1
|
Negrutskii BS, Porubleva LV, Malinowska A, Novosylna OV, Dadlez M, Knudsen CR. Understanding functions of eEF1 translation elongation factors beyond translation. A proteomic approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:67-99. [PMID: 38220433 DOI: 10.1016/bs.apcsb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Mammalian translation elongation factors eEF1A1 and eEF1A2 are 92% homologous isoforms whose mutually exclusive tissue-specific expression is regulated during development. The isoforms have similar translation functionality, but show differences in spatial organization and participation in various processes, such as oncogenesis and virus reproduction. The differences may be due to their ability to interact with isoform-specific partner proteins. We used the identified sets of eEF1A1 or eEF1A2 partner proteins to identify cell complexes and/or processes specific to one particular isoform. As a result, we found isoform-specific interactions reflecting the involvement of different eEF1A isoforms in different cellular processes, including actin-related, chromatin-remodeling, ribonuclease H2, adenylyl cyclase, and Cul3-RING ubiquitin ligase complexes as well as initiation of mitochondrial transcription. An essential by-product of our analysis is the elucidation of a number of cellular processes beyond protein biosynthesis, where both isoforms appear to participate such as large ribosomal subunit biogenesis, mRNA splicing, DNA mismatch repair, 26S proteasome activity, P-body and exosomes formation, protein targeting to the membrane. This information suggests that a relatively high content of eEF1A in the cell may be necessary not only to maintain efficient translation, but also to ensure its participation in various cellular processes, where some roles of eEF1A have not yet been described. We believe that the data presented here will be useful for deciphering new auxiliary functions of eEF1A and its isoforms, and provide a new look at the known non-canonical functions of this main component of the human translation-elongation machinery.
Collapse
Affiliation(s)
- Boris S Negrutskii
- Institute of Molecular Biology and Genetics, Kyiv, Ukraine; Aarhus Institute of Advanced Sciences, Høegh-Guldbergs, Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen, Aarhus C, Denmark.
| | | | - Agata Malinowska
- Institute of Biochemistry and Biophysics, PAN, Pawinskiego, Warsaw, Poland
| | | | - Michal Dadlez
- Institute of Biochemistry and Biophysics, PAN, Pawinskiego, Warsaw, Poland
| | - Charlotte R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen, Aarhus C, Denmark
| |
Collapse
|
2
|
Prasad K, Gour P, Raghuvanshi S, Kumar V. The SARS-CoV-2 targeted human RNA binding proteins network biology to investigate COVID-19 associated manifestations. Int J Biol Macromol 2022; 217:853-863. [PMID: 35907451 PMCID: PMC9328843 DOI: 10.1016/j.ijbiomac.2022.07.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 virus has had unprecedented social and economic ramifications. Identifying targets for drug repurposing could be an effective means to present new and fast treatments. Furthermore, the risk of morbidity and mortality from COVID-19 goes up when there are coexisting medical conditions, however, the underlying mechanisms remain unclear. In the current study, we have adopted a network-based systems biology approach to investigate the RNA binding proteins (RBPs)-based molecular interplay between COVID-19, various human cancers, and neurological disorders. The network based on RBPs commonly involved in the three disease conditions consisted of nine RBPs connecting 10 different cancer types, 22 brain disorders, and COVID-19 infection, ultimately hinting at the comorbidities and complexity of COVID-19. Further, we underscored five miRNAs with reported antiviral properties that target all of the nine shared RBPs and are thus therapeutically valuable. As a strategy to improve the clinical conditions in comorbidities associated with COVID-19, we propose perturbing the shared RBPs by drug repurposing. The network-based analysis presented hereby contributes to a better knowledge of the molecular underpinnings of the comorbidities associated with COVID-19.
Collapse
Affiliation(s)
- Kartikay Prasad
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP 201303, India
| | - Pratibha Gour
- Dept. of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
| | - Saurabh Raghuvanshi
- Dept. of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India.
