1
|
Li W, Wen Y, Wang K, Ding Z, Wang L, Chen Q, Xie L, Xu H, Zhao H. Developing a machine learning model for accurate nucleoside hydrogels prediction based on descriptors. Nat Commun 2024; 15:2603. [PMID: 38521777 PMCID: PMC10960799 DOI: 10.1038/s41467-024-46866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Supramolecular hydrogels derived from nucleosides have been gaining significant attention in the biomedical field due to their unique properties and excellent biocompatibility. However, a major challenge in this field is that there is no model for predicting whether nucleoside derivative will form a hydrogel. Here, we successfully develop a machine learning model to predict the hydrogel-forming ability of nucleoside derivatives. The optimal model with a 71% (95% Confidence Interval, 0.69-0.73) accuracy is established based on a dataset of 71 reported nucleoside derivatives. 24 molecules are selected via the optimal model external application and the hydrogel-forming ability is experimentally verified. Among these, two rarely reported cation-independent nucleoside hydrogels are found. Based on their self-assemble mechanisms, the cation-independent hydrogel is found to have potential applications in rapid visual detection of Ag+ and cysteine. Here, we show the machine learning model may provide a tool to predict nucleoside derivatives with hydrogel-forming ability.
Collapse
Affiliation(s)
- Weiqi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yinghui Wen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Kaichao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Zihan Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Lingfeng Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
2
|
López-Tena M, Chen SK, Winssinger N. Supernatural: Artificial Nucleobases and Backbones to Program Hybridization-Based Assemblies and Circuits. Bioconjug Chem 2023; 34:111-123. [PMID: 35856656 DOI: 10.1021/acs.bioconjchem.2c00292] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The specificity and predictability of hybridization make oligonucleotides a powerful platform to program assemblies and networks with logic-gated responses, an area of research which has grown into a field of its own. While the field has capitalized on the commercial availability of DNA oligomers with its four canonical nucleobases, there are opportunities to extend the capabilities of the hardware with unnatural nucleobases and other backbones. This Topical Review highlights nucleobases that favor hybridizations that are empowering for assemblies and networks as well as two chiral XNAs than enable orthogonal hybridization networks.
Collapse
Affiliation(s)
- Miguel López-Tena
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chemical Biology, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Si-Kai Chen
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chemical Biology, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| | - Nicolas Winssinger
- University of Geneva, Department of Organic Chemistry, Faculty of Science, NCCR Chemical Biology, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland
| |
Collapse
|
3
|
Jana J, Weisz K. Thermodynamic Stability of G-Quadruplexes: Impact of Sequence and Environment. Chembiochem 2021; 22:2848-2856. [PMID: 33844423 PMCID: PMC8518667 DOI: 10.1002/cbic.202100127] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Indexed: 12/19/2022]
Abstract
G-quadruplexes have attracted growing interest in recent years due to their occurrence in vivo and their possible biological functions. In addition to being promising targets for drug design, these four-stranded nucleic acid structures have also been recognized as versatile tools for various technological applications. Whereas a large number of studies have yielded insight into their remarkable structural diversity, our current knowledge on G-quadruplex stabilities as a function of sequence and environmental factors only gradually emerges with an expanding collection of thermodynamic data. This minireview provides an overview of general rules that may be used to better evaluate quadruplex thermodynamic stabilities but also discusses present challenges in predicting most stable folds for a given sequence and environment.
Collapse
Affiliation(s)
- Jagannath Jana
- Institute of BiochemistryUniversität GreifswaldFelix-Hausdorff Str. 417489GreifswaldGermany
| | - Klaus Weisz
- Institute of BiochemistryUniversität GreifswaldFelix-Hausdorff Str. 417489GreifswaldGermany
| |
Collapse
|
4
|
Haase L, Weisz K. Locked nucleic acid building blocks as versatile tools for advanced G-quadruplex design. Nucleic Acids Res 2020; 48:10555-10566. [PMID: 32890406 PMCID: PMC7544228 DOI: 10.1093/nar/gkaa720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 08/20/2020] [Indexed: 01/21/2023] Open
Abstract
A hybrid-type G-quadruplex is modified with LNA (locked nucleic acid) and 2′-F-riboguanosine in various combinations at the two syn positions of its third antiparallel G-tract. LNA substitution in the central tetrad causes a complete rearrangement to either a V-loop or antiparallel structure, depending on further modifications at the 5′-neighboring site. In the two distinct structural contexts, LNA-induced stabilization is most effective compared to modifications with other G surrogates, highlighting a potential use of LNA residues for designing not only parallel but various more complex G4 structures. For instance, the conventional V-loop is a structural element strongly favored by an LNA modification at the V-loop 3′-end in contrast with an alternative V-loop, clearly distinguishable by altered conformational properties and base-backbone interactions as shown in a detailed analysis of V-loop structures.
Collapse
Affiliation(s)
- Linn Haase
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Klaus Weisz
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| |
Collapse
|
5
|
Romanucci V, Oliva R, Petraccone L, Claes S, Schols D, Zarrelli A, Di Fabio G. Synthesis of new riboflavin modified ODNs: Effect of riboflavin moiety on the G-quadruplex arrangement and stability. Bioorg Chem 2020; 104:104213. [PMID: 32919132 DOI: 10.1016/j.bioorg.2020.104213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
In the panorama of modified G-quadruplexes (G4s) with interesting proprieties, here, it has been reported the synthesis of new modified d(TGGGAG) sequences forming G-quadruplexes, with the insertion of a riboflavin unit (Rf, vitamin B2). Exploiting the flavin similarity with the hydrogen bond pattern of guanine and aiming at mimic a typical nucleoside scaffold, the synthesis of the riboflavin building block 3 it has been efficiently carried out. The effect of insertion of riboflavin mimic nucleoside on the G-quadruplex properties has been here, for the first time investigated. A biophysical characterization of Rf-modified sequences (A-D) has been carried out by circular dichroism (CD), fluorescence spectroscopy, differential scanning calorimetry (DSC) and native gel electrophoresis. CD and electrophoresis data have suggested that Rf-modified sequences are able to form parallel tetramolecular G4 structures similar to that of the unmodified sequence. Analysis of the DSC thermograms has revealed that all modified G-quadruplexes have a higher thermal stability compared with the natural sequence, particularly the stabilisation is higher when the Rf residue is introduced at the 3'-end. Further, DSC analysis has revealed that the Rf residues introduced at the 3'-end are able to form additional stabilising interactions, energetically almost comparable to the enthalpic contribution of a G-tetrad. Fluorescence measurement are consistent with this result showing that the Rf residues introduced at 3'-end are able to form stacking interactions with the adjacent bases within the G-quadruplex structure. The whole of data suggested that the introduction of Rf unit can stabilize G-quadruplex structures and can be a promising candidate for future theranostic applications.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy.
| | - Rosario Oliva
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy; Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Otto-Hahn Strasse 4a, D-44227 Dortmund, Germany
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Sandra Claes
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy.
