1
|
Kariuki D, Aouizerat BE, Asam K, Kanaya AM, Zhang L, Florez JC, Flowers E. MicroRNA biomarkers target genes and pathways associated with type 2 diabetes. Diabetes Res Clin Pract 2023; 203:110868. [PMID: 37543292 DOI: 10.1016/j.diabres.2023.110868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
AIMS/HYPOTHESIS Our prior analysis of the Diabetes Prevention Program study identified a subset of five miRNAs that predict incident type 2 diabetes. The purpose of this study was to identify mRNAs and biological pathways targeted by these five miRNAs to elucidate potential mechanisms of risk and responses to the tested interventions. METHODS Using experimentally validated data from miRTarBase version 8.0 and R (2021), we identified mRNAs with strong evidence to be regulated by individual or combinations of the five predictor miRNAs. Overrepresentation of the mRNA targets was assessed in pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation database. RESULTS The five miRNAs targeted 167 pathways and 122 mRNAs. Nine of the pathways have known associations with type 2 diabetes: Insulin signaling, Insulin resistance, Diabetic cardiomyopathy, Type 2 diabetes, AGE-RAGE signaling in diabetic complications, HIF-1 signaling, TGF-beta signaling, PI3K/Akt signaling, and Adipocytokine signaling pathways. Vascular endothelial growth factor A (VEGFA) has prior genetic associations with risk for type 2 diabetes and was the most commonly targeted mRNA for this set of miRNAs. CONCLUSIONS/INTERPRETATION These findings show that miRNA predictors of incident type 2 diabetes target mRNAs and pathways known to underlie risk for type 2 diabetes. Future studies should evaluate miRNAs as potential therapeutic targets for preventing and treating type 2 diabetes.
Collapse
Affiliation(s)
- Dorian Kariuki
- University of California, San Francisco, Department of Physiological Nursing, San Francisco, CA, USA
| | - Bradley E Aouizerat
- New York University Bluestone Center for Clinical Research, New York, NY 10010, USA; New York University Department of Oral and Maxillofacial Surgery, New York, NY 10010, USA
| | - Kesava Asam
- New York University Bluestone Center for Clinical Research, New York, NY 10010, USA
| | - Alka M Kanaya
- University of California, San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA, USA; University of California, San Francisco, Department of Medicine, Division of Hematology and Oncology, San Francisco, CA, USA
| | - Li Zhang
- University of California, San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA, USA; University of California, San Francisco, Department of Medicine, Division of General Internal Medicine, San Francisco, CA, USA
| | - Jose C Florez
- Center for Genomic Medicine and Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Programs in Metabolism and Medical &Population Genetics, Broad Institute, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Elena Flowers
- University of California, San Francisco, Department of Physiological Nursing, San Francisco, CA, USA; University of California, San Francisco, Institute for Human Genetics, San Francisco, CA, USA.
| |
Collapse
|
2
|
Ou Y, Zong D, Ouyang R. Role of epigenetic abnormalities and intervention in obstructive sleep apnea target organs. Chin Med J (Engl) 2023; 136:631-644. [PMID: 35245923 PMCID: PMC10129098 DOI: 10.1097/cm9.0000000000002080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Obstructive sleep apnea (OSA) is a common condition that has considerable impacts on human health. Epigenetics has become a rapidly developing and exciting area in biology, and it is defined as heritable alterations in gene expression and has regulatory effects on disease progression. However, the published literature that is integrating both of them is not sufficient. The purpose of this article is to explore the relationship between OSA and epigenetics and to offer better diagnostic methods and treatment options. Epigenetic modifications mainly manifest as post-translational modifications in DNA and histone proteins and regulation of non-coding RNAs. Chronic intermittent hypoxia-mediated epigenetic alterations are involved in the progression of OSA and diverse multiorgan injuries, including cardiovascular disease, metabolic disorders, pulmonary hypertension, neural dysfunction, and even tumors. This article provides deeper insights into the disease mechanism of OSA and potential applications of targeted diagnosis, treatment, and prognosis in OSA complications.
Collapse
Affiliation(s)
- Yanru Ou
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Dandan Zong
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Ruoyun Ouyang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
3
|
Abdel Mageed SS, Doghish AS, Ismail A, El-Husseiny AA, Fawzi SF, Mahmoud AMA, El-Mahdy HA. The role of miRNAs in insulin resistance and diabetic macrovascular complications - A review. Int J Biol Macromol 2023; 230:123189. [PMID: 36623613 DOI: 10.1016/j.ijbiomac.2023.123189] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
Diabetes is the most prevalent metabolic disturbance disease and has been regarded globally as one of the principal causes of mortality. Diabetes is accompanied by several macrovascular complications, including stroke, coronary artery disease (CAD), and cardiomyopathy as a consequence of atherosclerosis. The onset of type 2 diabetes is closely related to insulin resistance (IR). miRNAs have been linked to various metabolic processes, including glucose homeostasis, regulation of lipid metabolism, gluconeogenesis, adipogenesis, glucose transporter type 4 expression, insulin sensitivity, and signaling. Consequently, miRNA dysregulation mediates IR in some target organs, comprising liver, muscle, and adipose tissue. Moreover, miRNAs are crucial in developing diabetes and its associated macrovascular complications through their roles in several signaling pathways implicated in inflammation, apoptosis, cellular survival and migration, the proliferation of vascular smooth muscle cells, neurogenesis, angiogenesis, autophagy, oxidative stress, cardiac remodeling, and fibrosis. Therefore, the purpose of this review is to clarify the role of miRNAs in hepatic, muscle, and adipose tissue IR and explain their roles in the pathogenesis of macrovascular diabetic complications, including stroke, CAD, and cardiomyopathy. Also, explain their roles in gestational diabetes mellitus (GDM). Besides, this review discusses the latest updates on the alteration of miRNA expression in diabetic macrovascular complications.
Collapse
Affiliation(s)
- Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Sylvia F Fawzi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| |
Collapse
|
4
|
lncRNA MALAT1 Promotes Diabetic Nephropathy Progression via miR-15b-5p/TLR4 Signaling Axis. J Immunol Res 2022; 2022:8098001. [PMID: 35910856 PMCID: PMC9334040 DOI: 10.1155/2022/8098001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Objective The long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) are closely associated with the pathogenesis of diabetic nephropathy (DN). But a complete mechanism for MALAT1 in DN has yet to be identified. This study investigated the effect of MALAT1 on DN through the regulation of miR-15b-5p/TLR4 signaling. Method Renal tissues were collected from DN patients. Human renal tubular epithelial cells (HK-2) were used as a model of DN induced by high glucose (HG). We then measured the viability, apoptosis, and inflammatory cytokine levels of HK-2 cells using the corresponding assays. Following transfections of si-MALAT1, si-MALAT1+miR-15b-5p inhibitor, or si-MALAT1+vector TLR4 into HG-stimulated HK-2 cells, cell viability, apoptosis, and inflammatory cytokines were again measured. Furthermore, dual-luciferase reporter assay validated the interactions of MALAT1/miR-15b-5p and miR-15b-5p/TLR4. In addition, the interaction between MALAT1 and miR-15b-5p was investigated by RNA immunoprecipitation (RIP). Results A significant upregulation of MALAT1 was observed in DN kidney tissues, as well as in HG-stimulated HK-2 cells. MALAT1 knockdown attenuates the inhibition of cell viability, apoptosis, and inflammatory response induced by HG in HK-2 cells. Moreover, a miR-15b-5p inhibitor or TLR4 overexpression reversed the above effects induced by MALAT1 knockdown. Conclusion These results indicate that reduced MALAT1 ameliorates HG-stimulated HK-2 cell damage through an inhibition of the miR-15b-5p/TLR4 axis. MALAT1 may serve as a biomarker and potential therapeutic target for DN.
Collapse
|
5
|
Lv L, Wang X, Shen J, Cao Y, Zhang Q. MiR-574-3p inhibits glucose toxicity-induced pancreatic β-cell dysfunction by suppressing PRMT1. Diabetol Metab Syndr 2022; 14:99. [PMID: 35841066 PMCID: PMC9284709 DOI: 10.1186/s13098-022-00869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pancreatic β-cell dysfunction is commonly observed in patients with type 2 diabetes mellitus. Protein arginine methyltransferase 1 (PRMT1) plays an important role in pancreatic β-cell dysfunction. However, the detailed mechanisms remain largely unknown. METHODS RT-qPCR, western blotting, and immunofluorescence assays were used to evaluate PRMT1 and miR-574-3p levels. Cell Counting Kit-8, Advanced Dlycation End products (AGEs), Reactive Oxygen Species (ROS), and glucose-stimulated insulin secretion were assayed, and flow cytometry and RT-qPCR were performed to detect the role of PRMT1 and miR-574-3p in MIN6 cells. Luciferase reporter assays were performed to determine the interactions between PRMT1 and miR-574-3p. RESULTS High-glucose treatment resulted in the high expression of PRMT1. PRMT1 silencing could alleviate the reduced proliferation, insulin secretion, and GLUT1 level, in addition to suppressing the induced apoptosis, and AGEs and ROS levels, under high glucose conditions. MiR-574-3p was established as an upstream regulator of PRMT1 using luciferase reporter assays. More importantly, miR-574-3p reversed the effect of PRMT1 silencing in MIN6 cells. CONCLUSIONS miR-574-3p suppresses glucose toxicity-induced pancreatic β-cell dysfunction by targeting PRMT1.
