts ATP synthase and induces mitochondrial superoxide generation during endotoxemia. METHODS AND RESULTS Cardiomyocyte-specific capn4 knockout mice and their wild-type littermates were injected with lipopolysaccharides. Four hours later, calpain-1 protein and activity were increased in mitochondria of endotoxemic mouse hearts. Mitochondrial calpain-1 colocalized with and cleaved ATP synthase-α (ATP5A1), leading to ATP synthase disruption and a concomitant increase in mitochondrial reactive oxygen species generation during lipopolysaccharide stimulation. Deletion of capn4 or upregulation of ATP5A1 increased ATP synthase activity, prevented mitochondrial reactive oxygen species generation, and reduced proinflammatory response and myocardial dysfunction in endotoxemic mice. In cultured cardiomyocytes, lipopolysaccharide induced mitochondrial superoxide generation that was prevented by overexpression of mitochondria-targeted calpastatin or ATP5A1. Upregulation of calpain-1 specifically in mitochondria sufficiently induced superoxide generation and proinflammatory response, both of which were attenuated by ATP5A1 overexpression or mitochondria-targeted superoxide dismutase mimetics. CONCLUSIONS Cardiomyocyte-specific capn4 knockout protects the heart against lipopolysaccharide-induced injury in endotoxemic mice. Lipopolysaccharides induce calpain-1 accumulation in mitochondria. Mitochondrial calpain-1 disrupts ATP synthase, leading to mitochondrial reactive oxygen species generation, which promotes proinflammatory response and myocardial dysfunction during endotoxemia. These findings uncover a novel mechanism by which calpain mediates myocardial dysfunction in sepsis.
Collapse
Affiliation(s)
- Rui Ni
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Dong Zheng
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Qiang Wang
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Yong Yu
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Ruizhen Chen
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Tao Sun
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Wang Wang
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Guo-Chang Fan
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Peter A Greer
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Richard B Gardiner
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Tianqing Peng
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.).
| |
Collapse
|
14
|
Mougeolle A, Poussard S, Decossas M, Lamaze C, Lambert O, Dargelos E. Oxidative stress induces caveolin 1 degradation and impairs caveolae functions in skeletal muscle cells. PLoS One 2015; 10:e0122654. [PMID: 25799323 PMCID: PMC4370508 DOI: 10.1371/journal.pone.0122654] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/21/2015] [Indexed: 11/19/2022] Open
Abstract
Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2) at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle.
Collapse
Affiliation(s)
- Alexis Mougeolle
- Univ Bordeaux, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; CNRS, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; Bordeaux INP, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France
| | - Sylvie Poussard
- Univ Bordeaux, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; CNRS, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; Bordeaux INP, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France
| | - Marion Decossas
- Univ Bordeaux, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; CNRS, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; Bordeaux INP, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France
| | - Christophe Lamaze
- Institut Curie—Centre de Recherche, Membrane Dynamics and Mechanics of Intracellular Signaling Team, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Olivier Lambert
- Univ Bordeaux, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; CNRS, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; Bordeaux INP, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France
| | - Elise Dargelos
- Univ Bordeaux, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; CNRS, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France; Bordeaux INP, Chimie et Biologie des Membranes et Nanoobjets, UMR 5248, F-33600 Pessac, France
- * E-mail:
| |
Collapse
|
15
|
Chung H, Davis M. Effects of genetic variants and mapping assignments of the ovine calpain regulatory subunit gene on chromosome 14. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Lian T, Wang L, Liu Y. A New Insight into the Role of Calpains in Post-mortem Meat Tenderization in Domestic Animals: A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:443-54. [PMID: 25049808 PMCID: PMC4093471 DOI: 10.5713/ajas.2012.12365] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 11/22/2012] [Accepted: 09/15/2012] [Indexed: 01/07/2023]
Abstract
Tenderness is the most important meat quality trait, which is determined by intracellular environment and extracellular matrix. Particularly, specific protein degradation and protein modification can disrupt the architecture and integrity of muscle cells so that improves the meat tenderness. Endogenous proteolytic systems are responsible for modifying proteinases as well as the meat tenderization. Abundant evidence has testified that calpains (CAPNs) including calpain I (CAPN1) and calpastatin (CAST) have the closest relationship with tenderness in livestock. They are involved in a wide range of physiological processes including muscle growth and differentiation, pathological conditions and post-mortem meat aging. Whereas, Calpain3 (CAPN3) has been established as an important activating enzyme specifically expressed in livestock's skeletal muscle, but its role in domestic animals meat tenderization remains controversial. In this review, we summarize the role of CAPN1, calpain II (CAPN2) and CAST in post-mortem meat tenderization, and analyse the relationship between CAPN3 and tenderness in domestic animals. Besides, the possible mechanism affecting post-mortem meat aging and improving meat tenderization, and current possible causes responsible for divergence (whether CAPN3 contributes to animal meat tenderization or not) are inferred. Only the possible mechanism of CAPN3 in meat tenderization has been confirmed, while its exact role still needs to be studied further.
