1
|
Irrera P, Roberto M, Consolino L, Anemone A, Villano D, Navarro-Tableros V, Carella A, Dastrù W, Aime S, Longo DL. Effect of Esomeprazole Treatment on Extracellular Tumor pH in a Preclinical Model of Prostate Cancer by MRI-CEST Tumor pH Imaging. Metabolites 2022; 13:metabo13010048. [PMID: 36676972 PMCID: PMC9866131 DOI: 10.3390/metabo13010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Novel anticancer treatments target the pH regulating system that plays a major role in tumor progression by creating an acidic microenvironment, although few studies have addressed their effect on tumor acidosis. In this study, we investigated in vivo several proton pump inhibitors (PPIs) targeting NHE-1 (Amiloride and Cariporide) and V-ATPase (Esomeprazole and Lansoprazole) proton transporters in the DU145 androgen-insensitive human prostate cancer model. In cellulo results showed that DU145 are sensitive, with decreasing efficacy, to Amiloride, Esomeprazole and Lansoprazole, with marked cell toxicity both in normoxia and in hypoxia, with almost any change in pH. In vivo studies were performed upon administration of Esomeprazole to assess both the acute and chronic effects, and Iopamidol-based tumor pH imaging was performed to evaluate tumor acidosis. Although statistically significant tumor pH changes were observed a few hours after Esomeprazole administration in both the acute study and up to one week of treatment in the chronic study, longer treatment resulted in a lack of changes in tumor acidosis, which was associated to similar tumor growth curves between treated and control groups in both the subcutaneous and orthotopic models. Overall, this study highlights MRI-CEST tumor pH imaging as a valid approach to monitoring treatment response to PPIs.
Collapse
Affiliation(s)
- Pietro Irrera
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Turin, Italy
| | - Miriam Roberto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Lorena Consolino
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074 Aachen, Germany
| | - Annasofia Anemone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Daisy Villano
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Victor Navarro-Tableros
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Antonella Carella
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Turin, Italy
| | - Walter Dastrù
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | | | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Turin, Italy
- Correspondence:
| |
Collapse
|
2
|
Li B, Liu Y, Sun S. Pump proton inhibitors display anti-tumour potential in glioma. Cell Prolif 2022:e13321. [PMID: 35961680 DOI: 10.1111/cpr.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Glioma is one of the most aggressive brain tumours with poor overall survival despite advanced technology in surgical resection, chemotherapy and radiation. Progression and recurrence are the hinge causes of low survival. Our aim is to explain the concrete mechanism in the proliferation and progression of tumours based on tumour microenvironment (TME). The main purpose is to illustrate the mechanism of proton pump inhibitors (PPIs) in affecting acidity, hypoxia, oxidative stress, inflammatory response and autophagy based on the TME to induce apoptosis and enhance the sensitivity of chemoradiotherapy. FINDINGS TME is the main medium for tumour growth and progression. Acidity, hypoxia, inflammatory response, autophagy, angiogenesis and so on are the main causes of tumour progress. PPIs, as a common clinical drug to inhibit gastric acid secretion, have the advantages of fast onset, long action time and small adverse reactions. Nowadays, several kinds of literature highlight the potential of PPIs in inhibiting tumour progression. However, long-term use of PPIs alone also has obvious side effects. Therefore, till now, how to apply PPIs to promote the effect of radio-chemotherapy and find the concrete dose and concentration of combined use are novel challenges. CONCLUSIONS PPIs display the potential in enhancing the sensitivity of chemoradiotherapy to defend against glioma based on TME. In the clinic, it is also necessary to explore specific concentrations and dosages in synthetic applications.
Collapse
Affiliation(s)
- Bihan Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
3
|
Xiao M, He J, Yin L, Chen X, Zu X, Shen Y. Tumor-Associated Macrophages: Critical Players in Drug Resistance of Breast Cancer. Front Immunol 2022; 12:799428. [PMID: 34992609 PMCID: PMC8724912 DOI: 10.3389/fimmu.2021.799428] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Drug resistance is one of the most critical challenges in breast cancer (BC) treatment. The occurrence and development of drug resistance are closely related to the tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs), the most important immune cells in TIME, are essential for drug resistance in BC treatment. In this article, we summarize the effects of TAMs on the resistance of various drugs in endocrine therapy, chemotherapy, targeted therapy, and immunotherapy, and their underlying mechanisms. Based on the current overview of the key role of TAMs in drug resistance, we discuss the potential possibility for targeting TAMs to reduce drug resistance in BC treatment, By inhibiting the recruitment of TAMs, depleting the number of TAMs, regulating the polarization of TAMs and enhancing the phagocytosis of TAMs. Evidences in our review support it is important to develop novel therapeutic strategies to target TAMs in BC to overcome the treatment of resistance.
