1
|
Gou M, Wang X, Duan X, Wang Y, Pang Y, Dong Y. A Comprehensive Spatially Resolved Metabolomics Dataset for Lampreys. Sci Data 2024; 11:1075. [PMID: 39358393 PMCID: PMC11447254 DOI: 10.1038/s41597-024-03925-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
As one of the two most ancient groups of extant vertebrates, lamprey has become an important model organism in various fields of biology. In this paper, we present a comprehensive tissue-wide spatial metabolomics dataset for lampreys, where 14 distinct tissues were analyzed using liquid chromatography-mass spectrometry (LC-MS) in both positive and negative ion modes. The dataset has been fully validated using internal standard and pooled quality control samples and is readily accessible at the UCSD Metabolomics Workbench. This dataset serves as a valuable resource for researchers using lampreys as a model organism. Additionally, it acts as a benchmark metabolomics dataset for evaluating new algorithms and software tools and comparing them with previously published results. A lamprey spatial metabolomics database is also provided to support studies utilizing lampreys as an animal model, and to complement and validate other spatial metabolomics studies on lampreys conducted with mass spectrometry imaging or other techniques.
Collapse
Affiliation(s)
- Meng Gou
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
- College of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Xiaxia Wang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuyuan Duan
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
- College of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Yaocen Wang
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
- College of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Yue Pang
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
- College of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Yonghui Dong
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Wang Y, Wang Z, Gao Z, Luan Y, Li Q, Pang Y, Gou M. Identification of antibacterial activity of liver-expressed antimicrobial peptide 2 (LEAP2) from primitive vertebrate lamprey. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109413. [PMID: 38311092 DOI: 10.1016/j.fsi.2024.109413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP2) is a member of the antimicrobial peptides family and plays a key role in the innate immune system of organisms. LEAP2 orthologs have been identified from a variety of fish species, however, its function in primitive vertebrates has not been clarified. In this study, we cloned and identified Lc-LEAP2 from the primitive jawless vertebrate lamprey (Lethenteron camtschaticum) which includes a 25 amino acids signal peptide and a mature peptide of 47 amino acids. Although sequence similarity was low compared to other species, the mature Lc-LEAP2 possesses four conserved cysteine residues, forming a core structure with two disulfide bonds between the cysteine residues in the relative 1-3 (Cys 58 and Cys 69) and 2-4 (Cys 64 and Cys 74) positions. Lc-LEAP2 was most abundantly expressed in the muscle, supraneural body and buccal gland of lamprey, and was significantly upregulated during LPS and Poly I:C stimulations. The mature peptide was synthesized and characterized for its antibacterial activity against different bacteria. Lc-LEAP2 possessed inhibition of a wide range of bacteria with a dose-dependence, disrupting the integrity of bacterial cell membranes and binding to bacterial genomic DNA, although its inhibitory function is weak compared to that of higher vertebrates. These data suggest that Lc-LEAP2 plays an important role in the innate immunity of lamprey and is of great value in improving resistance to pathogens. In addition, the antimicrobial mechanism of LEAP2 has been highly conserved since its emergence in primitive vertebrates.
Collapse
Affiliation(s)
- Yaocen Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Zhuoying Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Zhanfeng Gao
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Department of Urology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, 116044, China
| | - Yimu Luan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
3
|
Wang Y, Dong Y, Duan X, Luan Y, Li Q, Pang Y, Sun F, Gou M. A complete prostaglandin pathway from synthesis to inactivation in the oral gland of the jawless vertebrate lamprey, Lethenteron camtschaticum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 148:104903. [PMID: 37541459 DOI: 10.1016/j.dci.2023.104903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Information on the prostaglandin pathway in lampreys is limited. Here, five genes related to the prostaglandin pathway from synthesis to inactivation, namely, phospholipase A2, cyclooxygenase-2, prostaglandin E synthase 3, prostaglandin D synthase, and 15-hydroxyprostaglandin dehydrogenase [NAD(+)], were screened and cloned from the lamprey, Lethenteron camtschaticum. Bioinformatic analysis showed that these lamprey genes are relatively conserved with teleost genes in domains, motifs, gene structure and 3D structure. Analysis of expression distribution of the genes in lamprey tissues revealed that a complete prostaglandin pathway from synthesis to inactivation exists in the oral gland of lamprey, especially the key gene of prostaglandin synthesis cyclooxygenase-2, which was highly expressed in the oral gland. Furthermore, cyclooxygenase-2 expression increased after LPS and Poly I:C stimulations. Using our established spatial metabolite database LampreyDB, six prostaglandin-related metabolites were screened from the oral gland of lamprey, four of which were highly expressed in the oral gland. This study provides new insights into prostaglandin synthesis and inactivation pathways in lamprey, thereby improving our understanding of the origin and evolution of the prostaglandin pathway and contributing to the recognition of lamprey regulatory mechanisms in development and immunity.