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP 201303, India.
| |
Collapse
|
3
|
Larsson M, Rudqvist NP, Spetz J, Parris TZ, Langen B, Helou K, Forssell-Aronsson E. Age-related long-term response in rat thyroid tissue and plasma after internal low dose exposure to 131I. Sci Rep 2022; 12:2107. [PMID: 35136135 PMCID: PMC8825795 DOI: 10.1038/s41598-022-06071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022] Open
Abstract
131I is used clinically for therapy, and may be released during nuclear accidents. After the Chernobyl accident papillary thyroid carcinoma incidence increased in children, but not adults. The aims of this study were to compare 131I irradiation-dependent differences in RNA and protein expression in the thyroid and plasma of young and adult rats, and identify potential age-dependent biomarkers for 131I exposure. Twelve young (5 weeks) and twelve adult Sprague Dawley rats (17 weeks) were i.v. injected with 50 kBq 131I (absorbed dose to thyroid = 0.1 Gy), and sixteen unexposed age-matched rats were used as controls. The rats were killed 3-9 months after administration. Microarray analysis was performed using RNA from thyroid samples, while LC-MS/MS analysis was performed on proteins extracted from thyroid tissue and plasma. Canonical pathways, biological functions and upstream regulators were analysed for the identified transcripts and proteins. Distinct age-dependent differences in gene and protein expression were observed. Novel biomarkers for thyroid 131I exposure were identified: (PTH), age-dependent dose response (CA1, FTL1, PVALB (youngsters) and HSPB6 (adults)), thyroid function (Vegfb (adults)). Further validation using clinical samples are needed to explore the role of the identified biomarkers.
Collapse
Affiliation(s)
- Malin Larsson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden.
| | - Nils-Petter Rudqvist
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson, Houston, TX, 77030, USA
- Department of Immunology, University of Texas MD Anderson, Houston, TX, 77030, USA
| | - Johan Spetz
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Britta Langen
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
- UT Department of Radiation Oncology, Division of Molecular Radiation Biology, UT Southwestern Medical Center, 2201 Inwood Rd., Dallas, TX, 75390, USA
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| |
Collapse
|
4
|
Helderman TA, Deurhof L, Bertran A, Boeren S, Fokkens L, Kormelink R, Joosten MHAJ, Prins M, van den Burg HA. An Isoform of the Eukaryotic Translation Elongation Factor 1A (eEF1a) Acts as a Pro-Viral Factor Required for Tomato Spotted Wilt Virus Disease in Nicotiana benthamiana. Viruses 2021; 13:2190. [PMID: 34834996 PMCID: PMC8619209 DOI: 10.3390/v13112190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
The tripartite genome of the negative-stranded RNA virus Tomato spotted wilt orthotospovirus (TSWV) is assembled, together with two viral proteins, the nucleocapsid protein and the RNA-dependent RNA polymerase, into infectious ribonucleoprotein complexes (RNPs). These two viral proteins are, together, essential for viral replication and transcription, yet our knowledge on the host factors supporting these two processes remains limited. To fill this knowledge gap, the protein composition of viral RNPs collected from TSWV-infected Nicotiana benthamiana plants, and of those collected from a reconstituted TSWV replicon system in the yeast Saccharomyces cerevisiae, was analysed. RNPs obtained from infected plant material were enriched for plant proteins implicated in (i) sugar and phosphate transport and (ii) responses to cellular stress. In contrast, the yeast-derived viral RNPs primarily contained proteins implicated in RNA processing and ribosome biogenesis. The latter suggests that, in yeast, the translational machinery is recruited to these viral RNPs. To examine whether one of these cellular proteins is important for a TSWV infection, the corresponding N. benthamiana genes were targeted for virus-induced gene silencing, and these plants were subsequently challenged with TSWV. This approach revealed four host factors that are important for systemic spread of TSWV and disease symptom development.
