1
|
Chudy SFJ, Phanzu DM, Kolk AHJ, Sopoh GE, Barogui YT, Tzfadia O, Eddyani M, Fissette K, de Jong BC, Brinkman P. Volatile organic compound detection of Buruli ulcer disease: Headspace analysis of Mycobacterium ulcerans and used gauzes of Buruli-compatible ulcers. PLoS Negl Trop Dis 2024; 18:e0012514. [PMID: 39312571 PMCID: PMC11449299 DOI: 10.1371/journal.pntd.0012514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/03/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Diagnosing Buruli ulcer (BU) is complicated by limited access to the sensitive IS2404 qPCR. Experienced clinicians report a distinct odour of Buruli ulcers. We explored the potential of headspace analysis by thermal desorption-gas chromatography-mass spectrometry to detect volatile organic compounds (VOCs) from Mycobacterium ulcerans both in vitro and clinically. This study was conducted in two phases: a discovery and validation phase. During the discovery phase, VOCs that enable identification of M. ulcerans cultures were determined. During the validation phase, these VOCs were evaluated in clinical samples for which we used gauzes from patients with skin ulcerations in the Democratic Republic of Congo. Seven M. ulcerans headspace samples were compared with four from sterile growth medium and laboratory environmental air. The univariate analysis resulted in the selection of 24 retained VOC fragments and a perfect differentiation between cultures and controls. Sixteen of 24 fragments were identified, resulting in eleven unique compounds, mainly alkanes. Methylcyclohexane was the best performing compound. Based on these 24 fragments, headspace samples originating from gauzes of 50 open skin lesions (12 qPCR positive and 38 negative) were analysed and an AUC of 0.740 (95%-CI 0.583-0.897) was obtained. As this is an experimental study, future research has to confirm whether the identified compounds can serve as novel biomarkers.
Collapse
Affiliation(s)
- Stan F. J. Chudy
- Department of Respiratory Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - Delphin M. Phanzu
- Institut Medical Evangélique de Kimpese (IME), Kimpese, Democratic Republic of Congo
- Centre de Recherche en Santé de Kimpese (CRSK), Kimpese, Democratic Republic of Congo
| | - Arend H. J. Kolk
- Department of Respiratory Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - Ghislain E. Sopoh
- Centre De Dépistage et de Traitement de l’Ulcère de Buruli (CDTUB), Allada, Benin
| | | | - Oren Tzfadia
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Krista Fissette
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bouke C. de Jong
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Paul Brinkman
- Department of Respiratory Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Bussi C, Lai R, Athanasiadi N, Gutierrez MG. Physiologic medium renders human iPSC-derived macrophages permissive for M. tuberculosis by rewiring organelle function and metabolism. mBio 2024; 15:e0035324. [PMID: 38984828 PMCID: PMC11323749 DOI: 10.1128/mbio.00353-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
In vitro studies are crucial for our understanding of the human macrophage immune functions. However, traditional in vitro culture media poorly reflect the metabolic composition of blood, potentially affecting the outcomes of these studies. Here, we analyzed the impact of a physiological medium on human induced pluripotent stem cell (iPSC)-derived macrophages (iPSDM) function. Macrophages cultured in a human plasma-like medium (HPLM) were more permissive to Mycobacterium tuberculosis (Mtb) replication and showed decreased lipid metabolism with increased metabolic polarization. Functionally, we discovered that HPLM-differentiated macrophages showed different metabolic organelle content and activity. Specifically, HPLM-differentiated macrophages displayed reduced lipid droplet and peroxisome content, increased lysosomal proteolytic activity, and increased mitochondrial activity and dynamics. Inhibiting or inducing lipid droplet formation revealed that lipid droplet content is a key factor influencing macrophage permissiveness to Mtb. These findings underscore the importance of using physiologically relevant media in vitro for accurately studying human macrophage function. IMPORTANCE This work compellingly demonstrates that the choice of culture medium significantly influences M. tuberculosis replication outcomes, thus emphasizing the importance of employing physiologically relevant media for accurate in vitro host-pathogen interaction studies. We anticipate that our work will set a precedent for future research with clinical relevance, particularly in evaluating antibiotic efficacy and resistance in cellulo.