| |
Collapse
|
6
|
Esposito V, Esposito F, Pepe A, Gomez Monterrey I, Tramontano E, Mayol L, Virgilio A, Galeone A. Probing the Importance of the G-Quadruplex Grooves for the Activity of the Anti-HIV-Integrase Aptamer T30923. Int J Mol Sci 2020; 21:ijms21165637. [PMID: 32781637 PMCID: PMC7460552 DOI: 10.3390/ijms21165637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
In this paper, we report studies concerning four variants of the G-quadruplex forming anti-HIV-integrase aptamer T30923, in which specific 2′-deoxyguanosines have been singly replaced by 8-methyl-2′-deoxyguanosine residues, with the aim to exploit the methyl group positioned in the G-quadruplex grooves as a steric probe to investigate the interaction aptamer/target. Although, the various modified aptamers differ in the localization of the methyl group, NMR, circular dichroism (CD), electrophoretic and molecular modeling data suggest that all of them preserve the ability to fold in a stable dimeric parallel G-quadruplex complex resembling that of their natural counterpart T30923. However, the biological data have shown that the T30923 variants are characterized by different efficiencies in inhibiting the HIV-integrase, thus suggesting the involvement of the G-quadruplex grooves in the aptamer/target interaction.
Collapse
Affiliation(s)
- Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09045 Monserrato (CA), Italy; (F.E.); (E.T.)
| | - Antonietta Pepe
- Department of Science, University of Basilicata, 85100 Potenza, Italy;
| | - Isabel Gomez Monterrey
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09045 Monserrato (CA), Italy; (F.E.); (E.T.)
| | - Luciano Mayol
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
| | - Antonella Virgilio
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
- Correspondence: (A.V.); (A.G.)
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (V.E.); (I.G.M.); (L.M.)
- Correspondence: (A.V.); (A.G.)
| |
Collapse
|
7
|
Cao Y, Ding P, Yang L, Li W, Luo Y, Wang J, Pei R. Investigation and improvement of catalytic activity of G-quadruplex/hemin DNAzymes using designed terminal G-tetrads with deoxyadenosine caps. Chem Sci 2020; 11:6896-6906. [PMID: 34094131 PMCID: PMC8159390 DOI: 10.1039/d0sc01905d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It is generally acknowledged that G-quadruplexes (G4s) acquire peroxidase activity upon interaction with hemin. Hemin has been demonstrated to bind selectively to the 3′-terminal G-tetrad of parallel G4s via end-stacking; however, the relationships between different terminal G-tetrads and the catalytic functions of G4/hemin DNAzymes are not fully understood. Herein, the oligonucleotide d(AGGGGA) and its three analogues, d(AGBrGBrGGA), d(AGBrGGGBrA) and d(AGBrGGBrGA) (GBr indicates 8-bromo-2′-deoxyguanosine), were designed. These oligonucleotides form three parallel G4s and one antiparallel G4 without loop regions. The scaffolds had terminal G-tetrads that were either anti-deoxyguanosines (anti-dGs) or syn-deoxyguanosines (syn-dGs) at different proportions. The results showed that the parallel G4 DNAzymes exhibited 2 to 5-fold higher peroxidase activities than the antiparallel G4 DNAzyme, which is due to the absence of the 3′-terminal G-tetrad in the antiparallel G4. Furthermore, the 3′-terminal G-tetrad consisting of four anti-dGs in parallel G4s was more energetically favorable and thus more preferable for hemin stacking compared with that consisting of four syn-dGs. We further investigated the influence of 3′ and 5′ deoxyadenosine (dA) caps on the enzymatic performance by adding 3′-3′ or 5′-5′ phosphodiester bonds to AG4A. Our data demonstrated that 3′ dA caps are versatile residues in promoting the interaction of G4s with hemin. Thus, by increasing the number of 3′ dA caps, the DNAzyme of 3′A5′-5′GG3′-3′GG5′-5′A3′ with two 5′-terminal G-tetrads can exhibit significantly high catalytic activity, which is comparable to that of 5′A3′-3′GG5′-5′GG3′-3′A5′ with two 3′-terminal G-tetrads. This study may provide insights into the catalytic mechanism of G4-based DNAzymes and strategies for promoting their catalytic activities. Investigation of the peroxidase activities of G4/hemin DNAzymes using designed terminal G-tetrads by eliminating the steric effect of loop regions.![]()
Collapse
Affiliation(s)
- Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Luyan Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Yu Luo
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| |
Collapse
|
8
|
Reina C, Cavalieri V. Epigenetic Modulation of Chromatin States and Gene Expression by G-Quadruplex Structures. Int J Mol Sci 2020; 21:E4172. [PMID: 32545267 PMCID: PMC7312119 DOI: 10.3390/ijms21114172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes are four-stranded helical nucleic acid structures formed by guanine-rich sequences. A considerable number of studies have revealed that these noncanonical structural motifs are widespread throughout the genome and transcriptome of numerous organisms, including humans. In particular, G-quadruplexes occupy strategic locations in genomic DNA and both coding and noncoding RNA molecules, being involved in many essential cellular and organismal functions. In this review, we first outline the fundamental structural features of G-quadruplexes and then focus on the concept that these DNA and RNA structures convey a distinctive layer of epigenetic information that is critical for the complex regulation, either positive or negative, of biological activities in different contexts. In this framework, we summarize and discuss the proposed mechanisms underlying the functions of G-quadruplexes and their interacting factors. Furthermore, we give special emphasis to the interplay between G-quadruplex formation/disruption and other epigenetic marks, including biochemical modifications of DNA bases and histones, nucleosome positioning, and three-dimensional organization of chromatin. Finally, epigenetic roles of RNA G-quadruplexes in post-transcriptional regulation of gene expression are also discussed. Undoubtedly, the issues addressed in this review take on particular importance in the field of comparative epigenetics, as well as in translational research.
Collapse
Affiliation(s)
- Chiara Reina
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
9
|
Su Y, Edwards PJB, Stetsenko DA, Filichev VV. The Importance of Phosphates for DNA G-Quadruplex Formation: Evaluation of Zwitterionic G-Rich Oligodeoxynucleotides. Chembiochem 2020; 21:2455-2466. [PMID: 32281223 DOI: 10.1002/cbic.202000110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/09/2020] [Indexed: 12/21/2022]
Abstract
A quaternary ammonium butylsulfonyl phosphoramidate group (N+) was designed to replace all the phosphates in a G-rich oligodeoxynucleotide d(TG4 T), resulting in a formally charge-neutral zwitterionic N+TG4 T sequence. We evaluated the effects of N+phosphate modifications on the structural, thermodynamic and kinetic properties of the parallel G-quadruplexes (G4) formed by TG4 T and compared them to the properties of the recently published phosphoryl guanidine d(TG4 T) (PG-TG4 T). Using size-exclusion chromatography, we established that, unlike PG-TG4 T, which exists as a mixture of complexes of different molecularity in solution, N+TG4 T forms an individual tetramolecular complex. In contrast to PG modifications that destabilized G4s, the presence of N+ modifications increased thermal stability relative to unmodified [d(TG4 T)]4 . The initial stage of assembly of N+TG4 T proceeded faster in the presence of Na+ than K+ ions and, similarly to PG-TG4 T, was independent of the salt concentration. However, after complex formation exceeded 75 %, N+TG4 T in solution with Na+ showed slower association than with K+ . N+TG4 T could also form G4s in solution with Li+ ions at a very low strand concentration (10 μM); something that has never been reported for the native d(TG4 T). Charge-neutral PG-G4s can invade preformed native G4s, whereas no invasion was observed between N+and native G4s, possibly due to the increased thermal stability of [N+TG4 T]4 . The N+ modification makes d(TG4 T) fully resistant to enzymatic digestion, which could be useful for intracellular application of N+-modified DNA or RNA.