Collapse
Affiliation(s)
- Tieme A. Helderman
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (T.A.H.); (L.F.); (M.P.)
| | - Laurens Deurhof
- Laboratory of Phytopathology, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (L.D.); (M.H.A.J.J.)
| | - André Bertran
- Laboratory of Virology, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.B.); (R.K.)
| | - Sjef Boeren
- Laboratory of Biochemistry, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
| | - Like Fokkens
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (T.A.H.); (L.F.); (M.P.)
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.B.); (R.K.)
| | - Matthieu H. A. J. Joosten
- Laboratory of Phytopathology, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (L.D.); (M.H.A.J.J.)
| | - Marcel Prins
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (T.A.H.); (L.F.); (M.P.)
- KeyGene N.V., Agro Business Park 90, 6708 PW Wageningen, The Netherlands
| | - Harrold A. van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (T.A.H.); (L.F.); (M.P.)
| |
Collapse
|
5
|
Carriles AA, Mills A, Muñoz-Alonso MJ, Gutiérrez D, Domínguez JM, Hermoso JA, Gago F. Structural Cues for Understanding eEF1A2 Moonlighting. Chembiochem 2020; 22:374-391. [PMID: 32875694 DOI: 10.1002/cbic.202000516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/01/2020] [Indexed: 12/16/2022]
Abstract
Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIβ. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the "canonical" one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.
Collapse
Affiliation(s)
- Alejandra A Carriles
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano" CSIC, 28006, Madrid, Spain.,Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132, Milan, Italy
| | - Alberto Mills
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - María-José Muñoz-Alonso
- Department of Cell Biology and Pharmacogenomics, PharmaMar S.A.U., 28770, Colmenar Viejo, Madrid, Spain
| | - Dolores Gutiérrez
- Proteomics Unit, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Juan M Domínguez
- Department of Cell Biology and Pharmacogenomics, PharmaMar S.A.U., 28770, Colmenar Viejo, Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano" CSIC, 28006, Madrid, Spain
| | - Federico Gago
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
6
|
Structural rationale for the cross-resistance of tumor cells bearing the A399V variant of elongation factor eEF1A1 to the structurally unrelated didemnin B, ternatin, nannocystin A and ansatrienin B. J Comput Aided Mol Des 2017; 31:915-928. [DOI: 10.1007/s10822-017-0066-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/08/2017] [Indexed: 01/24/2023]
|
7
|
Wang WX, Zhu TH, Li KL, Chen LF, Lai FX, Fu Q. Molecular characterization, expression analysis and RNAi knock-down of elongation factor 1α and 1γ from Nilaparvata lugens and its yeast-like symbiont. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:303-312. [PMID: 27809951 DOI: 10.1017/s0007485316000882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the present paper, four cDNAs encoding the alpha and gamma subunits of elongation factor 1 (EF-1) were cloned and sequenced from Nilaparvata lugens, named NlEF-1α, NlEF-1γ, and its yeast-like symbiont (YLS), named YsEF-1α and YsEF-1γ, respectively. Comparisons with sequences from other species indicated a greater conservation for EF-1α than for EF-1γ. NlEF-1α has two identical copies. The deduced amino acid sequence homology of NlEF-1α and NlEF-1γ is 96 and 64%, respectively, compared with Homalodisca vitripennis and Locusta migratoria. The deduced amino acid sequence homology of YsEF-1α and YsEF-1γ is 96 and 74%, respectively, compared with Metarhizium anisopliae and Ophiocordyceps sinensis. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis revealed that the expression level of NlEF-1α and NlEF-1γ mRNA in hemolymph, ovary, fat body and salivary glands were higher than the midgut and leg tissue. YsEF-1α and YsEF-1γ was highly expressed in fat body. The expression level of NlEF-1α was higher than that of NlEF-1γ. Through RNA interference (RNAi) of the two genes, the mortality of nymph reached 92.2% at the 11th day after treatment and the ovarian development was severely hindered. The RT-qPCR analysis verified the correlation between mortality, sterility and the down-regulation of the target genes. The expression and synthesis of vitellogenin (Vg) protein in insects injected with NlEF-1α and NlEF-1γ double-stranded RNA (dsRNA) was significantly lower than control groups. Attempts to knockdown the YsEF-1 genes in the YLS was unsuccessful. However, the phenotype of N. lugens injected with YsEF-1α dsRNA was the same as that injected with NlEF-1α dsRNA, possibly due to the high similarity (up to 71.9%) in the nucleotide sequences between NlEF-1α and YsEF-1α. We demonstrated that partial silencing of NlEF-1α and NlEF-1γ genes caused lethal and sterility effect on N. lugens. NlEF-1γ shares low identity with that of other insects and therefore it could be a potential target for RNAi-based pest management.