Collapse
Affiliation(s)
- Claudio Bussi
- The Francis Crick Institute, London, United Kingdom
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rachel Lai
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
3
|
Gerstenmaier L, Colasanti O, Behrens H, Kolonko M, Hammann C, Hagedorn M. Recruitment of both the ESCRT and autophagic machineries to ejecting Mycobacterium marinum. Mol Microbiol 2024; 121:385-393. [PMID: 37230756 DOI: 10.1111/mmi.15075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023]
Abstract
Cytosolic Mycobacterium marinum are ejected from host cells such as macrophages or the amoeba Dictyostelium discoideum in a non-lytic fashion. As described previously, the autophagic machinery is recruited to ejecting bacteria and supports host cell integrity during egress. Here, we show that the ESCRT machinery is also recruited to ejecting bacteria, partially dependent on an intact autophagic pathway. As such, the AAA-ATPase Vps4 shows a distinct localization at the ejectosome structure in comparison to fluorescently tagged Vps32, Tsg101 and Alix. Along the bacterium engaged in ejection, ESCRT and the autophagic component Atg8 show partial colocalization. We hypothesize that both, the ESCRT and autophagic machinery localize to the bacterium as part of a membrane damage response, as well as part of a "frustrated autophagosome" that is unable to engulf the ejecting bacterium.
Collapse
Affiliation(s)
| | | | - Hannah Behrens
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Margot Kolonko
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian Hammann
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
- Health and Medical University, Potsdam, Germany
| | - Monica Hagedorn
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
- Health and Medical University, Potsdam, Germany
| |
Collapse
|
4
|
Day NJ, Santucci P, Gutierrez MG. Host cell environments and antibiotic efficacy in tuberculosis. Trends Microbiol 2024; 32:270-279. [PMID: 37709598 DOI: 10.1016/j.tim.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
The aetiologic agent of tuberculosis (TB), Mycobacterium tuberculosis (Mtb), can survive, persist, and proliferate in a variety of heterogeneous subcellular compartments. Therefore, TB chemotherapy requires antibiotics crossing multiple biological membranes to reach distinct subcellular compartments and target these bacterial populations. These compartments are also dynamic, and our understanding of intracellular pharmacokinetics (PK) often represents a challenge for antitubercular drug development. In recent years, the development of high-resolution imaging approaches in the context of host-pathogen interactions has revealed the intracellular distribution of antibiotics at a new level, yielding discoveries with important clinical implications. In this review, we describe the current knowledge regarding cellular PK of antibiotics and the complexity of drug distribution within the context of TB. We also discuss the recent advances in quantitative imaging and highlight their applications for drug development in the context of how intracellular environments and microbial localisation affect TB treatment efficacy.
