1
|
Cerebellar and hepatic alterations in ACBD5-deficient mice are associated with unexpected, distinct alterations in cellular lipid homeostasis. Commun Biol 2020; 3:713. [PMID: 33244184 PMCID: PMC7691522 DOI: 10.1038/s42003-020-01442-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/31/2020] [Indexed: 11/27/2022] Open
Abstract
ACBD5 deficiency is a novel peroxisome disorder with a largely uncharacterized pathology. ACBD5 was recently identified in a tethering complex mediating membrane contacts between peroxisomes and the endoplasmic reticulum (ER). An ACBD5-deficient mouse was analyzed to correlate ACBD5 tethering functions with the disease phenotype. ACBD5-deficient mice exhibit elevated very long-chain fatty acid levels and a progressive cerebellar pathology. Liver did not exhibit pathologic changes but increased peroxisome abundance and drastically reduced peroxisome-ER contacts. Lipidomics of liver and cerebellum revealed tissue-specific alterations in distinct lipid classes and subspecies. In line with the neurological pathology, unusual ultra-long chain fatty acids (C > 32) were elevated in phosphocholines from cerebelli but not liver indicating an organ-specific imbalance in fatty acid degradation and elongation pathways. By contrast, ether lipid formation was perturbed in liver towards an accumulation of alkyldiacylglycerols. The alterations in several lipid classes suggest that ACBD5, in addition to its acyl-CoA binding function, might maintain peroxisome-ER contacts in order to contribute to the regulation of anabolic and catabolic cellular lipid pathways. Darwisch, von Spangenberg et al. show that ACBD5‐deficient mice exhibit elevated levels of very long‐chain fatty acids and a progressive cerebellar pathology. A complex metabolic phenotype suggests that ACBD5 with its acyl‐CoA binding and peroxisome‐ER tethering functions might contribute to the regulation of anabolic and catabolic cellular lipid pathways.
Collapse
|
2
|
Exploring the VISTA of microglia: immune checkpoints in CNS inflammation. J Mol Med (Berl) 2020; 98:1415-1430. [PMID: 32856125 PMCID: PMC7525281 DOI: 10.1007/s00109-020-01968-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022]
Abstract
Negative checkpoint regulators (NCR) are intensely pursued as targets to modulate the immune response in cancer and autoimmunity. A large variety of NCR is expressed by central nervous system (CNS)-resident cell types and is associated with CNS homeostasis, interactions with peripheral immunity and CNS inflammation and disease. Immunotherapy blocking NCR affects the CNS as patients can develop neurological issues including encephalitis and multiple sclerosis (MS). How these treatments affect the CNS is incompletely understood, since expression and function of NCR in the CNS are only beginning to be unravelled. V-type immunoglobulin-like suppressor of T cell activation (VISTA) is an NCR that is expressed primarily in the haematopoietic system by myeloid and T cells. VISTA regulates T cell quiescence and activation and has a variety of functions in myeloid cells including efferocytosis, cytokine response and chemotaxis. In the CNS, VISTA is predominantly expressed by microglia and macrophages of the CNS. In this review, we summarize the role of NCR in the CNS during health and disease. We highlight expression of VISTA across cell types and CNS diseases and discuss the function of VISTA in microglia and during CNS ageing, inflammation and neurodegeneration. Understanding the role of VISTA and other NCR in the CNS is important considering the adverse effects of immunotherapy on the CNS, and in view of their therapeutic potential in CNS disease.
Collapse
|
3
|
Zhang Y, Cui G, Wang Y, Gong Y, Wang Y. SIRT1 activation alleviates brain microvascular endothelial dysfunction in peroxisomal disorders. Int J Mol Med 2019; 44:995-1005. [PMID: 31257461 PMCID: PMC6657955 DOI: 10.3892/ijmm.2019.4250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/11/2019] [Indexed: 02/03/2023] Open
Abstract
Peroxisomal disorders are genetically heterogeneous metabolic disorders associated with a deficit of very long chain fatty acid β-oxidation that commonly manifest as early-onset neurodegeneration. Brain microvascular endothelial dysfunction with increased permeability to monocytes has been described in X-linked adrenoleukodystrophy, one of the most common peroxisomal disorders caused by mutations of the ATP binding cassette subfamily D member 1 (ABCD1) gene. The present study demonstrated that dysregulation of sirtuin 1 (SIRT1) in human brain microvascular endothelial cells (HBMECs) mediates changes in adhesion molecules and tight-junction protein expression, as well as increased adhesion to monocytes associated with peroxisomal dysfunction due to ABCD1 or hydroxysteroid 17-β dehydrogenase 4 silencing. Furthermore, enhancement of the function of SIRT1 by resve-ratrol attenuated this molecular and functional dysregulation of HBMECs via modulation of the nuclear factor-κB and Krüppel-like factor 4 signaling pathways.
