1
|
McMillan IO, Liang L, Su G, Song X, Drago K, Yang H, Alvarez C, Sood A, Gibson J, Woods RJ, Wang C, Liu J, Zhang F, Brett TJ, Wang L. TREM2 on microglia cell surface binds to and forms functional binary complexes with heparan sulfate modified with 6-O-sulfation and iduronic acid. J Biol Chem 2024; 300:107691. [PMID: 39159814 PMCID: PMC11416269 DOI: 10.1016/j.jbc.2024.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
The triggering receptor expressed on myeloid cells-2 (TREM2), a pivotal innate immune receptor, orchestrates functions such as inflammatory responses, phagocytosis, cell survival, and neuroprotection. TREM2 variants R47H and R62H have been associated with Alzheimer's disease, yet the underlying mechanisms remain elusive. Our previous research established that TREM2 binds to heparan sulfate (HS) and variants R47H and R62H exhibit reduced affinity for HS. Building upon this groundwork, our current study delves into the interplay between TREM2 and HS and its impact on microglial function. We confirm TREM2's binding to cell surface HS and demonstrate that TREM2 interacts with HS, forming HS-TREM2 binary complexes on microglia cell surfaces. Employing various biochemical techniques, including surface plasmon resonance, low molecular weight HS microarray screening, and serial HS mutant cell surface binding assays, we demonstrate TREM2's robust affinity for HS, and the effective binding requires a minimum HS size of approximately 10 saccharide units. Notably, TREM2 selectively binds specific HS structures, with 6-O-sulfation and, to a lesser extent, the iduronic acid residue playing crucial roles. N-sulfation and 2-O-sulfation are dispensable for this interaction. Furthermore, we reveal that 6-O-sulfation is essential for HS-TREM2 ternary complex formation on the microglial cell surface, and HS and its 6-O-sulfation are necessary for TREM2-mediated ApoE3 uptake in microglia. By delineating the interaction between HS and TREM2 on the microglial cell surface and demonstrating its role in facilitating TREM2-mediated ApoE uptake by microglia, our findings provide valuable insights that can inform targeted interventions for modulating microglial functions in Alzheimer's disease.
Collapse
Affiliation(s)
- Ilayda Ozsan McMillan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Li Liang
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Guowei Su
- Glycan Therapeutics, Raleigh, North Carolina, USA
| | - Xuehong Song
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Kelly Drago
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Hua Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Claudia Alvarez
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Amika Sood
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - James Gibson
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Chunyu Wang
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Fuming Zhang
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Tom J Brett
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
2
|
Autism, heparan sulfate and potential interventions. Exp Neurol 2022; 353:114050. [DOI: 10.1016/j.expneurol.2022.114050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 11/16/2022]
|
3
|
Pérez Y, Bonet R, Corredor M, Domingo C, Moure A, Messeguer À, Bujons J, Alfonso I. Semaphorin 3A-Glycosaminoglycans Interaction as Therapeutic Target for Axonal Regeneration. Pharmaceuticals (Basel) 2021; 14:ph14090906. [PMID: 34577606 PMCID: PMC8465649 DOI: 10.3390/ph14090906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Semaphorin 3A (Sema3A) is a cell-secreted protein that participates in the axonal guidance pathways. Sema3A acts as a canonical repulsive axon guidance molecule, inhibiting CNS regenerative axonal growth and propagation. Therefore, interfering with Sema3A signaling is proposed as a therapeutic target for achieving functional recovery after CNS injuries. It has been shown that Sema3A adheres to the proteoglycan component of the extracellular matrix (ECM) and selectively binds to heparin and chondroitin sulfate-E (CS-E) glycosaminoglycans (GAGs). We hypothesize that the biologically relevant interaction between Sema3A and GAGs takes place at Sema3A C-terminal polybasic region (SCT). The aims of this study were to characterize the interaction of the whole Sema3A C-terminal polybasic region (Sema3A 725–771) with GAGs and to investigate the disruption of this interaction by small molecules. Recombinant Sema3A basic domain was produced and we used a combination of biophysical techniques (NMR, SPR, and heparin affinity chromatography) to gain insight into the interaction of the Sema3A C-terminal domain with GAGs. The results demonstrate that SCT is an intrinsically disordered region, which confirms that SCT binds to GAGs and helps to identify the specific residues involved in the interaction. NMR studies, supported by molecular dynamics simulations, show that a new peptoid molecule (CSIC02) may disrupt the interaction between SCT and heparin. Our structural study paves the way toward the design of new molecules targeting these protein–GAG interactions with potential therapeutic applications.