Collapse
Affiliation(s)
- Ting Lian
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Linjie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yiping Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| |
Collapse
|
17
|
Inhibition of calpain reduces oxidative stress and attenuates endothelial dysfunction in diabetes. Cardiovasc Diabetol 2014; 13:88. [PMID: 24886224 PMCID: PMC4045988 DOI: 10.1186/1475-2840-13-88] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/25/2014] [Indexed: 12/25/2022] Open
Abstract
Aims The present study was to investigate the role of calpain in reactive oxygen species (ROS) production in endothelial cells and endothelium-dependent vascular dysfunction under experimental conditions of diabetes. Methods and results Exposure to high glucose activated calpain, induced apoptosis and reduced nitric oxide (NO) production without changing eNOS protein expression, its phosphorylation and dimers formation in primary human umbilical vein endothelial cells (HUVECs). These effects of high glucose correlated with intracellular ROS production and mitochondrial superoxide generation. Selectively scavenging mitochondrial superoxide increased NO production in high glucose-stimulated HUVECs. Inhibition of calpain using over-expression of calpastatin or pharmacological calpain inhibitor prevented high glucose-induced ROS production, mitochondrial superoxide generation and apoptosis, which were concurrent with an elevation of NO production in HUVECs. In mouse models of streptozotocin-induced type-1 diabetes and OVE26 type-1 diabetic mice, calpain activation correlated with an increase in ROS production and peroxynitrite formation in aortas. Transgenic over-expression of calpastatin reduced ROS production and peroxynitrite formation in diabetic mice. In parallel, diabetes-induced reduction of endothelium-dependent relaxation in aortic ring was reversed by over-expression of calpastatin in mouse models of diabetes. However, the protective effect of calpastatin on endothelium-dependent relaxation was abrogated by eNOS deletion in diabetic mice. Conclusions This study suggests that calpain may play a role in vascular endothelial cell ROS production and endothelium-dependent dysfunction in diabetes. Thus, calpain may be an important therapeutic target to overcome diabetes-induced vascular dysfunction.
Collapse
|
18
|
Kim C, Yun N, Lee YM, Jeong JY, Baek JY, Song HY, Ju C, Youdim MBH, Jin BK, Kim WK, Oh YJ. Gel-based protease proteomics for identifying the novel calpain substrates in dopaminergic neuronal cell. J Biol Chem 2013; 288:36717-32. [PMID: 24235151 DOI: 10.1074/jbc.m113.492876] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calpains are a family of calcium-dependent cysteine proteases that are ubiquitously expressed in mammals and play critical roles in neuronal death by catalyzing substrate proteolysis. Here, we developed two-dimensional gel electrophoresis-based protease proteomics to identify putative calpain substrates. To accomplish this, cellular lysates from neuronal cells were first separated by pI, and the immobilized sample on a gel strip was incubated with a recombinant calpain and separated by molecular weight. Among 25 altered protein spots that were differentially expressed by at least 2-fold, we confirmed that arsenical pump-driving ATPase, optineurin, and peripherin were cleaved by calpain using in vitro and in vivo cleavage assays. Furthermore, we found that all of these substrates were cleaved in MN9D cells treated with either ionomycin or 1-methyl-4-phenylpyridinium, both of which cause a calcium-mediated calpain activation. Their cleavage was blocked by calcium chelator or calpain inhibitors. In addition, calpain-mediated cleavage of these substrates and its inhibition by calpeptin were confirmed in a middle cerebral artery occlusion model of cerebral ischemia, as well as a stereotaxic brain injection model of Parkinson disease. Transient overexpression of each protein was shown to attenuate 1-methyl-4-phenylpyridinium-induced cell death, indicating that these substrates may confer protection of varying magnitudes against dopaminergic injury. Taken together, the data indicate that our protease proteomic method has the potential to be applicable for identifying proteolytic substrates affected by diverse proteases. Moreover, the results described here will help us decipher the molecular mechanisms underlying the progression of neurodegenerative disorders where protease activation is critically involved.
