1
|
Yang L, Gao ZW, Wang X, Wu XN, Li SM, Dong K, Zhu XM. The different effects of four adenosine receptors in liver fibrosis. Front Pharmacol 2024; 15:1424624. [PMID: 39290867 PMCID: PMC11405188 DOI: 10.3389/fphar.2024.1424624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Background The adenosine-adenosine receptor pathway plays important roles in the immune system and inflammation. Four adenosine receptors (i.e., A1R, A2AR, A2BR, and A3R) have been identified. However, the roles of these receptors were different in the disease progress and even play opposite roles in the same disease. This study aims to investigate the roles of A1R/A2AR/A2BR/A3R activation in liver fibrosis. Methods Intraperitoneal injection of CCl4 into C57BL/6 mice was used to induce liver fibrosis in the models. Adenosine receptor agonists CCPA, CGS21680, BAY 60-6583, and namodenoson were used for A1R/A2AR/A2BR/A3R activation, respectively. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were used to evaluate the liver function. Hematoxylin and eosin (H&E) staining was used to investigate the pathological damage. Masson staining and Sirius Red staining were performed to evaluate the degree of collagen deposition. CCK8 and scratch assays were used to investigate the proliferation and migration ability of hepatic stellate cells (HSCs). Results By using liver fibrosis mouse models, we observed that the A1R and A2AR agonists aggravated liver fibrosis, characterized by increasing ALT and AST levels, more serious liver pathological damage, and collagen deposition. However, the A2BR and A3R agonists alleviated liver fibrosis. Moreover, the A1R and A2AR agonist treatment promotes the proliferation and migration of HSC line LX2, while A2BR and A3R agonist treatment inhibited LX2 proliferation and migration. Consistently, A1R and A2AR agonist treatment elevated the expression of α-SMA and Col1α1 in LX2, whereas A2BR and A3R agonist treatment inhibited the expression of α-SMA and Col1α1 in LX2 cells. Additionally, 5'-N-ethyl-carboxamidoadenosine (NECA), a metabolically stable adenosine analog, alleviated liver fibrosis and inhibited LX2 cell activity, proliferation, and migration. Conclusion This study demonstrated the different roles of A1R/A2AR/A2BR/A3R during liver fibrosis development via regulating the HSC activity and proliferation.
Collapse
Affiliation(s)
- Lan Yang
- Department of clinical diagnose, Tangdu hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhao-Wei Gao
- Department of clinical diagnose, Tangdu hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xi Wang
- Department of clinical diagnose, Tangdu hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xia-Nan Wu
- Department of clinical diagnose, Tangdu hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Si-Min Li
- Department of clinical diagnose, Tangdu hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Ke Dong
- Department of clinical diagnose, Tangdu hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xiao-Ming Zhu
- Department of Obstetrics and Gynecology, Hainan Branch of PLA General Hospital, Sanya, China
| |
Collapse
|
2
|
Liu W, Li Q, Fang W, Cai L, Wang Z, Kou B, Zhou C, Zhou Y, Yao Z, Wei M, Zhang S. A 2AR regulate inflammation through PKA/NF-κB signaling pathways in intervertebral disc degeneration. Eur J Med Res 2024; 29:433. [PMID: 39192377 DOI: 10.1186/s40001-024-02028-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Reduction of inflammatory damage and inhibition of nucleus pulposus (NP) apoptosis are considered to be the main effective therapy idea to reverse the intervertebral disc degeneration (IDD) and alleviate the chronic low back pain. The adenosine A2A receptor (A2AR), as a member of G protein-coupled receptor families, plays an important role in the anti-inflammation and relieving pain. So far, the impact of A2AR on IDD therapy is unclear. The aim of this study was to explore the role of Adenosine A2A receptor (A2AR) in the intervertebral disc degeneration (IDD) and clarify potential mechanism. MATERIALS AND METHODS IL-1β and acupuncture was used to establish IDD model rats. A2AR agonist CGS-21680 and A2AR antagonist SCH442416 were used to investigate the therapeutical effects for IDD. Histological examination, western blotting analysis and RT-PCR were employed to evaluate the the association between A2AR and cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway. RESULTS A2AR activity of the intervertebral disc tissues was up-regulated in feedback way, and cAMP, PKA and CREB expression were also increased. But in general, IL-1β-induced IDD promoted the significant up-regulation the expression of inflammatory factors. The nucleus pulposus (NP) inflammation was exacerbated in result of MMP3 and Col-II decline through activating NF-κB signaling pathway. A2AR agonist CGS-21680 exhibited a disc protective effect through significantly increasing A2AR activity, then further activated cAMP/PKA signaling pathway with attenuating the release of TNF-α and IL-6 via down-regulating NF-κB. In contrast, SCH442416 inhibited A2AR activation, consistent with lower expression levels of cAMP and PKA, further leading to the acceleration of IDD. CONCLUSIONS The activation of A2AR can prevent inflammatory responses and mitigates degradation of IDD thus suggest a potential novel therapeutic strategy of IDD.
Collapse
Affiliation(s)
- Weijun Liu
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China.
| | - Qingbo Li
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Weizhi Fang
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Lei Cai
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Zhengkun Wang
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Bowen Kou
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Chuankun Zhou
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Yichi Zhou
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Zhi Yao
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Mengcheng Wei
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Shishuang Zhang
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| |
Collapse
|
3
|
Gerasimovskaya E, Patil RS, Davies A, Maloney ME, Simon L, Mohamed B, Cherian-Shaw M, Verin AD. Extracellular purines in lung endothelial permeability and pulmonary diseases. Front Physiol 2024; 15:1450673. [PMID: 39234309 PMCID: PMC11372795 DOI: 10.3389/fphys.2024.1450673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
The purinergic signaling system is an evolutionarily conserved and critical regulatory circuit that maintains homeostatic balance across various organ systems and cell types by providing compensatory responses to diverse pathologies. Despite cardiovascular diseases taking a leading position in human morbidity and mortality worldwide, pulmonary diseases represent significant health concerns as well. The endothelium of both pulmonary and systemic circulation (bronchial vessels) plays a pivotal role in maintaining lung tissue homeostasis by providing an active barrier and modulating adhesion and infiltration of inflammatory cells. However, investigations into purinergic regulation of lung endothelium have remained limited, despite widespread recognition of the role of extracellular nucleotides and adenosine in hypoxic, inflammatory, and immune responses within the pulmonary microenvironment. In this review, we provide an overview of the basic aspects of purinergic signaling in vascular endothelium and highlight recent studies focusing on pulmonary microvascular endothelial cells and endothelial cells from the pulmonary artery vasa vasorum. Through this compilation of research findings, we aim to shed light on the emerging insights into the purinergic modulation of pulmonary endothelial function and its implications for lung health and disease.
Collapse
Affiliation(s)
| | - Rahul S Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Adrian Davies
- Department of Internal Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - McKenzie E Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Office of Academic Affairs, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Liselle Simon
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Basmah Mohamed
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
4
|
Di Pietrantonio D, Pace Palitti V, Cichelli A, Tacconelli S. Protective Effect of Caffeine and Chlorogenic Acids of Coffee in Liver Disease. Foods 2024; 13:2280. [PMID: 39063364 PMCID: PMC11276147 DOI: 10.3390/foods13142280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Coffee is one of the most widely consumed beverages in the world due to its unique aroma and psychostimulant effects, mainly due to the presence of caffeine. In recent years, experimental evidence has shown that the moderate consumption of coffee (3/4 cups per day) is safe and beneficial to human health, revealing protective effects against numerous chronic metabolic diseases such as diabetes, cardiovascular, neurodegenerative, and hepatic diseases. This review focuses on two of coffee's main bioactive compounds, i.e., caffeine and chlorogenic acids, and their effects on the progression of chronic liver diseases, demonstrating that regular coffee consumption correlates with a lower risk of the development and progression of non-alcoholic steatohepatitis, viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. In particular, this review analyzes caffeine and chlorogenic acid from a pharmacological point of view and explores the molecular mechanism through which these compounds are responsible for the protective role of coffee. Both bioactive compounds, therefore, have antifibrotic effects on hepatic stellate cells and hepatocytes, induce a decrease in connective tissue growth factor, stimulate increased apoptosis with anti-cancer effects, and promote a major inhibition of focal adhesion kinase, actin, and protocollagen synthesis. In conclusion, coffee shows many beneficial effects, and experimental data in favor of coffee consumption in patients with liver diseases are encouraging, but further prospective studies are needed to demonstrate its preventive and therapeutic role in chronic liver diseases.