Collapse
Affiliation(s)
- Yolanda Pérez
- NMR Facility, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Correspondence: (Y.P.); (I.A.)
| | - Roman Bonet
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Miriam Corredor
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Cecilia Domingo
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Alejandra Moure
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Àngel Messeguer
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Jordi Bujons
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
- Correspondence: (Y.P.); (I.A.)
| |
Collapse
|
4
|
Yue J, Jin W, Yang H, Faulkner J, Song X, Qiu H, Teng M, Azadi P, Zhang F, Linhardt RJ, Wang L. Heparan Sulfate Facilitates Spike Protein-Mediated SARS-CoV-2 Host Cell Invasion and Contributes to Increased Infection of SARS-CoV-2 G614 Mutant and in Lung Cancer. Front Mol Biosci 2021; 8:649575. [PMID: 34179075 PMCID: PMC8231436 DOI: 10.3389/fmolb.2021.649575] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome (SARS)-like coronavirus disease (COVID-19) is caused by SARS-CoV-2 and has been a serious threat to global public health with limited treatment. Cellular heparan sulfate (HS) has been found to bind SARS-CoV-2 spike protein (SV2-S) and co-operate with cell surface receptor angiotensin-converting enzyme 2 (ACE2) to mediate SARS-CoV-2 infection of host cells. In this study, we determined that host cell surface SV2-S binding depends on and correlates with host cell surface HS expression. This binding is required for SARS-Cov-2 virus to infect host cells and can be blocked by heparin lyase, HS antagonist surfen, heparin, and heparin derivatives. The binding of heparin/HS to SV2-S is mainly determined by its overall sulfation with potential, minor contribution of specific SV2-S binding motifs. The higher binding affinity of SV2-S G614 mutant to heparin and upregulated HS expression may be one of the mechanisms underlying the higher infectivity of the SARS-CoV-2 G614 variant and the high vulnerability of lung cancer patients to SARS-CoV-2 infection, respectively. The higher host cell infection by SARS-CoV-2 G614 variant pseudovirus and the increased infection caused by upregulated HS expression both can be effectively blocked by heparin lyase and heparin, and possibly surfen and heparin derivatives too. Our findings support blocking HS-SV2-S interaction may provide one addition to achieve effective prevention and/treatment of COVID-19.
Collapse
Affiliation(s)
- Jingwen Yue
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Weihua Jin
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Hua Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| | - John Faulkner
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| | - Xuehong Song
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| | - Hong Qiu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Michael Teng
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| |
Collapse
|
5
|
Inhibition of glucuronomannan hexamer on the proliferation of lung cancer through binding with immunoglobulin G. Carbohydr Polym 2020; 248:116785. [PMID: 32919573 DOI: 10.1016/j.carbpol.2020.116785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
The anti-lung cancer activity of oligosaccharides derived from glucuronomannan was investigated. The inhibition of A549 cell proliferation by glucuronomannan (Gn) and its oligomers (dimer (G2), tetramer (G4) and hexamer (G6)) were concentration dependent. In vivo activities on the A549-derived tumor xenografts showed the tumor inhibition of G2, G4 and G6 were 17 %, 40 % and 46 %, respectively. Organ coefficients in nude mice showed an increase in the kidney with G4, the brain with G6, and the spleen with G6. An advanced tandem mass tag labeled proteomics approach was performed. A significant differential expression was found in 59 out of the 4371 proteins, which involved the immune system. Surface plasmon resonance (SPR) studies revealed G6 was strongly bound to immunoglobulin G. This suggests that glucuronomannan hexamer inhibits the proliferation of lung cancer through its binding to immunoglobulin.
Collapse
|
6
|
Interactions between Sclerostin and Glycosaminoglycans. Glycoconj J 2019; 37:119-128. [PMID: 31828567 DOI: 10.1007/s10719-019-09900-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Sclerostin (SOST) is a glycoprotein having many important functions in the regulation of bone formation as a key negative regulator of Wnt signaling in bone. Surface plasmon resonance (SPR), which allows for a direct quantitative analysis of the label-free molecular interactions in real-time, has been widely used for the biophysical characterization of glycosaminoglycan (GAG)-protein interactions. In the present study, we report kinetics, structural analysis and the effects of physiological conditions (e.g., salt concentrations, Ca2+ and Zn2+concentrations) on the interactions between GAGs and recombinant human (rh) and recombinant mouse (rm) SOST using SPR. SPR results revealed that both SOSTs bind heparin with high affinity (rhSOST-heparin, KD~36 nM and rmSOST-heparin, KD~77 nM) and the shortest oligosaccharide of heparin that effectively competes with full size heparin for SOST binding is octadecasaccharide (18mer). This heparin binding protein also interacts with other highly sulfated GAGs including, disulfated-dermatan sulfate and chondroitin sulfate E. In addition, liquid chromatography-mass spectrometry was used to characterize the structure of sulfated GAGs that bound to SOST.