Collapse
Affiliation(s)
- Nathan J Day
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Pierre Santucci
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
5
|
Lefrançois LH, Nitschke J, Wu H, Panis G, Prados J, Butler RE, Mendum TA, Hanna N, Stewart GR, Soldati T. Temporal genome-wide fitness analysis of Mycobacterium marinum during infection reveals the genetic requirement for virulence and survival in amoebae and microglial cells. mSystems 2024; 9:e0132623. [PMID: 38270456 PMCID: PMC10878075 DOI: 10.1128/msystems.01326-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Tuberculosis remains the most pervasive infectious disease and the recent emergence of drug-resistant strains emphasizes the need for more efficient drug treatments. A key feature of pathogenesis, conserved between the human pathogen Mycobacterium tuberculosis and the model pathogen Mycobacterium marinum, is the metabolic switch to lipid catabolism and altered expression of virulence genes at different stages of infection. This study aims to identify genes involved in sustaining viable intracellular infection. We applied transposon sequencing (Tn-Seq) to M. marinum, an unbiased genome-wide strategy combining saturation insertional mutagenesis and high-throughput sequencing. This approach allowed us to identify the localization and relative abundance of insertions in pools of transposon mutants. Gene essentiality and fitness cost of mutations were quantitatively compared between in vitro growth and different stages of infection in two evolutionary distinct phagocytes, the amoeba Dictyostelium discoideum and the murine BV2 microglial cells. In the M. marinum genome, 57% of TA sites were disrupted and 568 genes (10.2%) were essential, which is comparable to previous Tn-Seq studies on M. tuberculosis and M. bovis. Major pathways involved in the survival of M. marinum during infection of D. discoideum are related to DNA damage repair, lipid and vitamin metabolism, the type VII secretion system (T7SS) ESX-1, and the Mce1 lipid transport system. These pathways, except Mce1 and some glycolytic enzymes, were similarly affected in BV2 cells. These differences suggest subtly distinct nutrient availability or requirement in different host cells despite the known predominant use of lipids in both amoeba and microglial cells.IMPORTANCEThe emergence of biochemically and genetically tractable host model organisms for infection studies holds the promise to accelerate the pace of discoveries related to the evolution of innate immunity and the dissection of conserved mechanisms of cell-autonomous defenses. Here, we have used the genetically and biochemically tractable infection model system Dictyostelium discoideum/Mycobacterium marinum to apply a genome-wide transposon-sequencing experimental strategy to reveal comprehensively which mutations confer a fitness advantage or disadvantage during infection and compare these to a similar experiment performed using the murine microglial BV2 cells as host for M. marinum to identify conservation of virulence pathways between hosts.
Collapse
Affiliation(s)
- Louise H. Lefrançois
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Jahn Nitschke
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Huihai Wu
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/CMU, University of Geneva, Institute of Genetics and Genomics in Geneva (iGE3), Genève, Switzerland
| | - Julien Prados
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/CMU, University of Geneva, Institute of Genetics and Genomics in Geneva (iGE3), Genève, Switzerland
- Bioinformatics Support Platform for data analysis, Geneva University, Medicine Faculty, Geneva, Switzerland
| | - Rachel E. Butler
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Tom A. Mendum
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Graham R. Stewart
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| |
Collapse
|
6
|
Ascari A, Frölich S, Zang M, Tran ENH, Wilson DW, Morona R, Eijkelkamp BA. Shigella flexneri remodeling and consumption of host lipids during infection. J Bacteriol 2023; 205:e0032023. [PMID: 37991380 PMCID: PMC10729657 DOI: 10.1128/jb.00320-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE Bacterial pathogens have vastly distinct sites that they inhabit during infection. This requires adaptation due to changes in nutrient availability and antimicrobial stress. The bacterial surface is a primary barrier, and here, we show that the bacterial pathogen Shigella flexneri increases its surface decorations when it transitions to an intracellular lifestyle. We also observed changes in bacterial and host cell fatty acid homeostasis. Specifically, intracellular S. flexneri increased the expression of their fatty acid degradation pathway, while the host cell lipid pool was significantly depleted. Importantly, bacterial proliferation could be inhibited by fatty acid supplementation of host cells, thereby providing novel insights into the possible link between human malnutrition and susceptibility to S. flexneri.