Collapse
Affiliation(s)
- Lixia Lv
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital, HI-TECH Zone, 18 Wanxiang North Road, Chengdu, 610041, Sichuan, China.
| | - Xiumin Wang
- Department of Proctology, Chengdu First People's Hospital, Chengdu, 610041, Sichuan, China
| | - Jinhua Shen
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital, HI-TECH Zone, 18 Wanxiang North Road, Chengdu, 610041, Sichuan, China
| | - Ying Cao
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital, HI-TECH Zone, 18 Wanxiang North Road, Chengdu, 610041, Sichuan, China
| | - Qin Zhang
- Department of Endocrinology and Metabolism, Chengdu First People's Hospital, HI-TECH Zone, 18 Wanxiang North Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The incidence of diabetes is increasing worldwide. Diabetes mellitus is characterized by hyperglycemia, which in the long-term damages the function of many organs including the eyes, the vasculature, the nervous system, and the kidneys, thereby imposing an important cause of morbidity for affected individuals. More recently, increased bone fragility was also noted in patients with diabetes. While patients with type 1 diabetes mellitus (T1DM) have low bone mass and a 6-fold risk for hip fractures, patients with type 2 diabetes mellitus (T2DM) have an increased bone mass, yet still display a 2-fold elevated risk for hip fractures. Although the underlying mechanisms are just beginning to be unraveled, it is clear that diagnostic tools are lacking to identify patients at risk for fracture, especially in the case of T2DM, in which classical tools to diagnose osteoporosis such as dual X-ray absorptiometry have limitations. Thus, new biomarkers are urgently needed to help identify patients with diabetes who are at risk to fracture. RECENT FINDINGS Previously, microRNAs have received great attention not only for being involved in the pathogenesis of various chronic diseases, including osteoporosis, but also for their value as biomarkers. Here, we summarize the current knowledge on microRNAs and their role in diabetic bone disease and highlight recent studies on miRNAs as biomarkers to predict bone fragility in T1DM and T2DM. Finally, we discuss future directions and challenges for their use as prognostic markers.
Collapse
Affiliation(s)
- Souad Daamouch
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Lejla Emini
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
7
|
Fluitt MB, Mohit N, Gambhir KK, Nunlee-Bland G. To the Future: The Role of Exosome-Derived microRNAs as Markers, Mediators, and Therapies for Endothelial Dysfunction in Type 2 Diabetes Mellitus. J Diabetes Res 2022; 2022:5126968. [PMID: 35237694 PMCID: PMC8885279 DOI: 10.1155/2022/5126968] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/08/2022] [Indexed: 01/19/2023] Open
Abstract
The prevalence of diabetes mellitus (DM) is increasing at a staggering rate around the world. In the United States, more than 30.3 million Americans have DM. Type 2 diabetes mellitus (T2DM) accounts for 91.2% of diabetic cases and disproportionately affects African Americans and Hispanics. T2DM is a major risk factor for cardiovascular disease (CVD) and is the leading cause of morbidity and mortality among diabetic patients. While significant advances in T2DM treatment have been made, intensive glucose control has failed to reduce the development of macro and microvascular related deaths in this group. This highlights the need to further elucidate the underlying molecular mechanisms contributing to CVD in the setting of T2DM. Endothelial dysfunction (ED) plays an important role in the development of diabetes-induced vascular complications, including CVD and diabetic nephropathy (DN). Thus, the endothelium provides a lucrative means to investigate the molecular events involved in the development of vascular complications associated with T2DM. microRNAs (miRNA) participate in numerous cellular responses, including mediating messages in vascular homeostasis. Exosomes are small extracellular vesicles (40-160 nanometers) that are abundant in circulation and can deliver various molecules, including miRNAs, from donor to recipient cells to facilitate cell-to-cell communication. Endothelial cells are in constant contact with exosomes (and exosomal content) that can induce a functional response. This review discusses the modulatory role of exosomal miRNAs and proteins in diabetes-induced endothelial dysfunction, highlighting the significance of miRNAs as markers, mediators, and potential therapeutic interventions to ameliorate ED in this patient group.
Collapse
Affiliation(s)
- Maurice B. Fluitt
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
| | - Neal Mohit
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
- Department of Biology, Howard University, 415 College St. NW, Washington, DC 20059, USA
| | - Kanwal K. Gambhir
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
| | - Gail Nunlee-Bland
- Division of Endocrinology and Metabolism, Department of Medicine, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
- Diabetes Treatment Center, Howard University Hospital, 2041 Georgia Ave, NW, Washington, DC 20060, USA
| |
Collapse
|
8
|
González-Sánchez LE, Ortega-Camarillo C, Contreras-Ramos A, Barajas-Nava LA. miRNAs as biomarkers for diagnosis of type 2 diabetes: A systematic review. J Diabetes 2021; 13:792-816. [PMID: 33576054 DOI: 10.1111/1753-0407.13166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/02/2021] [Accepted: 02/07/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND This systematic review summarizes results of studies that evaluated the expression of microRNAs (miRs) in prediabetes or type 2 diabetes (T2D). METHODS The information was obtained from PubMed, EMBL-EBI, Wanfang, Trip Database, Lilacs, CINAHL, Human microRNA Disease Database (HMDD) v3.0, and Google. A qualitative synthesis of the results was performed and miRs frequency was graphically represented. From 1893 identified studies, only 55 fulfilled the inclusion criteria. These 55 studies analyzed miRs in T2D, and of them, 13 also described data of prediabetes. RESULTS In diabetics, 122 miRs were reported and 35 miRs for prediabetics. However, we identified that five miRs (-122-5p, 144-3p, 210, 375, and -126b) were reported more often in diabetics and four (144-3p, -192, 29a, and -30d) in prediabetics. CONCLUSIONS Circulating miRs could be used as biomarkers of T2D. However, it is necessary to validate these microRNAs in prospective and multicenter studies with different population subgroups, considering age, gender, and risk factors.
Collapse
Affiliation(s)
- Luis Edgar González-Sánchez
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Hospital Infantil de México Federico Gómez (HIMFG), Mexico City, Mexico
| | - Clara Ortega-Camarillo
- Medical Research Unit in Biochemistry, Specialties Hospital, National Medical Center SXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alejandra Contreras-Ramos
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Hospital Infantil de México Federico Gómez (HIMFG), Mexico City, Mexico
| | - Leticia Andrea Barajas-Nava
- Evidence-Based Medicine Research Unit, Hospital Infantil de México Federico Gómez (HIMFG), Mexico City, Mexico
| |
Collapse
|
9
|
Tian L, Fu P, Zhou M, Qi J. Dandelion sterol improves diabetes mellitus-induced renal injury in in vitro and in vivo study. Food Sci Nutr 2021; 9:5183-5197. [PMID: 34532027 PMCID: PMC8441455 DOI: 10.1002/fsn3.2491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/03/2022] Open
Abstract
The purpose of our research was to evaluate Dandelion sterol's treatment effects on diabetes mellitus-induced renal injury in in vitro and in vivo study. The rats were divided into five groups as normal control (Ctrl), diabetic nephropathy model (Model), Dandelion sterol low-dose treated (Dan-Low), Dandelion sterol middle-dose treated (Dan-Middle), and Dandelion sterol high-dose treated (Dan-High). Measuring serum TNF-α, IL-1β, and IL-6 concentrations by Elisa assay, evaluate kidney pathology by HE staining, kidney cell apoptosis of TUNEL, TLR4, and NF-κB(p65) proteins expression by IHC assay, and relative gene expressions by RT-qPCR assay. In the following step, using HK-2 treated with high glucose to model DN cell model to discuss the relative mechanisms, evaluate TNF-α, IL-1β, and IL-6 concentrations by Elisa assay, evaluate cell apoptosis by flow cytometry, evaluate TLR4 and NF-κB(p65) proteins expression by WB assay, relative gene expression by RT-qPCR assay, and NF-κB(p65) nuclear volume by cellular immunofluorescence. Compared with Ctrl group, TNF-α, IL-1β, and IL-6 concentrations and apoptosis cell number were significantly increased, TLR4/NF-κB(p65) pathway was significantly stimulated in Model rats and cell groups. With Dan supplement, the diabetic-induced renal injury was significantly improved (p < .05, respectively). By cell experiment, Dan improved cell apoptosis and inflammatory factors via miR-140-5p. Dan improved diabetes mellitus-induced renal injury via regulation of miR-140-5p/TLR4 axis in in vitro and in vivo study.