Collapse
Affiliation(s)
- Yunshan Zhang
- Department of Anatomy and Embryology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Yue Wang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Yi Gong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Yulan Wang
- Department of Anatomy and Embryology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
4
|
Kim YI, Nam IK, Lee DK, Bhandari S, Charton L, Kwak S, Lim JY, Hong K, Kim SJ, Lee JN, Kwon SW, So HS, Linka N, Park R, Choe SK. Slc25a17 acts as a peroxisomal coenzyme A transporter and regulates multiorgan development in zebrafish. J Cell Physiol 2019; 235:151-165. [PMID: 31187491 DOI: 10.1002/jcp.28954] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/05/2023]
Abstract
Slc25a17 is known as a peroxisomal solute carrier, but the in vivo role of the protein has not been demonstrated. We found that the zebrafish genome contains two slc25a17 genes that function redundantly, but additively. Notably, peroxisome function in slc25a17 knockdown embryos is severely compromised, resulting in an altered lipid composition. Along the defects found in peroxisome-associated phenotypic presentations, we highlighted that development of the swim bladder is also highly dependent on Slc25a17 function. As Slc25a17 showed substrate specificity towards coenzyme A (CoA), injecting CoA, but not NAD+ , rescued the defective swim bladder induced by slc25a17 knockdown. These results indicated that Slc25a17 acts as a CoA transporter, involved in the maintenance of functional peroxisomes that are essential for the development of multiple organs during zebrafish embryogenesis. Given high homology in protein sequences, the role of zebrafish Slc25a17 may also be applicable to the mammalian system.
Collapse
Affiliation(s)
- Yong-Il Kim
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - In-Koo Nam
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea.,Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Dong-Kyu Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Sushil Bhandari
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - Lennart Charton
- Department of Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - SeongAe Kwak
- Zoonosis Research Center, Wonkwang University School of Medicine, Iksan, South Korea
| | - Jae-Young Lim
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea.,Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - KwangHeum Hong
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - Se-Jin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Joon No Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Hong-Seob So
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea
| | - Nicole Linka
- Department of Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Seong-Kyu Choe
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, South Korea.,Wonkwang Medical Institute, Wonkwang University School of Medicine, Iksan, South Korea
| |
Collapse
|
5
|
Beckers L, Geric I, Stroobants S, Beel S, Van Damme P, D'Hooge R, Baes M. Microglia lacking a peroxisomal β-oxidation enzyme chronically alter their inflammatory profile without evoking neuronal and behavioral deficits. J Neuroinflammation 2019; 16:61. [PMID: 30866963 PMCID: PMC6417251 DOI: 10.1186/s12974-019-1442-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/24/2019] [Indexed: 11/10/2022] Open
Abstract
Background Microglia play a central role in most neurological disorders, but the impact of microgliosis on brain environment and clinical functions is not fully understood. Mice lacking multifunctional protein-2 (MFP2), a pivotal enzyme in peroxisomal β-oxidation, develop a fatal disorder characterized by motor problems similar to the milder form of MFP2 deficiency in humans. The hallmark of disease in mice is the chronic proliferation of microglia in the brain, but molecular pathomechanisms that drive rapid clinical deterioration in human and mice remain unknown. In the present study, we identified the effects of specific deletion of MFP2 from microglia in the brain on immune responses, neuronal functioning, and behavior. Methods We created a novel Cx3cr1-Mfp2−/− mouse model and studied the impact of MFP2 deficiency on microglial behavior at different ages using