Collapse
Affiliation(s)
- Yongdong Su
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442, Palmerston North, New Zealand
| | - Patrick J B Edwards
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442, Palmerston North, New Zealand
| | - Dmitry A Stetsenko
- Novosibirsk State University, 2 Pirogov Street, Novosibirsk, 630090, Russia.,Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Vyacheslav V Filichev
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442, Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1142, New Zealand
| |
Collapse
|
10
|
Haase L, Dickerhoff J, Weisz K. Sugar Puckering Drives G-Quadruplex Refolding: Implications for V-Shaped Loops. Chemistry 2020; 26:524-533. [PMID: 31609483 PMCID: PMC6973071 DOI: 10.1002/chem.201904044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/10/2019] [Indexed: 01/04/2023]
Abstract
A DNA G-quadruplex adopting a (3+1) hybrid structure was modified in two adjacent syn positions of the antiparallel strand with anti-favoring 2'-deoxy-2'-fluoro-riboguanosine (F rG) analogues. The two substitutions promoted a structural rearrangement to a topology with the 5'-terminal G residue located in the central tetrad and the two modified residues linked by a V-shaped zero-nucleotide loop. Strikingly, whereas a sugar pucker in the preferred north domain is found for both modified nucleotides, the F rG analogue preceding the V-loop is forced to adopt the unfavored syn conformation in the new quadruplex fold. Apparently, a preferred C3'-endo sugar pucker within the V-loop architecture outweighs the propensity of the F rG analogue to adopt an anti glycosidic conformation. Refolding into a V-loop topology is likewise observed for a sequence modified at corresponding positions with two riboguanosine substitutions. In contrast, 2'-F-arabinoguanosine analogues with their favored south-east sugar conformation do not support formation of the V-loop topology. Examination of known G-quadruplexes with a V-shaped loop highlights the critical role of the sugar conformation for this distinct structural motif.
Collapse
Affiliation(s)
- Linn Haase
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Jonathan Dickerhoff
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
- Present address: Department of Medicinal Chemistry and Molecular PharmacologyCollege of PharmacyPurdue UniversityWest LafayetteIN47907USA
| | - Klaus Weisz
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| |
Collapse
|
11
|
Haase L, Karg B, Weisz K. Manipulating DNA G-Quadruplex Structures by Using Guanosine Analogues. Chembiochem 2019; 20:985-993. [PMID: 30511814 DOI: 10.1002/cbic.201800642] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 12/22/2022]
Abstract
The ability to control the folding topology of DNA G-quadruplexes allows for rational design of quadruplex-based scaffolds for potential use in various therapeutic and technological applications. By exploiting the distinct conformational properties of some base- and sugar-modified guanosine surrogates, conformational transitions can be induced through their judicious incorporation at specific sites in the quadruplex core. Changes may involve tetrad polarity inversions with conservation of the global fold or complete refolding to new topologies. Reliable predictions relating to low-energy conformers formed upon specific chemical perturbations of the system and the rational design of modified sequences suffer from our still limited understanding of the subtle interplay of various favorable and unfavorable interactions within a particular quadruplex scaffold. However, aided by an increasing number of systematic substitution experiments and high-resolution structures of modified quadruplex variants, critical interactions, in addition to glycosidic bond angle propensities, are starting to emerge as important contributors to modification-driven quadruplex refolding.
Collapse
Affiliation(s)
- Linn Haase
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Beatrice Karg
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| |
Collapse
|
12
|
Filitcheva J, Edwards PJB, Norris GE, Filichev VV. α-2′-Deoxyguanosine can switch DNA G-quadruplex topologies from antiparallel to parallel. Org Biomol Chem 2019; 17:4031-4042. [DOI: 10.1039/c9ob00360f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-2′-Deoxyguanosine (α-dG) converts antiparallel, dimeric G-quadruplex DNA into a parallel, tetramolecular complex.
Collapse
Affiliation(s)
- Jana Filitcheva
- School of Fundamental Sciences
- Massey University
- Palmerston North
- New Zealand
| | | | - Gillian E. Norris
- School of Fundamental Sciences
- Massey University
- Palmerston North
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| | - Vyacheslav V. Filichev
- School of Fundamental Sciences
- Massey University
- Palmerston North
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|
13
|
Karg B, Weisz K. Loop Length Affects Syn-Anti Conformational Rearrangements in Parallel G-Quadruplexes. Chemistry 2018; 24:10246-10252. [PMID: 29756658 DOI: 10.1002/chem.201801851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/12/2018] [Indexed: 01/24/2023]
Abstract
A G-quadruplex forming sequence from the MYC promoter region was modified with syn-favoring 8-bromo-2'-deoxyguanosine residues. Depending on the number and position of modifications in the intramolecular parallel G-quadruplex, substitutions with the bromoguanosine analogue at the 5'-tetrad induce conformational rearrangements with concerted all-anti to all-syn transitions for all residues of the modified G-quartet. No unfavorable steric interactions of the C8-substituents in the medium grooves are apparent in the high-resolution structure as determined for a tetrasubstituted MYC quadruplex that exclusively forms the all-syn isomer. In contrast, considerable steric clashes with 5'-phosphate oxygen atoms for those analogues that follow a less flexible 1-nucleotide loop in the native all-anti conformation seem to constitute the major driving force for the tetrad inversion and allow for the rational design of appropriately substituted sequences. Correlations found between the population of species subjected to a tetrad flip and melting temperatures indicate that more effective conformational transitions are compromised by lower thermal stabilities of the modified parallel quadruplexes.
Collapse
Affiliation(s)
- Beatrice Karg
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
14
|
Engelhard DM, Stratmann LM, Clever GH. Structure-Property Relationships in Cu II -Binding Tetramolecular G-Quadruplex DNA. Chemistry 2017; 24:2117-2125. [PMID: 29139578 DOI: 10.1002/chem.201703409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Indexed: 12/29/2022]
Abstract
A series of artificial metal-base tetrads composed of a CuII cation coordinating to four pyridines, covalently attached to the ends of tetramolecular G-quadruplex DNA strands [LA-D d(G4 )]4 (LA-D =ligand derivatives), was systematically studied. Structurally, the square-planar [Cu(pyridine)4 ] complex behaves analogously to the canonical guanine quartet. Copper coordination to all studied ligand derivatives was found to increase G-quadruplex thermodynamic stability, tolerating a great variety of ligand linker lengths (1-5 atoms) and thus demonstrating the robustness of the chosen ligand design. Only at long linker lengths, the stabilizing effect of copper binding is compensated by the loss of conformational freedom. A previously reported ligand LE with chiral backbone enables incorporation at any oligonucleotide position. We show that ligand chirality distinctly steers CuII -induced G-quadruplex stabilization. 5'-End formation of two metal-base tetrads by tetramolecular G-quadruplex [LE2 d(G)4 ]4 shows that stabilization in the presence of CuII is not additive. All results are based on UV/Vis thermal denaturation, thermal difference, circular dichroism experiments and molecular dynamics simulations.