Collapse
Affiliation(s)
- Maoyu Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liyang Yin
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiguan Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Goel Y, Yadav S, Pandey SK, Temre MK, Maurya BN, Verma A, Kumar A, Singh SM. Tumor Decelerating and Chemo-Potentiating Action of Methyl Jasmonate on a T Cell Lymphoma In Vivo: Role of Altered Regulation of Metabolism, Cell Survival, Drug Resistance, and Intratumoral Blood Flow. Front Oncol 2021; 11:619351. [PMID: 33718176 PMCID: PMC7947686 DOI: 10.3389/fonc.2021.619351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Methyl jasmonate (MJ), a natural oxylipin, possesses a broad spectrum of antineoplastic potential in vitro. However, its tumor growth impeding and chemo-potentiating action has not been adequately investigated in vivo. Using a murine thymus-derived tumor named Dalton’s Lymphoma (DL), in the present study, we examined if intra-tumoral administration of MJ can cause tumor growth impedance. We also explored the associated molecular mechanisms governing cell survival, carbohydrate & lipid metabolism, chemo-potentiation, and angiogenesis. MJ administration to tumor-transplanted mice caused deceleration of tumor growth accompanying prolonged survival of the tumor-bearing mice. MJ-dependent tumor growth retardation was associated with the declined blood supply in tumor milieu, cell cycle arrest, augmented induction of apoptosis and necrosis, deregulated glucose and lipid metabolism, enhanced membrane fragility of tumor cells, and altered cytokine repertoire in the tumor microenvironment. MJ administration modulated molecular network implicating Hsp70, Bcl-2, TERT, p53, Cyt c, BAX, GLUT-1, HK 2, LDH A, PDK-1, HIF-1α, ROS, MCT-1, FASN, ACSS2, SREBP1c, VEGF, cytokine repertoire, and MDR1, involved in the regulation of cell survival, carbohydrate and fatty acid metabolism, pH homeostasis, and drug resistance. Thus, the present study unveils novel molecular mechanisms of the tumor growth decelerating action of MJ. Besides, this preclinical study also establishes the adjunct therapeutic potential of MJ. Hence, the present investigation will help to design novel anti-cancer therapeutic regimens for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Yugal Goel
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Saveg Yadav
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shrish Kumar Pandey
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mithlesh Kumar Temre
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Babu Nandan Maurya
- Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish Verma
- Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Spugnini EP, Fais S. Drug repurposing for anticancer therapies. A lesson from proton pump inhibitors. Expert Opin Ther Pat 2019; 30:15-25. [PMID: 31847622 DOI: 10.1080/13543776.2020.1704733] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Worldwide, the annual expenditure on anticancer drugs is grossly calculated to be in the order of US$100 billion, and is expected to escalate up to $150 billion by 2020. It is evident that the vast majority of the most recently devised anticancer drugs are unaffordable in economically developing nations, frequently resulting in subpar therapies. In this complex medical and economic scenario, the repurposing of older drugs for anticancer therapies becomes a necessity. The repurposing of antiacid drugs such as the proton pump inhibitors as antitumoral agents and chemosensitizers is probably one of the most recent and promising phenomenon in oncology.Areas covered: Important research articles and patents focusing on proton pump inhibitors as a potential class of therapeutics, published between the period of 2006-2019, have been covered. This review mainly focuses on the therapeutic applications, as direct anticancer agents as well as modifiers of the tumor microenvironment and modulator of chemoresistance.Expert opinion: PPIs have significant anticancer applications and are proving to be safe, effective and inexpensive. Here the authors review the current knowledge regarding the influence of PPIs on the efficacy and safety of cancer chemotherapeutics through the regulation of targets other than the H+/K+-ATPase.