Collapse
|
7
|
Koohini Z, Koohini Z, Teimourian S. Slit/Robo Signaling Pathway in Cancer; a New Stand Point for Cancer Treatment. Pathol Oncol Res 2019; 25:1285-1293. [PMID: 30610466 DOI: 10.1007/s12253-018-00568-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
Angiogenesis and metastasis are two critical steps for cancer cells survival and migration. The microenvironment of tumor sphere induces new blood vessels formation for enhancing tumor mass. Preexisting capillaries and postcapillary venules in tumors bring about new blood vessels. ROBO1-ROBO4 are transmembrane receptors family which act as guidance molecules of the nervous system. The SLITs family is secreted glycoproteins that bind to these receptors. SLIT-ROBO signaling pathway plays an important role in neurogenesis and immune response. Linkage between ROBOs and their ligands (SLITs) induce chemorepllent signal for regulation of axon guidance and leukocyte cell migration, recent finding shows that it is also involved in endothelial cell migration and angiogenesis in various type of cancers. In this article we review recent finding of SLIT-ROBO pathway in angiogenesis and metastasis.
Collapse
Affiliation(s)
- Zahra Koohini
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Koohini
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Moure MJ, Eletsky A, Gao Q, Morris LC, Yang JY, Chapla D, Zhao Y, Zong C, Amster IJ, Moremen KW, Boons GJ, Prestegard JH. Paramagnetic Tag for Glycosylation Sites in Glycoproteins: Structural Constraints on Heparan Sulfate Binding to Robo1. ACS Chem Biol 2018; 13:2560-2567. [PMID: 30063822 PMCID: PMC6161356 DOI: 10.1021/acschembio.8b00511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An enzyme- and click chemistry-mediated methodology for the site-specific nitroxide spin labeling of glycoproteins has been developed and applied. The procedure relies on the presence of single N-glycosylation sites that are present natively in proteins or that can be engineered into glycoproteins by mutational elimination of all but one glycosylation site. Recombinantly expressing glycoproteins in HEK293S (GnT1-) cells results in N-glycans with high-mannose structures that can be processed to leave a single GlcNAc residue. This can in turn be modified by enzymatic addition of a GalNAz residue that is subject to reaction with an alkyne-carrying TEMPO moiety using copper(I)-catalyzed click chemistry. To illustrate the procedure, we have made an application to a two-domain construct of Robo1, a protein that carries a single N-glycosylation site in its N-terminal domains. The construct has also been labeled with 15N at amide nitrogens of lysine residues to provide a set of sites that are used to derive an effective location of the paramagnetic nitroxide moiety of the TEMPO group. This, in turn, allowed measurements of paramagnetic perturbations to the spectra of a new high affinity heparan sulfate ligand. Calculation of distance constraints from these data facilitated determination of an atomic level model for the docked complex.
Collapse
Affiliation(s)
- Maria J. Moure
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Alexander Eletsky
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Qi Gao
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Laura C. Morris
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Yuejie Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - I. Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
9
|
Zhao Y, Yang JY, Thieker DF, Xu Y, Zong C, Boons GJ, Liu J, Woods RJ, Moremen KW, Amster IJ. A Traveling Wave Ion Mobility Spectrometry (TWIMS) Study of the Robo1-Heparan Sulfate Interaction. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1153-1165. [PMID: 29520710 PMCID: PMC6004239 DOI: 10.1007/s13361-018-1903-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/14/2018] [Accepted: 01/14/2018] [Indexed: 06/10/2023]
Abstract
Roundabout 1 (Robo1) interacts with its receptor Slit to regulate axon guidance, axon branching, and dendritic development in the nervous system and to regulate morphogenesis and many cell functions in the nonneuronal tissues. This interaction is known to be critically regulated by heparan sulfate (HS). Previous studies suggest that HS is required to promote the binding of Robo1 to Slit to form the minimal signaling complex, but the molecular details and the structural requirements of HS for this interaction are still unclear. Here, we describe the application of traveling wave ion mobility spectrometry (TWIMS) to study the conformational details of the Robo1-HS interaction. The results suggest that Robo1 exists in two conformations that differ by their compactness and capability to interact with HS. The results also suggest that the highly flexible interdomain hinge region connecting the Ig1 and Ig2 domains of Robo1 plays an important functional role in promoting the Robo1-Slit interaction. Moreover, variations in the sulfation pattern and size of HS were found to affect its binding affinity and selectivity to interact with different conformations of Robo1. Both MS measurements and CIU experiments show that the Robo1-HS interaction requires the presence of a specific size and pattern of modification of HS. Furthermore, the effect of N-glycosylation on the conformation of Robo1 and its binding modes with HS is reported. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yuejie Zhao
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Jeong Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - David F Thieker
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Yongmei Xu
- Eshelman School of Pharmacy, Division of Chemical Biology & Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jian Liu
- Eshelman School of Pharmacy, Division of Chemical Biology & Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
10
|
Zhao J, Mommersteeg MTM. Slit-Robo signalling in heart development. Cardiovasc Res 2018; 114:794-804. [PMID: 29538649 PMCID: PMC5909645 DOI: 10.1093/cvr/cvy061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/16/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