Collapse
Affiliation(s)
- David M Engelhard
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Lukas M Stratmann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
15
|
Virgilio A, Russo A, Amato T, Russo G, Mayol L, Esposito V, Galeone A. Monomolecular G-quadruplex structures with inversion of polarity sites: new topologies and potentiality. Nucleic Acids Res 2017; 45:8156-8166. [PMID: 28666330 PMCID: PMC5737522 DOI: 10.1093/nar/gkx566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/21/2017] [Indexed: 12/11/2022] Open
Abstract
In this paper, we report investigations, based on circular dichroism, nuclear magnetic resonance spectroscopy and electrophoresis methods, on three oligonucleotide sequences, each containing one 3′-3′ and two 5′-5′ inversion of polarity sites, and four G-runs with a variable number of residues, namely two, three and four (mTG2T, mTG3T and mTG4T with sequence 3′-TGnT-5′-5′-TGnT-3′-3′-TGnT-5′-5′-TGnT-3′ in which n = 2, 3 and 4, respectively), in comparison with their canonical counterparts (TGnT)4 (n = 2, 3 and 4). Oligonucleotides mTG3T and mTG4T have been proven to form very stable unprecedented monomolecular parallel G-quadruplex structures, characterized by three side loops containing the inversion of polarity sites. Both G-quadruplexes have shown an all-syn G-tetrad, while the other guanosines adopt anti glycosidic conformations. All oligonucleotides investigated have shown a noteworthy antiproliferative activity against lung cancer cell line Calu 6 and colorectal cancer cell line HCT-116 p53−/−. Interestingly, mTG3T and mTG4T have proven to be mostly resistant to nucleases in a fetal bovine serum assay. The whole of the data suggest the involvement of specific pathways and targets for the biological activity.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Annapina Russo
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Teresa Amato
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giulia Russo
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Luciano Mayol
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Veronica Esposito
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Aldo Galeone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
16
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
17
|
Rigo R, Palumbo M, Sissi C. G-quadruplexes in human promoters: A challenge for therapeutic applications. Biochim Biophys Acta Gen Subj 2016; 1861:1399-1413. [PMID: 28025083 DOI: 10.1016/j.bbagen.2016.12.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND G-rich sequences undergo unique structural equilibria to form G-quadruplexes (G4) both in vitro and in cell systems. Several pathologies emerged to be directly related to G4 occurrence at defined genomic portions. Additionally, G-rich sequences are significantly represented around transcription start sites (TSS) thus leading to the hypothesis of a gene regulatory function for G4. Thus, the tuning of G4 formation has been proposed as a new powerful tool to regulate gene expression to treat related pathologies. However, up-to date this approach did not provide any new really efficient treatment. SCOPE OF REVIEW Here, we summarize the most recent advances on the correlation between the structural features of G4 in human promoters and the role these systems physiologically exert. In particular we focus on the effect of G4 localization among cell compartments and along the promoters in correlation with protein interaction networks and epigenetic state. Finally the intrinsic structural features of G4 at promoters are discussed to unveil the contribution of different G4 structural modules in this complex architecture. MAJOR CONCLUSIONS It emerges that G4s play several roles in the intriguing and complex mechanism of gene expression, being able to produce opposite effects on the same target. This reflects the occurrence of a highly variegate network of several components working simultaneously. GENERAL SIGNIFICANCE The resulting picture is still fuzzy but some points of strength are definitely emerging, which prompts all of us to strengthen our efforts in view of a selective control of gene expression through G4 modulation. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Riccardo Rigo
- Dept. of Pharmaceutical and Pharmacological Sciences, University of Padova, v. Marzolo, 5, 35131 Padova, Italy
| | - Manlio Palumbo
- Dept. of Pharmaceutical and Pharmacological Sciences, University of Padova, v. Marzolo, 5, 35131 Padova, Italy
| | - Claudia Sissi
- Dept. of Pharmaceutical and Pharmacological Sciences, University of Padova, v. Marzolo, 5, 35131 Padova, Italy.
| |
Collapse
|
18
|
Karg B, Haase L, Funke A, Dickerhoff J, Weisz K. Observation of a Dynamic G-Tetrad Flip in Intramolecular G-Quadruplexes. Biochemistry 2016; 55:6949-6955. [PMID: 27951645 DOI: 10.1021/acs.biochem.6b00925] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A MYC sequence forming an intramolecular G-quadruplex with a parallel topology was modified by the incorporation of 8-bromoguanosine (BrG) analogues in one of its outer G-tetrads. The propensity of the BrG analogues to adopt a syn glycosidic torsion angle results in an exceptional monomolecular quadruplex conformation featuring a complete flip of one tetrad while keeping a parallel orientation of all G-tracts as shown by circular dichroism and nuclear magnetic resonance spectroscopic studies. When substituting three of the four G-tetrad residues with BrG analogues, two coexisting quadruplex conformational isomers with an all-syn and all-anti outer G-quartet are approximately equally populated in solution. A dynamic interconversion of the two quadruplexes with an exchange rate (kex) of 0.2 s-1 is demonstrated through the observation of exchange crosspeaks in rotating frame Overhauser effect spectroscopy and nuclear Overhauser effect spectroscopy experiments at 50 °C. The kinetic properties suggest disruption of the corresponding outer G-tetrad but not of the whole quadruplex core during the tetrad flip. Conformational syn-anti isomers with homopolar and heteropolar stacking interactions are nearly isoenergetic with a transition enthalpy of 18.2 kJ/mol in favor of the all-syn isomer.