Collapse
Affiliation(s)
- Daniela Di Pietrantonio
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Valeria Pace Palitti
- Internal Medicine and Hepatology Unit, Azienda Sanitaria Locale, Via R. Paolini 47, 65125 Pescara, Italy;
| | - Angelo Cichelli
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
5
|
dos Santos PMF, Díaz Acosta CC, Rosa TLSA, Ishiba MH, Dias AA, Pereira AMR, Gutierres LD, Pereira MP, da Silva Rocha M, Rosa PS, Bertoluci DFF, Meyer-Fernandes JR, da Mota Ramalho Costa F, Marques MAM, Belisle JT, Pinheiro RO, Rodrigues LS, Pessolani MCV, Berrêdo-Pinho M. Adenosine A 2A receptor as a potential regulator of Mycobacterium leprae survival mechanisms: new insights into leprosy neural damage. Front Pharmacol 2024; 15:1399363. [PMID: 39005937 PMCID: PMC11239521 DOI: 10.3389/fphar.2024.1399363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Background Leprosy is a chronic infectious disease caused by Mycobacterium leprae, which can lead to a disabling neurodegenerative condition. M. leprae preferentially infects skin macrophages and Schwann cells-glial cells of the peripheral nervous system. The infection modifies the host cell lipid metabolism, subverting it in favor of the formation of cholesterol-rich lipid droplets (LD) that are essential for bacterial survival. Although researchers have made progress in understanding leprosy pathogenesis, many aspects of the molecular and cellular mechanisms of host-pathogen interaction still require clarification. The purinergic system utilizes extracellular ATP and adenosine as critical signaling molecules and plays several roles in pathophysiological processes. Furthermore, nucleoside surface receptors such as the adenosine receptor A2AR involved in neuroimmune response, lipid metabolism, and neuron-glia interaction are targets for the treatment of different diseases. Despite the importance of this system, nothing has been described about its role in leprosy, particularly adenosinergic signaling (AdoS) during M. leprae-Schwann cell interaction. Methods M. leprae was purified from the hind footpad of athymic nu/nu mice. ST88-14 human cells were infected with M. leprae in the presence or absence of specific agonists or antagonists of AdoS. Enzymatic activity assays, fluorescence microscopy, Western blotting, and RT-qPCR analysis were performed. M. leprae viability was investigated by RT-qPCR, and cytokines were evaluated by enzyme-linked immunosorbent assay. Results We demonstrated that M. leprae-infected Schwann cells upregulated CD73 and ADA and downregulated A2AR expression and the phosphorylation of the transcription factor CREB (p-CREB). On the other hand, activation of A2AR with its selective agonist, CGS21680, resulted in: 1) reduced lipid droplets accumulation and pro-lipogenic gene expression; 2) reduced production of IL-6 and IL-8; 3) reduced intracellular M. leprae viability; 4) increased levels of p-CREB. Conclusion These findings suggest the involvement of the AdoS in leprosy neuropathogenesis and support the idea that M. leprae, by downmodulating the expression and activity of A2AR in Schwann cells, decreases A2AR downstream signaling, contributing to the maintenance of LD accumulation and intracellular viability of the bacillus.
Collapse
Affiliation(s)
| | - Chyntia Carolina Díaz Acosta
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | | | - Michelle Harumi Ishiba
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - André Alves Dias
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Luísa Domingos Gutierres
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Melissa Pontes Pereira
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Matheus da Silva Rocha
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Daniele F. F. Bertoluci
- Divisão de Pesquisa e Ensino, Instituto Lauro de Souza Lima, São Paulo, Brazil
- Departamento de Doenças Tropicais, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Angela M. Marques
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T. Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Roberta Olmo Pinheiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana Silva Rodrigues
- Laboratório de Imunopatologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcia Berrêdo-Pinho
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Shan L, Zhao N, Wang F, Zhai D, Liu J, Lv X. Caffeine in Hepatocellular Carcinoma: Cellular Assays, Animal Experiments, and Epidemiological Investigation. J Inflamm Res 2024; 17:1589-1605. [PMID: 38495344 PMCID: PMC10941793 DOI: 10.2147/jir.s424384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
The use of caffeine in treating various liver diseases has made substantial progress in the past decade owing to advances in science, technology, and medicine. However, whether caffeine has a preventive effect on hepatocellular carcinoma (HCC) and its mechanism are still worth further investigation. In this review, we summarize and analyze the efficacy and safety of caffeine in the prevention of HCC. We conducted a review of articles published in PubMed and Web of Science in the past 2 decades until December 6, 2023, which were searched for using the terms "Caffeine" and "Hepatocellular Carcinoma." Studies have found that coffee intake is negatively correlated with HCC risk, especially caffeinated coffee. Recent studies have found that caffeine has beneficial effects on liver health, decreasing levels of enzymes responsible for liver damaging and slowing the progression of hepatic fibrosis and cirrhosis. Caffeine also acts against liver fibrosis through adenosine receptors (ARs), which promote tissue remodeling by inducing fibrin and collagen production. Additionally, new studies have found that moderate consumption of caffeinated beverages can decrease various the levels of various collagens in patients with chronic hepatitis C. Furthermore, polyphenolic compounds in coffee can improve fat homeostasis, reduce oxidative stress, and prevent liver steatosis and fibrosis. Moreover, many in vitro studies have shown that caffeine can protect liver cells and inhibit the activation and proliferation of hepatic stellate cells. Taken together, we describe the benefits of caffeine for liver health and highlight its potential values as a drug to prevent various hepatic diseases. As a protective agent of liver inflammation, non-selective AR inhibitor caffeine can inhibit the growth of HCC cells by inhibiting adenosine and AR binding to initiate immune response, providing a basis for the future development of caffeine as an adjuvant drug against HCC.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People’s Republic of China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, People’s Republic of China
| | - Ning Zhao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People’s Republic of China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, People’s Republic of China
| | - Fengling Wang
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
| | - Dandan Zhai
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
| | - Jianjun Liu
- Department of Pharmacy, the Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People’s Republic of China
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, People’s Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People’s Republic of China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, People’s Republic of China
| |
Collapse
|
7
|
Liu XQ, Wang JJ, Wu X, Liu ZN, Wu BM, Lv XW. Blocking ATP-P1Rs axis attenuate alcohol-related liver fibrosis. Life Sci 2023; 328:121896. [PMID: 37385371 DOI: 10.1016/j.lfs.2023.121896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
AIMS The aim of this study was to explore the fibrogenic effects of ATP-P1Rs axis and ATP-P2Rs axis on alcohol-related liver fibrosis (ALF). MATERIALS AND METHODS C57BL/6J CD73 knock out (KO) mice were used in our study. 8-12 weeks male mice were used as an ALF model in vivo. In conclusion, after one week of adaptive feeding, 5 % alcohol liquid diet was given for 8 weeks. High-concentration alcohol (31.5 %, 5 g/kg) was administered by gavage twice weekly, and 10 % CCl4 intraperitoneal injections (1 ml/kg) were administered twice weekly for the last two weeks. The mice in the control group were injected intraperitoneally with an equivalent volume of normal saline. Fasting for 9 h after the last injection, blood samples were collected, and related indicators were tested. In vitro, rat hepatic stellate cells (HSCs) were treated with 200 μM acetaldehyde to establish an alcoholic liver fibrosis for 48 h, then tested related indicators. KEY FINDINGS We found that both adenosine receptors including adenosine A1, A2A, A2B, A3 receptors (A1R, A2AR, A2BR, A3R) and ATP receptors including P2X7, P2Y2 receptors (P2X7R, P2Y2R) were expressed increased in ALF. After CD73 was knocked out, we found that adenosine receptors expression decreased, ATP expression increased, and fibrosis degree decreased. SIGNIFICANCE Based on the research, we discovered that adenosine plays a more important role in ALF. Therefore, blocking the ATP-P1Rs axis represented a potential treatment for ALF, and CD73 will become a potential therapeutic target.