Collapse
Affiliation(s)
- Yaocen Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yonghui Dong
- Metabolite Medicine Division, BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Xuyuan Duan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yimu Luan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Feng Sun
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
4
|
Gou M, Duan X, Li J, Wang Y, Li Q, Pang Y, Dong Y. Spatial Metabolomics Reveals the Multifaceted Nature of Lamprey Buccal Gland and Its Diverse Mechanisms for Blood-Feeding. Commun Biol 2023; 6:881. [PMID: 37640823 PMCID: PMC10462737 DOI: 10.1038/s42003-023-05250-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Lampreys are blood-sucking vampires in marine environments. From a survival perspective, it is expected that the lamprey buccal gland exhibits a repository of pharmacologically active components to modulate the host's homeostasis, inflammatory and immune responses. By analyzing the metabolic profiles of 14 different lamprey tissues, we show that two groups of metabolites in the buccal gland of lampreys, prostaglandins and the kynurenine pathway metabolites, can be injected into the host fish to assist lamprey blood feeding. Prostaglandins are well-known blood-sucking-associated metabolites that act as vasodilators and anticoagulants to maintain vascular homeostasis and are involved in inflammatory responses. The vasomotor reactivity test on catfish aortic ring showed that kynurenine can also relax the blood vessels of the host fish, thus improving the blood flow of the host fish at the bite site. Finally, a lamprey spatial metabolomics database ( https://www.lampreydb.com ) was constructed to assist studies using lampreys as animal model.
Collapse
Affiliation(s)
- Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Xuyuan Duan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Jun Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yaocen Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Yonghui Dong
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
5
|
Wang Y, Sun F, Wang Z, Duan X, Li Q, Pang Y, Gou M. Peptidomics Analysis Reveals the Buccal Gland of Jawless Vertebrate Lamprey as a Source of Multiple Bioactive Peptides. Mar Drugs 2023; 21:389. [PMID: 37504920 PMCID: PMC10381800 DOI: 10.3390/md21070389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Various proteins with antibacterial, anticoagulant, and anti-inflammatory properties have been identified in the buccal glands of jawless blood-sucking vertebrate lampreys. However, studies on endogenous peptides in the buccal gland of lampreys are limited. In this study, 4528 endogenous peptides were identified from 1224 precursor proteins using peptidomics and screened for bioactivity in the buccal glands of the lamprey, Lethenteron camtschaticum. We synthesized four candidate bioactive peptides (VSLNLPYSVVRGEQFVVQA, DIPVPEVPILE, VVQLPPVVLGTFG, and VPPPPLVLPPASVK), calculated their secondary structures, and validated their bioactivity. The results showed that the peptide VSLNLPYSVVRGEQFVVQA possessed anti-inflammatory activity, which significantly increased the expression of anti-inflammatory factors and decreased the expression of inflammatory factors in THP-1 cells. The peptide VVQLPPVVLGTFG showed antibacterial activity against some gram-positive bacteria. The peptide VSLNLPYSVVRGEQFVQA possessed good ACE inhibitory activity at low concentrations, but no dose-related correlation was observed. Our study revealed that the buccal glands of the jawless vertebrate lamprey are a source of multiple bioactive peptides, which will provide new insights into the blood-sucking mechanism of lamprey.