Collapse
Affiliation(s)
- Beatrice Karg
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald , Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| | - Linn Haase
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald , Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| | - Andrea Funke
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald , Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| | - Jonathan Dickerhoff
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald , Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald , Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| |
Collapse
|
19
|
Zhao Z, Lin F, Ye H, Huang R, Xu X. Effects of modified-guanosine on the stability of G-triplex. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.10.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Esposito V, Russo A, Amato T, Varra M, Vellecco V, Bucci M, Russo G, Virgilio A, Galeone A. Backbone modified TBA analogues endowed with antiproliferative activity. Biochim Biophys Acta Gen Subj 2016; 1861:1213-1221. [PMID: 27663232 DOI: 10.1016/j.bbagen.2016.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND The thrombin binding aptamer (TBA) is endowed with antiproliferative properties but its potential development is counteracted by the concomitant anticoagulant activity. METHODS Five oligonucleotides (ODNs) based on TBA sequence (GGTTGGTGTGGTTGG) and containing l-residues or both l-residues and inversion of polarity sites have been investigated by NMR and CD techniques for their ability to form G-quadruplex structures. Furthermore, their anticoagulant (PT assay) and antiproliferative properties (MTT assay), and their resistance in fetal bovine serum have been tested. RESULTS CD and NMR data suggest that the investigated ODNs are able to form right- and left-handed G-quadruplex structures. All ODNs do not retain the anticoagulant activity characteristic of TBA but are endowed with a significant antiproliferative activity against two cancerous cell lines. Their resistance in biological environment after six days is variable, depending on the ODN. CONCLUSIONS A comparison between results and literature data suggests that the antiproliferative activity of the TBA analogues investigated could depends on two factors: a) biological pathways and targets different from those already identified or proposed for other antiproliferative G-quadruplex aptamers, and b) the contribution of the guanine-based degradation products. GENERAL SIGNIFICANCE Modified TBA analogues containing l-residues and inversion of polarity sites lose the anticoagulant activity but gain antiproliferative properties against two cancer cell lines. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Annapina Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Teresa Amato
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Michela Varra
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Antonella Virgilio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| |
Collapse
|
21
|
Dickerhoff J, Weisz K. Flipping a G-tetrad in a unimolecular quadruplex without affecting its global fold. Angew Chem Int Ed Engl 2015; 54:5588-91. [PMID: 25775974 DOI: 10.1002/anie.201411887] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/22/2015] [Indexed: 11/07/2022]
Abstract
A unimolecular G-quadruplex with a hybrid-type topology and propeller, diagonal, and lateral loops was examined for its ability to undergo structural changes upon specific modifications. Substituting 2'-deoxy-2'-fluoro analogues with a propensity to adopt an anti glycosidic conformation for two or three guanine deoxyribonucleosides in syn positions of the 5'-terminal G-tetrad significantly alters the CD spectral signature of the quadruplex. An NMR analysis reveals a polarity switch of the whole tetrad with glycosidic conformational changes detected for all four guanine nucleosides in the modified sequence. As no additional rearrangement of the overall fold occurs, a novel type of G-quadruplex is formed with guanosines in the four columnar G-tracts lined up in either an all-syn or an all-anti glycosidic conformation.
Collapse
Affiliation(s)
- Jonathan Dickerhoff
- Institut für Biochemie, Ernst-Moritz-Arndt-Universität Greifswald, Felix-Hausdorff-Strasse 4, 17487 Greifswald (Germany)
| | | |
Collapse
|
22
|
Dickerhoff J, Weisz K. Flipping a G-Tetrad in a Unimolecular Quadruplex Without Affecting Its Global Fold. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411887] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Doluca O, Withers JM, Loo TS, Edwards PJB, González C, Filichev VV. Interdependence of pyrene interactions and tetramolecular G4-DNA assembly. Org Biomol Chem 2015; 13:3742-8. [DOI: 10.1039/c4ob02499k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our results demonstrate the expanded capabilities of G-quadruplex DNAs for directed chromophore arrangements and show new perspectives in the design of G-quadruplexes governed by non-guanine moieties.
Collapse
Affiliation(s)
- Osman Doluca
- College of Sciences
- Institute of Fundamental Sciences
- Massey University
- 4442 Palmerston North
- New Zealand
| | - Jamie M. Withers
- College of Sciences
- Institute of Fundamental Sciences
- Massey University
- 4442 Palmerston North
- New Zealand
| | - Trevor S. Loo
- College of Sciences
- Institute of Fundamental Sciences
- Massey University
- 4442 Palmerston North
- New Zealand
| | - Patrick J. B. Edwards
- College of Sciences
- Institute of Fundamental Sciences
- Massey University
- 4442 Palmerston North
- New Zealand
| | | | - Vyacheslav V. Filichev
- College of Sciences
- Institute of Fundamental Sciences
- Massey University
- 4442 Palmerston North
- New Zealand
| |
Collapse
|
24
|
Schulze-Adams M, Bernet B, Touboul D, Egli D, Herdeis L, Vasella A. Oligonucleotide Analogues with Integrated Bases and Backbone. Part 32. Helv Chim Acta 2014. [DOI: 10.1002/hlca.201400175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Zhou J, Rosu F, Amrane S, Korkut DN, Gabelica V, Mergny JL. Assembly of chemically modified G-rich sequences into tetramolecular DNA G-quadruplexes and higher order structures. Methods 2014; 67:159-68. [DOI: 10.1016/j.ymeth.2014.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022] Open
|
26
|
Virgilio A, Esposito V, Mayol L, Galeone A. More than one non-canonical phosphodiester bond in the G-tract: formation of unusual parallel G-quadruplex structures. Org Biomol Chem 2013; 12:534-40. [PMID: 24287516 DOI: 10.1039/c3ob41712c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we report an investigation, based on NMR and CD spectroscopic and electrophoretic techniques, of 5'TGGGGT3' analogues containing two or three 3'-3' or 5'-5' inversion sites in the G-run, namely 5'TG3'-3'G5'-5'GGT3' (Q350), 5'TG3'-3'GG5'-5'GT3' (Q305), 5'TGG3'-3'G5'-5'GT3' (Q035), 5'TG3'-3'G5'-5'G3'-3'GT5' (Q353) and 3'TG5'-5'G3'-3'G5'-5'GT3' (Q535). Although the sequences investigated contain either no or only one natural 3'-5' linkage in the G-tract, all modified oligodeoxyribonucleotides (ODNs) have been shown to form stable tetramolecular quadruplex structures. The ability of the 3'-3' or 5'-5' inversion sites to affect the glycosidic conformation of guanosines and, consequently, base stacking, has also been investigated. The results of this study allow us to propose some generalizations concerning strand arrangements and the glycosidic conformational preference of residues adjacent to inverted polarity sites. These rules could be of general interest in the design of modified quadruplex structures, in view of their application as G-wires and modified aptamers.
Collapse
Affiliation(s)
- Antonella Virgilio
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy.
| | | | | | | |
Collapse
|
27
|
Zhou J, Abramov M, Liu F, Amrane S, Bourdoncle A, Herdewijn P, Mergny JL. Effects of six-membered carbohydrate rings on structure, stability, and kinetics of G-quadruplexes. Chemistry 2013; 19:14719-25. [PMID: 24027098 DOI: 10.1002/chem.201301743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/24/2013] [Indexed: 12/13/2022]
Abstract
We have evaluated the conformational, thermal, and kinetic properties of d(TGGGGT) analogues with one or five of the ribose nucleotides replaced with the carbohydrate residues hexitol nucleic acid (HNA), cyclohexenyl nucleic acid (CeNA), or altritol nucleic acid (ANA). All of the modified oligonucleotides formed G-quadruplexes, but substitution with the six-membered rings resulted in a mixture of G-quadruplex structures. UV and CD melting analyses showed that the structure formed by d(TGGGGT) modified with HNA was stabilized whereas that modified with CeNA was destabilized, relative to the structure formed by the unmodified oligonucleotide. Substitution at the fourth base of the G-tract with ANA resulted in a greater stabilization effect than substitution at the first G residue; substitution with five ANA residues resulted in significant stabilization of the G-quadruplex. A single substitution with CeNA at the first base of the G-tract or five substitutions with HNA resulted in striking deceleration or acceleration of G-quadruplex formation, respectively. Our results shed light on the effect of the sugar moiety on the properties of G-quadruplex structures.