Collapse
Affiliation(s)
| | - Stefano Fais
- Department of Oncology and Molecular Medicine Istituto Superiore di Sanità, National Institute of Health, Rome, Italy
| |
Collapse
|
6
|
Hamy AS, Derosa L, Valdelièvre C, Yonekura S, Opolon P, Priour M, Guerin J, Pierga JY, Asselain B, De Croze D, Pinheiro A, Lae M, Talagrand LS, Laas E, Darrigues L, Grandal B, Marangoni E, Montaudon E, Kroemer G, Zitvogel L, Reyal F. Comedications influence immune infiltration and pathological response to neoadjuvant chemotherapy in breast cancer. Oncoimmunology 2019; 9:1677427. [PMID: 32002287 PMCID: PMC6959439 DOI: 10.1080/2162402x.2019.1677427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/18/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Immunosurveillance plays an important role in breast cancer (BC) prognosis and progression, and can be geared by immunogenic chemotherapy. In a cohort of 1023 BC patients treated with neoadjuvant chemotherapy (NAC), 40% of the individuals took comedications mostly linked to aging and comorbidities. We systematically analyzed the off-target effects of 1178 concurrent comedications (classified according to the Anatomical Therapeutic Chemical (ATC) Classification System) on the density of tumor-infiltrating lymphocytes (TILs) and pathological complete responses (pCR). At level 1 of the ATC system, the main anatomical classes of drugs were those targeting the nervous system (class N, 39.1%), cardiovascular disorders (class C, 26.6%), alimentary and metabolism (class A, 16.9%), or hormonal preparations (class H, 6.5%). At level 2, the most frequent therapeutic classes were psycholeptics (N05), analgesics (N02), and psychoanaleptics (N06). Pre-NAC TIL density in triple-negative BC (TNBC) was influenced by medications from class H, N, and A, while TIL density in HER2+ BC was associated with the use of class C. Psycholeptics (N05) and agents acting on the renin-angiotensin system (C09) were independently associated with pCR in the whole population of BC or TNBC, and in HER2-positive BC, respectively. Importantly, level 3 hypnotics (N05C) alone were able to reduce tumor growth in BC bearing mice and increased the anti-cancer activity of cyclophosphamide in a T cell-dependent manner. These findings prompt for further exploration of drugs interactions in cancer, and for prospective drug-repositioning strategies to improve the efficacy of NAC in BC.
Collapse
Affiliation(s)
- Anne-Sophie Hamy
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, U932, Immunity and Cancer, Institut Curie, PSL Research University, Paris, France.,Department of Medical Oncology, Institut Curie, Saint-Cloud, France
| | - Lisa Derosa
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé Et de la Recherche Medicale (INSERM), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | | | - Satoru Yonekura
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé Et de la Recherche Medicale (INSERM), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Paule Opolon
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé Et de la Recherche Medicale (INSERM), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Maël Priour
- Informatics Department, Institut Curie, Paris, France
| | - Julien Guerin
- Informatics Department, Institut Curie, Paris, France
| | - Jean-Yves Pierga
- Department of Medical Oncology, Institut Curie, Saint-Cloud, France
| | | | | | - Alice Pinheiro
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, U932, Immunity and Cancer, Institut Curie, PSL Research University, Paris, France
| | - Marick Lae
- Tumor Biology, Institut Curie, Paris, France
| | | | - Enora Laas
- Department of Surgery, Institut Curie, Paris, France
| | | | | | - Elisabetta Marangoni
- Preclinical investigation laboratory, Translational Research Department, Institut Curie, PSL Research University, Paris
| | - Elodie Montaudon
- Preclinical investigation laboratory, Translational Research Department, Institut Curie, PSL Research University, Paris
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Cell Biology and Metabolomics platforms, Villejuif, France.,INSERM, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé Et de la Recherche Medicale (INSERM), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Gustave Roussy and Institut Curie, France
| | - Fabien Reyal
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, U932, Immunity and Cancer, Institut Curie, PSL Research University, Paris, France.,Department of Surgery, Institut Curie, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| |
Collapse
|
7
|
Yadav S, Pandey SK, Goel Y, Temre MK, Singh SM. Antimetabolic Agent 3-Bromopyruvate Exerts Myelopotentiating Action in a Murine Host Bearing a Progressively Growing Ascitic Thymoma. Immunol Invest 2019; 49:425-442. [PMID: 31264492 DOI: 10.1080/08820139.2019.1627368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumor growth and its chemotherapeutic regimens manifest myelosuppression, which is one of the possible causes underlying the limited success of immunotherapeutic anticancer strategies. Hence, approaches are being designed to develop safer therapeutic regimens that may have minimal damaging action on the process of myelopoiesis. 3-Bromopyruvate (3-BP) is a highly potent antimetabolic agent displaying a broad spectrum antineoplastic activity. However, 3-BP has not been investigated for its effect on the process of myelopoiesis in a tumor-bearing host. Hence, in this investigation, we studied the myelopoietic effect of in vivo administration of 3-BP to a murine host bearing a progressively growing ascitic thymoma designated as Dalton's lymphoma (DL). 3-BP administration to the DL-bearing mice resulted in a myelopotentiating action, reflected by an elevated count of bone marrow cells (BMC) accompanied by augmented proliferative ability and a declined induction of apoptosis. The BMC of 3-BP-administered mice displayed enhanced responsiveness to macrophage colony-stimulating factor for colony-forming ability of myeloid lineage along with an enhanced differentiation of F4/80+ bone marrow-derived macrophages (BMDM). BMDM differentiated from the BMC of 3-BP-administered DL-bearing mice showed an augmented response to lipopolysaccharide and interferon-γ for activation, displaying an augmented tumor cytotoxicity, expression of cytokines, reactive oxygen species, nitric oxide, CD11c, TLR-4, and HSP70. These features are indicative of the differentiation of M1 subtype of macrophages. Thus, this study demonstrates the myelopotentiating action of 3-BP, indicating its hematopoietic safety and potential for reinforcing the differentiation of macrophages in a tumor-bearing host.