Collapse
Affiliation(s)
- Yaocen Wang
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Feng Sun
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhuoying Wang
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xuyuan Duan
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
6
|
Zhang Q, Xu J, Zhou X, Liu Z. CAP superfamily proteins from venomous animals: Who we are and what to do? Int J Biol Macromol 2022; 221:691-702. [PMID: 36099994 DOI: 10.1016/j.ijbiomac.2022.09.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
Cysteine-rich secretory proteins (CRISPs), antigen 5 (Ag5), and pathogenesis-related (PR-1) superfamily proteins (CAP superfamily proteins) are found in diverse species across the bacterial, fungal, plant, mammalian, and venomous animal kingdoms. Notably, CAP proteins are found in a remarkable range of species across the venomous animal kingdom and are present almost ubiquitously in venoms, even when venoms are produced in very small quantities. Meanwhile, in comparison to mammals, venomous animals are underappreciated and easy to ignore. Overwhelming evidence suggests that CAP proteins derived from venomous animals exhibit diverse activities, including ion channel, inflammatory, proteolysis, and immune regulatory activities. To understand the potential biological functions of CAP proteins in venom more effectively, we need to examine the significance of the evolution of venomous animals in the animal kingdom, for their survival. In this article, we will review the current status of research on CAP proteins in venomous animals, including their isolation, characterization, known biological activities, and sequence alignments. We will also discuss the rapid evolution of CAP proteins with varied subtypes in venomous animals. A treasure trove of information can be obtained by studying the CAP proteins in venomous animals; hence, it is necessary to explore these proteins further.
Collapse
Affiliation(s)
- Qianqian Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiawei Xu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
7
|
Tadokoro T, M. Modahl C, Maenaka K, Aoki-Shioi N. Cysteine-Rich Secretory Proteins (CRISPs) From Venomous Snakes: An Overview of the Functional Diversity in A Large and Underappreciated Superfamily. Toxins (Basel) 2020; 12:E175. [PMID: 32178374 PMCID: PMC7150914 DOI: 10.3390/toxins12030175] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 01/03/2023] Open
Abstract
The CAP protein superfamily (Cysteine-rich secretory proteins (CRISPs), Antigen 5 (Ag5), and Pathogenesis-related 1 (PR-1) proteins) is widely distributed, but for toxinologists, snake venom CRISPs are the most familiar members. Although CRISPs are found in the majority of venoms, very few of these proteins have been functionally characterized, but those that have been exhibit diverse activities. Snake venom CRISPs (svCRISPs) inhibit ion channels and the growth of new blood vessels (angiogenesis). They also increase vascular permeability and promote inflammatory responses (leukocyte and neutrophil infiltration). Interestingly, CRISPs in lamprey buccal gland secretions also manifest some of these activities, suggesting an evolutionarily conserved function. As we strive to better understand the functions that CRISPs serve in venoms, it is worth considering the broad range of CRISP physiological activities throughout the animal kingdom. In this review, we summarize those activities, known crystal structures and sequence alignments, and we discuss predicted functional sites. CRISPs may not be lethal or major components of venoms, but given their almost ubiquitous occurrence in venoms and the accelerated evolution of svCRISP genes, these venom proteins are likely to have functions worth investigating.
Collapse
Affiliation(s)
- Takashi Tadokoro
- Faculty of Pharmaceutical Sciences, Hokkaido University, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (T.T.); (K.M.)
| | - Cassandra M. Modahl
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (T.T.); (K.M.)
| | - Narumi Aoki-Shioi
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- Department of Chemistry, Faculty of Science, Fukuoka University, 19-1, 8-chomeNanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
8
|
Abstract
Lampreys belong to the superclass Cyclostomata and represent the most ancient group of vertebrates. Existing for over 360 million years, they are known as living fossils due to their many evolutionally conserved features. They are not only a keystone species for studying the origin and evolution of vertebrates, but also one of the best models for researching vertebrate embryonic development and organ differentiation. From the perspective of genetic information, the lamprey genome remains primitive compared with that of other higher vertebrates, and possesses abundant functional genes. Through scientific and technological progress, scientists have conducted in-depth studies on the nervous, endocrine, and immune systems of lampreys. Such research has significance for understanding and revealing the origin and evolution of vertebrates, and could contribute to a greater understanding of human diseases and treatments. This review presents the current progress and significance of lamprey research.