Collapse
Affiliation(s)
- W X Wang
- State Key Laboratory of Rice Biology,China National Rice Research Institute,Tiyuchang Road 359, Hangzhou, Zhejiang, 310006,People's Republic of China
| | - T H Zhu
- College of Biological and Environmental Engineering,Zhejiang University of Technology,Chaowang Road,Hangzhou,Zhejiang, 310014,People's Republic of China
| | - K L Li
- State Key Laboratory of Rice Biology,China National Rice Research Institute,Tiyuchang Road 359, Hangzhou, Zhejiang, 310006,People's Republic of China
| | - L F Chen
- State Key Laboratory of Rice Biology,China National Rice Research Institute,Tiyuchang Road 359, Hangzhou, Zhejiang, 310006,People's Republic of China
| | - F X Lai
- State Key Laboratory of Rice Biology,China National Rice Research Institute,Tiyuchang Road 359, Hangzhou, Zhejiang, 310006,People's Republic of China
| | - Q Fu
- State Key Laboratory of Rice Biology,China National Rice Research Institute,Tiyuchang Road 359, Hangzhou, Zhejiang, 310006,People's Republic of China
| |
Collapse
|
8
|
G-Quadruplex in the NRF2 mRNA 5' Untranslated Region Regulates De Novo NRF2 Protein Translation under Oxidative Stress. Mol Cell Biol 2016; 37:MCB.00122-16. [PMID: 27736771 DOI: 10.1128/mcb.00122-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/27/2016] [Indexed: 12/26/2022] Open
Abstract
Inhibition of protein synthesis serves as a general measure of cellular consequences of chemical stress. A few proteins are translated selectively and influence cell fate. How these proteins can bypass the general control of translation remains unknown. We found that low to mild doses of oxidants induce de novo translation of the NRF2 protein. Here we demonstrate the presence of a G-quadruplex structure in the 5' untranslated region (UTR) of NRF2 mRNA, as measured by circular dichroism, nuclear magnetic resonance, and dimethylsulfate footprinting analyses. Such a structure is important for 5'-UTR activity, since its removal by sequence mutation eliminated H2O2-induced activation of the NRF2 5' UTR. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics revealed elongation factor 1 alpha (EF1a) as a protein binding to the G-quadruplex sequence. Cells responded to H2O2 treatment by increasing the EF1a protein association with NRF2 mRNA, as measured by RNA-protein interaction assays. The EF1a interaction with small and large subunits of ribosomes did not appear to change due to H2O2 treatment, nor did posttranslational modifications, as measured by two-dimensional (2-D) Western blot analysis. Since NRF2 encodes a transcription factor essential for protection against tissue injury, our data have revealed a novel mechanism of cellular defense involving de novo NRF2 protein translation governed by the EF1a interaction with the G-quadruplex in the NRF2 5' UTR during oxidative stress.