Collapse
Affiliation(s)
- Jun Zhou
- Univ. Bordeaux, ARNA Laboratory, 33000 Bordeaux (France); INSERM, U869, IECB, 33600 Pessac (France), Fax: (+33) 5-4000-3004
| | | | | | | | | | | | | |
Collapse
|
28
|
Doluca O, Withers JM, Filichev VV. Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chem Rev 2013; 113:3044-83. [PMID: 23391174 DOI: 10.1021/cr300225q] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Osman Doluca
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | | | | |
Collapse
|
29
|
Zhou J, Murayama K, Amrane S, Rosu F, Kashida H, Bourdoncle A, Asanuma H, Mergny JL. A “sugar-deficient” G-quadruplex: incorporation of aTNA in G4 structures. Chem Sci 2013. [DOI: 10.1039/c3sc50474c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Le HT, Miller MC, Buscaglia R, Dean WL, Holt PA, Chaires JB, Trent JO. Not all G-quadruplexes are created equally: an investigation of the structural polymorphism of the c-Myc G-quadruplex-forming sequence and its interaction with the porphyrin TMPyP4. Org Biomol Chem 2012; 10:9393-404. [PMID: 23108607 PMCID: PMC3501587 DOI: 10.1039/c2ob26504d] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
G-quadruplexes, DNA tertiary structures highly localized to functionally important sites within the human genome, have emerged as important new drug targets. The putative G-quadruplex-forming sequence (Pu27) in the NHE-III(1) promoter region of the c-Myc gene is of particular interest as stabilization of this G-quadruplex with TMPyP4 has been shown to repress c-Myc transcription. In this study, we examine the Pu27 G-quadruplex-forming sequence and its interaction with TMPyP4. We report that the Pu27 sequence exists as a heterogeneous mixture of monomeric and higher-order G-quadruplex species in vitro and that this mixture can be partially resolved by size exclusion chromatography (SEC) separation. Within this ensemble of configurations, the equilibrium can be altered by modifying the buffer composition, annealing procedure, and dialysis protocol thereby affecting the distribution of G-quadruplex species formed. TMPyP4 was found to bind preferentially to higher-order G-quadruplex species suggesting the possibility of stabilization of the junctions of the c-Myc G-quadruplex multimers by porphyrin end-stacking. We also examined four modified c-Myc sequences that have been previously reported and found a narrower distribution of G-quadruplex configurations compared to the parent Pu27 sequence. We could not definitively conclude whether these G-quadruplex structures were selected from the original ensemble or if they are new G-quadruplex structures. Since these sequences differ considerably from the wild-type promoter sequence, it is unclear whether their structures have any actual biological relevance. Additional studies are needed to examine how the polymorphic nature of G-quadruplexes affects the interpretation of in vitro data for c-Myc and other G-quadruplexes. The findings reported here demonstrate that experimental conditions contribute significantly to G-quadruplex formation and should be carefully considered, controlled, and reported in detail.
Collapse
Affiliation(s)
- Huy T. Le
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616 Louisville, Kentucky 40292; Phone: (502) 852-6221; Fax: (502) 852-6222
| | - M. Clarke Miller
- James G. Brown Cancer Center, University of Louisville, 529 South Jackson Street Louisville, KY 40202; Phone:(502) 562-4375
| | - Robert Buscaglia
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616 Louisville, Kentucky 40292; Phone: (502) 852-6221; Fax: (502) 852-6222
| | - William L. Dean
- James G. Brown Cancer Center, University of Louisville, 529 South Jackson Street Louisville, KY 40202; Phone:(502) 562-4375
- Department of Medicine, School of Medicine, University of Louisville, 550 South Jackson Street, Louisville, KY 40202; Phone: (502) 852-5241; Fax: (502) 852-6233
| | - Patrick A. Holt
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616 Louisville, Kentucky 40292; Phone: (502) 852-6221; Fax: (502) 852-6222
| | - Jonathan B. Chaires
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616 Louisville, Kentucky 40292; Phone: (502) 852-6221; Fax: (502) 852-6222
- James G. Brown Cancer Center, University of Louisville, 529 South Jackson Street Louisville, KY 40202; Phone:(502) 562-4375
- Department of Medicine, School of Medicine, University of Louisville, 550 South Jackson Street, Louisville, KY 40202; Phone: (502) 852-5241; Fax: (502) 852-6233
| | - John O. Trent
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Louisville, HSC-A Building, Room 616 Louisville, Kentucky 40292; Phone: (502) 852-6221; Fax: (502) 852-6222
- James G. Brown Cancer Center, University of Louisville, 529 South Jackson Street Louisville, KY 40202; Phone:(502) 562-4375
- Department of Medicine, School of Medicine, University of Louisville, 550 South Jackson Street, Louisville, KY 40202; Phone: (502) 852-5241; Fax: (502) 852-6233
| |
Collapse
|
31
|
Structural probes in quadruplex nucleic acid structure determination by NMR. Molecules 2012; 17:13073-86. [PMID: 23128087 PMCID: PMC6268857 DOI: 10.3390/molecules171113073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/01/2012] [Accepted: 11/01/2012] [Indexed: 12/31/2022] Open
Abstract
Traditionally, isotope-labelled DNA and RNA have been fundamental to nucleic acid structural studies by NMR. Four-stranded nucleic acid architectures studies increasingly benefit from a plethora of nucleotide conjugates for resonance assignments, the identification of hydrogen bond alignments, and improving the population of preferred species within equilibria. In this paper, we review their use for these purposes. Most importantly we identify reasons for the failure of some modifications to result in quadruplex formation.
Collapse
|
32
|
Šket P, Virgilio A, Esposito V, Galeone A, Plavec J. Strand directionality affects cation binding and movement within tetramolecular G-quadruplexes. Nucleic Acids Res 2012; 40:11047-57. [PMID: 22977177 PMCID: PMC3510487 DOI: 10.1093/nar/gks851] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nuclear magnetic resonance study of G-quadruplex structures formed by d(TG3T) and its modified analogs containing a 5′-5′ or 3′-3′ inversion of polarity sites, namely d(3′TG5′-5′G2T3′), d(3′T5′-5′G3T3′) and d(5′TG3′-3′G2T5’) demonstrates formation of G-quadruplex structures with tetrameric topology and distinct cation-binding preferences. All oligonucleotides are able to form quadruplex structures with two binding sites, although the modified oligonucleotides also form, in variable amounts, quadruplex structures with only one bound cation. The inter-quartet cavities at the inversion of polarity sites bind ammonium ions less tightly than a naturally occurring 5′-3′ backbone. Exchange of 15 ions between G-quadruplex and bulk solution is faster at the 3′-end in comparison to the 5′-end. In addition to strand directionality, cation movement is influenced by formation of an all-syn G-quartet. Formation of such quartet has been observed also for the parent d(TG3T) that besides the canonical quadruplex with only all-anti G-quartets, forms a tetramolecular parallel quadruplex containing one all-syn G-quartet, never observed before in unmodified quadruplex structures.