Collapse
Affiliation(s)
- Saveg Yadav
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shrish Kumar Pandey
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Yugal Goel
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mithlesh Kumar Temre
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Lacroix R, Rozeman EA, Kreutz M, Renner K, Blank CU. Targeting tumor-associated acidity in cancer immunotherapy. Cancer Immunol Immunother 2018; 67:1331-1348. [PMID: 29974196 PMCID: PMC11028141 DOI: 10.1007/s00262-018-2195-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
Checkpoint inhibitors, such as cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) and programmed cell death-1 (PD-1) monoclonal antibodies have changed profoundly the treatment of melanoma, renal cell carcinoma, non-small cell lung cancer, Hodgkin lymphoma, and bladder cancer. Currently, they are tested in various tumor entities as monotherapy or in combination with chemotherapies or targeted therapies. However, only a subgroup of patients benefit from checkpoint blockade (combinations). This raises the question, which all mechanisms inhibit T cell function in the tumor environment, restricting the efficacy of these immunotherapeutic approaches. Serum activity of lactate dehydrogenase, likely reflecting the glycolytic activity of the tumor cells and thus acidity within the tumor microenvironment, turned out to be one of the strongest markers predicting response to checkpoint inhibition. In this review, we discuss the impact of tumor-associated acidity on the efficacy of T cell-mediated cancer immunotherapy and possible approaches to break this barrier.
Collapse
Affiliation(s)
- Ruben Lacroix
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Elisa A Rozeman
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Christian U Blank
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Abstract
This narrative review summarises the benefits, risks and appropriate use of acid-suppressing drugs (ASDs), proton pump inhibitors and histamine-2 receptor antagonists, advocating a rationale balanced and individualised approach aimed to minimise any serious adverse consequences. It focuses on current controversies on the potential of ASDs to contribute to infections-bacterial, parasitic, fungal, protozoan and viral, particularly in the elderly, comprehensively and critically discusses the growing body of observational literature linking ASD use to a variety of enteric, respiratory, skin and systemic infectious diseases and complications (Clostridium difficile diarrhoea, pneumonia, spontaneous bacterial peritonitis, septicaemia and other). The proposed pathogenic mechanisms of ASD-associated infections (related and unrelated to the inhibition of gastric acid secretion, alterations of the gut microbiome and immunity), and drug-drug interactions are also described. Both probiotics use and correcting vitamin D status may have a significant protective effect decreasing the incidence of ASD-associated infections, especially in the elderly. Despite the limitations of the existing data, the importance of individualised therapy and caution in long-term ASD use considering the balance of benefits and potential harms, factors that may predispose to and actions that may prevent/attenuate adverse effects is evident. A six-step practical algorithm for ASD therapy based on the best available evidence is presented.
Collapse
|
10
|
Yadav S, Kujur PK, Pandey SK, Goel Y, Maurya BN, Verma A, Kumar A, Singh RP, Singh SM. Antitumor action of 3-bromopyruvate implicates reorganized tumor growth regulatory components of tumor milieu, cell cycle arrest and induction of mitochondria-dependent tumor cell death. Toxicol Appl Pharmacol 2018; 339:52-64. [DOI: 10.1016/j.taap.2017.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
|
11
|
Peppicelli S, Andreucci E, Ruzzolini J, Laurenzana A, Margheri F, Fibbi G, Del Rosso M, Bianchini F, Calorini L. The acidic microenvironment as a possible niche of dormant tumor cells. Cell Mol Life Sci 2017; 74:2761-2771. [PMID: 28331999 PMCID: PMC11107711 DOI: 10.1007/s00018-017-2496-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/01/2017] [Accepted: 02/27/2017] [Indexed: 12/31/2022]
Abstract
Although surgical excision, chemo-, and radio-therapy are clearly advanced, tumors may relapse due to cells of the so-called "minimal residual disease". Indeed, small clusters of tumor cells persist in host tissues after treatment of the primary tumor elaborating strategies to survive and escape from immunological attacks before their relapse: this variable period of remission is known as "cancer dormancy". Therefore, it is crucial to understand and consider the major concepts addressing dormancy, to identify new targets and disclose potential clinical strategies. Here, we have particularly focused the relationships between tumor microenvironment and cancer dormancy, looking at a re-appreciated aspect of this compartment that is the low extracellular pH. Accumulating evidences indicate that acidity of tumor microenvironment is associated with a poor prognosis of tumor-bearing patients, stimulates a chemo- and radio-therapy resistant phenotype, and suppresses the tumoricidal activity of cytotoxic lymphocytes and natural killer cells, and all these aspects are useful for dormancy. Therefore, this review discusses the possibility that acidity of tumor microenvironment may provide a new, not previously suggested, adequate milieu for "dormancy" of tumor cells.