Collapse
Affiliation(s)
- Lin Tian
- Department of PathologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Peng Fu
- Department of Nuclear MedicineThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Min Zhou
- Department of PathologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jiping Qi
- Department of PathologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
10
|
He Q, Song J, Cui C, Wang J, Hu H, Guo X, Yang M, Wang L, Yan F, Liang K, Liu Z, Liu F, Sun Z, Dong M, Hou X, Chen L. Mesenchymal stem cell-derived exosomal miR-146a reverses diabetic β-cell dedifferentiation. Stem Cell Res Ther 2021; 12:449. [PMID: 34380570 PMCID: PMC8356465 DOI: 10.1186/s13287-021-02371-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) show promising therapeutic potential in treating type 2 diabetes mellitus (T2DM) in clinical studies. Accumulating evidence has suggested that the therapeutic effects of MSCs are not due to their direct differentiation into functional β-cells but are instead mediated by their paracrine functions. Among them, exosomes, nano-sized extracellular vesicles, are important substances that exert paracrine functions. However, the underlying mechanisms of exosomes in ameliorating T2DM remain largely unknown. Methods Bone marrow mesenchymal stem cell (bmMSC)-derived exosomes (bmMDEs) were administrated to T2DM rats and high-glucose-treated primary islets in order to detect their effects on β-cell dedifferentiation. Differential miRNAs were then screened via miRNA sequencing, and miR-146a was isolated after functional verification. TargetScan, reporter gene detection, insulin secretion assays, and qPCR validation were used to predict downstream target genes and involved signaling pathways of miR-146a. Results Our results showed that bmMDEs reversed diabetic β-cell dedifferentiation and improved β-cell insulin secretion both in vitro and in vivo. Results of miRNA sequencing in bmMDEs and subsequent functional screening demonstrated that miR-146a, a highly conserved miRNA, improved β-cell function. We further found that miR-146a directly targeted Numb, a membrane-bound protein involved in cell fate determination, leading to activation of β-catenin signaling in β-cells. Exosomes derived from miR-146a-knockdown bmMSCs lost the ability to improve β-cell function. Conclusions These findings demonstrate that bmMSC-derived exosomal miR-146a protects against diabetic β-cell dysfunction by acting on the NUMB/β-catenin signaling pathway, which may represent a novel therapeutic strategy for T2DM. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02371-0.
Collapse
Affiliation(s)
- Qin He
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Chen Cui
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Jinbang Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Huiqing Hu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xinghong Guo
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Mengmeng Yang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Lingshu Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Fei Yan
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Kai Liang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Zhaojian Liu
- Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Fuqiang Liu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Zheng Sun
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Ming Dong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China. .,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, China. .,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, China. .,Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, China.
| |
Collapse
|
11
|
miR-126 contributes to the epigenetic signature of diabetic vascular smooth muscle and enhances antirestenosis effects of Kv1.3 blockers. Mol Metab 2021; 53:101306. [PMID: 34298200 PMCID: PMC8363881 DOI: 10.1016/j.molmet.2021.101306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Abstract
Objectives Restenosis after vessel angioplasty due to dedifferentiation of the vascular smooth muscle cells (VSMCs) limits the success of surgical treatment of vascular occlusions. Type 2 diabetes (T2DM) has a major impact on restenosis, with patients exhibiting more aggressive forms of vascular disease and poorer outcomes after surgery. Kv1.3 channels are critical players in VSMC proliferation. Kv1.3 blockers inhibit VSMCs MEK/ERK signalling and prevent vessel restenosis. We hypothesize that dysregulation of microRNAs (miR) play critical roles in adverse remodelling, contributing to Kv1.3 blockers efficacy in T2DM VSMCs. Methods and results We used clinically relevant in vivo models of vascular risk factors (VRF) and vessels and VSMCs from T2DM patients. Resukts Human T2DM vessels showed increased remodelling, and changes persisted in culture, with augmented VSMCs migration and proliferation. Moreover, there were downregulation of PI3K/AKT/mTOR and upregulation of MEK/ERK pathways, with increased miR-126 expression. The inhibitory effects of Kv1.3 blockers on remodelling were significantly enhanced in T2DM VSMCs and in VRF model. Finally, miR-126 overexpression confered “diabetic” phenotype to non-T2DM VSMCs by downregulating PI3K/AKT axis. Conclusions miR-126 plays crucial roles in T2DM VSMC metabolic memory through activation of MEK/ERK pathway, enhancing the efficacy of Kv1.3 blockers in the prevention of restenosis in T2DM patients. Type 2 diabetes (T2DM) vessels show exacerbated remodeling in organ culture and increased Kv1.3 expression. The inhibition of vessel remodeling with Kv1.3 blockers is increased in T2DM vessels. VSMCs from T2DM patients retain epigenetic changes in primary cultures. Upregulation of miR-126 contributes to the metabolic memory of T2DM VSMCs. Upregulation of miR-126 potentiates Kv1.3-dependent mechanisms in T2DM VSMCs.
Collapse
|
12
|
Guo W, Li XN, Li J, Lu J, Wu J, Zhu WF, Qin P, Xu NZ, Zhang Q. Increased plasma miR-146a levels are associated with subclinical atherosclerosis in newly diagnosed type 2 diabetes mellitus. J Diabetes Complications 2020; 34:107725. [PMID: 32981813 DOI: 10.1016/j.jdiacomp.2020.107725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/02/2020] [Accepted: 08/23/2020] [Indexed: 11/29/2022]
Abstract
AIMS The association between circulating miR-146a and subclinical atherosclerosis in type 2 diabetes mellitus (T2DM) remains poorly understood. This study aimed to investigate the correlation between plasma miR-146a levels and subclinical atherosclerosis as measured by the carotid intima-media thickness (CIMT) and brachial-ankle pulse wave velocity (baPWV) in patients with newly diagnosed T2DM. METHODS We studied 100 patients with newly diagnosed T2DM. Subclinical atherosclerosis was defined as a thickened CIMT (≥1.0 mm) and high baPWV defined as a value greater than the 75th percentile. Plasma miR-146a levels and metabolic parameters were measured. RESULTS Patients with thickened CIMT had higher plasma miR-146a levels than those without thickened CIMT (3.36 ± 1.32 vs 1.38 ± 1.11, P < 0.001). Patients in the high baPWV group had higher plasma miR-146a levels than those in the normal baPWV group (3.43 ± 1.32 vs 1.98 ± 1.48, P < 0.001). Both CIMT (β = 0.569, P < 0.001) and baPWV (β = 0.274, P = 0.001) positively correlated with plasma miR-146a levels after adjustment for confounding factors by multiple stepwise regression. On binary logistic regression, plasma miR-146a level was an independent risk factor for thickened CIMT (OR = 3.890, 95% CI 1.415-7.698, P = 0.008) and high baPWV (OR = 1.954, 95% CI 1.256-3.040, P = 0.002) after adjustment for established cardiovascular risk factors. The area under the receiver operating characteristics curve (AUROC) of plasma miR-146a level for predicting thickened CIMT was 0.795 (95%CI 0.708-0.883, P < 0.001) and for predicting high baPWV was 0.773 (95%CI 0.679-0.867, P < 0.001). CONCLUSION Plasma miR-146a levels correlate with CIMT and baPWV and could act as a biomarker for early diagnosis and as a therapeutic target for atherosclerosis in T2DM.
Collapse
Affiliation(s)
- Wen Guo
- Department of Health Promotion Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Na Li
- Department of Health Promotion Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Jie Li
- Department of Endocrinology, Nanjing Central Hospital, Nanjing 210018, China
| | - Jing Lu
- Department of Health Promotion Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Juan Wu
- Department of Health Promotion Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Wen-Fang Zhu
- Department of Health Promotion Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Pei Qin
- Department of Health Promotion Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| | - Nian-Zhen Xu
- Department of Health Promotion Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Qun Zhang
- Department of Health Promotion Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
13
|
Shi R, Chen Y, Liao Y, Li R, Lin C, Xiu L, Yu H, Ding Y. Research Status of Differentially Expressed Noncoding RNAs in Type 2 Diabetes Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3816056. [PMID: 33274206 PMCID: PMC7683115 DOI: 10.1155/2020/3816056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/26/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
AIMS Noncoding RNAs (ncRNAs) play an important role in the occurrence and development of type 2 diabetes mellitus (T2DM). This paper summarized the current evidences of the involvement microRNAs, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) in the differential expressions and their interaction with each other in T2DM. METHODS The differentially expressed miRNAs, lncRNAs, and circRNAs in the blood circulation (plasma, serum, whole blood, and peripheral blood mononuclear cells) of patients with T2DM were found in PubMed, GCBI, and other databases. The interactions between ncRNAs were predicted based on the MiRWalk and the DIANA Tools databases. The indirect and direct target genes of lncRNAs and circRNAs were predicted based on the starBase V2.0, DIANA Tools, and LncRNA-Target databases. Then, GO and KEGG analysis on all miRNA, lncRNA, and circRNA target genes was performed using the mirPath and Cluster Profile software package in R language. The lncRNA-miRNA and circRNA-miRNA interaction diagram was constructed with Cytoscape. The aim of this investigation was to construct a mechanism diagram of lncRNA involved in the regulation of target genes on insulin signaling pathways and AGE-RAGE signaling pathways of diabetic complications. RESULTS A total of 317 RNAs, 283 miRNAs, and 20 lncRNAs and circRNAs were found in the circulation of T2DM. Dysregulated microRNAs and lncRNAs were found to be involved in signals related to metabolic disturbances, insulin signaling, and AGE-RAGE signaling in T2DM. In addition, lncRNAs participate in the regulation of key genes in the insulin signaling and AGE-RAGE signaling pathways through microRNAs, which leads to insulin resistance and diabetic vascular complications. CONCLUSION Noncoding RNAs participate in the occurrence and development of type 2 diabetes and lead to its vascular complications by regulating different signaling pathways.