Collapse
Affiliation(s)
- Alice Ascari
- Department of Molecular and Biomedical Science, School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Sonja Frölich
- Department of Molecular and Biomedical Science, School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, Australia
| | - Maoge Zang
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Elizabeth N. H. Tran
- Department of Molecular and Biomedical Science, School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Danny W. Wilson
- Department of Molecular and Biomedical Science, School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, Australia
| | - Renato Morona
- Department of Molecular and Biomedical Science, School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Bart A. Eijkelkamp
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, Australia
| |
Collapse
|
7
|
Hüsler D, Stauffer P, Hilbi H. Tapping lipid droplets: A rich fat diet of intracellular bacterial pathogens. Mol Microbiol 2023; 120:194-209. [PMID: 37429596 DOI: 10.1111/mmi.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Lipid droplets (LDs) are dynamic and versatile organelles present in most eukaryotic cells. LDs consist of a hydrophobic core of neutral lipids, a phospholipid monolayer coat, and a variety of associated proteins. LDs are formed at the endoplasmic reticulum and have diverse roles in lipid storage, energy metabolism, membrane trafficking, and cellular signaling. In addition to their physiological cellular functions, LDs have been implicated in the pathogenesis of several diseases, including metabolic disorders, cancer, and infections. A number of intracellular bacterial pathogens modulate and/or interact with LDs during host cell infection. Members of the genera Mycobacterium, Legionella, Coxiella, Chlamydia, and Salmonella exploit LDs as a source of intracellular nutrients and membrane components to establish their distinct intracellular replicative niches. In this review, we focus on the biogenesis, interactions, and functions of LDs, as well as on their role in lipid metabolism of intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Dario Hüsler
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Pia Stauffer
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Linhares LA, Dos Santos Peixoto A, Correia de Sousa LDA, Lucena Laet JP, da Silva Santos AC, Alves Pereira VR, Carneiro Neves MM, Ferreira LFGR, Hernandes MZ, de la Vega J, Pereira-Neves A, San Feliciano A, Olmo ED, Schindler HC, Montenegro LML. In vitro bioevaluation and docking study of dihydrosphingosine and ethambutol analogues against sensitive and multi-drug resistant Mycobacterium tuberculosis. Eur J Med Chem 2023; 258:115579. [PMID: 37399709 DOI: 10.1016/j.ejmech.2023.115579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
Tuberculosis remains a major public health problem and one of the top ten causes of death worldwide. The alarming increase in multidrug-resistant and extensively resistant variants (MDR, pre-XDR, and XDR) makes the disease more difficult to treat and control. New drugs that act against MDR/XDR strains are needed for programs to contain this major epidemic. The present study aimed to evaluate new compounds related to dihydro-sphingosine and ethambutol against sensitive and pre-XDR Mycobacterium strains, as well as to characterize the pharmacological activity through in vitro and in silico approaches in mmpL3 protein. Of the 48 compounds analyzed, 11 demonstrated good to moderate activity on sensitive and MDR Mycobacterium tuberculosis (Mtb), with a Minimum Inhibitory Concentration (MIC) ranging from 1.5 to 8 μM. They presented 2 to 14 times greater potency of activity when compared to ethambutol in pre-XDR strain, and demonstrated a selectivity index varying between 2.21 and 82.17. The substance 12b when combined with rifampicin, showed a synergistic effect (FICI = 0.5) on sensitive and MDR Mtb. It has also been shown to have a concentration-dependent intracellular bactericidal effect, and a time-dependent bactericidal effect in M. smegmatis and pre-XDR M. tuberculosis. The binding mode of the compounds in its cavity was identified through molecular docking and using a predicted structural model of mmpL3. Finally, we observed by transmission electron microscopy the induction of damage to the cell wall integrity of M. tuberculosis treated with the substance 12b. With these findings, we demonstrate the potential of a 2-aminoalkanol derivative to be a prototype substance and candidate for further optimization of molecular structure and anti-tubercular activity in preclinical studies.