Collapse
Affiliation(s)
- Primoz Šket
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| | | | | | | | | |
Collapse
|
33
|
G-ruption: the third international meeting on G-quadruplex and G-assembly. Biochimie 2012; 94:2475-83. [PMID: 22974982 DOI: 10.1016/j.biochi.2012.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/04/2012] [Indexed: 12/31/2022]
Abstract
A three and a half day conference focusing on nucleic acid structures called G-quadruplexes (G4s) and other guanine-based assemblies was held in Sorrento, Italy (June 28-July 1, 2011) and featured 35 invited talks and over 89 posters. The G-quadruplex field continues to expand at an explosive rate with the emergence of new connections to biology, chemistry, physics, and nanotechnology. Following the trend established by the previous two international G4 meetings, the conference touched upon all these areas and facilitated productive exchanges of ideas between researchers from all over the world.
Collapse
|
34
|
Virgilio A, Esposito V, Citarella G, Mayol L, Galeone A. Structural investigations on the anti-HIV G-quadruplex-forming oligonucleotide TGGGAG and its analogues: evidence for the presence of an A-tetrad. Chembiochem 2012; 13:2219-24. [PMID: 22945376 DOI: 10.1002/cbic.201200481] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Indexed: 11/07/2022]
Abstract
Several anti-HIV aptamers adopt DNA quadruplex structures. Among these, "Hotoda's aptamer" (base sequence TGGGAG) was one of the first to be discovered. Although it has been the topic of some recent research, no detailed structural investigations have been reported. Here we report structural investigations on this aptamer and analogues with related sequences, by using UV, CD, and NMR spectroscopy as well as electrophoretic techniques. The addition of a 3'-end thymine has allowed us to obtain a single, investigable quadruplex structure. Data clearly point to the presence of an A-tetrad. Furthermore, the effects of the incorporation of an 8-methyl-2'-deoxyguanosine at the 5'-end of the G-run were investigated.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | |
Collapse
|
35
|
Ferreira R, Alvira M, Aviñó A, Gómez-Pinto I, González C, Gabelica V, Eritja R. Synthesis and structural characterization of stable branched DNA g-quadruplexes using the trebler phosphoramidite. ChemistryOpen 2012; 1:106-14. [PMID: 24551498 PMCID: PMC3922461 DOI: 10.1002/open.201200009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Indexed: 01/17/2023] Open
Abstract
Guanine (G)-rich sequences can form a noncanonical four-stranded structure known as the G-quadruplex. G-quadruplex structures are interesting because of their potential biological properties and use in nanosciences. Here, we describe a method to prepare highly stable G-quadruplexes by linking four G-rich DNA strands to form a monomolecular G-quadruplex. In this method, one strand is synthesized first, and then a trebler molecule is added to simultaneously assemble the remaining three strands. This approach allows the introduction of specific modifications in only one of the strands. As a proof of concept, we prepared a quadruplex where one of the chains includes a change in polarity. A hybrid quadruplex is observed in ammonium acetate solutions, whereas in the presence of sodium or potassium, a parallel G-quadruplex structure is formed. In addition to the expected monomolecular quadruplexes, we observed the presence of dimeric G-quadruplex structures. We also applied the method to prepare G-quadruplexes containing a single 8-aminoguanine substitution and found that this single base stabilizes the G-quadruplex structure when located at an internal position.
Collapse
Affiliation(s)
- Rubén Ferreira
- Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Jordi Girona 18-26, 08034 Barcelona (Spain) ; Department of Chemistry and Molecular Pharmacology, Institute for Research in Biomedicine (IRB Barcelona) Baldiri i Reixac 10, 08028 Barcelona (Spain)
| | - Margarita Alvira
- Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Jordi Girona 18-26, 08034 Barcelona (Spain) ; Department of Chemistry and Molecular Pharmacology, Institute for Research in Biomedicine (IRB Barcelona) Baldiri i Reixac 10, 08028 Barcelona (Spain)
| | - Anna Aviñó
- Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Jordi Girona 18-26, 08034 Barcelona (Spain) ; Department of Chemistry and Molecular Pharmacology, Institute for Research in Biomedicine (IRB Barcelona) Baldiri i Reixac 10, 08028 Barcelona (Spain)
| | - Irene Gómez-Pinto
- Departmento de Química Física Biológica, Instituto de Química Física 'Rocasolano' CSIC, Serrano 119, 28006 Madrid (Spain)
| | - Carlos González
- Departmento de Química Física Biológica, Instituto de Química Física 'Rocasolano' CSIC, Serrano 119, 28006 Madrid (Spain)
| | - Valérie Gabelica
- Department of Chemistry, University of Liège Allée de la Chimie Building B6c, 4000 Liège (Belgium)
| | - Ramon Eritja
- Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Jordi Girona 18-26, 08034 Barcelona (Spain) ; Department of Chemistry and Molecular Pharmacology, Institute for Research in Biomedicine (IRB Barcelona) Baldiri i Reixac 10, 08028 Barcelona (Spain)
| |
Collapse
|
36
|
Clark GR, Pytel PD, Squire CJ. The high-resolution crystal structure of a parallel intermolecular DNA G-4 quadruplex/drug complex employing syn glycosyl linkages. Nucleic Acids Res 2012; 40:5731-8. [PMID: 22373921 PMCID: PMC3384316 DOI: 10.1093/nar/gks193] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We have determined the X-ray structure of the complex between the DNA quadruplex d(5′-GGGG-3′)4 and daunomycin, as a potential model for studying drug–telomere interactions. The structure was solved at 1.08 Å by direct methods in space group I4. The asymmetric unit comprises a linear arrangement of one d(GGGG) strand, four daunomycin molecules, a second d(GGGG) strand facing in the opposite direction to the first, and Na and Mg cations. The crystallographic 4-fold axis generates the biological unit, which is a 12-layered structure comprising two sets of four guanine layers, with four layers each of four daunomycins stacked between the 5′ faces of the two quadruplexes. The daunomycin layers fall into two groups which are novel in their mode of self assembly. The only contacts between daunomycin molecules within any one of these layers are van der Waals interactions, however there is substantial π–π stacking between successive daunomycin layers and also with adjacent guanine layers. The structure differs significantly from all other parallel d(TGGGGT)4 quadruplexes in that the 5′ guanine adopts the unusual syn glycosyl linkage, refuting the widespread belief that such conformations should all be anti. In contrast to the related d(TGGGGT)/daunomycin complex, there are no ligand–quadruplex groove insertion interactions.