Collapse
Affiliation(s)
- Xue-Qi Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun-Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xue Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Zhen-Ni Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Bao-Ming Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiong-Wen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| |
Collapse
|
8
|
Han W, Zhang E, Tian Y, Wang S, Chen Y. Adenosine receptor A1 enhanced mitochondrial biogenesis and exerted neuroprotection after cerebral ischemia through PGC-1α. Exp Brain Res 2023; 241:1471-1488. [PMID: 37081178 DOI: 10.1007/s00221-023-06613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
Ischemic stroke is a common cause of morbidity and mortality worldwide. The current treatment fails to achieve satisfactory results, because interventional therapy as first-line treatment management has a strict time window. In recent years, a large number of studies have confirmed that adenosine, as an inhibitory neurotransmitter, has a protective effect on cerebral ischemic injury. Nevertheless, direct administration of adenosine has many side effects. Previous studies showed that adenosine exerted neuroprotective effects mainly through adenosine receptor A1 (A1 receptor). Therefore, further study on the mechanism of A 1 receptor induced neuroprotection may find new targets for stroke treament. Mitochondrial biogenesis (MB) is a therapeutic target for ischemic stroke, and the nuclear-encoded peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) is a major regulator of MB. However, the influence of A1 receptor on MB and PGC-1α is unclear. In this study, using the middle cerebral artery occlusion (MCAO) model of mice, we evaluated the temporal and spatial effects of A1 receptor after ischemic stroke and verified the neuroprotection of A1 receptor. Neurological scores were used to assess functional changes in mice. At the same time, we observed the effect of activating A1 receptor on MB and PGC-1α, and the effect of knockdown PGC-1α on A1 receptor induced MB in vitro. WB and immunofluorescence were used to detect relevant indicators of MB. In addition, we downregulated PGC-1α in vivo to observe the effects on A1 receptor induced MB and neuroprotection. The findings indicated that A1 receptor was increased and mainly expressed on neurons in the penumbra, further activated A1 receptor after stroke had neuroprotection. In vitro, activation of A1 promotes MB and increases the expression level of PGC-1α, while downregulation of PGC-1α partially reverses the effect of A1 receptor after OGD/R. Down regulation of PGC-1α in the penumbra neurons can reverse the effects of activation of A1 receptor on MB and neuroprotection. Taken together, these findings indicated that A1receptor promotes MB and improves neurological function after ischemic stroke via PGC-1α.
Collapse
Affiliation(s)
- Wei Han
- Department of CT Diagnosis, The Affiliated Hospital of Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Erfei Zhang
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Hospital of Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yiyuan Tian
- Department of Physiology Teaching and Research Office, The Medical School of Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Yahui Chen
- Department of Physiology Teaching and Research Office, The Medical School of Yan'an University, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
9
|
Scuruchi M, Mannino F, Imbesi C, Pallio G, Vermiglio G, Bagnato G, Minutoli L, Bitto A, Squadrito F, Irrera N. Biglycan Involvement in Heart Fibrosis: Modulation of Adenosine 2A Receptor Improves Damage in Immortalized Cardiac Fibroblasts. Int J Mol Sci 2023; 24:ijms24021784. [PMID: 36675295 PMCID: PMC9866951 DOI: 10.3390/ijms24021784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/29/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Cardiac fibrosis is a common pathological feature of different cardiovascular diseases, characterized by the aberrant deposition of extracellular matrix (ECM) proteins in the cardiac interstitium, myofibroblast differentiation and increased fibrillar collagen deposition stimulated by transforming growth factor (TGF)-β activation. Biglycan (BGN), a small leucine-rich proteoglycan (SLRPG) integrated within the ECM, plays a key role in matrix assembly and the phenotypic control of cardiac fibroblasts. Moreover, BGN is critically involved in pathological cardiac remodeling through TGF-β binding, thus causing myofibroblast differentiation and proliferation. Adenosine receptors (ARs), and in particular A2AR, may play a key role in stimulating fibrotic damage through collagen production/deposition, as a consequence of cyclic AMP (cAMP) and AKT activation. For this reason, A2AR modulation could be a useful tool to manage cardiac fibrosis in order to reduce fibrotic scar deposition in heart tissue. Therefore, the aim of the present study was to investigate the possible crosstalk between A2AR and BGN modulation in an in vitro model of TGF-β-induced fibrosis. Immortalized human cardiac fibroblasts (IM-HCF) were stimulated with TGF-β at the concentration of 10 ng/mL for 24 h to induce a fibrotic phenotype. After applying the TGF-β stimulus, cells were treated with two different A2AR antagonists, Istradefylline and ZM241385, for an additional 24 h, at the concentration of 10 µM and 1 µM, respectively. Both A2AR antagonists were able to regulate the oxidative stress induced by TGF-β through intracellular reactive oxygen species (ROS) reduction in IM-HCFs. Moreover, collagen1a1, MMPs 3/9, BGN, caspase-1 and IL-1β gene expression was markedly decreased following A2AR antagonist treatment in TGF-β-challenged human fibroblasts. The results obtained for collagen1a1, SMAD3, α-SMA and BGN were also confirmed when protein expression was evaluated; phospho-Akt protein levels were also reduced following Istradefylline and ZM241385 use, thus suggesting that collagen production involves AKT recruited by the A2AR. These results suggest that A2AR modulation might be an effective therapeutic option to reduce the fibrotic processes involved in heart pathological remodeling.
Collapse
Affiliation(s)
- Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Giovanna Vermiglio
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Gianluca Bagnato
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
- Correspondence:
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| |
Collapse
|
10
|
Wu X, Liu XQ, Liu ZN, Xia GQ, Zhu H, Zhang MD, Wu BM, Lv XW. CD73 aggravates alcohol-related liver fibrosis by promoting autophagy mediated activation of hepatic stellate cells through AMPK/AKT/mTOR signaling pathway. Int Immunopharmacol 2022; 113:109229. [DOI: 10.1016/j.intimp.2022.109229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
|
11
|
Shan L, Wang F, Zhai D, Meng X, Liu J, Lv X. Caffeine in liver diseases: Pharmacology and toxicology. Front Pharmacol 2022; 13:1030173. [PMID: 36324678 PMCID: PMC9618645 DOI: 10.3389/fphar.2022.1030173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
We have previously shown that adenosine A1AR antagonists, adenosine A2aAR antagonists, and caffeine have significant inhibitory effects on the activation and proliferation of hepatic stellate cells in alcoholic liver fibrosis. Many recent studies have found that moderate coffee consumption is beneficial for various liver diseases. The main active ingredient of coffee is caffeine, which is a natural non-selective adenosine receptor antagonist. Moreover, numerous preclinical epidemiological studies and clinical trials have examined the association between frequent coffee consumption and the risk of developing different liver diseases. In this review, we summarize and analyze the prophylactic and therapeutic effects of caffeine on various liver diseases, with an emphasis on cellular assays, animal experiments, and clinical trials. To review the prevention and treatment effects of caffeine on different liver diseases, we searched all literature before 19 July 2022, using “caffeine” and “liver disease” as keywords from the PubMed and ScienceDirect databases. We found that moderate coffee consumption has beneficial effects on various liver diseases, possibly by inhibiting adenosine binding to its receptors. Caffeine is a potential drug for the prevention and treatment of various liver diseases.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Fengling Wang
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Dandan Zhai
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Jianjun Liu
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Jianjun Liu, ; Xiongwen Lv,
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
- *Correspondence: Jianjun Liu, ; Xiongwen Lv,
| |
Collapse
|
12
|
Zhao Y, Zhang H, Zhang Y, Fang Z, Xu C. Rapid Eye Movement Sleep Deprivation Enhances Adenosine Receptor Activation and the CREB1/YAP1/c-Myc Axis to Alleviate Depressive-like Behaviors in Rats. ACS Chem Neurosci 2022; 13:2298-2308. [PMID: 35838172 DOI: 10.1021/acschemneuro.2c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
As neuromodulators, adenosine and its receptors are mediators of sleep-wake regulation. A putative correlation between CREB1 and depression has been predicted in our bioinformatics analyses, and its expression was also predicted to be upregulated in response to sleep deprivation. Therefore, this study aims to elaborate the A1 and A2A adenosine receptors and CREB1-associated mechanism underlying the antidepressant effect of rapid eye movement sleep deprivation (REMSD) in rats with chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors. The modeled rats were injected with adenosine A1 receptor antagonist DPCPX or adenosine A2A receptor antagonist ZM241385 to assess the role of adenosine receptors in depression. In addition, ectopic expression and depletion experiments of CREB1 and YAP1 were also conducted in vivo and in vitro. It was found that REMSD alleviated depressive-like behaviors in CUMS rats, as shown by increased spontaneous activity, sucrose consumption and percentage, and shortened escape latency and immobility duration. Meanwhile, A1 or A2A adenosine receptor antagonists negated the antidepressant effect of REMSD. REMSD enhanced adenosine receptor activation and promoted the phosphorylation of CREB1, thus increasing the expression of CREB1. In addition, the overexpression of CREB1 activated the YAP1/c-Myc axis and consequently alleviated depressive-like behaviors. Collectively, our results provide new mechanistic insights for an understanding of the antidepressant effect of REMSD, which is associated with the activation of adenosine receptors and the CREB1/YAP1/c-Myc axis.