Collapse
Affiliation(s)
- Yang Xu
- College of Life Science, Liaoning Normal University, Dalian Liaoning 116081, China;Lamprey Research Center, Liaoning Normal University, Dalian Liaoning 116081, China
| | - Si-Wei Zhu
- College of Life Science, Liaoning Normal University, Dalian Liaoning 116081, China;Lamprey Research Center, Liaoning Normal University, Dalian Liaoning 116081, China
| | - Qing-Wei Li
- College of Life Science, Liaoning Normal University, Dalian Liaoning 116081, China;Lamprey Research Center, Liaoning Normal University, Dalian Liaoning 116081, China.
| |
Collapse
|
9
|
Jiang Q, Li Q, Han J, Gou M, Zheng Y, Li B, Xiao R, Wang J. rLj-RGD3 induces apoptosis via the mitochondrial-dependent pathway and inhibits adhesion, migration and invasion of human HeyA8 cells via FAK pathway. Int J Biol Macromol 2017; 96:652-668. [DOI: 10.1016/j.ijbiomac.2016.12.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 01/09/2023]
|
10
|
Wang Y, Zheng Y, Tu Z, Dai Y, Xu H, Lv L, Wang J. The anti-tumor effects of the recombinant toxin protein rLj-RGD3 from Lampetra japonica on pancreatic carcinoma Panc-1 cells in nude mice. Peptides 2017; 88:8-17. [PMID: 27988354 DOI: 10.1016/j.peptides.2016.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/10/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023]
Abstract
Recombinant Lampetra japonica RGD peptide (rLj-RGD3) is a soluble toxin protein with three RGD (Arg-Gly-Asp) motifs and a molecular weight of 13.5kDa. The aim of this study was to investigate the effects and mechanisms of rLj-RGD3 on tumor growth and survival in pancreatic carcinoma Panc-1 cell-bearing mice. A Panc-1 human pancreatic carcinoma-bearing nude mouse model was successfully generated, and the animals were treated with different doses of rLj-RGD3 for 3 weeks. The volume and weight of the subcutaneous tumors, the survival of the nude mice, histopathological changes, the intratumoral MVD, the number of apoptotic Panc-1 cells, and apoptosis-related proteins and gene expressions were determined. rLj-RGD3 significantly decreased the tumor volumes and weights, and the maximum tumor volume and weight IR values were 53.2% (p<0.001) and 55.9% (p<0.001), respectively. The life expectancy of Panc-1-bearing nude mice treated with rLj-RGD3 was increased by 56.3% (p<0.001). Meanwhile, rLj-RGD3 promoted the expression of Bax, caspase-3, and caspase-9 and inhibited Bcl-2 and VEGF expression. In addition, rLj-RGD3 did not change FAK, PI3K and Akt expression, but p-FAK, p-PI3K and p-Akt, levels were down-regulated. These results show that rLj-RGD3 induced potent anti-tumor activity in vivo and suppressed the growth of transplanted Panc-1 cells in a nude mouse model, implying that rLj-RGD3 may serve as a potent clinical therapeutic agent for human pancreatic carcinoma.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Yuanyuan Zheng
- School of Life Sciences, Liaoning Normal University, Dalian, Liaoning Province 116029, China
| | - Zuoyu Tu
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Yongguo Dai
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Hong Xu
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Li Lv
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning Province 116044, China.
| | - Jihong Wang
- School of Life Sciences, Liaoning Normal University, Dalian, Liaoning Province 116029, China.