The Slit ligands and their Robo receptors are well-known for their roles during axon guidance in the central nervous system but are still relatively unknown in the cardiac field. However, data from different animal models suggest a broad involvement of the pathway in many aspects of heart development, from cardiac cell migration and alignment, lumen formation, chamber formation, to the formation of the ventricular septum, semilunar and atrioventricular valves, caval veins, and pericardium. Absence of one or more of the genes in the pathway results in defects ranging from bicuspid aortic valves to ventricular septal defects and abnormal venous connections to the heart. Congenital heart defects are the most common congenital malformations found in life new-born babies and progress in methods for large scale human genetic testing has significantly enhanced the identification of new causative genes involved in human congenital heart disease. Recently, loss of function variants in ROBO1 have also been linked to ventricular septal defects and tetralogy of Fallot in patients. Here, we will give an overview of the role of the Slit-Robo signalling pathway in Drosophila, zebrafish, and mouse heart development. The extent of these data warrant further attention on the SLIT-ROBO signalling pathway as a candidate for an array of human congenital heart defects.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Mathilda T M Mommersteeg
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
11
|
Moremen KW, Ramiah A, Stuart M, Steel J, Meng L, Forouhar F, Moniz HA, Gahlay G, Gao Z, Chapla D, Wang S, Yang JY, Prabahkar PK, Johnson R, dela Rosa M, Geisler C, Nairn AV, Wu SC, Tong L, Gilbert HJ, LaBaer J, Jarvis DL. Expression system for structural and functional studies of human glycosylation enzymes. Nat Chem Biol 2018; 14:156-162. [PMID: 29251719 PMCID: PMC5774587 DOI: 10.1038/nchembio.2539] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
Abstract
Vertebrate glycoproteins and glycolipids are synthesized in complex biosynthetic pathways localized predominantly within membrane compartments of the secretory pathway. The enzymes that catalyze these reactions are exquisitely specific, yet few have been extensively characterized because of challenges associated with their recombinant expression as functional products. We used a modular approach to create an expression vector library encoding all known human glycosyltransferases, glycoside hydrolases, and sulfotransferases, as well as other glycan-modifying enzymes. We then expressed the enzymes as secreted catalytic domain fusion proteins in mammalian and insect cell hosts, purified and characterized a subset of the enzymes, and determined the structure of one enzyme, the sialyltransferase ST6GalNAcII. Many enzymes were produced at high yields and at similar levels in both hosts, but individual protein expression levels varied widely. This expression vector library will be a transformative resource for recombinant enzyme production, broadly enabling structure-function studies and expanding applications of these enzymes in glycochemistry and glycobiology.
Collapse
Affiliation(s)
- Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | | | - Melissa Stuart
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Jason Steel
- Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Lu Meng
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Farhad Forouhar
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York 10027
| | - Heather A. Moniz
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Gagandeep Gahlay
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Zhongwei Gao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | | | - Shuo Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | | | - Roy Johnson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Mitche dela Rosa
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Christoph Geisler
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Alison V. Nairn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Sheng-Cheng Wu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Liang Tong
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York 10027
| | - Harry J. Gilbert
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Donald L. Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
12
|
Gao Q, Chen CY, Zong C, Wang S, Ramiah A, Prabhakar P, Morris LC, Boons GJ, Moremen KW, Prestegard JH. Structural Aspects of Heparan Sulfate Binding to Robo1-Ig1-2. ACS Chem Biol 2016; 11:3106-3113. [PMID: 27653286 PMCID: PMC5148660 DOI: 10.1021/acschembio.6b00692] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Roundabout 1, or Robo1, is a cell surface signaling molecule important in axon guidance. Its interaction with heparan sulfate (HS) and members of the Slit protein family is essential to its activity, making characterization of these interactions by structural methods, such as NMR, highly desirable. However, the fact that Robo1 is a glycosylated protein prevents employment of commonly used bacterial hosts for expression of properly glycosylated forms with the uniform 15N, 13C, and 2H labeling needed for NMR studies. Here, we apply an alternative methodology, based on labeling with a single amino acid type and high structural content NMR data, to characterize a two-domain construct of glycosylated Robo1 (Robo1-Ig1-2) interacting with a synthetic HS tetramer (IdoA-GlcNS6S-IdoA2S-GlcNS6S-(CH2)5NH2). Significant chemical shift perturbations of the crosspeak from K81 on titration with the tetramer provide initial evidence for the location of a binding site and allow determination of a 255 μM disassociation constant. The binding epitopes, bound conformation, and binding site placement of the HS tetramer have been further characterized by saturation transfer difference (STD), transferred nuclear Overhauser effect (trNOE), and paramagnetic perturbation experiments. A model of the complex has been generated using constraints derived from the various NMR experiments. Postprocessing energetic analysis of this model provides a rationale for the role each glycan residue plays in the binding event, and examination of the binding site in the context of a previous Robo-Slit structure provides a rationale for modulation of Robo-Slit interactions by HS.