Collapse
Affiliation(s)
- Yinglin Zhao
- Department of Psychosomatic Medicine, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Handi Zhang
- Biological Psychiatry Laboratory, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Yinnan Zhang
- Rehabilitation Division, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Zeman Fang
- Biological Psychiatry Laboratory, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Chongtao Xu
- Shantou University Mental Health Center, Shantou 515041, Guangdong, P. R. China
| |
Collapse
|
13
|
Lin Y, Wang H, Du W, Huang Y, Gong W, Wang Q, Huang Z, Lin J. Analysis of the interaction between A 1 R and A 2A R proteins in living cells based on FRET imaging and batch processing method. JOURNAL OF BIOPHOTONICS 2022; 15:e202200056. [PMID: 35384328 DOI: 10.1002/jbio.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
The quantitative FRET analysis of living cells is a tedious and time-consuming task for freshman lacks technical training. In this study, FRET imaging and batch processing method were combined to analyze reagents-induced interactions of A1 R and A2A R on cell membranes. Results showed that the method had taken less time than if cell-by-cell was analyzed. The accuracy and repeatability of FRET efficiency values were likewise improved by removing the interference from anthropogenic factors. Then this method was applied to rapidly analyze acetaldehyde-induced interactions, which analyzed hundreds of single-cell trends by one operation, and the results revealed that interactions were consistently attenuated in LX-2 cells, and statistical differences appeared after 30 min. Combined with batch processing method, procedures of cells FRET analysis have been greatly simplified without additional technical work, which has broad prospects in large-scale analysis of cellar protein interaction.
Collapse
Affiliation(s)
- Yating Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, and Affiliated Hospital, Fujian Normal University, Fuzhou, Fujian, China
| | - Haoyu Wang
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, and Affiliated Hospital, Fujian Normal University, Fuzhou, Fujian, China
| | - Weiwei Du
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, and Affiliated Hospital, Fujian Normal University, Fuzhou, Fujian, China
| | - Yiming Huang
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, and Affiliated Hospital, Fujian Normal University, Fuzhou, Fujian, China
| | - Wei Gong
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, and Affiliated Hospital, Fujian Normal University, Fuzhou, Fujian, China
| | - Qiwen Wang
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, and Affiliated Hospital, Fujian Normal University, Fuzhou, Fujian, China
| | - Zufang Huang
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, and Affiliated Hospital, Fujian Normal University, Fuzhou, Fujian, China
| | - Juqiang Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, and Affiliated Hospital, Fujian Normal University, Fuzhou, Fujian, China
- School of Optoelectronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian, China
| |
Collapse
|
14
|
Liu Z, Wu X, Wang Q, Li Z, Liu X, Sheng X, Zhu H, Zhang M, Xu J, Feng X, Wu B, Lv X. CD73-Adenosine A 1R Axis Regulates the Activation and Apoptosis of Hepatic Stellate Cells Through the PLC-IP 3-Ca 2+/DAG-PKC Signaling Pathway. Front Pharmacol 2022; 13:922885. [PMID: 35784730 PMCID: PMC9245432 DOI: 10.3389/fphar.2022.922885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Alcohol-related liver fibrosis (ALF) is a form of alcohol-related liver disease (ALD) that generally occurs in response to heavy long-term drinking. Ecto-5'-nucleotidase (NT5E), also known as CD73, is a cytomembrane protein linked to the cell membrane via a GPI anchor that regulates the conversion of extracellular ATP to adenosine. Adenosine and its receptors are important regulators of the cellular response. Previous studies showed that CD73 and adenosine A1 receptor (A1R) were important in alcohol-related liver disease, however the exact mechanism is unclear. The aim of this study was to elucidate the role and mechanism of the CD73-A1R axis in both a murine model of alcohol and carbon tetrachloride (CCl4) induced ALF and in an in vitro model of fibrosis induced by acetaldehyde. The degree of liver injury was determined by measuring serum AST and ALT levels, H & E staining, and Masson's trichrome staining. The expression levels of fibrosis indicators and PLC-IP3-Ca2+/DAG-PKC signaling pathway were detected by quantitative real-time PCR, western blotting, ELISA, and calcium assay. Hepatic stellate cell (HSC) apoptosis was detected using the Annexin V-FITC/PI cell apoptosis detection kit. Knockdown of CD73 significantly attenuated the accumulation of α-SMA and COL1a1 damaged the histological architecture of the mouse liver induced by alcohol and CCl4. In vitro, CD73 inhibition attenuated acetaldehyde-induced fibrosis and downregulated A1R expression in HSC-T6 cells. Inhibition of CD73/A1R downregulated the expression of the PLC-IP3-Ca2+/DAG-PKC signaling pathway. In addition, silencing of CD73/A1R promoted apoptosis in HSC-T6 cells. In conclusion, the CD73-A1R axis can regulate the activation and apoptosis of HSCs through the PLC-IP3-Ca2+/DAG-PKC signaling pathway.
Collapse
Affiliation(s)
- Zhenni Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xue Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Qi Wang
- Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Zixuan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xueqi Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiaodong Sheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hong Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Mengda Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Junrui Xu
- General Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaowen Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Baoming Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Li N, Shan S, Li XQ, Chen TT, Qi M, Zhang SN, Wang ZY, Zhang LL, Wei W, Sun WY. G Protein-Coupled Receptor Kinase 2 as Novel Therapeutic Target in Fibrotic Diseases. Front Immunol 2022; 12:822345. [PMID: 35111168 PMCID: PMC8801426 DOI: 10.3389/fimmu.2021.822345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2), an important subtype of GRKs, specifically phosphorylates agonist-activated G protein-coupled receptors (GPCRs). Besides, current research confirms that it participates in multiple regulation of diverse cells via a non-phosphorylated pathway, including interacting with various non-receptor substrates and binding partners. Fibrosis is a common pathophysiological phenomenon in the repair process of many tissues due to various pathogenic factors such as inflammation, injury, drugs, etc. The characteristics of fibrosis are the activation of fibroblasts leading to myofibroblast proliferation and differentiation, subsequent aggerate excessive deposition of extracellular matrix (ECM). Then, a positive feedback loop is occurred between tissue stiffness caused by ECM and fibroblasts, ultimately resulting in distortion of organ architecture and function. At present, GRK2, which has been described as a multifunctional protein, regulates copious signaling pathways under pathophysiological conditions correlated with fibrotic diseases. Along with GRK2-mediated regulation, there are diverse effects on the growth and apoptosis of different cells, inflammatory response and deposition of ECM, which are essential in organ fibrosis progression. This review is to highlight the relationship between GRK2 and fibrotic diseases based on recent research. It is becoming more convincing that GRK2 could be considered as a potential therapeutic target in many fibrotic diseases.