| |
Collapse
|
11
|
Sea lampreys elicit strong transcriptomic responses in the lake trout liver during parasitism. BMC Genomics 2016; 17:675. [PMID: 27558222 PMCID: PMC4997766 DOI: 10.1186/s12864-016-2959-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 07/21/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The sea lamprey (Petromyzon marinus) is a jawless vertebrate that parasitizes fish as an adult and, with overfishing, was responsible for the decline in lake trout (Salvelinus namaycush) populations in the Great Lakes. While laboratory studies have looked at the rates of wounding on various fish hosts, there have been few investigations on the physiological effects of lamprey wounding on the host. In the current study, two morphotypes of lake trout, leans and siscowets, were parasitized in the laboratory by sea lampreys and the liver transcriptomes of parasitized and nonparasitized fish were analyzed by RNA-seq (DESeq2 and edgeR) to determine which genes and gene pathways (Ingenuity Pathway Analysis) were altered by lamprey parasitism. RESULTS Overall, genes encoding molecules involved in catalytic (e.g., enzymatic) and binding activities (factors and regulators) predominated the regulated gene lists. In siscowets, the top upregulated gene was growth arrest and DNA-damage-inducible protein and for leans it was interleukin-18-binding protein. In leans, the most significantly downregulated gene was UDP-glucuronosyltransferase 2A2 - DESeq2 or phosphotriesterase related - edgeR. For siscowets, the top downregulated gene was C-C motif chemokine 19 - DESeq2 or GTP-binding protein Rhes - edgeR. Gene pathways associated with inflammatory-related responses or factors (cytokines, chemokines, oxidative stress, apoptosis) were regulated following parasitism in both morphotypes. However, pathways related to energy metabolism (glycolysis, gluconeogenesis, lipolysis, lipogenesis) were also regulated. These pathways or the intensity or direction (up/downregulation) of regulation were different between leans and siscowets. Finally, one of the most significantly downregulated pathways in both leans and siscowets was the kynurenine (tryptophan degradation) pathway. CONCLUSIONS The results indicate a strong transcriptional response in the lake trout to lamprey parasitism that entails genes involved in the regulation of inflammation and cellular damage. Responses to energy utilization as well as hydromineral balance also occurred indicating an adjustment in the host to energy demands and osmotic imbalances during parasitism. Given the role of the kynurenine pathway in promoting immunotolerance in mammals, the downregulation observed in this pathway during parasitism may signify an attempt by the host to inhibit any feedback suppression of the immune response to the lamprey.
Collapse
|
12
|
Jiang Q, Liu Y, Duan D, Gou M, Wang H, Wang J, Li Q, Xiao R. Anti-angiogenic activities of CRBGP from buccal glands of lampreys (Lampetra japonica). Biochimie 2015; 123:7-19. [PMID: 26616010 DOI: 10.1016/j.biochi.2015.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/20/2015] [Indexed: 01/20/2023]
Abstract
Cysteine-rich secretory proteins (CRISPs), characterized by 16 conserved cysteines, are distributed in a wide range of organisms, such as secernenteas, amphibians, reptiles and mammals. In the previous studies, a novel CRISP family member (cysteine-rich buccal gland protein, CRBGP) was separated from the buccal gland of lampreys (Lampetra japonica, L. japonica). Lamprey CRBGP could not only suppress depolarization-induced contraction of rat tail arterial smooth muscle, but also block voltage-gated sodium channels (VGSCs). In the present study, the anti-angiogenic activities of lamprey CRBGP were investigated using endothelial cells and chick chorioallantoic membrane (CAM) models. In vitro assays, lamprey CRBGP is able to induce human umbilical vein endothelial cells (HUVECs) apoptosis by disturbing the calcium homeostasis and mitochondria functions. In addition, lamprey CRBGP could inhibit proliferation, adhesion, migration, invasion and tube formation of HUVECs by affecting the organization of F-actin and expression level of matrix metallo-proteinase 2 (MMP-2), matrix metallo-proteinase 9 (MMP-9) and vascular endothelial growth factor A (VEGFA) which are related to angiogenesis. In vivo assays, lamprey CRBGP could suppress the blood vessel formation in CAM models. Therefore, lamprey CRBGP is an important protein present in the buccal gland of lampreys and might help lampreys suppress the contraction of blood vessels, nociceptive responses and wound healing of host fishes during their feeding time. In addition, lamprey CRBGP might have the potential to act as an effective anti-angiogenic factor for the treatment of abnormal angiogenesis induced diseases.