Collapse
Affiliation(s)
- Chiho Kim
- From the Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Théron L, Gueugneau M, Coudy C, Viala D, Bijlsma A, Butler-Browne G, Maier A, Béchet D, Chambon C. Label-free quantitative protein profiling of vastus lateralis muscle during human aging. Mol Cell Proteomics 2013; 13:283-94. [PMID: 24217021 DOI: 10.1074/mcp.m113.032698] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sarcopenia corresponds to the loss of muscle mass occurring during aging, and is associated with a loss of muscle functionality. Proteomic links the muscle functional changes with protein expression pattern. To better understand the mechanisms involved in muscle aging, we performed a proteomic analysis of Vastus lateralis muscle in mature and older women. For this, a shotgun proteomic method was applied to identify soluble proteins in muscle, using a combination of high performance liquid chromatography and mass spectrometry. A label-free protein profiling was then conducted to quantify proteins and compare profiles from mature and older women. This analysis showed that 35 of the 366 identified proteins were linked to aging in muscle. Most of the proteins were under-represented in older compared with mature women. We built a functional interaction network linking the proteins differentially expressed between mature and older women. The results revealed that the main differences between mature and older women were defined by proteins involved in energy metabolism and proteins from the myofilament and cytoskeleton. This is the first time that label-free quantitative proteomics has been applied to study of aging mechanisms in human skeletal muscle. This approach highlights new elements for elucidating the alterations observed during aging and may lead to novel sarcopenia biomarkers.
Collapse
Affiliation(s)
- Laëtitia Théron
- INRA, Plateforme d'Exploration du Métabolisme (PFEM), composante protéomique, F-63122 Saint Genès Champanelle, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ohlendieck K. Proteomic identification of biomarkers of skeletal muscle disorders. Biomark Med 2013; 7:169-86. [PMID: 23387498 DOI: 10.2217/bmm.12.96] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Disease-specific biomarkers play a central diagnostic and therapeutic role in muscle pathology. Serum levels of a variety of muscle-derived enzymes are routinely used for the detection of muscle damage in diagnostic procedures, as well as for the monitoring of physical training status in sports medicine. Over the last few years, the systematic application of mass spectrometry-based proteomics for studying skeletal muscle degeneration has greatly expanded the range of muscle biomarkers, including new fiber-associated proteins involved in muscle transformation, muscular atrophy, muscular dystrophy, motor neuron disease, inclusion body myositis, myotonia, hypoxia, diabetes, obesity and sarcopenia of old age. These mass spectrometric studies have clearly established skeletal muscle proteomics as a reliable method for the identification of novel indicators of neuromuscular diseases.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Muscle Biology Laboratory, Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland.
| |
Collapse
|
21
|
Kemp CM, Oliver WT, Wheeler TL, Chishti AH, Koohmaraie M. The effects of Capn1 gene inactivation on skeletal muscle growth, development, and atrophy, and the compensatory role of other proteolytic systems. J Anim Sci 2013; 91:3155-67. [PMID: 23798514 PMCID: PMC3962768 DOI: 10.2527/jas.2012-5737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Myofibrillar protein turnover is a key component of muscle growth and degeneration, requiring proteolytic enzymes to degrade the skeletal muscle proteins. The objective of this study was to investigate the role of the calpain proteolytic system in muscle growth development using μ-calpain knockout (KO) mice in comparison with control wild-type (WT) mice, and evaluate the subsequent effects of silencing this gene on other proteolytic systems. No differences in muscle development between genotypes were observed during the early stages of growth due to the up regulation of other proteolytic systems. The KO mice showed significantly greater m-calpain protein abundance (P < 0.01) and activity (P < 0.001), and greater caspase 3/7 activity (P < 0.05). At 30 wk of age, KO mice showed increased protein:DNA (P < 0.05) and RNA:DNA ratios (P < 0.01), greater protein content (P < 0.01) at the expense of lipid deposition (P < 0.05), and an increase in size and number of fast-twitch glycolytic muscle fibers (P < 0.05), suggesting that KO mice exhibit an increased capacity to accumulate and maintain protein in their skeletal muscle. Also, expression of proteins associated with muscle regeneration (neural cell adhesion molecule and myoD) were both reduced in the mature KO mice (P < 0.05 and P < 0.01, respectively), indicating less muscle regeneration and, therefore, less muscle damage. These findings indicate the concerted action of proteolytic systems to ensure muscle protein homeostasis in vivo. Furthermore, these data contribute to the existing evidence of the importance of the calpain system's involvement in muscle growth, development, and atrophy. Collectively, these data suggest that there are opportunities to target the calpain system to promote the growth and/or restoration of skeletal muscle mass.