Collapse
Affiliation(s)
- Rou Shi
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan, Guangdong 523808, China
- Huizhou Central People's Hospital, Department of Endocrinology, Huizhou, Guangdong 516008, China
| | - Yingjian Chen
- Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Yuanjun Liao
- Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Rang Li
- Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Chunwen Lin
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Liangchang Xiu
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Haibing Yu
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Yuanlin Ding
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan, Guangdong 523808, China
| |
Collapse
|
14
|
Helal HG, Rashed MH, Abdullah OA, Salem TI, Daifalla A. MicroRNAs (−146a, −21 and −34a) are diagnostic and prognostic biomarkers for diabetic retinopathy. Biomed J 2020; 44:S242-S251. [PMID: 35304162 PMCID: PMC9068559 DOI: 10.1016/j.bj.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/17/2020] [Accepted: 11/02/2020] [Indexed: 01/15/2023] Open
Abstract
Background Diabetic retinopathy (DR) is implicated in blindness of diabetic patients. Early diagnosis of DR is very essential to ensure good prognosis. The role of microRNAs (miRs) as biomarker diagnostic tools in DR is not fully investigated. The present study aimed to find the relation between serum relative expression of microRNAs (miR-146a, miR-21 and miR-34a) and severity of DR and to what extent their expression pattern can be used as either diagnostic or prognostic. Methods Eighty type 2 diabetic patients were classified according to severity of DR into normal, mild, moderate, severe non-proliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). Serum relative expressions of miRNAs were evaluated by qPCR and statistically analysed in each stage using Analysis of Variance (ANOVA) followed by Tuckey-Kramer post-test. Results Serum relative expressions of miR-146a and miR-21 were increased with increased severity of DR. miR-34a decreased with the severity of DR. The expression pattern in each group in relation to normal fundus group could be diagnostic and prognostic where miR-146a was only increased in mild group and continued with the severity. In moderate group miR-21 start to increase along with slight decrease in miR-34a. In severe NPDR group along with highly increased levels of both miR-146a and miR-21, a marked decrease in miR-34a. In PDR group miR-34a was almost diminished along with very high levels of both miR-146a and miR-21. Conclusions miRs (−146a,-21 and-34a) are promising biomarkers in DR and can help to avoid disease progression.
Collapse
Affiliation(s)
- Hend Gouda Helal
- Department of Ophthalmology, Faculty of Medicine, Benha University, Benha, Egypt.
| | - Mohammed H Rashed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Omnia Alsaied Abdullah
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Tamer Ibrahim Salem
- Department of Ophthalmology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ahmed Daifalla
- Department of Ophthalmology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
15
|
Mostafavi-Darani F, Zamani-Alavijeh F, Mahaki B, Salahshouri A. Exploring the barriers of adherence to dietary recommendations among patients with type 2 diabetes: A qualitative study in Iran. Nurs Open 2020; 7:1735-1745. [PMID: 33072357 PMCID: PMC7544840 DOI: 10.1002/nop2.558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/17/2020] [Accepted: 06/16/2020] [Indexed: 11/09/2022] Open
Abstract
Aims Type 2 diabetes is a major global health concern, and its prevalence is rapidly increasing throughout the world. The present study was conducted to explore the experiences of patients and healthcare providers to identify the social barriers to patients' adherence to their recommended diet and thus help the design of future interventions. Design This study was conducted as a qualitative study with content analysis approach. Methods The present qualitative study was conducted from November 2016–July 2017. Data were collected through 38 unstructured in‐depth interviews with 33 T2D patients and their treatment supervisors and field notes. The interview transcripts were coded using the MAXQDA 10 software. To extract categories and themes, the thematic analysis approach was used. We followed the COREQ Checklist to ensure rigour in our study. Results The analysis of the study revealed the emergence of five categories of perceived barriers including social priorities and rivalries, family's food habits, poor social support, social impasses and dominant food patterns.
Collapse
Affiliation(s)
- Firoozeh Mostafavi-Darani
- Department of Health Education and Promotion School of Health Isfahan University of Medical Sciences Isfahan Iran
| | - Fereshteh Zamani-Alavijeh
- Department of Health Education and Promotion School of Health Isfahan University of Medical Sciences Isfahan Iran
| | - Behzad Mahaki
- Department of Biostatistics School of Health Kermanshah University of Medical Sciences Kermanshah Iran
| | - Arash Salahshouri
- Department of Health Education and Promotion School of Public Health Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
16
|
Jung CH, Mok JO. Recent Updates on Vascular Complications in Patients with Type 2 Diabetes Mellitus. Endocrinol Metab (Seoul) 2020; 35:260-271. [PMID: 32615710 PMCID: PMC7386121 DOI: 10.3803/enm.2020.35.2.260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
It is well known that patients with type 2 diabetes mellitus (T2DM) are at an increased risk of morbidity and mortality from atherosclerotic cardiovascular (CV) complications. Previously, the concept that diabetes mellitus (DM) is a "coronary artery disease (CAD) risk equivalent" was widely accepted, implying that all DM patients should receive intensive management. However, considerable evidence exist for wide heterogeneity in the risk of CV events among T2DM patients and the concept of a "CAD risk equivalent" has changed. Recent guidelines recommend further CV risk stratification in T2DM patients, with treatment tailored to the risk level. Although imaging modalities for atherosclerotic cardiovascular disease (ASCVD) have been used to improve risk prediction, there is currently no evidence that imaging-oriented therapy improves clinical outcomes. Therefore, controversy remains whether we should screen for CVD in asymptomatic T2DM. The coexistence of T2DM and heart failure (HF) is common. Based on recent CV outcome trials, sodium glucose cotransporter-2 inhibitors and glucagon like peptide-1 receptor agonists are recommended who have established ASCVD, indicators of high risk, or HF because of their demonstrated benefits for CVD. These circumstances have led to an increasing emphasis on ASCVD and HF in T2DM patients. In this review, we examine the literature published within the last 5 years on the risk assessment of CVD in asymptomatic T2DM patients. In particular, we review recent guidelines regarding screening for CVD and research focusing on the role of coronary artery calcium, coronary computed tomography angiography, and carotid intima-media thickness in asymptomatic T2DM patients.
Collapse
Affiliation(s)
- Chan-Hee Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Ji-Oh Mok
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| |
Collapse
|
17
|
Yan LN, Zhang X, Xu F, Fan YY, Ge B, Guo H, Li ZL. Four-microRNA signature for detection of type 2 diabetes. World J Clin Cases 2020; 8:1923-1931. [PMID: 32518782 PMCID: PMC7262691 DOI: 10.12998/wjcc.v8.i10.1923] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Sensitive, novel, and accurate biomarkers for the detection of physiological changes in type 2 diabetes (T2DM) at an early stage are urgently needed.
AIM To build a multi-parameter diagnostic model for the early detection of T2DM.
METHODS MiR-148b, miR-223, miR-130a, and miR-19a levels were detected by real-time polymerase chain reaction in serum of healthy controls, individuals with impaired glucose regulation, and T2DM patients. The diagnostic value of miR-148b, miR-223, miR-130a, and miR-19a, alone or in combination, was analyzed.
RESULTS The area under the curve (AUC) of miR-223, which had the best diagnostic value for discriminating the impaired glucose regulation and T2DM groups, was 0.84, and the sensitivity and specificity were 73.37% and 81.37%, respectively. The AUC of the four-miRNA signature was 0.90, and the sensitivity and specificity were 78.82% and 88.23%, respectively. In the validation set, the AUC was 0.88, and the sensitivity and specificity were 78.36% and 87.63%, respectively.
CONCLUSION In summary, we have built a multi-parameter diagnostic model consisting of miR-148b, miR-223, miR-130a, and miR-19a for the detection of T2DM. It may be a potential tool for the early detection of T2DM.