immunohistochemistry and real-time PCR. Pro- and anti-inflammatory responses of Mfp2−/− microglia were assessed in vitro and in vivo after stimulation with IL-1β/INFγ and IL-4 (in vitro) and LPS and IL-4 (in vivo). Facial nerve axotomy was unilaterally performed in Cx3cr1-Mfp2−/− and control mice, and microglial functioning in response to neuronal injury was subsequently analyzed by histology and real-time PCR. Finally, neuronal function, motor function, behavior, and cognition were assessed using brainstem auditory evoked potentials, grip strength and inverted grid test, open field exploration, and passive avoidance learning, respectively. Results We found that Mfp2−/− microglia in a genetically intact brain environment adopt an inflammatory activated and proliferative state. In addition, we found that acute inflammatory and neuronal injury provoked normal responses of Mfp2−/− microglia in Cx3cr1-Mfp2−/− mice during the post-injury period. Despite chronic pro-inflammatory microglial reactivity, Cx3cr1-Mfp2−/− mice exhibited normal neuronal transmission, clinical performance, and cognition. Conclusion Our data demonstrate that MFP2 deficiency in microglia causes intrinsic dysregulation of their inflammatory profile, which is not harmful to neuronal function, motor function, and cognition in mice during their first year of life. Electronic supplementary material The online version of this article (10.1186/s12974-019-1442-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lien Beckers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell Metabolism, KU Leuven - University of Leuven, Campus Gasthuisberg O/N2, Herestraat 49, B-3000, Leuven, Belgium.,Present Address: Center for Translational and Computational Neuro-immunology, Department of Neurology, Columbia University Medical Center, New York City, NY, USA
| | - Ivana Geric
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell Metabolism, KU Leuven - University of Leuven, Campus Gasthuisberg O/N2, Herestraat 49, B-3000, Leuven, Belgium
| | - Stijn Stroobants
- Faculty of Psychology and Educational Sciences, Biological Psychology Unit, KU Leuven - University of Leuven, B-3000, Leuven, Belgium
| | - Sander Beel
- Department of Neurosciences, Laboratory for Neurobiology, KU Leuven - University of Leuven, Leuven, Belgium.,Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Laboratory for Neurobiology, KU Leuven - University of Leuven, Leuven, Belgium.,Center for Brain and Disease Research, VIB, Leuven, Belgium.,Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Rudi D'Hooge
- Faculty of Psychology and Educational Sciences, Biological Psychology Unit, KU Leuven - University of Leuven, B-3000, Leuven, Belgium
| | - Myriam Baes
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Cell Metabolism, KU Leuven - University of Leuven, Campus Gasthuisberg O/N2, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
6
|
Abstract
Peroxisomes are key metabolic organelles, which contribute to cellular lipid metabolism, e.g. the β-oxidation of fatty acids and the synthesis of myelin sheath lipids, as well as cellular redox balance. Peroxisomal dysfunction has been linked to severe metabolic disorders in man, but peroxisomes are now also recognized as protective organelles with a wider significance in human health and potential impact on a large number of globally important human diseases such as neurodegeneration, obesity, cancer, and age-related disorders. Therefore, the interest in peroxisomes and their physiological functions has significantly increased in recent years. In this review, we intend to highlight recent discoveries, advancements and trends in peroxisome research, and present an update as well as a continuation of two former review articles addressing the unsolved mysteries of this astonishing organelle. We summarize novel findings on the biological functions of peroxisomes, their biogenesis, formation, membrane dynamics and division, as well as on peroxisome-organelle contacts and cooperation. Furthermore, novel peroxisomal proteins and machineries at the peroxisomal membrane are discussed. Finally, we address recent findings on the role of peroxisomes in the brain, in neurological disorders, and in the development of cancer.