Collapse
Affiliation(s)
- Leonardo Aquino Linhares
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, 50.740-465, Brazil.
| | - Aline Dos Santos Peixoto
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, 50.740-465, Brazil
| | | | - João Paulo Lucena Laet
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, 50.740-465, Brazil
| | | | | | | | - Luiz Felipe Gomes Rebello Ferreira
- Laboratory of Medicinal Theoretical Chemistry (LQTM), Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Marcelo Zaldini Hernandes
- Laboratory of Medicinal Theoretical Chemistry (LQTM), Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Jennifer de la Vega
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy-CIETUS, University of Salamanca, Salamanca, Spain
| | - Antônio Pereira-Neves
- Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, 50.740-465, Brazil
| | - Arturo San Feliciano
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy-CIETUS, University of Salamanca, Salamanca, Spain; Graduate Program in Pharmaceutical Sciences, University of Vale do Itajai, UNIVALI, Itajaí, SC, 88302-202, Brazil
| | - Esther Del Olmo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy-CIETUS, University of Salamanca, Salamanca, Spain
| | - Haiana Charifker Schindler
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, 50.740-465, Brazil
| | - Lílian Maria Lapa Montenegro
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, 50.740-465, Brazil.
| |
Collapse
|
9
|
Bedard M, van der Niet S, Bernard EM, Babunovic G, Cheng TY, Aylan B, Grootemaat AE, Raman S, Botella L, Ishikawa E, O'Sullivan MP, O'Leary S, Mayfield JA, Buter J, Minnaard AJ, Fortune SM, Murphy LO, Ory DS, Keane J, Yamasaki S, Gutierrez MG, van der Wel N, Moody DB. A terpene nucleoside from M. tuberculosis induces lysosomal lipid storage in foamy macrophages. J Clin Invest 2023; 133:161944. [PMID: 36757797 PMCID: PMC10014106 DOI: 10.1172/jci161944] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Induction of lipid-laden foamy macrophages is a cellular hallmark of tuberculosis (TB) disease, which involves the transformation of infected phagolysosomes from a site of killing into a nutrient-rich replicative niche. Here, we show that a terpenyl nucleoside shed from Mycobacterium tuberculosis, 1-tuberculosinyladenosine (1-TbAd), caused lysosomal maturation arrest and autophagy blockade, leading to lipid storage in M1 macrophages. Pure 1-TbAd, or infection with terpenyl nucleoside-producing M. tuberculosis, caused intralysosomal and peribacillary lipid storage patterns that matched both the molecules and subcellular locations known in foamy macrophages. Lipidomics showed that 1-TbAd induced storage of triacylglycerides and cholesterylesters and that 1-TbAd increased M. tuberculosis growth under conditions of restricted lipid access in macrophages. Furthermore, lipidomics identified 1-TbAd-induced lipid substrates that define Gaucher's disease, Wolman's disease, and other inborn lysosomal storage diseases. These data identify genetic and molecular causes of M. tuberculosis-induced lysosomal failure, leading to successful testing of an agonist of TRPML1 calcium channels that reverses lipid storage in cells. These data establish the host-directed cellular functions of an orphan effector molecule that promotes survival in macrophages, providing both an upstream cause and detailed picture of lysosome failure in foamy macrophages.