Collapse
Affiliation(s)
- Li-Na Yan
- Department of Endocrinology, Inner Mongolia Baogang Hospital, Baotou 014010, Inner Mongolia Autonomous Region, China
| | - Xin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Interventional Therapy Department, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Fang Xu
- Department of Endocrinology, Inner Mongolia Baogang Hospital, Baotou 014010, Inner Mongolia Autonomous Region, China
| | - Yuan-Yuan Fan
- Department of Endocrinology, Inner Mongolia Baogang Hospital, Baotou 014010, Inner Mongolia Autonomous Region, China
| | - Biao Ge
- Department of Endocrinology, Inner Mongolia Baogang Hospital, Baotou 014010, Inner Mongolia Autonomous Region, China
| | - Hui Guo
- Department of Endocrinology, Inner Mongolia Baogang Hospital, Baotou 014010, Inner Mongolia Autonomous Region, China
| | - Zi-Ling Li
- Department of Endocrinology, Inner Mongolia Baogang Hospital, Baotou 014010, Inner Mongolia Autonomous Region, China
| |
Collapse
|
18
|
Li W, Luo C, Xie X, Xiao Y, Zhao F, Cai J, Zhou X, Zeng T, Fu B, Wu Y, Xiao X, Liu S. Identification of key genes and pathways in syphilis combined with diabetes: a bioinformatics study. AMB Express 2020; 10:83. [PMID: 32342229 PMCID: PMC7186291 DOI: 10.1186/s13568-020-01009-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
We noticed that syphilis patients seem to be more susceptible to diabetes and the lesions often involve the kidneys, but the pathogenesis is not yet completely understood. In this study, microarray analysis was performed to investigate the dysregulated expressed genes (DEGs) in rabbit model of syphilis combined with diabetes. A total of 1045 genes were identified to be significantly differentially expressed, among which 571 were up-regulated and 474 were down-regulated (≥ 2.0fold, p < 0.05). Using the database visualization and integration discovery for the Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis. The downregulated DEGs were significantly enriched for biosynthesis of antibiotics, carbon metabolism and protein digestion, while the upregulated DEGs were mainly enriched for cancer and PI3K-Akt signaling pathway. Molecular Complex Detection (MCODE) plugins were used to visualize protein–protein interaction (PPI) network of DEGs and Screening for hub genes and gene modules. ALB, FN1, CASP3, MMP9, IL8, CTGF, STAT3, IGF1, VCAM-1 and HGF were filtrated as the hub genes according to the degree of connectivity from the PPI network. To the best of our knowledge, this study is the first to comprehensively identify the expression patterns of dysregulated genes in syphilis combined with diabetes, providing a basis for revealing the underlying pathogenesis of syphilis combined with diabetes and exploring the goals of therapeutic intervention.
Collapse
|
19
|
Aghaei Zarch SM, Dehghan Tezerjani M, Talebi M, Vahidi Mehrjardi MY. Molecular biomarkers in diabetes mellitus (DM). Med J Islam Repub Iran 2020; 34:28. [PMID: 32617267 PMCID: PMC7320976 DOI: 10.34171/mjiri.34.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Diabetes mellitus (DM) is a growing epidemic metabolic syndrome, which affects near 5.6% of the world's population. Almost 12% of health expenditure is dedicated to this disorder. Discovering and developing biomarkers as a practical guideline with high specificity and sensitivity for the diagnosis, prognosis, and clinical management of DM is one of the subjects of great interest among DM researchers due to the long-lasting asymptomatic clinical manifestation of DM. In this study, we described a recently identified molecular biomarker involved in DM. Methods: This review study was done at the Diabetes Research Center affiliated to Shahid Sadoughi University of Medical Sciences. PubMed, Scopus, Google Scholar, and Web of Science were searched using the following keywords: "diabetes mellitus", "biomarker", "microRNA", "diagnostic tool" and "clinical manifestation." Results: A total of 107 studies were finally included in this review. After evaluating numerous articles, including original, metaanalysis, and review studies, we focused on molecular biomarkers involved in DM diagnosis and management. Conclusion: Increasing interest in biomarkers associated with DM goes back to its role in decreasing diabetes-related morbidity and mortality. This review focused on major molecular biomarkers such as proteomic and microRNA (miRNAs) as novel and interesting DM biomarkers that can help achieve timely diagnosis of DM.
Collapse
Affiliation(s)
| | - Masoud Dehghan Tezerjani
- Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrdad Talebi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
20
|
Banerjee J, Roy S, Dhas Y, Mishra N. Senescence-associated miR-34a and miR-126 in middle-aged Indians with type 2 diabetes. Clin Exp Med 2020; 20:149-158. [PMID: 31732824 DOI: 10.1007/s10238-019-00593-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022]
Abstract
Rapid urbanization and unhealthy dietary patterns critically increase the risk of type 2 diabetes (T2D) in middle-aged Indians. However, despite recent evidence of senescence-associated microRNAs (SA-miRNAs) in regulating complex pathways of ageing, their expressions in middle-aged Indians with T2D remain unexplored. Hence we aimed to investigate the changes in expressions of SA-miRNAs miR-34a and miR-126 in middle-aged T2D patients. A total of 30 T2D patients and 30 controls were recruited of age 31-50 years. The expressions of plasma miR-34a and miR-126 were determined by quantitative PCR. Oxidized LDL (OxLDL) and malondialdehyde (MDA) levels were quantified using enzyme-linked immunosorbent assay (ELISA). The effect of different glucose concentrations on miR-34a, miR-126, senescence-associated, and oxidative stress-responsive genes were also studied in an in vitro model of mice pancreatic β-cells. MiR-34a was significantly upregulated, whereas miR-126 was nonsignificantly reduced in T2D patients as compared to controls. T2D patients showed elevated levels of oxidative stress markers than controls. Analysis of cultured mice pancreatic β-cells exposed to high glucose showed significant upregulation of miR-34a, miR-126, p53, and superoxide dismutase 2 (SOD2). We found that circulating miR-34a levels and oxidative stress markers levels were elevated in the middle-aged Indians with T2D as compared to controls. The presence of diabetes may aggravate the normal ageing process in the middle-aged Indians. These SA-miRNAs can also be used to check the cellular dysfunctions and ageing of pancreatic β-cells.
Collapse
Affiliation(s)
- Joyita Banerjee
- Symbiosis School of Biological Sciences (Formerly Symbiosis School of Biomedical Sciences), Symbiosis International (Deemed University), Lavale, Pune, 412115, India
| | - Swagata Roy
- Symbiosis School of Biological Sciences (Formerly Symbiosis School of Biomedical Sciences), Symbiosis International (Deemed University), Lavale, Pune, 412115, India
| | - Yogita Dhas
- Symbiosis School of Biological Sciences (Formerly Symbiosis School of Biomedical Sciences), Symbiosis International (Deemed University), Lavale, Pune, 412115, India
| | - Neetu Mishra
- Symbiosis School of Biological Sciences (Formerly Symbiosis School of Biomedical Sciences), Symbiosis International (Deemed University), Lavale, Pune, 412115, India.
| |
Collapse
|
21
|
Cubillos-Angulo JM, Vinhaes CL, Fukutani ER, Albuquerque VVS, Queiroz ATL, Andrade BB, Fukutani KF. In silico transcriptional analysis of mRNA and miRNA reveals unique biosignatures that characterizes different types of diabetes. PLoS One 2020; 15:e0239061. [PMID: 32956382 PMCID: PMC7505453 DOI: 10.1371/journal.pone.0239061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes (DM) has a significant impact on public health. We performed an in silico study of paired datasets of messenger RNA (mRNA) micro-RNA (miRNA) transcripts to delineate potential biosignatures that could distinguish prediabetes (pre-DM), type-1DM (T1DM) and type-2DM (T2DM). Two publicly available datasets containing expression values of mRNA and miRNA obtained from individuals diagnosed with pre-DM, T1DM or T2DM, and normoglycemic controls (NC), were analyzed using systems biology approaches to define combined signatures to distinguish different clinical groups. The mRNA profile of both pre-DM and T2DM was hallmarked by several differentially expressed genes (DEGs) compared to NC. Nevertheless, T1DM was characterized by an overall low number of DEGs. The miRNA signature profiles were composed of a substantially lower number of differentially expressed targets. Gene enrichment analysis revealed several inflammatory pathways in T2DM and fewer in pre-DM, but with shared findings such as Tuberculosis. The integration of mRNA and miRNA datasets improved the identification and discriminated the group composed by pre-DM and T2DM patients from that constituted by normoglycemic and T1DM individuals. The integrated transcriptomic analysis of mRNA and miRNA expression revealed a unique biosignature able to characterize different types of DM.