Collapse
Affiliation(s)
- Qi Gao
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Cheng-Yu Chen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Shuo Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Annapoorani Ramiah
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Pradeep Prabhakar
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Laura C. Morris
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
13
|
Ahmed YA, Yates EA, Moss DJ, Loeven MA, Hussain SA, Hohenester E, Turnbull JE, Powell AK. Panels of chemically-modified heparin polysaccharides and natural heparan sulfate saccharides both exhibit differences in binding to Slit and Robo, as well as variation between protein binding and cellular activity. MOLECULAR BIOSYSTEMS 2016; 12:3166-75. [PMID: 27502551 PMCID: PMC5048398 DOI: 10.1039/c6mb00432f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/04/2016] [Indexed: 01/09/2023]
Abstract
Heparin/heparan sulfate (HS) glycosaminoglycans are required for Slit-Robo cellular responses. Evidence exists for interactions between each combination of Slit, Robo and heparin/HS and for formation of a ternary complex. Heparin/HS are complex mixtures displaying extensive structural diversity. The relevance of this diversity has been studied to a limited extent using a few select chemically-modified heparins as models of HS diversity. Here we extend these studies by parallel screening of structurally diverse panels of eight chemically-modified heparin polysaccharides and numerous natural HS oligosaccharide chromatographic fractions for binding to both Drosophila Slit and Robo N-terminal domains and for activation of a chick retina axon response to the Slit fragment. Both the polysaccharides and oligosaccharide fractions displayed variability in binding and cellular activity that could not be attributed solely to increasing sulfation, extending evidence for the importance of structural diversity to natural HS as well as model modified heparins. They also displayed differences in their interactions with Slit compared to Robo, with Robo preferring compounds with higher sulfation. Furthermore, the patterns of cellular activity across compounds were different to those for binding to each protein, suggesting that biological outcomes are selectively determined in a subtle manner that does not simply reflect the sum of the separate interactions of heparin/HS with Slit and Robo.
Collapse
Affiliation(s)
- Yassir A. Ahmed
- Centre for Glycobiology , Institute of Integrative Biology , University of Liverpool , UK
- Department of Chemistry , Faculty of Science , King Faisal University , Kingdom of Saudi Arabia
| | - Edwin A. Yates
- Centre for Glycobiology , Institute of Integrative Biology , University of Liverpool , UK
| | - Diana J. Moss
- Department of Cellular and Molecular Physiology , University of Liverpool , UK
| | - Markus A. Loeven
- Centre for Glycobiology , Institute of Integrative Biology , University of Liverpool , UK
| | | | | | - Jeremy E. Turnbull
- Centre for Glycobiology , Institute of Integrative Biology , University of Liverpool , UK
| | - Andrew K. Powell
- Centre for Glycobiology , Institute of Integrative Biology , University of Liverpool , UK
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK .
| |
Collapse
|
14
|
Zong C, Huang R, Condac E, Chiu Y, Xiao W, Li X, Lu W, Ishihara M, Wang S, Ramiah A, Stickney M, Azadi P, Amster IJ, Moremen KW, Wang L, Sharp JS, Boons GJ. Integrated Approach to Identify Heparan Sulfate Ligand Requirements of Robo1. J Am Chem Soc 2016; 138:13059-13067. [PMID: 27611601 PMCID: PMC5068570 DOI: 10.1021/jacs.6b08161] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An integrated methodology is described to establish ligand requirements for heparan sulfate (HS) binding proteins based on a workflow in which HS octasaccharides are produced by partial enzymatic degradation of natural HS followed by size exclusion purification, affinity enrichment using an immobilized HS-binding protein of interest, putative structure determination of isolated compounds by a hydrophilic interaction chromatography-high-resolution mass spectrometry platform, and chemical synthesis of well-defined HS oligosaccharides for structure-activity relationship studies. The methodology was used to establish the ligand requirements of human Roundabout receptor 1 (Robo1), which is involved in a number of developmental processes. Mass spectrometric analysis of the starting octasaccharide mixture and the Robo1-bound fraction indicated that Robo1 has a preference for a specific set of structures. Further analysis was performed by sequential permethylation, desulfation, and pertrideuteroacetylation followed by online separation and structural analysis by MS/MS. Sequences of tetrasaccharides could be deduced from the data, and by combining the compositional and sequence data, a putative octasaccharide ligand could be proposed (GlA-GlcNS6S-IdoA-GlcNS-IdoA2S-GlcNS6S-IdoA-GlcNAc6S). A modular synthetic approach was employed to prepare the target compound, and binding studies by surface plasmon resonance (SPR) confirmed it to be a high affinity ligand for Robo1. Further studies with a number of tetrasaccharides confirmed that sulfate esters at C-6 are critical for binding, whereas such functionalities at C-2 substantially reduce binding. High affinity ligands were able to reverse a reduction in endothelial cell migration induced by Slit2-Robo1 signaling.
Collapse
Affiliation(s)
- Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Rongrong Huang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Eduard Condac
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Yulun Chiu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Institute of Bioinformatics, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Wenyuan Xiao
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Xiuru Li
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Weigang Lu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Shuo Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Annapoorani Ramiah
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Morgan Stickney
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - I. Jonathan Amster
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Lianchun Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Joshua S. Sharp
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
15
|
Abstract
Slits are secreted proteins that bind to Roundabout (Robo) receptors. Slit-Robo signaling is best known for mediating axon repulsion in the developing nervous system. However, in recent years the functional repertoire of Slits and Robo has expanded tremendously and Slit-Robo signaling has been linked to roles in neurogenesis, angiogenesis and cancer progression among other processes. Likewise, our mechanistic understanding of Slit-Robo signaling has progressed enormously. Here, we summarize new insights into Slit-Robo evolutionary and system-dependent diversity, receptor-ligand interactions, signaling crosstalk and receptor activation.