Collapse
|
9
|
Robin JD, Ludlow AT, Batten K, Gaillard MC, Stadler G, Magdinier F, Wright WE, Shay JW. SORBS2 transcription is activated by telomere position effect-over long distance upon telomere shortening in muscle cells from patients with facioscapulohumeral dystrophy. Genome Res 2015; 25:1781-90. [PMID: 26359233 PMCID: PMC4665000 DOI: 10.1101/gr.190660.115] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/09/2015] [Indexed: 01/05/2023]
Abstract
DNA is organized into complex three-dimensional chromatin structures, but how this spatial organization regulates gene expression remains a central question. These DNA/chromatin looping structures can range in size from 10-20 kb (enhancers/repressors) to many megabases during intra- and inter-chromosomal interactions. Recently, the influence of telomere length on chromatin organization prior to senescence has revealed the existence of long-distance chromatin loops that dictate the expression of genes located up to 10 Mb from the telomeres (Telomere Position Effect-Over Long Distances [TPE-OLD]). Here, we demonstrate the existence of a telomere loop at the 4q35 locus involving the sorbin and SH3 domain-containing protein 2 gene, SORBS2, a skeletal muscle protein using a modification of the chromosome conformation capture method. The loop reveals a cis-acting mechanism modifying SORBS2 transcription. The expression of this gene is altered by TPE-OLD in myoblasts from patients affected with the age-associated genetic disease, facioscapulohumeral muscular dystrophy (FSHD1A, MIM 158900). SORBS2 is expressed in FSHD myoblasts with short telomeres, while not detectable in FSHD myoblasts with long telomeres or in healthy myoblasts regardless of telomere length. This indicates that TPE-OLD may modify the regulation of the 4q35 locus in a pathogenic context. Upon differentiation, both FSHD and healthy myotubes express SORBS2, suggesting that SORBS2 is normally up-regulated by maturation/differentiation of skeletal muscle and is misregulated by TPE-OLD-dependent variegation in FSHD myoblasts. These findings provide additional insights for the complexity and age-related symptoms of FSHD.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Biopsy
- Chromosome Deletion
- Chromosomes, Human, Pair 4
- DNA Methylation
- Epistasis, Genetic
- Gene Expression Regulation
- Genetic Loci
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- In Situ Hybridization, Fluorescence
- Muscle Cells/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Facioscapulohumeral/genetics
- Muscular Dystrophy, Facioscapulohumeral/metabolism
- Muscular Dystrophy, Facioscapulohumeral/pathology
- MyoD Protein/genetics
- MyoD Protein/metabolism
- Myoblasts
- RNA-Binding Proteins
- Telomere/genetics
- Telomere Shortening
- Transcriptional Activation
Collapse
Affiliation(s)
- Jérôme D Robin
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Andrew T Ludlow
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kimberly Batten
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | - Guido Stadler
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | - Woodring E Wright
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA; Center for Excellence in Genomics Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Migliaccio N, Ruggiero I, Martucci NM, Sanges C, Arbucci S, Tatè R, Rippa E, Arcari P, Lamberti A. New insights on the interaction between the isoforms 1 and 2 of human translation elongation factor 1A. Biochimie 2015. [PMID: 26212729 DOI: 10.1016/j.biochi.2015.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The eukaryotic translation elongation factor 1A (eEF1A) is a moonlighting protein that besides to its canonical role in protein synthesis is also involved in many other cellular processes such as cell survival and apoptosis. In a previous work, we identified eEF1A Raf-mediated phosphorylation sites and defined their role in the regulation of eEF1A half-life and apoptosis of human cancer cells. We proposed that the phosphorylation of eEF1A by C-Raf required the presence of both eEF1A isoforms thus suggesting the formation of a potential eEF1A heterodimer owning regulatory properties. This study aimed at investigating the cellular localization and interaction between two eEF1A isoforms. To this end, we developed chimera proteins by adding at the N-terminal end of both eEF1A1 and eEF1A2 cyan fluorescence protein (mCerulean) and yellow fluorescence protein (mVenus), respectively. The fluorescent eEF1A1 and eEF1A2 chimeras were both addressed to COS-7 cells and found co-localized in the cytoplasm at the level of cellular membranes. We highlighted FRET between the labeled N-termini of eEF1A isoforms. The intra-molecular FRET of this chimera was about 17%. Our results provide novel information on the intracellular distribution and interaction of eEF1A isoforms.