Collapse
Affiliation(s)
- Juan M. Cubillos-Angulo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
| | - Caian L. Vinhaes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | | | | | - Artur T. L. Queiroz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| | - Kiyoshi F. Fukutani
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- * E-mail: (BBA); (ATLQ); (KFF)
| |
Collapse
|
22
|
Analysis of the Association Between MicroRNA Biogenesis Gene Polymorphisms and Venous Thromboembolism in Koreans. Int J Mol Sci 2019; 20:ijms20153771. [PMID: 31374978 PMCID: PMC6695971 DOI: 10.3390/ijms20153771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
Venous thromboembolism (VTE) involves the formation of a blood clot, typically in the deep veins of the leg or arm (deep vein thrombosis), which then travels via the circulatory system and ultimately lodges in the lungs, resulting in pulmonary embolism. A number of microRNAs (miRNAs) are well-known regulators of thrombosis and thrombolysis, and mutations in miRNA biogenesis genes, such as DICER1, DROSHA have been implicated in miRNA synthesis and function. We investigated the genetic association between polymorphisms in four miRNA biogenesis genes, DICER1 rs3742330A > G, DROSHA rs10719T > C, RAN rs14035C > T and XPO5 rs11077A > C, and VTE in 503 Koreans: 300 controls and 203 patients. Genotyping was assessed with polymerase chain reaction-restriction fragment length polymorphism assays. We detected associations between polymorphisms in RAN and XPO5 and VTE prevalence (RAN rs14035CC + CT versus TT: p = 0.018; XPO5 rs11077AA + AC versus CC: p < 0.001). Analysis of allele combinations of all four polymorphisms (DICER1, DROSHA, RAN, XPO5) revealed that A-T-T-A was associated with decreased VTE prevalence (p = 0.0002), and A-T-C-C was associated with increased VTE prevalence (p = 0.027). Moreover, in subjects with provoked VTE, the DROSHA rs10719T > C, polymorphism was associated with increased disease prevalence (TT versus TC + CC: p < 0.039). Our study demonstrates that RAN and XPO5 polymorphisms are associated with risk for VTE in Korean subjects.
Collapse
|
23
|
Wang D, Wang H, Liu C, Mu X, Cheng S. Hyperglycemia inhibition of endothelial miR-140-3p mediates angiogenic dysfunction in diabetes mellitus. J Diabetes Complications 2019; 33:374-382. [PMID: 30862410 DOI: 10.1016/j.jdiacomp.2019.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/13/2019] [Accepted: 02/03/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) have emerged as promising regulators of diabetes mellitus (DM)-induced angiogenic dysfunction in endothelial cells (ECs), but information vis-à-vis the functional roles of distinct miRNAs remain surprisingly scarce. The current study was designed to elucidate the expression and function of miR-140-3p in diabetic ECs. METHODS miR-140-3p expression was evaluated in DM mouse model and in human ECs using RT-qPCR, Northern blot and RNA fluorescent in situ hybridization. Effects of miR-140-3p manipulation on ECs function were evaluated using cell proliferation, migration and in vitro tube formation assay. Regulation of FOXK2 transcription by miR-140-3p was determined by luciferase reporter assay and site-directed mutagenesis. RESULTS miR-140-3p expression was significantly down-regulated in high glucose-challenged ECs. Under normal conditions, miR-140-3p knockdown impaired endothelial proliferation and migration, and endothelial tube formation. Mechanistically, miR-140-3p exhibited its proangiogenic effects through directly inhibiting the expression of the forkhead transcription factor FOXK2. From a therapeutic standpoint, shRNA-mediated stable inhibition of FOXK2 effectively corrected miR-140-3p deficiency-induced impairment of ECs proliferation and in vitro angiogenesis. CONCLUSION Endothelial miR-140-3p positive regulates ECs function by directly targeting FOXK2 signaling. Deregulation of miR-140-3p/FOXK2 cascade by hyperglycemia thus serves as an important contributor to angiogenic dysfunction in DM.
Collapse
Affiliation(s)
- Dongni Wang
- Department of Clinical Laboratory, The 3rd People's Hospital of Qingdao, Qingdao 266041, Shandong Province, China
| | - Haiyan Wang
- Department of Clinical Laboratory, The 3rd People's Hospital of Qingdao, Qingdao 266041, Shandong Province, China
| | - Cun Liu
- Department of Clinical Laboratory, The 3rd People's Hospital of Qingdao, Qingdao 266041, Shandong Province, China
| | - Xiaofeng Mu
- Department of Clinical Laboratory, Qingdao Central Hospital, Qingdao 266042, Shandong Province, China
| | - Shaoyun Cheng
- Department of Clinical Laboratory, The 3rd People's Hospital of Qingdao, Qingdao 266041, Shandong Province, China.
| |
Collapse
|
24
|
Dang SY, Leng Y, Wang ZX, Xiao X, Zhang X, Wen T, Gong HZ, Hong A, Ma Y. Exosomal transfer of obesity adipose tissue for decreased miR-141-3p mediate insulin resistance of hepatocytes. Int J Biol Sci 2019; 15:351-368. [PMID: 30745826 PMCID: PMC6367552 DOI: 10.7150/ijbs.28522] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022] Open
Abstract
Exosomes, the nano-vesicles released from living cells, were the important mediator for cell-to-cell communication. In order to clarify whether the exosomes derived from obesity adipose tissue mediate insulin resistance of hepatocytes, we extract the exosomes from the adipose tissue of different mice models. Exosomes derived from ob/ob mice (Ob-exosomes), B6 mice fed with a high-fat diet (HFD-exosomes) and normal B6 mice (WT-exosomes) displayed similar size and molecular makers, but their effect on the insulin sensitivity of hepatocytes were obviously different or opposite. Abundant exosomal miRNAs in Ob-, HFD- and WT-exosomes were detected by the Next Generation Sequencing. The levels of miR-141-3p in Ob- and HFD-exosomes were significantly lower than WT-exosomes. MiR-141-3p can be effectively delivered into AML12 cells accompanied by the absorption of exosomes, but the absorption of miR-141-3p into AML12 cells could be blocked by GW4869, an inhibitor of exosome biogenesis and release. Importantly, the Ob-exosomes or miR-141-3p knockdown in WT--exosomes obviously inhibited the insulin response and glucose uptake of AML12 cells, however, the inhibitory effects on insulin function disappeared after the overexpression of miR-141-3p in Ob-exosomes or AML12 cells. The effects of miR-141-3p on insulin function could be achieved by improving the level of phosphorylation of AKT and enhancing insulin signal transduction. Therefore, the absorption of hepatocytes for exosomes released from obesity adipose tissue containing less miR-141-3p than healthy adipose tissue can significantly inhibit the insulin sensitivity and glucose uptake. Our study may certify a novel mechanism that the secretion of "harmful" exosomes from obesity adipose tissues cause insulin resistance.
Collapse
Affiliation(s)
- Shi-Ying Dang
- Institute of Biomedicine, Department of Cellular Biology, Jinan University.,National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - Yang Leng
- Institute of Biomedicine, Department of Cellular Biology, Jinan University.,National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - Zi-Xian Wang
- Institute of Biomedicine, Department of Cellular Biology, Jinan University.,National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - Xing Xiao
- Institute of Biomedicine, Department of Cellular Biology, Jinan University.,National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - Xin Zhang
- Department of Biotechnology, Jinan University
| | - Tao Wen
- Institute of Biomedicine, Department of Cellular Biology, Jinan University.,National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - Hui-Zhen Gong
- Institute of Biomedicine, Department of Cellular Biology, Jinan University.,National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - An Hong
- Institute of Biomedicine, Department of Cellular Biology, Jinan University.,National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| | - Yi Ma
- Institute of Biomedicine, Department of Cellular Biology, Jinan University.,National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong Province, Jinan University
| |
Collapse
|
25
|
Dantas da Costa E Silva ME, Polina ER, Crispim D, Sbruzzi RC, Lavinsky D, Mallmann F, Martinelli NC, Canani LH, Dos Santos KG. Plasma levels of miR-29b and miR-200b in type 2 diabetic retinopathy. J Cell Mol Med 2018; 23:1280-1287. [PMID: 30467971 PMCID: PMC6349208 DOI: 10.1111/jcmm.14030] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are involved in the pathogenesis of diabetes mellitus and its chronic complications, and their circulating levels have emerged as potential biomarkers for the development and progression of diabetes. However, few studies have examined the expression of miRNAs in diabetic retinopathy (DR) in humans. This case-control study aimed to investigate whether the plasma levels of miR-29b and miR-200b are associated with DR in 186 South Brazilians with type 2 diabetes (91 without DR, 46 with non-proliferative DR and 49 with proliferative DR). We also included 20 healthy blood donors to determine the miRNA expression in the general population. Plasma levels of miR-29b and miR-200b were quantified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Proliferative DR was inversely associated with plasma levels of miR-29b (unadjusted OR = 0.694, 95% CI: 0.535-0.900, P = 0.006) and miR-200b (unadjusted OR = 0.797, 95% CI: 0.637-0.997, P = 0.047). However, these associations were lost after controlling for demographic and clinical covariates. In addition, patients with type 2 diabetes had lower miR-200b levels than blood donors. Our findings reinforce the importance of addressing the role of circulating miRNAs, including miR-29 and miR-200b, in DR.