Collapse
Affiliation(s)
- Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Manheim, University of Heidelberg, 68167, Mannheim, Germany
| | - Alfred Voelkl
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | - H Dariush Fahimi
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | | |
Collapse
|
7
|
Beckers L, Stroobants S, D'Hooge R, Baes M. Neuronal Dysfunction and Behavioral Abnormalities Are Evoked by Neural Cells and Aggravated by Inflammatory Microglia in Peroxisomal β-Oxidation Deficiency. Front Cell Neurosci 2018; 12:136. [PMID: 29892213 PMCID: PMC5975114 DOI: 10.3389/fncel.2018.00136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/02/2018] [Indexed: 01/22/2023] Open
Abstract
It is becoming evident that microglia, the resident immune cells of the central nervous system (CNS), are active contributors in neurological disorders. Nevertheless, the impact of microgliosis on neuropathology, behavior and clinical decline in neuropathological conditions remains elusive. A mouse model lacking multifunctional protein-2 (MFP2), a pivotal enzyme in peroxisomal β-oxidation, develops a fatal disorder characterized by motor problems similar to the milder form of human disease. The molecular mechanisms underlying neurological decline in men and mice remain unknown. The hallmark of disease in the mouse model is chronic proliferation of microglia in the brain without provoking neuronal loss or demyelination. In order to define the contribution of Mfp2-/- neural cells to development of microgliosis and clinical neuropathology, the constitutive Mfp2-/- mouse model was compared to a neural selective Nestin-Mfp2-/- mouse model. We demonstrate in this study that, in contrast to early-onset and severe microgliosis in constitutive Mfp2-/- mice, Mfp2+/+ microglia in Nestin-Mfp2-/- mice only become mildly inflammatory at end stage of disease. Mfp2-/- microglia are primed and acquire a chronic and strong inflammatory state in Mfp2-/- mice whereas Mfp2+/+ microglia in Nestin-Mfp2-/- mice are not primed and adopt a minimal activation state. The inflammatory microglial phenotype in Mfp2-/- mice is correlated with more severe neuronal dysfunction, faster clinical deterioration and reduced life span compared to Nestin-Mfp2-/- mice. Taken together, our study shows that deletion of MFP2 impairs behavior and locomotion. Clinical decline and neural pathology is aggravated by an early-onset and excessive microglial response in Mfp2-/- mice and strongly indicates a cell-autonomous role of MFP2 in microglia.
Collapse
Affiliation(s)
- Lien Beckers
- Laboratory for Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, Leuven, Belgium
| | - Stijn Stroobants
- Department of Biological Psychology, Faculty of Psychology and Educational Sciences, KU Leuven-University of Leuven, Leuven, Belgium
| | - Rudi D'Hooge
- Department of Biological Psychology, Faculty of Psychology and Educational Sciences, KU Leuven-University of Leuven, Leuven, Belgium
| | - Myriam Baes
- Laboratory for Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Nury T, Zarrouk A, Ragot K, Debbabi M, Riedinger JM, Vejux A, Aubourg P, Lizard G. 7-Ketocholesterol is increased in the plasma of X-ALD patients and induces peroxisomal modifications in microglial cells: Potential roles of 7-ketocholesterol in the pathophysiology of X-ALD. J Steroid Biochem Mol Biol 2017; 169:123-136. [PMID: 27041118 DOI: 10.1016/j.jsbmb.2016.03.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/09/2015] [Accepted: 03/31/2016] [Indexed: 01/08/2023]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder induced by a mutation in the ABCD1 gene, which causes the accumulation of very long-chain fatty acids in tissue and plasma. Oxidative stress may be a hallmark of X-ALD. In the plasma of X-ALD patients with different forms of the disease, characterized by high levels of C24:0 and C26:0, we observed the presence of oxidative stress revealed by decreased levels of GSH, α-tocopherol, and docosahexaenoic acid (DHA). We showed that oxidative stress caused the oxidation of cholesterol and linoleic acid, leading to the formation of cholesterol oxide derivatives oxidized at C7 (7-ketocholesterol (7KC), 7β-hydroxycholesterol (7β-OHC), and 7α-hydroxycholesrol (7α-OHC)) and of 9- and 13-hydroxyoctadecadienoic acids (9-HODE, 13-HODE), respectively. High levels of 7KC, 7β-OHC, 7α-OHC, 9-HODE and 13-HODE were found. As 7KC induces oxidative stress, inflammation and cell death, which could play key roles in the development of X-ALD, the impact of 7KC on the peroxisomal status was determined in microglial BV-2 cells. Indeed, environmental stress factors such as 7KC could exacerbate peroxisomal dysfunctions in microglial cells and thus determine the progression of the disease. 7KC induces oxiapoptophagy in BV-2 cells: overproduction of H2O2 and O2-, presence of cleaved caspase-3 and PARP, nuclear condensation and/or fragmentation; elevated [LC3-II/LC3-I] ratio, increased p62 levels. 7KC also induces several peroxisomal modifications: decreased Abcd1, Abcd2, Abcd3, Acox1 and/or Mfp2 mRNA and protein levels, increased catalase activity and decreased Acox1-activity. However, the Pex14 level was unchanged. It is suggested that high levels of 7KC in X-ALD patients could foster generalized peroxisomal dysfunction in microglial cells, which could in turn intensify brain damage.