Collapse
Affiliation(s)
- George R Clark
- Chemistry Department and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1044, New Zealand.
| | | | | |
Collapse
|
37
|
Nagesh N, Ganesh Kumar A. Interaction of TMPyP4, TMPyP3, and TMPyP2 with Intramolecular G-Quadruplex Formed by Promoter Region of Bcl2 and KRAS NHPPE. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/786596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Oncogenes are rich in guanine and capable of forming quadruplex structure. Promoter regions oncogenes such as Bcl2 and KRAS NHPPE are rich in guanine content and they can form quadruplex structures. Alterations in the mode and nature of molecular binding to DNA, certainly has effect on the posttranscriptional activities. Recent experiments indicate that structure of quadruplex complex and ligand has predominant role on ligand-quadruplex DNA interaction. In order to understand the nature of each ligand interaction with quadruplex DNA, Bcl2, KRAS NHPPE quadruplex DNA interaction with three porphyrin was studied using spectroscopy, microcalorimetry and mass spectrometry. Our studies, indicate that mode of ligand interaction varies with structure, environment and concentration of ligand. Fluorescence quenching experiments show that TMPyP4 interaction is ligand concentration dependent. Job plots and ITC experiments demonstrate that four molecules of TMPyP4 and two molecules of TMPyP3, TMPyP2 interact with each quadruplex complex. Through ITC titrations, ligand binding constant are higher for TMPyP4 (≈107 M−1) compared to TMPyP3, TMPyP2 (≈105 M−1). ESI-MS experiments confirm the stoichiometry of TMPyP4 : 39Bcl2 is 4 : 1 at saturation and it is 2 : 1 in case of KRAS NHPPE quadruplex.
Collapse
Affiliation(s)
- Narayana Nagesh
- Department of Medicinal Chemistry, Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | | |
Collapse
|
38
|
Lech CJ, Cheow Lim JK, Wen Lim JM, Amrane S, Heddi B, Phan AT. Effects of site-specific guanine C8-modifications on an intramolecular DNA G-quadruplex. Biophys J 2012; 101:1987-98. [PMID: 22004753 DOI: 10.1016/j.bpj.2011.08.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 08/15/2011] [Accepted: 08/19/2011] [Indexed: 10/16/2022] Open
Abstract
Understanding the fundamentals of G-quadruplex formation is important both for targeting G-quadruplexes formed by natural sequences and for engineering new G-quadruplexes with desired properties. Using a combination of experimental and computational techniques, we have investigated the effects of site-specific substitution of a guanine with C8-modified guanine derivatives, including 8-bromo-guanine, 8-O-methyl-guanine, 8-amino-guanine, and 8-oxo-guanine, within a well-defined (3 + 1) human telomeric G-quadruplex platform. The effects of substitutions on the stability of the G-quadruplex were found to depend on the type and position of the modification among different guanines in the structure. An interesting modification-dependent NMR chemical-shift effect was observed across basepairing within a guanine tetrad. This effect was reproduced by ab initio quantum mechanical computations, which showed that the observed variation in imino proton chemical shift is largely influenced by changes in hydrogen-bond geometry within the guanine tetrad.
Collapse
|
39
|
|
40
|
Abstracts7th Annual Meeting of the Oligonucleotide Therapeutics SocietyCopenhagen, DenmarkSeptember 8–10, 2011. Nucleic Acid Ther 2011. [DOI: 10.1089/nat.2011.1502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Virgilio A, Esposito V, Citarella G, Pepe A, Mayol L, Galeone A. The insertion of two 8-methyl-2'-deoxyguanosine residues in tetramolecular quadruplex structures: trying to orientate the strands. Nucleic Acids Res 2011; 40:461-75. [PMID: 21908403 PMCID: PMC3245916 DOI: 10.1093/nar/gkr670] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this article, we report a structural study, based on NMR and CD spectroscopies, and molecular modelling of all possible d(TG3T) and d(TG4T) analogues containing two 8-methyl-2′-deoxyguanosine residues (M). Particularly, the potential ability of these modified residues to orientate the strands and then to affect the folding topology of tetramolecular quadruplex structures has been investigated. Oligodeoxynucleotides (ODNs) TMMGT (T12) and TMMGGT (F12) form parallel tetramolecular quadruplexes, characterized by an all-syn M-tetrad at the 5′-side stacked to all-anti M- and G-tetrads. ODNs TMGMT (T13) and TMGGMT (F14) form parallel tetramolecular quadruplexes, in which an all-anti G core is sandwiched between two all-syn M-tetrads at the 5′- and the 3′-side. Notably, the quadruplex formed by T13 corresponds to an unprecedented structure in which the syn residues exceed in number the anti ones. Conversely, ODN TGMGMT (F24) adopts a parallel arrangement in which all-anti G-tetrads alternate with all-syn M-tetrads. Most importantly, all data strongly suggest that ODN TMGMGT (F13) forms an unprecedented anti-parallel tetramolecular quadruplex in which G and M residues adopt anti and syn glycosidic conformations, respectively. This article opens up new understandings and perspectives about the intricate relationship between the quadruplex strands orientation and the glycosidic conformation of the residues.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
In contrast to B-DNA that has a right-handed double helical structure with Watson-Crick base pairing under the ordinary physiological conditions, repetitive DNA sequences under certain conditions have the potential to fold into non-B DNA structures such as hairpin, triplex, cruciform, left-handed Z-form, tetraplex, A-motif, etc. Since the non-B DNA-forming sequences induce the genetic instability and consequently can cause human diseases, the molecular mechanism for their genetic instability has been extensively investigated. On the contrary, non-B DNA can be widely used for application in biotechnology because many DNA breakage hotspots are mapped in or near the sequences that have the potential to adopt non-B DNA structures. In addition, they are regarded as a fascinating material for the nanotechnology using non-B DNAs because they do not produce any toxic byproducts and are robust enough for the repetitive working cycle. This being the case, an understanding on the mechanism and dynamics of their structural changes is important. In this critical review, we describe the latest studies on the conformational dynamics of non-B DNAs, with a focus on G-quadruplex, i-motif, Z-DNA, A-motif, hairpin and triplex (189 references).
Collapse
Affiliation(s)
- Jungkweon Choi
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| | | |
Collapse
|
43
|
Virgilio A, Esposito V, Citarella G, Mangoni A, Mayol L, Galeone A. Unprecedented right- and left-handed quadruplex structures formed by heterochiral oligodeoxyribonucleotides. Biochimie 2011; 93:1193-6. [PMID: 21527307 DOI: 10.1016/j.biochi.2011.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
CD and NMR studies on heterochiral oligodeoxynucleotides (d/l-ODNs) forming quadruplex structures are reported. Heterochiral ODNs, based on sequence TGGGGT, are able to form stable either right- or left-handed quadruplexes depending on d/l ratio and residues position. Results suggest that the 3'-end and the core of the G-run are more important than the 5'-end in determining the quadruplex handness. Particularly, oligonucleotide T(D)G(D)G(L)G(L)G(D)T(D) (L34) at low temperatures forms a well-defined left-handed quadruplex, notwithstanding it is mostly composed by natural d residues. This structure is characterized by three all-anti G-tetrads and one all-syn G-tetrad.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, Naples, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Venkatesh V, Kumar J, Verma S. Adenine containing architectures from silver supported dimeric units. CrystEngComm 2011. [DOI: 10.1039/c1ce05696d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|