Collapse
Affiliation(s)
| | - Evelise Regina Polina
- Laboratory of Human Molecular Genetics, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Renan Cesar Sbruzzi
- Laboratory of Human Molecular Genetics, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Daniel Lavinsky
- Department of Ophthalmology and Otorhinolaryngology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Felipe Mallmann
- Ophthalmology Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | | | - Luis Henrique Canani
- Endocrine Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Department of Internal Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Katia Gonçalves Dos Santos
- Laboratory of Human Molecular Genetics, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil.,Cardiology Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| |
Collapse
|
26
|
Sallam NA, Palmgren VAC, Singh RD, John CM, Thompson JA. Programming of Vascular Dysfunction in the Intrauterine Milieu of Diabetic Pregnancies. Int J Mol Sci 2018; 19:E3665. [PMID: 30463313 PMCID: PMC6275067 DOI: 10.3390/ijms19113665] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023] Open
Abstract
With the rising global tide of obesity, gestational diabetes mellitus (GDM) burgeoned into one of the most common antenatal disorders worldwide. Macrosomic babies born to diabetic mothers are more likely to develop risk factors for cardiovascular disease (CVD) before they reach adulthood. Rodent studies in offspring born to hyperglycemic pregnancies show vascular dysfunction characterized by impaired nitric oxide (NO)-mediated vasodilation and increased production of contractile prostanoids by cyclooxygenase 2 (COX-2). Vascular dysfunction is a key pathogenic event in the progression of diabetes-related vascular disease, primarily attributable to glucotoxicity. Therefore, glucose-induced vascular injury may stem directly from the hyperglycemic intrauterine environment of GDM pregnancy, as evinced by studies showing endothelial activation and inflammation at birth or in childhood in offspring born to GDM mothers. This review discusses potential mechanisms by which intrauterine hyperglycemia programs dysfunction in the developing vasculature.
Collapse
Affiliation(s)
- Nada A Sallam
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Calgary, AB T2N 4N1, Canada.
- Children's Hospital Research Institute; University of Calgary, Calgary, AB T2N 4N1, Canada.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Victoria A C Palmgren
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Calgary, AB T2N 4N1, Canada.
| | - Radha D Singh
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Calgary, AB T2N 4N1, Canada.
- Children's Hospital Research Institute; University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Cini M John
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Calgary, AB T2N 4N1, Canada.
| | - Jennifer A Thompson
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Calgary, AB T2N 4N1, Canada.
- Children's Hospital Research Institute; University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
27
|
Lv X, Gao Y, Dong T, Yang L. Role of Natural Killer T (NKT) Cells in Type II Diabetes-Induced Vascular Injuries. Med Sci Monit 2018; 24:8322-8332. [PMID: 30451213 PMCID: PMC6256848 DOI: 10.12659/msm.912446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background This study investigated the distribution and features of natural killer T (NKT) cells in the peripheral blood of diabetic patients, and their regulatory roles on vascular endothelial cells. Material/Methods Peripheral lymphocytes were isolated from diabetic patients. NKT cell distribution, proportion, and surface and intracellular markers were detected with flow cytometry. Peripheral blood-derived NKT cells were isolated and co-cultured with human umbilical vein endothelial cells (HUVECs). Proliferation and migration of HUVECs were assessed with the CCK-8 assay and the Transwell chamber assay. Results The ratios of CD3-CD56+ NK and CD3+CD56+ NKT cells in the peripheral blood of patients with type II diabetes were significantly elevated. The expression levels of NKp30, NKG2D, and NKp44 on the surface were increased in the CD3+CD56+ NKT cells, while the expression levels of NKG2A and 158b were significantly downregulated. The expression level of granzymes in the peripheral blood-derived NKT cells were not changed in patients with type II diabetes, but the expression levels of IFNγ and IL-4 were significantly increased. However, after co-culture with NKT cells derived from the peripheral blood of diabetic patients, the proliferation and migration of HUVECs were significantly inhibited, and was restored by treatment with IL-4 antibody. In addition, the IL-4 stimulus inhibited the proliferation and migration of HUVECs. Conclusions Peripheral blood NKT cells are increased and activated in diabetes. NKT cells inhibit the proliferation and migration of HUVECs by secreting IL-4, thereby inducing vascular injuries.
Collapse
Affiliation(s)
- Xiaohong Lv
- The First Department of Endocrinology, Tai'an Central Hospital, Tai'an, Shandong, China (mainland)
| | - Yun Gao
- The First Department of Endocrinology, Tai'an Central Hospital, Tai'an, Shandong, China (mainland)
| | - Tantan Dong
- Department of Internal Medicine, Taishan People's Hospital, Tai'an, Shandong, China (mainland)
| | - Libo Yang
- The First Department of Endocrinology, Tai'an Central Hospital, Tai'an, Shandong, China (mainland)
| |
Collapse
|
28
|
Broza YY, Vishinkin R, Barash O, Nakhleh MK, Haick H. Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem Soc Rev 2018; 47:4781-4859. [PMID: 29888356 DOI: 10.1039/c8cs00317c] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article is an overview of the present and ongoing developments in the field of nanomaterial-based sensors for enabling fast, relatively inexpensive and minimally (or non-) invasive diagnostics of health conditions with follow-up by detecting volatile organic compounds (VOCs) excreted from one or combination of human body fluids and tissues (e.g., blood, urine, breath, skin). Part of the review provides a didactic examination of the concepts and approaches related to emerging sensing materials and transduction techniques linked with the VOC-based non-invasive medical evaluations. We also present and discuss diverse characteristics of these innovative sensors, such as their mode of operation, sensitivity, selectivity and response time, as well as the major approaches proposed for enhancing their ability as hybrid sensors to afford multidimensional sensing and information-based sensing. The other parts of the review give an updated compilation of the past and currently available VOC-based sensors for disease diagnostics. This compilation summarizes all VOCs identified in relation to sickness and sampling origin that links these data with advanced nanomaterial-based sensing technologies. Both strength and pitfalls are discussed and criticized, particularly from the perspective of the information and communication era. Further ideas regarding improvement of sensors, sensor arrays, sensing devices and the proposed workflow are also included.
Collapse
Affiliation(s)
- Yoav Y Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | | | | | | | | |
Collapse
|
29
|
Fan Q, Liu B. Comprehensive analysis of a long noncoding RNA-associated competing endogenous RNA network in colorectal cancer. Onco Targets Ther 2018; 11:2453-2466. [PMID: 29760555 PMCID: PMC5937496 DOI: 10.2147/ott.s158309] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose This study was aimed to develop a lncRNA-associated competing endogenous RNA (ceRNA) network to provide further understanding of the ceRNA regulatory mechanism and pathogenesis in colorectal cancer (CRC). Patients and methods Expression profiles of mRNAs, lncRNAs, and miRNAs, and clinical information for CRC patients were obtained from The Cancer Genome Atlas. The differentially expressed mRNAs, lncRNAs, and miRNAs (referred to as “DEmRNAs”, “DElncRNAs”, and “DEmiRNAs”, respectively) were screened out between 539 CRC samples and 11 normal samples. The interactions between DElncRNAs and DEmiRNAs were predicted by miRcode. The DEmRNAs targeted by the DEmiRNAs were retrieved according to TargetScan, miRTar-Base, and miRDB. The lncRNA–miRNA–mRNA ceRNA network was constructed based on the DEmiRNA–DElncRNA and DEmiRNA–DEmRNA interactions. Functional enrichment analysis revealed the biological processes and pathways of DEmRNAs involved in the development of CRC. Key lncRNAs were further analyzed for their associations with overall survival and clinical features of CRC patients. Results A total of 1,767 DEmRNAs, 608 DElncRNAs, and 283 DEmiRNAs were identified as CRC-specific RNAs. Three hundred eighty-two DEmiRNA–DElncRNA interactions and 68 DEmiRNA–DEmRNA interactions were recognized according to the relevant databases. The lncRNA–miRNA–mRNA ceRNA network was constructed using 25 DEmiRNAs, 52 DEmRNAs, and 64 DElncRNAs. Two DElncRNAs, five DEmiRNAs, and six DEmRNAs were demonstrated to be related to the prognosis of CRC patients. Four DElncRNAs were found to be associated with clinical features. Twenty-eight Gene Ontology terms and 10 Kyoto Encyclopedia of Genes and Genomes pathways were found to be significantly enriched by the DEmRNAs in the ceRNA network. Conclusion Our results showed cancer-specific mRNA, lncRNA, and miRNA expression patterns and enabled us to construct an lncRNA-associated ceRNA network that provided new insights into the molecular mechanisms of CRC. Key RNA transcripts related to the overall survival and clinical features were also found with promising potential as biomarkers for diagnosis, survival prediction, and classification of CRC.