Collapse
Affiliation(s)
- Thomas Nury
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France
| | - Amira Zarrouk
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France; Univ. Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS Nutrition - Functional Food & Vascular Health, Monastir, Tunisia; Univ. Sousse, Faculty of Medicine, Sousse, Tunisia
| | - Kévin Ragot
- SYSMEX, Department of Cytometry, Roissy, France
| | - Meryam Debbabi
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France; Univ. Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS Nutrition - Functional Food & Vascular Health, Monastir, Tunisia
| | | | - Anne Vejux
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France
| | - Patrick Aubourg
- INSERM UMR 1169, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Gérard Lizard
- Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270/Univ. Bourgogne Franche Comté/INSERM, Dijon, France.
| |
Collapse
|
9
|
Beckers L, Stroobants S, Verheijden S, West B, D'Hooge R, Baes M. Specific suppression of microgliosis cannot circumvent the severe neuropathology in peroxisomal β-oxidation-deficient mice. Mol Cell Neurosci 2017; 80:123-133. [PMID: 28286294 DOI: 10.1016/j.mcn.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/21/2017] [Accepted: 03/05/2017] [Indexed: 12/22/2022] Open
Abstract
An important hallmark of various neurodegenerative disorders is the proliferation and activation of microglial cells, the resident immune cells of the central nervous system (CNS). Mice that lack multifunctional protein-2 (MFP2), the key enzyme in peroxisomal β-oxidation, develop excessive microgliosis that positively correlates with behavioral deficits whereas no neuronal loss occurs. However, the precise contribution of neuroinflammation to the fatal neuropathology of MFP2 deficiency remains largely unknown. Here, we first attempted to suppress the inflammatory response by administering various anti-inflammatory drugs but they failed to reduce microgliosis. Subsequently, Mfp2-/- mice were treated with the selective colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 as microglial proliferation and survival is dependent on CSF1R signaling. This resulted in the elimination of >95% of microglia from control mice but only 70% of the expanded microglial population from Mfp2-/- mice. Despite microglial diminution in Mfp2-/- brain, inflammatory markers remained unaltered and residual microglia persisted in a reactive state. CSF1R inhibition did not prevent neuronal dysfunction, cognitive decline and clinical deterioration of Mfp2-/- mice. Collectively, the unaltered inflammatory profile despite suppressed microgliosis concurrent with persevering clinical decline strengthens our hypothesis that neuroinflammation importantly contributes to the Mfp2-/- phenotype.
Collapse
Affiliation(s)
- L Beckers
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, B-3000 Leuven, Belgium
| | - S Stroobants
- KU Leuven - University of Leuven, Faculty of Psychology and Educational Sciences, Biological Psychology, B-3000 Leuven, Belgium
| | - S Verheijden
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, B-3000 Leuven, Belgium
| | - B West
- Plexxikon Inc., Berkeley, CA 94710, USA
| | - R D'Hooge
- KU Leuven - University of Leuven, Faculty of Psychology and Educational Sciences, Biological Psychology, B-3000 Leuven, Belgium
| | - M Baes
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, B-3000 Leuven, Belgium.