Collapse
Affiliation(s)
- Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Shan Shan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Xiu-Qin Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Meng Qi
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Sheng-Nan Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Zi-Ying Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Ling-Ling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
16
|
Zhao N, Xia GQ, Cai JN, Li ZX, Lv XW. Adenosine receptor A2B mediates alcoholic hepatitis by regulating cAMP levels and the NF-KB pathway. Toxicol Lett 2022; 359:84-95. [DOI: 10.1016/j.toxlet.2022.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022]
|
17
|
Shuai C, Xia GQ, Yuan F, Wang S, Lv XW. CD39-mediated ATP-adenosine signalling promotes hepatic stellate cell activation and alcoholic liver disease. Eur J Pharmacol 2021; 905:174198. [PMID: 34033815 DOI: 10.1016/j.ejphar.2021.174198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/24/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
CD39 is associated with diverse physiological and pathological processes, including cell proliferation and differentiation. Adenosine triphosphate (ATP) is hydrolysed to adenosine by different enzymes including ecto-nucleoside triphosphate diphosphohydrolase-1/ENTPD1 (CD39) and ecto-5'-nucleotidase (CD73), regulating many physiological and pathological processes in various diseases, but these changes and functions in alcoholic liver disease are generally unknown. In this study, an alcoholic liver disease model in vivo was induced by ethanol plus carbon tetrachloride(CCl4) administered to C57BL/6 mice, who were the intraperitoneally injected with the CD39 inhibitor sodium polyoxotungstate (POM1) or colchicine from the 5th week to the 8th week. Meanwhile, hepatic stellate cells were stimulated by acetaldehyde to replicate alcoholic liver fibrosis models in vitro. Exogenous ATP and POM1 were added in turn to the culture system. Pharmacological blockade of CD39 largely prevents liver damage and collagen deposition. We found that blockade or silencing of CD39 prevented acetaldehyde-induced proliferation of HSC-T6 cells and the expression of fibrogenic factors. Moreover, blockade or silencing of CD39 could block the activation of the adenosine A2A and adenosine A2B receptors and the TGF-β/Smad3 pathway, which are essential events in HSC activation. Thus, blockade of CD39 to inhibit the transduction of ATP to adenosine may prevent HSC activation, alleviating alcoholic hepatic fibrosis. The findings from this study suggest ATP-adenosine signalling is a novel therapeutic and preventive target for alcoholic liver disease.
Collapse
Affiliation(s)
- Chen Shuai
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Guo-Qing Xia
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Fei Yuan
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Sheng Wang
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui Province, China
| | - Xiong-Wen Lv
- Institute for Liver Diseases of Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China.
| |
Collapse
|
18
|
Maher A, El Sayed N, Nafea H, Gad M. Rolipram rescues memory consolidation deficits caused by sleep deprivation: Implication of the cAMP/PKA and cAMP/Epac pathways. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:631-639. [PMID: 34397335 DOI: 10.2174/1871527320666210816105144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Over the last few years, the number of people suffering from sleeping disorders has increased significantly despite negative effects on cognition and an association with brain inflammation. OBJECTIVES We assessed memory deficits caused by sleep deprivation (SD) to determine the therapeutic effect of phosphodiesterase 4 (PDE4) inhibitors on SD-induced memory deficits and to investigate whether the modulation of memory deficits by PDE4 inhibitors is mediated by a protein kinase A (PKA)-independent pathway in conjunction with a PKA-dependent pathway. METHODS Adult male mice were divided into four groups. Three SD groups were deprived of Rapid eye movement (REM) sleep for 12 h a day for six consecutive days. They were tested daily in the Morris water maze to evaluate learning and memory. One of the SD groups was injected with a PDE4 inhibitor, rolipram (1 mg/kg ip), whereas another had rolipram co-administered with chlorogenic acid (CHA, 20 mg/kg ip), an inhibitor of PKA. After 6 days, the mice were sacrificed, and the hippocampi were evaluated for cyclic AMP (cAMP) and nuclear factor Nrf-2 levels. The hippocampal expression of PKA, phosphorylated cAMP response element-binding protein (CREB), and phosphorylated glycogen synthase 3β (Ser389) were also evaluated. RESULTS SD caused a significant decrease in cAMP levels in the brain and had a detrimental effect on learning and memory. The administration of rolipram or rolipram+CHA resulted in an improvement in cognitive function. CONCLUSION The present study provides evidence that restoration of memory with PDE4 inhibitors occurs through a dual mechanism involving the PKA and Epac pathways.
Collapse
Affiliation(s)
- Ahmed Maher
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo. Egypt
| | - Nesrine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University. Egypt
| | - Heba Nafea
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo. Egypt
| | - Mohamed Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo. Egypt
| |
Collapse
|
19
|
Li X, Berg NK, Mills T, Zhang K, Eltzschig HK, Yuan X. Adenosine at the Interphase of Hypoxia and Inflammation in Lung Injury. Front Immunol 2021; 11:604944. [PMID: 33519814 PMCID: PMC7840604 DOI: 10.3389/fimmu.2020.604944] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Hypoxia and inflammation often coincide in pathogenic conditions such as acute respiratory distress syndrome (ARDS) and chronic lung diseases, which are significant contributors to morbidity and mortality for the general population. For example, the recent global outbreak of Coronavirus disease 2019 (COVID-19) has placed viral infection-induced ARDS under the spotlight. Moreover, chronic lung disease ranks the third leading cause of death in the United States. Hypoxia signaling plays a diverse role in both acute and chronic lung inflammation, which could partially be explained by the divergent function of downstream target pathways such as adenosine signaling. Particularly, hypoxia signaling activates adenosine signaling to inhibit the inflammatory response in ARDS, while in chronic lung diseases, it promotes inflammation and tissue injury. In this review, we discuss the role of adenosine at the interphase of hypoxia and inflammation in ARDS and chronic lung diseases, as well as the current strategy for therapeutic targeting of the adenosine signaling pathway.
Collapse
Affiliation(s)
- Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital, Tianjin, China
| | - Nathanial K. Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kaiying Zhang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
20
|
Jia WQ, Zhou TC, Dai JW, Liu ZN, Zhang YF, Zang DD, Lv XW. CD73 regulates hepatic stellate cells activation and proliferation through Wnt/β-catenin signaling pathway. Eur J Pharmacol 2020; 890:173667. [PMID: 33121948 DOI: 10.1016/j.ejphar.2020.173667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Alcoholic liver fibrosis (ALF) is commonly associated with long-term alcohol consumption and the activation of hepatic stellate cells (HSCs). Inhibiting the activation and proliferation of HSCs is a critical step to alleviate liver fibrosis. Increasing evidence indicates that ecto-5'-nucleotidase (CD73) plays a vital role in liver disease as a critical component of extracellular adenosine pathway. However, the regulatory role of CD73 in ALF has not been elucidated. In this study, both ethanol plus CCl4-induced liver fibrosis mice model and acetaldehyde-activated HSC-T6 cell model were employed and the expression of CD73 was consistently elevated in vivo and in vitro. C57BL/6 J mice were intraperitoneally injected with CD73 inhibitor Adenosine 5'-(α, β-methylene) diphosphate sodium salt (APCP) from 5th week to the 8th week in the development of ALF. The results showed APCP could inhibit the activation of HSCs, reduce fibrogenesis marker expression and thus alleviate ALF. Silencing of CD73 inhibited the activation of HSC-T6 cells and promoted apoptosis of activated HSC-T6 cells. What's more, the proliferation of HSC-T6 cells was inhibited, which was characterized by decreased cell viability and cycle arrest. Mechanistically, Wnt/β-catenin pathway was activated in acetaldehyde-activated HSC-T6 cells and CD73 silencing or overexpression could regulate Wnt/β-catenin signaling pathway. Collectively, our study unveils the role of CD73 in HSCs activation, and Wnt/β-catenin signaling pathway might be involved in this progression.
Collapse
Affiliation(s)
- Wen-Qian Jia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Tao-Cheng Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jing-Wen Dai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Zhen-Ni Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Ya-Fei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Dan-Dan Zang
- The Center for Scientific Research of Anhui Medical University, China
| | - Xiong-Wen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| |
Collapse
|
21
|
cAMP Signaling in Pathobiology of Alcohol Associated Liver Disease. Biomolecules 2020; 10:biom10101433. [PMID: 33050657 PMCID: PMC7600246 DOI: 10.3390/biom10101433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The importance of cyclic adenosine monophosphate (cAMP) in cellular responses to extracellular signals is well established. Many years after discovery, our understanding of the intricacy of cAMP signaling has improved dramatically. Multiple layers of regulation exist to ensure the specificity of cellular cAMP signaling. Hence, disturbances in cAMP homeostasis could arise at multiple levels, from changes in G protein coupled receptors and production of cAMP to the rate of degradation by phosphodiesterases. cAMP signaling plays critical roles in metabolism, inflammation and development of fibrosis in several tissues. Alcohol-associated liver disease (ALD) is a multifactorial condition ranging from a simple steatosis to steatohepatitis and fibrosis and ultimately cirrhosis, which might lead to hepatocellular cancer. To date, there is no FDA-approved therapy for ALD. Hence, identifying the targets for the treatment of ALD is an important undertaking. Several human studies have reported the changes in cAMP homeostasis in relation to alcohol use disorders. cAMP signaling has also been extensively studied in in vitro and in vivo models of ALD. This review focuses on the role of cAMP in the pathobiology of ALD with emphasis on the therapeutic potential of targeting cAMP signaling for the treatment of various stages of ALD.