Collapse
Affiliation(s)
- Qiaowei Fan
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Bingrong Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
30
|
Petrie JR, Guzik TJ, Touyz RM. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can J Cardiol 2018; 34:575-584. [PMID: 29459239 PMCID: PMC5953551 DOI: 10.1016/j.cjca.2017.12.005] [Citation(s) in RCA: 904] [Impact Index Per Article: 129.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
Hypertension and type 2 diabetes are common comorbidities. Hypertension is twice as frequent in patients with diabetes compared with those who do not have diabetes. Moreover, patients with hypertension often exhibit insulin resistance and are at greater risk of diabetes developing than are normotensive individuals. The major cause of morbidity and mortality in diabetes is cardiovascular disease, which is exacerbated by hypertension. Accordingly, diabetes and hypertension are closely interlinked because of similar risk factors, such as endothelial dysfunction, vascular inflammation, arterial remodelling, atherosclerosis, dyslipidemia, and obesity. There is also substantial overlap in the cardiovascular complications of diabetes and hypertension related primarily to microvascular and macrovascular disease. Common mechanisms, such as upregulation of the renin-angiotensin-aldosterone system, oxidative stress, inflammation, and activation of the immune system likely contribute to the close relationship between diabetes and hypertension. In this article we discuss diabetes and hypertension as comorbidities and discuss the pathophysiological features of vascular complications associated with these conditions. We also highlight some vascular mechanisms that predispose to both conditions, focusing on advanced glycation end products, oxidative stress, inflammation, the immune system, and microRNAs. Finally, we provide some insights into current therapies targeting diabetes and cardiovascular complications and introduce some new agents that may have vasoprotective therapeutic potential in diabetes.
Collapse
Affiliation(s)
- John R Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom.
| |
Collapse
|
31
|
Vaishya S, Sarwade RD, Seshadri V. MicroRNA, Proteins, and Metabolites as Novel Biomarkers for Prediabetes, Diabetes, and Related Complications. Front Endocrinol (Lausanne) 2018; 9:180. [PMID: 29740397 PMCID: PMC5925339 DOI: 10.3389/fendo.2018.00180] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is no more a lifestyle disease of developed countries. It has emerged as a major health problem worldwide including developing countries. However, how diabetes could be detected at an early stage (prediabetes) to prevent the progression of disease is still unclear. Currently used biomarkers like glycated hemoglobin and assessment of blood glucose level have their own limitations. These classical markers can be detected when the disease is already established. Prognosis of disease at early stages and prediction of population at a higher risk require identification of specific markers that are sensitive enough to be detected at early stages of disease. Biomarkers which could predict the risk of disease in people will be useful for developing preventive/proactive therapies to those individuals who are at a higher risk of developing the disease. Recent studies suggested that the expression of biomolecules including microRNAs, proteins, and metabolites specifically change during the progression of T2DM and related complications, suggestive of disease pathology. Owing to their omnipresence in body fluids and their association with onset, progression, and pathogenesis of T2DM, these biomolecules can be potential biomarker for prognosis, diagnosis, and management of disease. In this article, we summarize biomolecules that could be potential biomarkers and their signature changes associated with T2DM and related complications during disease pathogenesis.
Collapse
Affiliation(s)
| | - Rucha D. Sarwade
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | | |
Collapse
|
32
|
Mirra P, Nigro C, Prevenzano I, Leone A, Raciti GA, Formisano P, Beguinot F, Miele C. The Destiny of Glucose from a MicroRNA Perspective. Front Endocrinol (Lausanne) 2018; 9:46. [PMID: 29535681 PMCID: PMC5834423 DOI: 10.3389/fendo.2018.00046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glucose serves as a primary, and for some tissues the unique, fuel source in order to generate and maintain the biological functions. Hyperglycemia is a hallmark of type 2 diabetes and is the direct consequence of perturbations in the glucose homeostasis. Insulin resistance, referred to as a reduced response of target tissues to the hormone, contributes to the development of hyperglycemia. The molecular mechanisms responsible for the altered glucose homeostasis are numerous and not completely understood. MicroRNAs (miRNAs) are now recognized as regulators of the lipid and glucose metabolism and are involved in the onset of metabolic diseases. Indeed, these small non-coding RNA molecules operate in the RNA silencing and posttranscriptional regulation of gene expression and may modulate the levels of kinases and enzymes in the glucose metabolism. Therefore, a better characterization of the function of miRNAs and a deeper understanding of their role in disease may represent a fundamental step toward innovative treatments addressing the causes, not only the symptoms, of hyperglycemia, using approaches aimed at restoring either miRNAs or their specific targets. In this review, we outline the current understanding regarding the impact of miRNAs in the glucose metabolism and highlight the need for further research focused on altered key kinases and enzymes in metabolic diseases.
Collapse
Affiliation(s)
- Paola Mirra
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Cecilia Nigro
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Immacolata Prevenzano
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessia Leone
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Gregory Alexander Raciti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Pietro Formisano
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Beguinot
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Claudia Miele
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” - CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- *Correspondence: Claudia Miele,
| |
Collapse
|
33
|
Ribeiro PVM, Silva A, Almeida AP, Hermsdorff HH, Alfenas RC. Effect of chronic consumption of pistachios (Pistacia vera L.) on glucose metabolism in pre-diabetics and type 2 diabetics: A systematic review. Crit Rev Food Sci Nutr 2017; 59:1115-1123. [DOI: 10.1080/10408398.2017.1392290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- P. V. M. Ribeiro
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - A. Silva
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - A. P. Almeida
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - H. H. Hermsdorff
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - R. C. Alfenas
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
34
|
Hathaway QA, Pinti MV, Durr AJ, Waris S, Shepherd DL, Hollander JM. Regulating microRNA expression: at the heart of diabetes mellitus and the mitochondrion. Am J Physiol Heart Circ Physiol 2017; 314:H293-H310. [PMID: 28986361 DOI: 10.1152/ajpheart.00520.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus is a major risk factor for cardiovascular disease and mortality. Uncontrolled type 2 diabetes mellitus results in a systemic milieu of increased circulating glucose and fatty acids. The development of insulin resistance in cardiac tissue decreases cellular glucose import and enhances mitochondrial fatty acid uptake. While triacylglycerol and cytotoxic lipid species begin to accumulate in the cardiomyocyte, the energy substrate utilization ratio of free fatty acids to glucose changes to almost entirely free fatty acids. Accumulating evidence suggests a role of miRNA in mediating this metabolic transition. Energy substrate metabolism, apoptosis, and the production and response to excess reactive oxygen species are regulated by miRNA expression. The current momentum for understanding the dynamics of miRNA expression is limited by a lack of understanding of how miRNA expression is controlled. While miRNAs are important regulators in both normal and pathological states, an additional layer of complexity is added when regulation of miRNA regulators is considered. miRNA expression is known to be regulated through a number of mechanisms, which include, but are not limited to, epigenetics, exosomal transport, processing, and posttranscriptional sequestration. The purpose of this review is to outline how mitochondrial processes are regulated by miRNAs in the diabetic heart. Furthermore, we will highlight the regulatory mechanisms, such as epigenetics, exosomal transport, miRNA processing, and posttranslational sequestration, that participate as regulators of miRNA expression. Additionally, current and future treatment strategies targeting dysfunctional mitochondrial processes in the diseased myocardium, as well as emerging miRNA-based therapies, will be summarized.
Collapse
Affiliation(s)
- Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia.,Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia.,Toxicology Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Mark V Pinti
- Division of Pharmaceutical and Pharmacological Sciences, West Virginia School of Pharmacy , Morgantown, West Virginia
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia.,Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Shanawar Waris
- Department of Biomedical Engineering, West Virginia College of Engineering , Morgantown, West Virginia
| | - Danielle L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia.,Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia.,Toxicology Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| |
Collapse
|
35
|
Miao C, Zhang G, Xie Z, Chang J. MicroRNAs in the pathogenesis of type 2 diabetes: new research progress and future direction. Can J Physiol Pharmacol 2017; 96:103-112. [PMID: 28898588 DOI: 10.1139/cjpp-2017-0452] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
miRNA is a short non-coding RNA that can influence mRNA processing at the post-transcriptional level. A large number of miRNAs have been found in virtually all species so far, and these small molecules play an important role in many different physiological processes and various pathologic conditions, such as cell metabolism, cancer, autoimmune disease, and diabetes mellitus. T2D arises from a dysregulated response to the elevated glucose level in the circulation. The prevalence of T2D has increased dramatically in all age groups, and T2D in older adults is associated with more T2D complications and higher mortality. Despite the existing findings describing the pathological mechanism, T2D pathology is more complex and the pathophysiology of the disease is still not fully elucidated. In this review, we summarize the current understanding of miRNA-mediated modulation of gene expression in T2D pathogenesis, as well as related signaling pathways, and insight into the important role of miRNA in various T2D complications. Furthermore, the potential therapeutic value of miRNA for T2D patients is also discussed in detail.
Collapse
Affiliation(s)
- Chenggui Miao
- a Department of Pharmacy, School of Food and Drug, Anhui Science and Technology University, Fengyang 233100, China
| | - Guoxue Zhang
- b School of Science and Technology of Tea and Food, Anhui Agricultural University, Hefei 230036, China
| | - Zhongwen Xie
- b School of Science and Technology of Tea and Food, Anhui Agricultural University, Hefei 230036, China
| | - Jun Chang
- c Fourth Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| |
Collapse
|