Collapse
Affiliation(s)
- C. M. Kemp
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | - W. T. Oliver
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | - T. L. Wheeler
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | - A. H. Chishti
- Department of Molecular Physiology and Pharmacology, Tufts University, School of Medicine, Boston, MA 02111
| | - M. Koohmaraie
- IEH Laboratories & Consulting Group, Lake Forest Park, WA 98155; and College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Flix B, de la Torre C, Castillo J, Casal C, Illa I, Gallardo E. Dysferlin interacts with calsequestrin-1, myomesin-2 and dynein in human skeletal muscle. Int J Biochem Cell Biol 2013; 45:1927-38. [PMID: 23792176 DOI: 10.1016/j.biocel.2013.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/24/2013] [Accepted: 06/09/2013] [Indexed: 11/25/2022]
Abstract
Dysferlinopathies are a group of progressive muscular dystrophies characterized by mutations in the gene DYSF. These mutations cause scarcity or complete absence of dysferlin, a protein that is expressed in skeletal muscle and plays a role in membrane repair. Our objective was to unravel the proteins that constitute the dysferlin complex and their interaction within the complex using immunoprecipitation assays (IP), blue native gel electrophoresis (BN) in healthy adult skeletal muscle and healthy cultured myotubes, and fluorescence lifetime imaging-fluorescence resonance energy transfer (FLIM-FRET) analysis in healthy myotubes. The combination of immunoprecipitations and blue native electrophoresis allowed us to identify previously reported partners of dysferlin - such as caveolin-3, AHNAK, annexins, or Trim72/MG53 - and new interacting partners. Fluorescence lifetime imaging showed a direct interaction of dysferlin with Trim72/MG53, AHNAK, cytoplasmic dynein, myomesin-2 and calsequestrin-1, but not with caveolin-3 or dystrophin. In conclusion, although IP and BN are useful tools to identify the proteins in a complex, techniques such as fluorescence lifetime imaging analysis are needed to determine the direct and indirect interactions of these proteins within the complex. This knowledge may help us to better understand the roles of dysferlin in muscle tissue and identify new genes involved in muscular dystrophies in which the responsible gene is unknown.
Collapse
Affiliation(s)
- Bàrbara Flix
- Servei de Neurologia, Laboratori de Neurologia Experimental, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
23
|
The effect of troglitazone on lipid accumulation and related gene expression in Hanwoo muscle satellite cell. J Physiol Biochem 2012; 69:97-109. [PMID: 22773295 DOI: 10.1007/s13105-012-0193-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/22/2012] [Indexed: 12/25/2022]
Abstract
The current study was undertaken to determine the effect of the troglitazone (TGZ) on the expression of peroxisome proliferator-activating receptor (PPARγ), CCAAT/enhancer-binding protein, fatty acid binding protein 4, calpain 1 (CAPN1), and lipid accumulation in the myotube of Hanwoo muscle satellite cells. The satellite cells were treated with 5, 10, and 50 μM of TGZ for indicated time intervals. TGZ promoted the trans-differentiation with significant increase in glycerol accumulation. Polymerase chain reaction (PCR) and microarray results indicated that the TGZ treatment significantly increased the expression of adipogenic transcription factors. TGZ (10 and 50 μM) increased the CAPN1 gene expression 2.2- and 2.6-fold in real-time polymerase chain reaction analysis and 0.52- and 0.25-fold in microarray analysis, respectively, when compared with their respective controls. This result suggests that CAPN1 gene might be involved in the adipogenic differentiation programs. In addition, 13 genes were upregulated and 12 genes were downregulated in microarray analysis. Most of the up/downregulated genes were directly linked with adipogenesis.