Collapse
MESH Headings
- Acidosis/complications
- Acidosis/immunology
- Acidosis/pathology
- Animals
- Apoptosis
- Cell Proliferation
- Humans
- Hydrogen-Ion Concentration
- Immunologic Surveillance
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Neoplasm Recurrence, Local/etiology
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm, Residual/complications
- Neoplasm, Residual/immunology
- Neoplasm, Residual/pathology
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/therapy
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/pathology
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Prognosis
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- Tumor Microenvironment
Collapse
Affiliation(s)
- Silvia Peppicelli
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Elena Andreucci
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Jessica Ruzzolini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Anna Laurenzana
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Francesca Margheri
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Gabriella Fibbi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Mario Del Rosso
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy
- Istituto Toscano Tumori, Firenze, Italy
| | - Francesca Bianchini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy.
- Istituto Toscano Tumori, Firenze, Italy.
| | - Lido Calorini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università di Firenze, Viale G.B. Morgagni, 50, 50134, Firenze, Italy.
- Istituto Toscano Tumori, Firenze, Italy.
| |
Collapse
|
12
|
Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin Cancer Biol 2017; 43:74-89. [PMID: 28267587 DOI: 10.1016/j.semcancer.2017.03.001] [Citation(s) in RCA: 376] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 12/21/2022]
Abstract
The link between cancer metabolism and immunosuppression, inflammation and immune escape has generated major interest in investigating the effects of low pH on tumor immunity. Indeed, microenvironmental acidity may differentially impact on diverse components of tumor immune surveillance, eventually contributing to immune escape and cancer progression. Although the molecular pathways underlying acidity-related immune dysfunctions are just emerging, initial evidence indicates that antitumor effectors such as T and NK cells tend to lose their function and undergo a state of mostly reversible anergy followed by apoptosis, when exposed to low pH environment. At opposite, immunosuppressive components such as myeloid cells and regulatory T cells are engaged by tumor acidity to sustain tumor growth while blocking antitumor immune responses. Local acidity could also profoundly influence bioactivity and distribution of antibodies, thus potentially interfering with the clinical efficacy of therapeutic antibodies including immune checkpoint inhibitors. Hence tumor acidity is a central regulator of cancer immunity that orchestrates both local and systemic immunosuppression and that may offer a broad panel of therapeutic targets. This review outlines the fundamental pathways of acidity-driven immune dysfunctions and sheds light on the potential strategies that could be envisaged to potentiate immune-mediated tumor control in cancer patients.
Collapse
|
13
|
Abstract
The highly regulated pH of cells and the less-regulated pH of the surrounding extracellular matrix (ECM) is the result of a delicate balance between metabolic processes and proton production, proton transportation, chemical buffering, and vascular removal of waste products. Malignant cells show a pronounced increase in metabolic processes where the 10- to 15-fold rise in glucose consumption is only the tip of the iceberg. Aerobic glycolysis (Warburg effect) is one of the hallmarks of cancer metabolism that implies excessive production of protons, which if stayed inside the cells would result in fatal intracellular acidosis (maintaining a strict acid-base balance is essential for the survival of eukaryotic cells). Malignant cells solve this problem by increasing mechanisms of proton transportation which expel the excess acidity. This allows cancer cells to keep a normal intracellular pH, or even overshooting this mechanism permits a slightly alkaline intracellular tendency. The proton excess expelled from malignant cells accumulates in the ECM, where chronic hypoxia and relative lack of enough blood vessels impede adequate proton clearance, thus creating an acidic microenvironment. This microenvironment is quite heterogeneous due to the tumor's metabolic heterogeneity and variable degrees of hypoxia inside the tumor mass. The acidic environment (plus other necessary cellular modifications) stimulates migration and invasion and finally intravasation of malignant cells which eventually may result in metastasis. Targeting tumor pH may go in two directions: 1) increasing extracellular pH which should result in less migration, invasion, and metastasis; and 2) decreasing intracellular pH which may result in acidic stress and apoptosis. Both objectives seem achievable at the present state of the art with repurposed drugs. This hypothesis analyzes the altered pH of tumors and its implications for progression and metastasis and also possible repurposed drug combinations targeting this vulnerable side of cancer development. It also analyzes the double-edged approach, which consists in pharmacologically increasing intracellular proton production and simultaneously decreasing proton extrusion creating intracellular acidity, acid stress, and eventual apoptosis.