Collapse
Affiliation(s)
- Heike Blockus
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris 75012, France Ecole des Neurosciences de Paris, Paris F-75005, France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris 75012, France
| |
Collapse
|
16
|
Zhao J, Liu X, Kao C, Zhang E, Li Q, Zhang F, Linhardt RJ. Kinetic and Structural Studies of Interactions between Glycosaminoglycans and Langerin. Biochemistry 2016; 55:4552-9. [PMID: 27447199 DOI: 10.1021/acs.biochem.6b00555] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Langerin, a C-type lectin, is expressed in Langerhans cells. It was reported that langerin binds sulfated glycans, which is an important initial step for its role in blocking human immunodeficiency virus (HIV) transmission by capturing HIV pathogens and mediating their internalization into Birbeck granules for their elimination. It is fundamentally important to understand these interactions at the molecular level for the design of new highly specific therapeutic agents for HIV. Surface plasmon resonance (SPR), which allows for the real-time, direct, quantitative analysis of the label-free molecular interactions, has been used successfully for biophysical characterization of glycosaminoglycan (GAG)-protein interactions. In this study, we report kinetics, structural analysis, and the effects of physiological conditions (e.g., pH, salt concentration, and Ca(2+) and Zn(2+)concentrations) on the interactions between GAGs and langerin using SPR. SPR results revealed that langerin binds to heparin with high affinity (KD ∼ 2.4 nM) and the oligosaccharide length required for the interactions is larger than a tetrasaccharide. This heparin/heparan sulfate-binding protein also interacts with other GAGs, including dermatan sulfate, chondroitin sulfates C-E and KS. In addition, liquid chromatography-mass spectrometry analysis was used to characterize the structure of sulfated glycans that bound to langerin.
Collapse
Affiliation(s)
- Jing Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University (CAU) , Beijing 100083, China
| | | | | | | | - Quanhong Li
- College of Food Science & Nutritional Engineering, China Agricultural University (CAU) , Beijing 100083, China
| | | | - Robert J Linhardt
- Departments of Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
17
|
Mulloy B, Wu N, Gyapon-Quast F, Lin L, Zhang F, Pickering MC, Linhardt RJ, Feizi T, Chai W. Abnormally High Content of Free Glucosamine Residues Identified in a Preparation of Commercially Available Porcine Intestinal Heparan Sulfate. Anal Chem 2016; 88:6648-52. [PMID: 27295282 PMCID: PMC4948919 DOI: 10.1021/acs.analchem.6b01662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Heparan sulfate (HS)
polysaccharides are ubiquitous in animal tissues
as components of proteoglycans, and they participate in many important
biological processes. HS carbohydrate chains are complex and can contain
rare structural components such as N-unsubstituted
glucosamine (GlcN). Commercially available HS preparations have been
invaluable in many types of research activities. In the course of
preparing microarrays to include probes derived from HS oligosaccharides,
we found an unusually high content of GlcN residue in a recently purchased
batch of porcine intestinal mucosal HS. Composition and sequence analysis
by mass spectrometry of the oligosaccharides obtained after heparin
lyase III digestion of the polysaccharide indicated two and three
GlcN in the tetrasaccharide and hexasaccharide fractions, respectively. 1H NMR of the intact polysaccharide showed that this unusual
batch differed strikingly from other HS preparations obtained from
bovine kidney and porcine intestine. The very high content of GlcN
(30%) and low content of GlcNAc (4.2%) determined by disaccharide
composition analysis indicated that N-deacetylation
and/or N-desulfation may have taken place. HS is
widely used by the scientific community to investigate HS structures
and activities. Great care has to be taken in drawing conclusions
from investigations of structural features of HS and specificities
of HS interaction with proteins when commercial HS is used without
further analysis. Pending the availability of a validated commercial
HS reference preparation, our data may be useful to members of the
scientific community who have used the present preparation in their
studies.
Collapse
Affiliation(s)
| | | | | | - Lei Lin
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | | | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | | | | |
Collapse
|
18
|
Mickum ML, Rojsajjakul T, Yu Y, Cummings RD. Schistosoma mansoni α1,3-fucosyltransferase-F generates the Lewis X antigen. Glycobiology 2015; 26:270-85. [PMID: 26582608 DOI: 10.1093/glycob/cwv103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/01/2015] [Indexed: 02/03/2023] Open
Abstract
Genetic evidence suggests that the Schistosoma mansoni genome contains six genes that encode α1,3-fucosyltransferases (smFuTs). To date, the activities and specificities of these putative fucosyltransferases are unknown. As Schistosoma express a variety of fucosylated glycans, including the Lewis X antigen Galβ1-4(Fucα1-3)GlcNAcβ-R, it is likely that this family of genes encode enzymes that are partly responsible for the generation of those structures. Here, we report the molecular cloning of fucosyltransferase-F (smFuT-F) from S. mansoni, as a soluble, green fluorescent protein fusion protein and its acceptor specificity. The gene smFuT-F was expressed in HEK freestyle cells, purified by affinity chromatography, and analyzed toward a broad panel of glycan acceptors. The enzyme product of smFuT-F effectively utilizes a type II chain acceptor Galβ1-4GlcNAc-R, but notably not the LDN sequence GalNAcβ1-4GlcNAc-R, to generate Lewis X type-glycans, and smFuT-F transcripts are present in all intramammalian life stages.