Collapse
|
22
|
Zhao P, Liu X, Dong H, Tian Y, Feng S, Zhao D, Ren Z, Zhang L, Li J. Bufei Yishen Formula Restores Th17/Treg Balance and Attenuates Chronic Obstructive Pulmonary Disease via Activation of the Adenosine 2a Receptor. Front Pharmacol 2020; 11:1212. [PMID: 32848801 PMCID: PMC7427463 DOI: 10.3389/fphar.2020.01212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/24/2020] [Indexed: 01/24/2023] Open
Abstract
Bufei Yishen formula (BYF) is a Traditional Chinese Medicine (TCM) reported to ameliorate chronic obstructive pulmonary disease (COPD) by regulating the balance between T helper (Th) 17 and regulatory T (Treg) cells. However, its mechanism remains unknown. Therefore, this study aimed to explore the underlying mechanisms of BYF. Naïve CD4+ T cells were exposed to anti-CD3, anti-CD28, transforming growth factor (TGF)-β, and/or interleukin (IL)-6 to promote their differentiation into Th17 or Treg cells. A rat model of cigarette smoke- and bacterial infection-induced COPD was established and orally treated with BYF and/or an adenosine 2a receptor (A2aR) antagonist. Then, the rats were sacrificed, their lung tissues were removed for histological analysis, and their spleens were collected to evaluate Th17 and Treg cells. The results showed that BYF significantly suppressed Th17 cell differentiation and its related cytokines and enhanced Treg cell differentiation and its related cytokines. In addition, BYF activated the A2aR, increased the levels of p-signal transducer and activator of transcription (STAT)5, and decreased the level of p-STAT3 in Treg and Th17 cells. The A2aR antagonist suppressed the changes induced by BYF treatment in Th17 and Treg cells. Furthermore, the A2aR antagonist diminished the therapeutic effect of BYF on COPD, as indicated by the lung injury scores, bronchiole wall thickness, small pulmonary vessels wall thickness, bronchiole stenosis, alveolar diameters, decrease in inflammatory cytokines, increase in alveolar number, and lung functions. Similarly, the A2aR antagonist reversed the effects of BYF on the proportion of Th17 and Treg cells in the spleen. Additionally, BYF increased the protein and mRNA levels of A2aR and regulated the phosphorylation of STAT3 and STAT5 in spleen and lung tissues, which were inhibited by cotreatment with the A2aR antagonist. In conclusion, this study suggested that BYF exhibited its anti-COPD efficacy by restoring the Th17/Treg balance via activating A2aR, which may provide evidence for the clinical application of BYF in the treatment of COPD.
Collapse
Affiliation(s)
- Peng Zhao
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xuefang Liu
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Haoran Dong
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yange Tian
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Suxiang Feng
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
| | - Di Zhao
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhouxin Ren
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lanxi Zhang
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
23
|
Xiao W, Lu MH, Rong PF, Zhang HY, Gong J, Peng YQ, Gong HY, Liu ZG. 11β‑hydroxysteroid dehydrogenase‑1 is associated with the activation of hepatic stellate cells in the development of hepatic fibrosis. Mol Med Rep 2020; 22:3191-3200. [PMID: 32945429 PMCID: PMC7453648 DOI: 10.3892/mmr.2020.11423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/19/2020] [Indexed: 01/21/2023] Open
Abstract
Hepatic fibrosis (HF) is a common complication of numerous chronic liver diseases, but predominantly results from persistent liver inflammation or injury. If left untreated, HF can progress and develop into liver cirrhosis and even hepatocellular carcinoma. However, the underlying molecular mechanisms of HF remain unknown. The present study aimed to investigate the role of 11β-hydroxysteroid dehydrogenase-1 (11β-HSD1) during the development of hepatic fibrosis. An experimental rat model of liver fibrosis was induced using porcine serum. 11β-HSD1 gene expression levels and enzyme activity during hepatic fibrogenesis were assessed. 11β-HSD1 gene knockdown using small interfering RNA and overexpression were performed in LX2-human hepatic stellate cells (HSCs). HSCs were stimulated with transforming growth factor-β1 (TGF-β1). Cell cycle distribution, proliferation, collagen secretion and 11β-HSD1 gene activity in HSCs were compared before and after stimulation. As hepatic fibrosis progressed, 11β-HSD1 gene expression and activity increased, indicating a positive correlation with typical markers of liver fibrosis. 11β-HSD1 inhibition markedly reduced the degree of fibrosis. The cell proliferation was increased, the number of cells in the G0/G1 phase decreased and the number of cells in the S and G2/M phases increased in the pSuper transfected group compared with the N group. In addition, the overexpression of 11β-HSD1 enhanced the TGF-β1-induced activation of LX2-HSCs and enzyme activity of connective tissue growth factor. 11β-HSD1 knockdown suppressed cell proliferation by blocking the G0/G1 phase of the cell cycle, which was associated with HSC stimulation and inhibition of 11β-HSD1 enzyme activity. In conclusion, increased 11β-HSD1 expression in the liver may be partially responsible for hepatic fibrogenesis, which is potentially associated with HSC activation and proliferation.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Meng-Hou Lu
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Peng-Fei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hao-Ye Zhang
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jian Gong
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Ying-Qiong Peng
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Huan-Yu Gong
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhen-Guo Liu
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
24
|
Yang YR, Bu FT, Yang Y, Li H, Huang C, Meng XM, Zhang L, Lv XW, Li J. LEFTY2 alleviates hepatic stellate cell activation and liver fibrosis by regulating the TGF-β1/Smad3 pathway. Mol Immunol 2020; 126:31-39. [PMID: 32745796 DOI: 10.1016/j.molimm.2020.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/23/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Activated hepatic stellate cells (HSCs) are the major cell type involved in the deposition of extracellular matrix (ECM) during the development of hepatic fibrosis. In this study, we revealed that left-right determination factor 2 (LEFTY2), one of the proteins belonging to the transforming growth factor-β (TGF-β) protein superfamily, was remarkedly decreased in human hepatic fibrosis tissues and in a carbon tetrachloride (CCl4)-induced liver fibrosis mouse model. In addition, TGF-β1 treatment markedly reduced the level of LEFTY2 in HSCs. Importantly, overexpression of LEFTY2 suppressed the activation and proliferation of HSCs. LEFTY2 inhibited the expression of TGF-β1-induced fibrosis-associated genes (α-SMA and COL1a1) in human (LX-2) and rat (HSC-T6) HSC cell lines in vitro. Mechanistically, we demonstrated, for the first time, the role of LEFTY2 in inhibiting TGF-β1/Smad3 signaling, suggesting that there is a mutual antagonism between LEFTY2 and TGF-β1/Smad3 signaling during liver fibrosis. Similarly, we observed that LEFTY2 has a negative effect on its downstream genes, including c-MYC, CDK4, and cyclin D1, in liver fibrosis. Collectively, our data strongly indicated that LEFTY2 plays an important role in controlling the proliferation and activation of HSCs in the progression of liver fibrosis and this could be a potential therapeutic target for its treatment.