Collapse
Affiliation(s)
- Tomas Koltai
- Obra Social del Personal de la, Industria Alimenticia, Filial Capital Federal, Republic of Argentina
| |
Collapse
|
14
|
Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM, Luddy K, Damaghi M, Wojtkowiak JW, Mulé JJ, Ibrahim-Hashim A, Gillies RJ. Neutralization of Tumor Acidity Improves Antitumor Responses to Immunotherapy. Cancer Res 2015; 76:1381-90. [PMID: 26719539 DOI: 10.1158/0008-5472.can-15-1743] [Citation(s) in RCA: 417] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
Cancer immunotherapies, such as immune checkpoint blockade or adoptive T-cell transfer, can lead to durable responses in the clinic, but response rates remain low due to undefined suppression mechanisms. Solid tumors are characterized by a highly acidic microenvironment that might blunt the effectiveness of antitumor immunity. In this study, we directly investigated the effects of tumor acidity on the efficacy of immunotherapy. An acidic pH environment blocked T-cell activation and limited glycolysis in vitro. IFNγ release blocked by acidic pH did not occur at the level of steady-state mRNA, implying that the effect of acidity was posttranslational. Acidification did not affect cytoplasmic pH, suggesting that signals transduced by external acidity were likely mediated by specific acid-sensing receptors, four of which are expressed by T cells. Notably, neutralizing tumor acidity with bicarbonate monotherapy impaired the growth of some cancer types in mice where it was associated with increased T-cell infiltration. Furthermore, combining bicarbonate therapy with anti-CTLA-4, anti-PD1, or adoptive T-cell transfer improved antitumor responses in multiple models, including cures in some subjects. Overall, our findings show how raising intratumoral pH through oral buffers therapy can improve responses to immunotherapy, with the potential for immediate clinical translation.
Collapse
Affiliation(s)
- Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Krithika N Kodumudi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Asmaa E El-Kenawi
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Shonagh Russell
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Amy M Weber
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kimberly Luddy
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mehdi Damaghi
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jonathan W Wojtkowiak
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - James J Mulé
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Arig Ibrahim-Hashim
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Robert J Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
15
|
Lopes JC, Machado NM, Saturnino RS, Nepomuceno JC. Recombinogenic activity of Pantoprazole(®) in somatic cells of Drosophila melanogaster. Genet Mol Biol 2014; 38:101-6. [PMID: 25983631 PMCID: PMC4415568 DOI: 10.1590/s1415-475738120140154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/17/2014] [Indexed: 11/28/2022] Open
Abstract
Pantoprazole® is one of the leading proton pump inhibitors (PPIs) used in
the treatment of a variety of diseases related to the upper gastrointestinal tract.
However, studies have shown an increased risk of developing gastric cancer,
intestinal metaplasia and hyperplasia of endocrine cells with prolonged use. In the
present study, the somatic mutation and recombination test (SMART) was employed to
determine the mutagenic effects of Pantoprazole on Drosophila
melanogaster. Repeated treatments with Pantoprazole were performed on
72-hour larvae of the standard (ST) and high bioactivation (HB) crosses at
concentrations of 2.5, 5.0, and 10.0 μM. In addition, doxorubicin (DXR) was
administered at 0.4 mM, as a positive control. When administered to ST descendants,
total number of spots were statistically significant at 2.5 and 5.0 μM
concentrations. For HB descendants, a significant increase in the total number of
spots was observed among the marked transheterozygous (MH) flies. Through analysis of
balancer heterozygous (BH) descendants, recombinogenic effects were observed at all
concentrations in descendants of the HB cross. In view of these experimental
conditions and results, it was concluded that Pantoprazole is associated with
recombinogenic effects in Drosophila melanogaster.