Collapse
Affiliation(s)
- Nunzia Migliaccio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Immacolata Ruggiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nicola M Martucci
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Carmen Sanges
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Salvatore Arbucci
- Institute of Genetics and Biophysics, Integrated Microscopy Facility, IGB CNR, Naples, Italy
| | - Rosarita Tatè
- Institute of Genetics and Biophysics, Integrated Microscopy Facility, IGB CNR, Naples, Italy
| | - Emilia Rippa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paolo Arcari
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE, Advanced Biotechnology Scarl, Via Gaetano Salvatore 486, I-80145 Naples, Italy.
| | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Vlasenko DO, Novosylna OV, Negrutskii BS, El'skaya AV. Truncation of the A,A∗,A′ helices segment impairs the actin bundling activity of mammalian eEF1A1. FEBS Lett 2015; 589:1187-93. [DOI: 10.1016/j.febslet.2015.03.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 11/26/2022]
|
12
|
Bell MR, Engleka MJ, Malik A, Strickler JE. To fuse or not to fuse: what is your purpose? Protein Sci 2013; 22:1466-77. [PMID: 24038604 DOI: 10.1002/pro.2356] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 01/13/2023]
Abstract
Since the dawn of time, or at least the dawn of recombinant DNA technology (which for many of today's scientists is the same thing), investigators have been cloning and expressing heterologous proteins in a variety of different cells for a variety of different reasons. These range from cell biological studies looking at protein-protein interactions, post-translational modifications, and regulation, to laboratory-scale production in support of biochemical, biophysical, and structural studies, to large scale production of potential biotherapeutics. In parallel, fusion-tag technology has grown-up to facilitate microscale purification (pull-downs), protein visualization (epitope tags), enhanced expression and solubility (protein partners, e.g., GST, MBP, TRX, and SUMO), and generic purification (e.g., His-tags, streptag, and FLAG™-tag). Frequently, these latter two goals are combined in a single fusion partner. In this review, we examine the most commonly used fusion methodologies from the perspective of the ultimate use of the tagged protein. That is, what are the most commonly used fusion partners for pull-downs, for structural studies, for production of active proteins, or for large-scale purification? What are the advantages and limitations of each? This review is not meant to be exhaustive and the approach undoubtedly reflects the experiences and interests of the authors. For the sake of brevity, we have largely ignored epitope tags although they receive wide use in cell biology for immunopreciptation.
Collapse
Affiliation(s)
- Mark R Bell
- LifeSensors, Inc., Malvern, Pennsylvania, 19083
| | | | | | | |
Collapse
|
13
|
Timchenko AA, Novosylna OV, Prituzhalov EA, Kihara H, El’skaya AV, Negrutskii BS, Serdyuk IN. Different Oligomeric Properties and Stability of Highly Homologous A1 and Proto-Oncogenic A2 Variants of Mammalian Translation Elongation Factor eEF1. Biochemistry 2013; 52:5345-53. [DOI: 10.1021/bi400400r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Oleksandra V. Novosylna
- State Key Laboratory of Molecular
and Cellular Biology, Institute of Molecular Biology and Genetics, NAS of Ukraine, Kiev 03680, Ukraine
| | | | - Hiroshi Kihara
- Department of Physics, Kansai Medical University, Hirakata, Osaka 573-1136,
Japan
| | - Anna V. El’skaya
- State Key Laboratory of Molecular
and Cellular Biology, Institute of Molecular Biology and Genetics, NAS of Ukraine, Kiev 03680, Ukraine
| | - Boris S. Negrutskii
- State Key Laboratory of Molecular