Collapse
Affiliation(s)
- Ya-Ru Yang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Clinical Pharmacology, Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China
| | - Fang-Tian Bu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yang Yang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hao Li
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiong-Wen Lv
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
25
|
Wang S, Gao S, Zhou D, Qian X, Luan J, Lv X. The role of the CD39-CD73-adenosine pathway in liver disease. J Cell Physiol 2020; 236:851-862. [PMID: 32648591 DOI: 10.1002/jcp.29932] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Extracellular adenosine triphosphate (ATP) is a danger signal released by dying and damaged cells, and it functions as an immunostimulatory signal that promotes inflammation. The ectonucleotidases CD39/ectonucleoside triphosphate diphosphohydrolase-1 and CD73/ecto-5'-nucleotidase are cell-surface enzymes that breakdown extracellular ATP into adenosine. This drives a shift from an ATP-driven proinflammatory environment to an anti-inflammatory milieu induced by adenosine. The CD39-CD73-adenosine pathway changes dynamically with the pathophysiological context in which it is embedded. Accumulating evidence suggests that CD39 and CD73 play important roles in liver disease as critical components of the extracellular adenosinergic pathway. Recent studies have shown that the modification of the CD39-CD73-adenosine pathway alters the liver's response to injury. Moreover, adenosine exerts different effects on the pathophysiology of the liver through different receptors. In this review, we aim to describe the role of the CD39-CD73-adenosine pathway and adenosine receptors in liver disease, highlighting potential therapeutic targets in this pathway, which will facilitate the development of therapeutic strategies for the treatment of liver disease.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease, Anhui Medical University, Hefei, Anhui, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dexi Zhou
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Xueyi Qian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
26
|
Velázquez-Miranda E, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic signaling in hepatic disease. Purinergic Signal 2019; 15:477-489. [PMID: 31576486 DOI: 10.1007/s11302-019-09680-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular purines (ATP and adenosine) are ubiquitous intercellular messengers. During tissular damage, they function as damage-associated molecular patterns (DAMPs). In this context, purines announce tissue alterations to initiate a reparative response that involve the formation of the inflammasome complex and the recruitment of specialized cells of the immune system. The present review focuses on the role of the purinergic system in liver damage, mainly during the onset and development of fibrosis. After hepatocellular injury, extracellular ATP promotes a signaling cascade that ameliorates tissue alterations to restore the hepatic function. However, if cellular damage becomes chronic, ATP orchestrates an aberrant reparative process that results in severe liver diseases such as fibrosis and cirrhosis. ATP and adenosine, their receptors, and extracellular ectonucleotidases are mediators of unique processes that will be reviewed in detail.
Collapse
Affiliation(s)
- E Velázquez-Miranda
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México.
| |
Collapse
|
27
|
Abstract
Liver fibrosis (LF) is known as a result of the progressive accumulation of extracellular matrix (ECM), and always ascribed to chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, portal hypertension, and even multi-organ dysfunction and will bring up a health care burden worldwide. Cyclic AMP response-element binding protein (CREB), as a critical transcriptional factor, binds with conserved cAMP response-element (CRE), which is located in the promoter of targeted genes, to regulate the transcription. In the past decades, numerous studies have contributed to improved understanding of the links between CREB and liver fibrosis. In this review, we will summarize molecular mechanisms of CREB pathways and discuss contributions of CREB to liver fibrosis, focusing on activation and proliferation of hepatic stellate cells (HSCs), proliferation of cholangiocytes, deposition of extracellular matrix (ECM) and inflammation, for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Guixin Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianqian Jiang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Keshu Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
28
|
Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment. Proc Natl Acad Sci U S A 2018; 115:E9640-E9648. [PMID: 30242135 DOI: 10.1073/pnas.1809695115] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Breast cancer stem cells (BCSCs), which are characterized by a capacity for unlimited self-renewal and for generation of the bulk cancer cell population, play a critical role in cancer relapse and metastasis. Hypoxia is a common feature of the cancer microenvironment that stimulates the specification and maintenance of BCSCs. In this study, we found that hypoxia increased expression of adenosine receptor 2B (A2BR) in human breast cancer cells through the transcriptional activity of hypoxia-inducible factor 1. The binding of adenosine to A2BR promoted BCSC enrichment by activating protein kinase C-δ, which phosphorylated and activated the transcription factor STAT3, leading to increased expression of interleukin 6 and NANOG, two key mediators of the BCSC phenotype. Genetic or pharmacological inhibition of A2BR expression or activity decreased hypoxia- or adenosine-induced BCSC enrichment in vitro, and dramatically impaired tumor initiation and lung metastasis after implantation of MDA-MB-231 human breast cancer cells into the mammary fat pad of immunodeficient mice. These data provide evidence that targeting A2BR might be an effective strategy to eradicate BCSCs.
Collapse
|
29
|
Abstract
Extracellular adenosine nucleoside is a potent, endogenous mediator that signals through specific G protein-coupled receptors, and exerts pleiotropic effects on liver physiology, in health and disease. Particularly, adenosinergic or adenosine-mediated signaling pathways impact the progression of hepatic fibrosis, a common feature of chronic liver diseases, through regulation of matrix deposition by liver myofibroblasts. This review examines the current lines of evidence on adenosinergic regulation of liver fibrosis and myofibroblasts, identifies unanswered research questions, and proposes important future areas of investigation.
Collapse
Affiliation(s)
- Michel Fausther
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| |
Collapse
|
30
|
Huang W, Bai S, Zuo X, Tang W, Chen P, Chen X, Wang G, Wang H, Xie P. An adenosine A1R-A2aR imbalance regulates low glucose/hypoxia-induced microglial activation, thereby contributing to oligodendrocyte damage through NF-κB and CREB phosphorylation. Int J Mol Med 2018; 41:3559-3569. [PMID: 29512780 DOI: 10.3892/ijmm.2018.3546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/09/2018] [Indexed: 11/05/2022] Open
Abstract
Microglial activation-mediated inflammatory damage to oligodendrocytes is a key step in the etiology of ischemic white matter lesions. The adenosine A1 receptor (A1R) and adenosine A2a receptor (A2aR) have been reported to regulate the activation of microglia, however, the underlying mechanisms remain elusive. Thus, the present study used a microglia/oligodendrocyte co‑culture model exposed to low glucose/hypoxia, and treated with agonists/antagonists of A1R and A2aR to investigate the role of A1R and A2aR. Changes in A1R and A2aR expression and inflammatory cytokine secretion by the microglia, and oligodendrocyte damage, after exposure were examined. Low glucose/hypoxia induced a higher elevation of A1R than A2aR. In addition, activation of A1R inhibited A2aR protein expression and vice versa. The A1R antagonist DPCPX (100 nM) and A2aR agonist CGS 21680 (100 nM) inhibited microglial activation, reduced the production of inflammatory cytokines and attenuated oligodendrocyte damage, along with elevating the levels of phosphorylated nuclear factor (NF)‑κB and cyclic adenosine monophosphate response element binding protein (CREB). These data indicate that an A1R‑A2aR imbalance is able to modulate low glucose‑induced microglial activation and the cellular immune response through altering NF‑κB and CREB phosphorylation. This suggests that rebalancing A1R‑A2aR is a promising approach for treating white matter injury.
Collapse
Affiliation(s)
- Wen Huang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Shunjie Bai
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xuzheng Zuo
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Weiju Tang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Pengfei Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiuying Chen
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Gong Wang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Haoxiang Wang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
31
|
Ni YH, Huo LJ, Li TT. Antioxidant axis Nrf2-keap1-ARE in inhibition of alcoholic liver fibrosis by IL-22. World J Gastroenterol 2017; 23:2002-2011. [PMID: 28373766 PMCID: PMC5360641 DOI: 10.3748/wjg.v23.i11.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/07/2017] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the effect of interleukin (IL)-22 on in vitro model of alcoholic liver fibrosis hepatic stellate cells (HSCs), and whether this is related to regulation of Nrf2-keap1-ARE. METHODS HSC-T6 cells were incubated with 25, 50, 100, 200 and 400 μmol/L acetaldehyde. After 24 and 48 h, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect proliferation of HSCs to choose the best concentration and action time. We used the optimal concentration of acetaldehyde (200 μmol/L) to stimulate HSCs for 24 h, and treated the cells with a final concentration of 10, 20 or 50 ng/mL IL-22. The cell proliferation rate was detected by MTT assay. The cell cycle was analyzed by flow cytometry. The expression of nuclear factor-related factor (Nrf)2 and α-smooth muscle antigen was detected by western blotting and immunocytochemistry. The levels of malondialdehyde (MDA) and glutathione (GSH) were measured by spectrophotometry. RESULTS In the MTT assay, when HSCs were incubated with acetaldehyde, activity and proliferation were higher than in the control group, and were most obvious after 48 h treatment with 200 μmol/L acetaldehyde. The number of cells in G0/G1 phases was decreased and the number in S phase was increased in comparison with the control group. When treated with different concentrations of IL-22, HSC-T6 cell activity and proliferation rate were markedly decreased in a dose-dependent manner, and cell cycle progression was arrested from G1 to S phase. Western blotting and immunocytochemistry demonstrated that expression of Nrf2 total protein was not significantly affected. Expression of Nrf2 nuclear protein was low in the control group, increased slightly in the model group (or acetaldehyde-stimulated group), and increased more obviously in the IL-22 intervention groups. The levels of MDA and GSH in the model group were significantly enhanced in comparison with those in the control group. In cells treated with IL-22, the MDA level was attenuated but the GSH level was further increased. These changes were dose-dependent. CONCLUSION IL-22 inhibits acetaldehyde-induced HSC activation and proliferation, which may be related to nuclear translocation of Nrf2 and increased activity of the antioxidant axis Nrf2-keap1-ARE.