Collapse
Affiliation(s)
- Jeyson Césary Lopes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| | - Nayane Moreira Machado
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| | - Rosiane Soares Saturnino
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil
| | - Júlio César Nepomuceno
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil . ; Laboratório de Citogenética e Mutagênese, Centro Universitário de Patos de Minas, Patos de Minas, MG, Brazil
| |
Collapse
|
16
|
Kant S, Kumar A, Singh SM. Myelopoietic efficacy of orlistat in murine hosts bearing T cell lymphoma: implication in macrophage differentiation and activation. PLoS One 2013; 8:e82396. [PMID: 24349275 PMCID: PMC3857782 DOI: 10.1371/journal.pone.0082396] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/23/2013] [Indexed: 01/22/2023] Open
Abstract
Orlistat, an inhibitor of fatty acid synthase (FASN), acts as an antitumor agent by blocking de novo fatty acid synthesis of tumor cells. Although, myelopoiesis also depends on de novo fatty acid synthesis, the effect of orlistat on differentiation of macrophages, which play a central role in host’s antitumor defence, remains unexplored in a tumor-bearing host. Therefore, the present investigation was undertaken to examine the effect of orlistat administration on macrophage differentiation in a T cell lymphoma bearing host. Administration of orlistat (240 mg/kg/day/mice) to tumor-bearing mice resulted in a decline of tumor load accompanied by an augmentation of bone marrow cellularity and survival of bone marrow cells (BMC). The expression of apoptosis regulatory caspase-3, Bax and Bcl2 was modulated in the BMC of orlistat-administered tumor-bearing mice. Orlistat administration also resulted in an increase in serum level of IFN-γ along with decreased TGF-β and IL-10. BMC of orlistat-administered tumor-bearing mice showed augmented differentiation into macrophages accompanied by enhanced expression of macrophage colony stimulating factor (M-CSF) and its receptor (M-CSFR). The macrophages differentiated from BMC of orlistat-administered mice showed characteristic features of M1 macrophage phenotype confirmed by expression of CD11c, TLR-2, generation of reactive oxygen species, phagocytosis, tumor cell cytotoxicity, production of IL-1,TNF-α and nitric oxide. These novel findings indicate that orlistat could be useful to support myelopoesis in a tumor-bearing host.
Collapse
Affiliation(s)
- Shiva Kant
- School of Biotechnology, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar
- School of Biotechnology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
17
|
Kant S, Kumar A, Singh SM. Tumor growth retardation and chemosensitizing action of fatty acid synthase inhibitor orlistat on T cell lymphoma: implication of reconstituted tumor microenvironment and multidrug resistance phenotype. Biochim Biophys Acta Gen Subj 2013; 1840:294-302. [PMID: 24060750 DOI: 10.1016/j.bbagen.2013.09.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/23/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Orlistat, a fatty acid synthase (FASN) inhibitor, has been demonstrated to inhibit tumor cell survival. However, the mechanism(s) of its tumor growth retarding action against malignancies of hematological origin remains unclear. It is also not understood if the antitumor action of orlistat implicates modulated susceptibility of tumor cell to anticancer drugs. Therefore, the present investigation focuses to study the antitumor and chemosensitizing action of orlistat in a murine host bearing a progressively growing T cell lymphoma. METHODS Tumor-bearing mice were administered with vehicle alone or containing orlistat followed by administration of PBS with or without cisplatin. Tumor progression and survival of tumor-bearing host were monitored along with analysis of tumor cell survival and apoptosis. Tumor ascitic fluid was examined for pH, NO and cytokines. Expression of genes and proteins was investigated by RT-PCR and western blot respectively. ROS was analyzed by DCFDA staining and FASN activity by spectrophotometry. RESULTS Orlistat administration to tumor-bearing mice resulted in tumor growth retardation, prolonged life span, declined tumor cell survival and chemosensitization to cisplatin. It was accompanied by increased osmotic fragility, modulated acidosis, expression of ROS, NO, cytokines, MCT-1 and VH(+) ATPase, Bcl2, Caspase-3, P53, inhibited FASN activity and declined expression of MDR and MRP-1 proteins. CONCLUSION Orlistat manifests antitumor and chemosensitizing action implicating modulated regulation of cell survival, reconstituted-tumor microenvironment and altered MDR phenotype. GENERAL SIGNIFICANCE These observations indicate that orlistat could be utilized as an adjunct regimen for improving antitumor efficacy of cisplatin.