Collapse
Affiliation(s)
- Qi Jiang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, PR China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, PR China
| | - Yu Liu
- School of Life Sciences, Liaoning Normal University, Dalian 116081, PR China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, PR China
| | - Dandan Duan
- School of Life Sciences, Liaoning Normal University, Dalian 116081, PR China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, PR China
| | - Meng Gou
- School of Life Sciences, Liaoning Normal University, Dalian 116081, PR China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, PR China
| | - Hao Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, PR China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, PR China
| | - Jihong Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, PR China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, PR China
| | - Qingwei Li
- School of Life Sciences, Liaoning Normal University, Dalian 116081, PR China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, PR China.
| | - Rong Xiao
- School of Life Sciences, Liaoning Normal University, Dalian 116081, PR China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, PR China.
| |
Collapse
|
13
|
Ferrando S, Gallus L, Gambardella C, Croce D, Damiano G, Mazzarino C, Vacchi M. First Description of a Palatal Organ in Chimaera monstrosa (Chondrichthyes, Holocephali). Anat Rec (Hoboken) 2015; 299:118-31. [PMID: 26474720 DOI: 10.1002/ar.23280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/08/2015] [Accepted: 09/18/2015] [Indexed: 11/10/2022]
Abstract
Chimaeroid fishes are the only extant Holocephali, a subclass of Chondrichthyes. We describe for the first time a well evidenced structure localized in the palate of the chimaeroid Chimaera monstrosa, here named a palatal organ (PO). Attention has been paid to the holocephalan head morphology, but there has been no mention of this particular organ in the literature. The PO is a soft-tissue mass located within a slight hollow in between the two vomerine toothplates, and it protrudes into the oral cavity, resembling the mammalian incisive papilla. It is characterized by dense connective tissue with abundant collagen and elastic fibers and no muscular tissue. The robust innervation but low density of taste buds suggest a role in gustation for the PO, but primary utility in general mechanical sensitivity likely implicated in food sorting. The presence of numerous multicellular serous glands in the anterior/dorsal part of the PO is quite surprising because, in gnathostome fish, the presence of multicellular glands within the mouth has been reported in only the rare case of teeth-associated venom glands. Hypothesized roles for these glands could include food lubrication, digestion and defense against pathogens. In the literature, the presence of a PO has been demonstrated in many published images of chimaeroid fishes, but has gone unnoticed. This trait could represent a peculiar characteristic of all or a subset of holocephalans.