Collapse
Affiliation(s)
- Megan L Mickum
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Teerapat Rojsajjakul
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Ying Yu
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Li Z, Moniz H, Wang S, Ramiah A, Zhang F, Moremen KW, Linhardt RJ, Sharp JS. High structural resolution hydroxyl radical protein footprinting reveals an extended Robo1-heparin binding interface. J Biol Chem 2015; 290:10729-40. [PMID: 25752613 PMCID: PMC4409239 DOI: 10.1074/jbc.m115.648410] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/05/2015] [Indexed: 11/06/2022] Open
Abstract
Interaction of transmembrane receptors of the Robo family and the secreted protein Slit provides important signals in the development of the central nervous system and regulation of axonal midline crossing. Heparan sulfate, a sulfated linear polysaccharide modified in a complex variety of ways, serves as an essential co-receptor in Slit-Robo signaling. Previous studies have shown that closely related heparin octasaccharides bind to Drosophila Robo directly, and surface plasmon resonance analysis revealed that Robo1 binds more tightly to full-length unfractionated heparin. For the first time, we utilized electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting to identify two separate binding sites for heparin interaction with Robo1: one binding site at the previously identified site for heparin dp8 and a second binding site at the N terminus of Robo1 that is disordered in the x-ray crystal structure. Mutagenesis of the identified N-terminal binding site exhibited a decrease in binding affinity as measured by surface plasmon resonance and heparin affinity chromatography. Footprinting also indicated that heparin binding induces a minor change in the conformation and/or dynamics of the Ig2 domain, but no major conformational changes were detected. These results indicate a second low affinity binding site in the Robo-Slit complex as well as suggesting the role of the Ig2 domain of Robo1 in heparin-mediated signal transduction. This study also marks the first use of electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting, which shows great utility for the characterization of protein-carbohydrate complexes.
Collapse
Affiliation(s)
- Zixuan Li
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602 and
| | - Heather Moniz
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602 and
| | - Shuo Wang
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602 and
| | - Annapoorani Ramiah
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602 and
| | - Fuming Zhang
- the Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Kelley W Moremen
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602 and
| | - Robert J Linhardt
- the Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Joshua S Sharp
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602 and
| |
Collapse
|
20
|
Heparin/Heparan sulfate proteoglycans glycomic interactome in angiogenesis: biological implications and therapeutical use. Molecules 2015; 20:6342-88. [PMID: 25867824 PMCID: PMC6272510 DOI: 10.3390/molecules20046342] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called "angiogenesis glycomic interactome". The decoding of the angiogenesis glycomic interactome, achievable by a systematic study of the interactions occurring among angiogenic modulators and sugars, may help to design novel antiangiogenic therapies with implications in the cure of angiogenesis-dependent diseases.
Collapse
|
21
|
Abstract
One of the most fascinating questions in the field of neurobiology is to understand how neuronal connections are properly formed. During development, neurons extend axons that are guided along defined paths by attractive and repulsive cues to reach their brain target. Most of these guidance factors are regulated by heparan sulfate proteoglycans (HSPGs), a family of cell-surface and extracellular core proteins with attached heparan sulfate (HS) glycosaminoglycans. The unique diversity and structural complexity of HS sugar chains, as well as the variety of core proteins, have been proposed to generate a complex "sugar code" essential for brain wiring. While the functions of HSPGs have been well characterized in C. elegans or Drosophila, relatively little is known about their roles in nervous system development in vertebrates. In this chapter, we describe the advantages and the different methods available to study the roles of HSPGs in axon guidance directly in vivo in zebrafish. We provide protocols for visualizing axons in vivo, including precise dye labeling and time-lapse imaging, and for disturbing the functions of HS-modifying enzymes and core proteins, including morpholino, DNA, or RNA injections.