Collapse
Affiliation(s)
- Shiva Kant
- School of Biotechnology, Banaras Hindu University, Varanasi 221005, India
| | | | | |
Collapse
|
18
|
Kumar A, Kant S, Singh SM. Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: a role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation. Toxicol Appl Pharmacol 2013; 273:196-208. [PMID: 24051182 DOI: 10.1016/j.taap.2013.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 02/06/2023]
Abstract
Targeting of tumor metabolism is emerging as a novel therapeutic strategy against cancer. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been shown to exert a potent tumoricidal action against a variety of tumor cells. The main mode of its antineoplastic action implicates a shift of glycolysis to oxidative metabolism of glucose, leading to generation of cytotoxic reactive oxygen intermediates. However, the effect of DCA on tumor microenvironment, which in turn regulates tumor cell survival; remains speculative to a large extent. It is also unclear if DCA can exert any modulatory effect on the process of hematopoiesis, which is in a compromised state in tumor-bearing hosts undergoing chemotherapy. In view of these lacunas, the present study was undertaken to investigate the so far unexplored aspects with respect to the molecular mechanisms of DCA-dependent tumor growth retardation and chemosensitization. BALB/c mice were transplanted with Dalton's lymphoma (DL) cells, a T cell lymphoma of spontaneous origin, followed by administration of DCA with or without cisplatin. DCA-dependent tumor regression and chemosensitization to cisplatin was found to be associated with altered repertoire of key cell survival regulatory molecules, modulated glucose metabolism, accompanying reconstituted tumor microenvironment with respect to pH homeostasis, cytokine balance and alternatively activated TAM. Moreover, DCA administration also led to an alteration in the MDR phenotype of tumor cells and myelopoietic differentiation of macrophages. The findings of this study shed a new light with respect to some of the novel mechanisms underlying the antitumor action of DCA and thus may have immense clinical applications.
Collapse
Affiliation(s)
- Ajay Kumar
- School of Biotechnology, Banaras Hindu University, Varanasi 221005, India
| | | | | |
Collapse
|
19
|
Priming effect of aspirin for tumor cells to augment cytotoxic action of cisplatin against tumor cells: implication of altered constitution of tumor microenvironment, expression of cell cycle, apoptosis, and survival regulatory molecules. Mol Cell Biochem 2012; 371:43-54. [DOI: 10.1007/s11010-012-1421-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 08/01/2012] [Indexed: 10/28/2022]
|
20
|
Myelopotentiating effect of curcumin in tumor-bearing host: Role of bone marrow resident macrophages. Toxicol Appl Pharmacol 2012; 263:111-21. [DOI: 10.1016/j.taap.2012.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/28/2012] [Accepted: 06/05/2012] [Indexed: 12/16/2022]
|
21
|
Vishvakarma NK, Kumar A, Singh V, Singh SM. Hyperglycemia of tumor microenvironment modulates stage-dependent tumor progression and multidrug resistance: implication of cell survival regulatory molecules and altered glucose transport. Mol Carcinog 2012; 52:932-45. [DOI: 10.1002/mc.21922] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 03/13/2012] [Accepted: 04/12/2012] [Indexed: 01/07/2023]
Affiliation(s)
| | - Anjani Kumar
- School of Biotechnology; Banaras Hindu University; Varanasi 221 005 UP India
| | - Vivek Singh
- School of Biotechnology; Banaras Hindu University; Varanasi 221 005 UP India
| | - Sukh Mahendra Singh
- School of Biotechnology; Banaras Hindu University; Varanasi 221 005 UP India
| |
Collapse
|
22
|
Kumar A, Vishvakarma NK, Bharti AC, Singh SM. Gender-specific antitumor action of aspirin in a murine model of a T-cell lymphoma bearing host. Blood Cells Mol Dis 2011; 48:137-44. [PMID: 22104368 DOI: 10.1016/j.bcmd.2011.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 12/15/2022]
Abstract
Aspirin is an anti-inflammatory drug demonstrated to possess a tremendous anticancer potential. As progression of some tumors is influenced by sex hormones, we investigated if the antineoplastic action of aspirin shows gender dependence. Using a murine model of T-cell lymphoma, the present investigation was undertaken to study if the antitumor actions of aspirin against lymphoma cells display gender dimorphism. The findings of the present investigation indicate that aspirin administration to male and female tumor-bearing hosts resulted in gender dependent differential tumor growth retardation. Such gender dichotomy of aspirin's antitumor action was associated with a differential impact on cell cycle progression and expression of cell survival regulatory molecules. Aspirin administration was also found to modulate crucial parameters of tumor microenvironment, including contents of glucose, lactate and cell growth regulatory cytokines, in a gender specific manner. Aspirin was found to reverse estrogen-dependent augmentation of tumor cell survival in vitro. Taken together the results of the present study suggest that the antineoplastic action of aspirin is gender-dependent and should be considered in designing of gender-specific therapeutic applications of aspirin.
Collapse
Affiliation(s)
- Anjani Kumar
- School of Biotechnology, Banaras Hindu University, Varanasi, U.P., India
| | | | | | | |
Collapse
|