| |
Collapse
|
10
|
Abril N, Chicano-Gálvez E, Michán C, Pueyo C, López-Barea J. iTRAQ analysis of hepatic proteins in free-living Mus spretus mice to assess the contamination status of areas surrounding Doñana National Park (SW Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 523:16-27. [PMID: 25847312 DOI: 10.1016/j.scitotenv.2015.03.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 05/22/2023]
Abstract
This work aims to develop and integrate new -omics tools that would be applicable to different ecosystem types for a technological updating of environmental evaluations. We used a 2nd-generation (iTRAQ-8plex) proteomic approach to identify/quantify proteins differentially expressed in the liver of free-living Mus spretus mice from Doñana National Park or its proximities. Mass spectrometry was performed in an LTQ Orbitrap system for iTRAQ reporter ion quantitation and protein identification using a Mus musculus database as reference. A prior IEF step improved the separation of the complex peptide mixture. Over 2000 identified proteins were altered, of which 118 changed by ≥2.5-fold in mice from at least two problem sites. Part of the results obtained with the iTRAQ analysis was confirmed by Western blot. Over 75% of the 118 proteins were upregulated in animals captured at polluted sites and only 16 proteins were downregulated. Upregulated proteins were involved in stress response; cell proliferation and apoptosis; signal transduction; metastasis or tumour suppression; xenobiotic export or vesicular trafficking; and metabolism. The downregulated proteins, all potentially harmful, were classified as oncoproteins and proteins favouring genome instability. The iTRAQ results presented here demonstrated that the survival of hepatic cells is compromised in animals living at polluted sites, which showed deep alterations in metabolism and the signalling pathways. The identified proteins may be useful as biomarkers of environmental pollution and provide insight about the metabolic pathways and/or physiological processes affected by pollutants in DNP and its surrounding areas.
Collapse
Affiliation(s)
- Nieves Abril
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Eduardo Chicano-Gálvez
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Carmen Michán
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Carmen Pueyo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Juan López-Barea
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain.
| |
Collapse
|
11
|
Škrášková K, Khmelinskii A, Abdelmoula WM, De Munter S, Baes M, McDonnell L, Dijkstra J, Heeren RMA. Precise Anatomic Localization of Accumulated Lipids in Mfp2 Deficient Murine Brains Through Automated Registration of SIMS Images to the Allen Brain Atlas. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:948-57. [PMID: 25916600 PMCID: PMC4422856 DOI: 10.1007/s13361-015-1146-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 05/04/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful tool for the molecular characterization of specific tissue regions. Histochemical staining provides anatomic information complementary to MSI data. The combination of both modalities has been proven to be beneficial. However, direct comparison of histology based and mass spectrometry-based molecular images can become problematic because of potential tissue damages or changes caused by different sample preparation. Curated atlases such as the Allen Brain Atlas (ABA) offer a collection of highly detailed and standardized anatomic information. Direct comparison of MSI brain data to the ABA allows for conclusions to be drawn on precise anatomic localization of the molecular signal. Here we applied secondary ion mass spectrometry imaging at high spatial resolution to study brains of knock-out mouse models with impaired peroxisomal β-oxidation. Murine models were lacking D-multifunctional protein (MFP2), which is involved in degradation of very long chain fatty acids. SIMS imaging revealed deposits of fatty acids within distinct brain regions. Manual comparison of the MSI data with the histologic stains did not allow for an unequivocal anatomic identification of the fatty acids rich regions. We further employed an automated pipeline for co-registration of the SIMS data to the ABA. The registration enabled precise anatomic annotation of the brain structures with the revealed lipid deposits. The precise anatomic localization allowed for a deeper insight into the pathology of Mfp2 deficient mouse models.
Collapse
Affiliation(s)
- Karolina Škrášková
- />FOM-Institute AMOLF, Amsterdam, The Netherlands
- />TI-COAST, Amsterdam, The Netherlands
| | - Artem Khmelinskii
- />FOM-Institute AMOLF, Amsterdam, The Netherlands
- />Percuros B.V., Enschede, The Netherlands
- />Division of Image Processing, Department of Radiology, LUMC, Leiden, The Netherlands
| | - Walid M. Abdelmoula
- />Division of Image Processing, Department of Radiology, LUMC, Leiden, The Netherlands
| | | | - Myriam Baes
- />Laboratory of Cellular Metabolism, KU Leuven, Leuven, Belgium
| | - Liam McDonnell
- />Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- />Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - Jouke Dijkstra
- />Division of Image Processing, Department of Radiology, LUMC, Leiden, The Netherlands
| | - Ron M. A. Heeren
- />FOM-Institute AMOLF, Amsterdam, The Netherlands
- />TI-COAST, Amsterdam, The Netherlands
- />M4I, The Maastricht MultiModal Molecular Imaging Institute, University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|