Collapse
Affiliation(s)
- Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Coker Life Science Building, 715 Sumter street, Columbia, SC, 29208, USA,
| |
Collapse
|
22
|
Angiogenic growth factors interactome and drug discovery: The contribution of surface plasmon resonance. Cytokine Growth Factor Rev 2014; 26:293-310. [PMID: 25465594 DOI: 10.1016/j.cytogfr.2014.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 11/21/2022]
Abstract
Angiogenesis is implicated in several pathological conditions, including cancer, and in regenerative processes, including the formation of collateral blood vessels after stroke. Physiological angiogenesis is the outcome of a fine balance between the action of angiogenic growth factors (AGFs) and anti-angiogenic molecules, while pathological angiogenesis occurs when this balance is pushed toward AGFs. AGFs interact with multiple endothelial cell (EC) surface receptors inducing cell proliferation, migration and proteases upregulation. On the contrary, free or extracellular matrix-associated molecules inhibit angiogenesis by sequestering AGFs (thus hampering EC stimulation) or by interacting with specific EC receptors inducing apoptosis or decreasing responsiveness to AGFs. Thus, angiogenesis results from an intricate network of interactions among pro- and anti-angiogenic molecules, EC receptors and various modulators. All these interactions represent targets for the development of pro- or anti-angiogenic therapies. These aims call for suitable technologies to study the countless interactions occurring during neovascularization. Surface plasmon resonance (SPR) is a label-free optical technique to study biomolecular interactions in real time. It has become the golden standard technology for interaction analysis in biomedical research, including angiogenesis. From a survey of the literature it emerges that SPR has already contributed substantially to the better understanding of the neovascularization process, laying the basis for the decoding of the angiogenesis "interactome" and the identification of "hub molecules" that may represent preferential targets for an efficacious modulation of angiogenesis. Here, the still unexploited full potential of SPR is enlightened, pointing to improvements in its use for a deeper understanding of the mechanisms of neovascularization and the identification of novel anti-angiogenic drugs.
Collapse
|
23
|
Zhang F, Moniz HA, Walcott B, Moremen KW, Wang L, Linhardt RJ. Probing the impact of GFP tagging on Robo1-heparin interaction. Glycoconj J 2014; 31:299-307. [PMID: 24748467 PMCID: PMC4118743 DOI: 10.1007/s10719-014-9522-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 11/26/2022]
Abstract
Green fluorescent proteins (GFPs) and their derivatives are widely used as markers to visualize cells, protein localizations in in vitro and in vivo studies. The use of GFP fusion protein for visualization is generally thought to have negligible effects on cellular function. However, a number of reports suggest that the use of GFP may impact the biological activity of these proteins. Heparin is a glycosaminoglycan (GAG) that interacts with a number of proteins mediating diverse patho-physiological processes. In the heparin-based interactome studies, heparin-binding proteins are often prepared as GFP fusion proteins. In this report, we use surface plasmon resonance (SPR) spectroscopy to study the impact of the GFP tagging on the binding interaction between heparin and a heparin-binding protein, the Roundabout homolog 1 (Robo1). SPR reveals that heparin binds with higher affinity to Robo1 than GFP-tagged Robo1 and through a different kinetic mechanism. A conformational change is observed in the heparin-Robo1 interaction, but not in the heparin-Robo1-GFP interaction. Furthermore the GFP-tagged Robo1 requires a shorter (hexasaccharide) than the tag-free Robo1 (octadecasaccharide). These data demonstrate that GFP tagging can reduce the binding affinity of Robo1 to heparin and hinder heparin binding-induced Robo1 conformation change.
Collapse
Affiliation(s)
- Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Heather A. Moniz
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Benjamin Walcott
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kelley W. Moremen
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Lianchun Wang
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Department of Chemistry and Chemical Biology, Departments of Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
24
|
Zhang B, Xiao W, Qiu H, Zhang F, Moniz HA, Jaworski A, Condac E, Gutierrez-Sanchez G, Heiss C, Clugston RD, Azadi P, Greer JJ, Bergmann C, Moremen KW, Li D, Linhardt RJ, Esko JD, Wang L. Heparan sulfate deficiency disrupts developmental angiogenesis and causes congenital diaphragmatic hernia. J Clin Invest 2013; 124:209-21. [PMID: 24355925 DOI: 10.1172/jci71090] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/11/2013] [Indexed: 12/12/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a common birth malformation with a heterogeneous etiology. In this study, we report that ablation of the heparan sulfate biosynthetic enzyme NDST1 in murine endothelium (Ndst1ECKO mice) disrupted vascular development in the diaphragm, which led to hypoxia as well as subsequent diaphragm hypoplasia and CDH. Intriguingly, the phenotypes displayed in Ndst1ECKO mice resembled the developmental defects observed in slit homolog 3 (Slit3) knockout mice. Furthermore, introduction of a heterozygous mutation in roundabout homolog 4 (Robo4), the gene encoding the cognate receptor of SLIT3, aggravated the defect in vascular development in the diaphragm and CDH. NDST1 deficiency diminished SLIT3, but not ROBO4, binding to endothelial heparan sulfate and attenuated EC migration and in vivo neovascularization normally elicited by SLIT3-ROBO4 signaling. Together, these data suggest that heparan sulfate presentation of SLIT3 to ROBO4 facilitates initiation of this signaling cascade. Thus, our results demonstrate that loss of NDST1 causes defective diaphragm vascular development and CDH and that heparan sulfate facilitates angiogenic SLIT3-ROBO4 signaling during vascular development.
Collapse
|