Collapse
|
24
|
Creus KK, De Paepe B, Weis J, De Bleecker JL. The multifaceted character of lymphotoxin β in inflammatory myopathies and muscular dystrophies. Neuromuscul Disord 2012; 22:712-9. [PMID: 22652080 DOI: 10.1016/j.nmd.2012.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/22/2012] [Accepted: 04/30/2012] [Indexed: 11/18/2022]
Abstract
Lymphotoxin beta (LTβ) regulates some inflammatory mechanisms that could be operative in idiopathic inflammatory myopathies (IM). We studied LTβ and LTβR in inflammatory myopathies, normal and disease controls with immunohistochemistry, Western blotting and in situ hybridisation. LTβ occurs in myonuclei of normal controls, implying its role in normal muscle physiology. LTβ is strongly upregulated in regenerating muscle fibres in all myopathies, but not in denervated myofibres. Normal-appearing myofibres in inflammatory myopathies and muscular dystrophies express LTβ possibly reflecting early myofibre damage, representing a hitherto undescribed pathologic hallmark. Furthermore, we visualised LTβ in several inflammatory cell types in inflammatory myopathies, suggesting its involvement in the different inflammatory mechanisms underlying inflammatory myopathy subgroups.
Collapse
Affiliation(s)
- Kim K Creus
- Laboratory for Neuropathology, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | | | | | | |
Collapse
|
25
|
Gannon J, Ohlendieck K. Subproteomic analysis of basic proteins in aged skeletal muscle following offgel pre-fractionation. Mol Med Rep 2012; 5:993-1000. [PMID: 22267262 PMCID: PMC3493040 DOI: 10.3892/mmr.2012.759] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/21/2011] [Indexed: 12/29/2022] Open
Abstract
The progressive loss of skeletal muscle mass is a serious pathophysiological problem in the elderly, which warrants detailed biochemical studies into the underlying mechanism of age-related fiber degeneration. Over the last few years, mass spectrometry (MS)-based proteomics has identified a considerable number of new biomarkers of muscle aging in humans and animal models of sarcopenia. However, interpretation of the proteomic findings is often complicated by technical and biological limitations. Although gel electrophoresis-based approaches represent a highly sensitive analytical way for the large-scale and high-throughput survey of global changes in skeletal muscle proteins during aging, often the presence of components with an isoelectric point in the basic range is underestimated. We, therefore, carried out a comparative subproteomic study of young versus aged rat muscle focusing on potential changes in muscle proteins with an alkaline isoelectric point, using a combination of offgel electrophoresis and two-dimensional (2D) slab gel electrophoresis. Offgel electrophoresis was successfully applied as a prefractionation step to enrich basic protein species from crude tissue extracts representing young adult versus senescent muscle specimens. Proteomics has demonstrated alterations in a small cohort of basic proteins during muscle aging. The mass spectrometric identification of altered proteins and immunoblotting revealed a decrease in the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a concomitant increase in mitochondrial creatine kinase (CK) and ubiquinol cytochrome-c reductase. This agrees with the idea of a glycolytic-to-oxidative shift during muscle aging, which is indicative of an overall fast-to-slow transition process in senescent rat muscle. Thus, alterations in the abundance of metabolic enzymes appear to play a central role in the molecular pathogenesis of age-dependent muscle wasting.
Collapse
Affiliation(s)
- Joan Gannon
- Laboratory of Systems Medicine and Cell Biology, Department of Medicine, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | | |
Collapse
|
26
|
Affiliation(s)
- Sangmo Hong
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Woong Hwan Choi
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Ohlendieck K. Proteomic Profiling of Fast-To-Slow Muscle Transitions during Aging. Front Physiol 2011; 2:105. [PMID: 22207852 PMCID: PMC3245893 DOI: 10.3389/fphys.2011.00105] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/03/2011] [Indexed: 01/19/2023] Open
Abstract
Old age is associated with a large spectrum of physical ailments, including muscle wasting. Skeletal muscle degeneration drastically increases the risk of poor balance, frequent falling and impaired mobility in the elderly. In order to identify new therapeutic targets to halt or even reverse age-dependent muscle weakness and improve diagnostic methods to properly evaluate sarcopenia as a common geriatric syndrome, there is an urgent need to establish a reliable biomarker signature of muscle aging. In this respect, mass spectrometry-based proteomics has been successfully applied for studying crude extracts and subcellular fractions from aged animal and human muscle tissues to identify novel aging marker proteins. This review focuses on key physiological and metabolic aspects of sarcopenia, i.e., age-related muscle fiber transitions and metabolic shifts in aging muscle as revealed by proteomics. Over the last decade, proteomic profiling studies have clearly confirmed the idea that sarcopenia is based on a multi-factorial pathophysiology and that a glycolytic-to-oxidative shift occurs in slower-twitching senescent muscles. Both, newly identified protein factors and confirmed alterations in crucial metabolic and contractile elements can now be employed to establish a sarcopenia-specific biomarker signature.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Muscle Biology Laboratory, National University of Ireland, Maynooth County Kildare, Ireland
| |
Collapse
|