Collapse
Affiliation(s)
- Sara Ferrando
- Department of Environmental, Earth and Life Science (DISTAV), University of Genoa, Genoa, Italy
| | - Lorenzo Gallus
- Department of Environmental, Earth and Life Science (DISTAV), University of Genoa, Genoa, Italy
| | - Chiara Gambardella
- Institute of Marine Sciences (ISMAR), National Research Council, Genoa, Italy
| | - Daniel Croce
- Department of Environmental, Earth and Life Science (DISTAV), University of Genoa, Genoa, Italy
| | - Giulia Damiano
- Department of Environmental, Earth and Life Science (DISTAV), University of Genoa, Genoa, Italy
| | - Chiara Mazzarino
- Department of Environmental, Earth and Life Science (DISTAV), University of Genoa, Genoa, Italy
| | - Marino Vacchi
- Institute for Environmental Protection and Research (ISPRA) C/O Institute of Marine Sciences (ISMAR), National Research Council, Genoa, Italy
| |
Collapse
|
14
|
Zhao C, Wang D, Feng B, Gou M, Liu X, Li Q. Identification and characterization of aldehyde dehydrogenase 9 from Lampetra japonica and its protective role against cytotoxicity. Comp Biochem Physiol B Biochem Mol Biol 2015; 187:102-9. [DOI: 10.1016/j.cbpb.2015.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/16/2014] [Accepted: 05/07/2015] [Indexed: 11/16/2022]
|
15
|
Xiao R, Zhang Z, Wang H, Han Y, Gou M, Li B, Duan D, Wang J, Liu X, Li Q. Identification and characterization of a cathepsin D homologue from lampreys (Lampetra japonica). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:149-156. [PMID: 25450905 DOI: 10.1016/j.dci.2014.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Cathepsin D (EC 3.4.23.5) is a lysosomal aspartic proteinase of the pepsin superfamily which participates in various digestive processes within the cell. In the present study, the full length cDNA of a novel cathepsin D homologue was cloned from the buccal glands of lampreys (Lampetra japonica) for the first time, including a 124-bp 5' terminal untranslated region (5'-UTR), a 1194-bp open reading frame encoding 397 amino acids, and a 472-bp 3'-UTR. Lamprey cathepsin D is composed of a signal peptide (Met 1-Ala 20), a propeptide domain (Leu 21-Ala 48) and a mature domain (Glu 76-Val 397), and has a conserved bilobal structure. Cathepsin D was widely distributed in the buccal glands, immune bodies, hearts, intestines, kidneys, livers, and gills of lampreys. After challenging with Escherichia coli or Staphylococcus aureus, the expression level of lamprey cathepsin D in the buccal gland was 8.5-fold or 6.5-fold higher than that in the PBS group. In addition, lamprey cathepsin D stimulated with Escherichia coli was also up-regulated in the hearts, kidneys, and intestines. As for the Staphylococcus aureus challenged group, the expression level of lamprey cathepsin D was found increased in the intestines. The above results revealed that lamprey cathepsin D may play key roles in immune response to exogenous pathogen and could serve as a potential antibacterial agent in the near future. In addition, lamprey cathepsin D was subcloned into pcDNA 3.1 vector and expressed in the human embryonic kidney 293 cells. The recombinant lamprey cathepsin D could degrade hemoglobin, fibrinogen, and serum albumin which are the major components in the blood, suggested that lamprey cathepsin D may also act as a digestive enzyme during the adaptation to a blood-feeding lifestyle.
Collapse
Affiliation(s)
- Rong Xiao
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Zhilin Zhang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Hongyan Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Yinglun Han
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Meng Gou
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Bowen Li
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Dandan Duan
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Jihong Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Xin Liu
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Qingwei Li
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
16
|
Zhao C, Feng B, Cao Y, Xie P, Xu J, Pang Y, Liu X, Li Q. Identification and characterisation of ROS modulator 1 in Lampetra japonica. FISH & SHELLFISH IMMUNOLOGY 2013; 35:278-283. [PMID: 23685010 DOI: 10.1016/j.fsi.2013.04.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Reactive oxygen species (ROS) are a heterogeneous group of highly reactive molecules that oxidise targets in biological systems. ROS are also considered important immune regulators. In this study, we identified a homologue of reactive oxygen species modulator 1 (Romo1) in the Japanese lamprey (Lampetra japonica). The L japonica Romo1 (Lj-Romo1) gene shares high sequence homology with the Romo1 genes of jawed vertebrates. Real-time quantitative PCR demonstrated the wide distribution of Lj-Romo1 in lamprey tissues. Furthermore, after the lampreys were stimulated with lipopolysaccharide (LPS), the level of Lj-Romo1 mRNA was markedly up-regulated in the liver, gill, kidney, and intestine tissues. Lj-Romo1 was localised to the mitochondria and has the capacity to increase the ROS level in cells. The results obtained in the present study will help us to understand the roles of Romo1 in ROS production and innate immune responses in jawless vertebrates.
Collapse
Affiliation(s)
- Chunhui Zhao
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Faculty of Life Science, Liaoning Normal University, Dalian 116081, China
| | | | | | | | | | | | | | | |
Collapse
|