Collapse
|
32
|
Wu X, Wang Y, Wang S, Xu R, Lv X. Purinergic P2X7 receptor mediates acetaldehyde-induced hepatic stellate cells activation via PKC-dependent GSK3β pathway. Int Immunopharmacol 2017; 43:164-171. [PMID: 28061416 DOI: 10.1016/j.intimp.2016.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/22/2016] [Accepted: 12/12/2016] [Indexed: 12/31/2022]
Abstract
The activation of hepatic stellate cells (HSCs) is an essential part in the development of alcoholic liver fibrosis (ALF). In this study, stimulated HSCs with 200μM acetaldehyde for 48h was used to imitate alcoholic liver fibrosis in vitro. The western blot and qRT-PCR results showed that P2X7R expression was significantly increased in the activation of HSCs after acetaldehyde treatment. Interestingly, activation of P2X7R by stimulating with P2X7R agonist BzATP significantly promoted acetaldehyde-induced CyclinD1 expression, cell proportion in S phase, inflammatory response, and the protein and mRNA levels of α-SMA, collagen I. In contrast, blockage of P2X7R by stimulating with the inhibitor A438079 or transfecting with specific siRNA dramatically suppressed acetaldehyde-induced HSCs activation. Furthermore, PKC activation treated with PMA could obviously up-regulate the expression of α-SMA and collagen I and the phosphorylation of GSK3β, while inhibition of PKC significantly reduced GSK3β activation. Moreover, GSK3β inhibition harvested a dramatic decrease of the mRNA and protein levels of α-SMA and collagen I by suppressing GSK3β phosphorylation. Taken together, these results suggested that purinergic P2X7R mediated acetaldehyde-induced activation of HSCs via PKC-dependent GSK3β pathway, which maybe a novel target for limiting HSCs activation.
Collapse
Affiliation(s)
- Xiaojuan Wu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Yuhui Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Sheng Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Rixiang Xu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Xiongwen Lv
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
33
|
MicroRNA Expression Profiling in CCl₄-Induced Liver Fibrosis of Mus musculus. Int J Mol Sci 2016; 17:ijms17060961. [PMID: 27322257 PMCID: PMC4926493 DOI: 10.3390/ijms17060961] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a major pathological feature of chronic liver diseases, including liver cancer. MicroRNAs (miRNAs), small noncoding RNAs, regulate gene expression posttranscriptionally and play important roles in various kinds of diseases; however, miRNA-associated hepatic fibrogenesis and its acting mechanisms are poorly investigated. Therefore, we performed an miRNA microarray in the fibrotic livers of Mus musculus treated with carbon-tetrachloride (CCl4) and analyzed the biological functions engaged by the target genes of differentially-expressed miRNAs through gene ontology (GO) and in-depth pathway enrichment analysis. Herein, we found that four miRNAs were upregulated and four miRNAs were downregulated more than two-fold in CCl4-treated livers compared to a control liver. Eight miRNAs were predicted to target a total of 4079 genes. GO analysis revealed that those target genes were located in various cellular compartments, including cytoplasm, nucleolus and cell surface, and they were involved in protein-protein or protein-DNA bindings, which influence the signal transductions and gene transcription. Furthermore, pathway enrichment analysis demonstrated that the 72 subspecialized signaling pathways were associated with CCl4-induced liver fibrosis and were mostly classified into metabolic function-related pathways. These results suggest that CCl4 induces liver fibrosis by disrupting the metabolic pathways. In conclusion, we presented several miRNAs and their biological processes that might be important in the progression of liver fibrosis; these findings help increase the understanding of liver fibrogenesis and provide novel ideas for further studies of the role of miRNAs in liver fibrosis.
Collapse
|
34
|
Shaikh G, Cronstein B. Signaling pathways involving adenosine A2A and A2B receptors in wound healing and fibrosis. Purinergic Signal 2016; 12:191-7. [PMID: 26847815 DOI: 10.1007/s11302-016-9498-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/27/2016] [Indexed: 02/07/2023] Open
Abstract
Collagen and matrix deposition by fibroblasts is an essential part of wound healing but also contributes to pathologic remodeling of organs leading to substantial morbidity and mortality. Adenosine, a small molecule generated extracellularly from adenine nucleotides as a result of direct stimulation, hypoxia, or injury, acts via a family of classical seven-pass G protein-coupled protein receptors, A2A and A2B, leading to generation of cAMP and activation of downstream targets such as PKA and Epac. These effectors, in turn, lead to fibroblast activation and collagen synthesis. The regulatory actions of these receptors likely involve multiple interconnected pathways, and one of the more interesting aspects of this regulation is opposing effects at different levels of cAMP generated. Additionally, adenosine signaling contributes to fibrosis in organ-specific ways and may have opposite effects in different organs. The development of drugs that selectively target these receptors and their signaling pathways will disrupt the pathogenesis of fibrosis and slow or arrest the progression of the important diseases they underlie.
Collapse
Affiliation(s)
- Gibran Shaikh
- Department of Medicine, New York University School of Medicine, 227 East 30th Street, New York, NY, 10016, USA
| | - Bruce Cronstein
- Department of Medicine, New York University School of Medicine, 227 East 30th Street, New York, NY, 10016, USA.
| |
Collapse
|
35
|
Yang Y, Yang F, Wu X, Lv X, Li J. EPAC activation inhibits acetaldehyde-induced activation and proliferation of hepatic stellate cell via Rap1. Can J Physiol Pharmacol 2015; 94:498-507. [PMID: 26854595 DOI: 10.1139/cjpp-2015-0437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic stellate cells (HSCs) activation represents an essential event during alcoholic liver fibrosis (ALF). Previous studies have demonstrated that the rat HSCs could be significantly activated after exposure to 200 μmol/L acetaldehyde for 48 h, and the cAMP/PKA signaling pathways were also dramatically upregulated in activated HSCs isolated from alcoholic fibrotic rat liver. Exchange protein activated by cAMP (EPAC) is a family of guanine nucleotide exchange factors (GEFs) for the small Ras-like GTPases Rap, and is being considered as a vital mediator of cAMP signaling in parallel with the principal cAMP target protein kinase A (PKA). Our data showed that both cAMP/PKA and cAMP/EPAC signaling pathways were involved in acetaldehyde-induced HSCs. Acetaldehyde could reduce the expression of EPAC1 while enhancing the expression of EPAC2. The cAMP analog Me-cAMP, which stimulates the EPAC/Rap1 pathway, could significantly decrease the proliferation and collagen synthesis of acetaldehyde-induced HSCs. Furthermore, depletion of EPAC2, but not EPAC1, prevented the activation of HSC measured as the production of α-SMA and collagen type I and III, indicating that EPAC1 appears to have protective effects on acetaldehyde-induced HSCs. Curiously, activation of PKA or EPAC perhaps has opposite effects on the synthesis of collagen and α-SMA: EPAC activation by Me-cAMP increased the levels of GTP-bound (activated) Rap1 while PKA activation by Phe-cAMP had no significant effects on such binding. These results suggested that EPAC activation could inhibit the activation and proliferation of acetaldehyde-induced HSCs via Rap1.
Collapse
Affiliation(s)
- Yan Yang
- a School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China.,b Institute for Liver Disease of Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China
| | - Feng Yang
- a School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China.,b Institute for Liver Disease of Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China
| | - Xiaojuan Wu
- a School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China.,b Institute for Liver Disease of Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China
| | - Xiongwen Lv
- a School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China.,b Institute for Liver Disease of Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China
| | - Jun Li
- a School of Pharmacy, Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China.,b Institute for Liver Disease of Anhui Medical University, Meishan Road, Hefei, Anhui Province 230032, China
| |
Collapse
|