and Cellular Biology, Institute of Molecular Biology and Genetics, NAS of Ukraine, Kiev 03680, Ukraine
| | - Igor N. Serdyuk
- Institute of Protein Research, RAS, Pushchino 142290, Russia
| |
Collapse
|
14
|
Scaggiante B, Dapas B, Pozzato G, Grassi G. The more basic isoform of eEF1A relates to tumour cell phenotype and is modulated by hyper-proliferative/differentiating stimuli in normal lymphocytes and CCRF-CEM T-lymphoblasts. Hematol Oncol 2013; 31:110-6. [PMID: 22930480 DOI: 10.1002/hon.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/26/2012] [Accepted: 07/07/2012] [Indexed: 02/05/2023]
Abstract
The elongation factor 1A proteins (eEF1A1/A2) are known to play a role in tumours. We previously found that a more basic isoform of eEF1A (MBI-eEF1A) is present in the cytoskeletal/nuclear-enriched extracts of CCRF-CEM T-lymphoblasts but not in those of normal lymphocytes. To obtain deeper knowledge about MBI-eEF1A biology, we investigate from which of the eEF1A proteins, eEF1A1 or eEF1A2, MBI-eEF1A originates and the possibility that its appearance can be modulated by the differentiated or proliferative cell status. CCRF-CEM T-lymphoblasts and normal lymphocytes were cultured with or without differentiation/pro-proliferative stimuli (Phorbol 12-Myristate 13-Acetate (PMA) alone or the combination of phytohaemagglutinin (PHA) with PMA, respectively), and the presence of MBI-eEF1A evaluated together with that of the eEF1A1/A2 mRNAs. Our data indicate that the MBI-eEF1A may derive from eEF1A1 as eEF1A2 is not expressed in CCRF-CEM and normal lymphocytes. Moreover, MBI-eEF1A is inducible in normal lymphocytes upon hyper-proliferative stimuli application; in CCRF-CEM, its presence can be abrogated by PMA-induced differentiation. Finally, MBI-eEF1A may have a functional role in hyper-proliferating/tumour cells as its disappearance reduces the growth of CCRF-CEM and that of PHA/PMA-stimulated lymphocytes. The presented data suggest that MBI-eEF1A may be related to oncogenic cell phenotype, rising the possibility to use MBI-eEF1A as target for novel therapeutic strategies.
Collapse
Affiliation(s)
- Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| | | | | | | |
Collapse
|
15
|
Negrutskii B, Vlasenko D, El'skaya A. From global phosphoproteomics to individual proteins: the case of translation elongation factor eEF1A. Expert Rev Proteomics 2012; 9:71-83. [PMID: 22292825 DOI: 10.1586/epr.11.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phosphoproteomics is often aimed at deciphering the modified components of signaling pathways in certain organisms, tissues and pathologies. Phosphorylation of housekeeping proteins, albeit important, usually attracts less attention. Here, we provide targeted analysis of eukaryotic translation elongation factor 1A (eEF1A), which is the main element of peptide elongation machinery. There are 97% homologous A1 and A2 isoforms of eEF1A; their expression in mammalian tissues is mutually exclusive and differentially regulated in development. The A2 isoform reveals proto-oncogenic properties and specifically interacts with some cellular proteins. Several tyrosine residues shown experimentally to be phosphorylated in eEF1A1 are hardly solution accessible, so their phosphorylation could be linked with structural rearrangement of the protein molecule. The possible role of tyrosine phosphorylation in providing the background for structural differences between the 'extended' A1 isoform and the compact oncogenic A2 isoform is discussed. The 'road map' for targeted analysis of any protein of interest using phosphoproteomics data is presented.
Collapse
Affiliation(s)
- Boris Negrutskii
- Institute of Molecular Biology & Genetics, National Academy of Sciences of Ukraine, Kiev, 03680, Ukraine.
| | | | | |
Collapse
|