Collapse
Affiliation(s)
- Melissa Bedard
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sanne van der Niet
- Electron Microscopy Centre Amsterdam, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Elliott M Bernard
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Gregory Babunovic
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Beren Aylan
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Anita E Grootemaat
- Electron Microscopy Centre Amsterdam, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Sahadevan Raman
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laure Botella
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Mary P O'Sullivan
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, Dublin, Ireland
| | - Seónadh O'Leary
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, Dublin, Ireland
| | - Jacob A Mayfield
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey Buter
- Department of Chemical Biology, Stratingh Institute for Chemistry, Groningen, Netherlands
| | - Adriaan J Minnaard
- Department of Chemical Biology, Stratingh Institute for Chemistry, Groningen, Netherlands
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Daniel S Ory
- Casma Therapeutics, Cambridge, Massachusetts, USA
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, Dublin, Ireland
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Nicole van der Wel
- Electron Microscopy Centre Amsterdam, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - D Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Lanni F, Wijnant GJ, Xie M, Osiecki P, Dartois V, Sarathy JP. Adaptation to the intracellular environment of primary human macrophages influences drug susceptibility of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2023; 139:102318. [PMID: 36889104 DOI: 10.1016/j.tube.2023.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
As a facultative intracellular pathogen, M. tuberculosis (Mtb) is highly adapted to evading antibacterial mechanisms in phagocytic cells. Both the macrophage and pathogen experience transcriptional and metabolic changes from the onset of phagocytosis. To account for this interaction in the assessment of intracellular drug susceptibility, we allowed a 3-day preadaptation phase post-macrophage infection prior to drug treatment. We found that intracellular Mtb in human monocyte-derived macrophages (MDM) presents dramatic alterations in susceptibility to isoniazid, sutezolid, rifampicin and rifapentine when compared to axenic culture. Infected MDM gradually accumulate lipid bodies, adopting a characteristic appearance reminiscent of foamy macrophages in granulomas. Furthermore, TB granulomas in vivo develop hypoxic cores with decreasing oxygen tension gradients across their radii. Accordingly, we evaluated the effects of hypoxia on preadapted intracellular Mtb in our MDM model. We observed that hypoxia induced greater lipid body formation and no additional shifts in drug tolerance, suggesting that the adaptation of intracellular Mtb to baseline host cell conditions under normoxia dominates changes to intracellular drug susceptibility. Using unbound plasma concentrations in patients as surrogates for free drug concentrations in lung interstitial fluid, we estimate that intramacrophage Mtb in granulomas are exposed to bacteriostatic concentrations of most study drugs.
Collapse
Affiliation(s)
- Faye Lanni
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States
| | - Gert-Jan Wijnant
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States
| | - Min Xie
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States
| | - Paulina Osiecki
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States; Hackensack School of Medicine, Department of Medical Sciences, 123, Metro Boulevard, Nutley, NJ, 07110, United States
| | - Jansy P Sarathy
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States.
| |
Collapse
|
11
|
Barisch C, Holthuis JCM, Cosentino K. Membrane damage and repair: a thin line between life and death. Biol Chem 2023; 404:467-490. [PMID: 36810295 DOI: 10.1515/hsz-2022-0321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Bilayered membranes separate cells from their surroundings and form boundaries between intracellular organelles and the cytosol. Gated transport of solutes across membranes enables cells to establish vital ion gradients and a sophisticated metabolic network. However, an advanced compartmentalization of biochemical reactions makes cells also particularly vulnerable to membrane damage inflicted by pathogens, chemicals, inflammatory responses or mechanical stress. To avoid potentially lethal consequences of membrane injuries, cells continuously monitor the structural integrity of their membranes and readily activate appropriate pathways to plug, patch, engulf or shed the damaged membrane area. Here, we review recent insights into the cellular mechanisms that underly an effective maintenance of membrane integrity. We discuss how cells respond to membrane lesions caused by bacterial toxins and endogenous pore-forming proteins, with a primary focus on the intimate crosstalk between membrane proteins and lipids during wound formation, detection and elimination. We also discuss how a delicate balance between membrane damage and repair determines cell fate upon bacterial infection or activation of pro-inflammatory cell death pathways.
Collapse
Affiliation(s)
- Caroline Barisch
- Molecular Infection Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Katia Cosentino
- Molecular Cell Biophysics Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| |
Collapse
|
12
|
Gemfibrozil-Induced Intracellular Triglyceride Increase in SH-SY5Y, HEK and Calu-3 Cells. Int J Mol Sci 2023; 24:ijms24032972. [PMID: 36769295 PMCID: PMC9917468 DOI: 10.3390/ijms24032972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Gemfibrozil is a drug that has been used for over 40 years to lower triglycerides in blood. As a ligand for peroxisome proliferative-activated receptor-alpha (PPARα), which is expressed in many tissues, it induces the transcription of numerous genes for carbohydrate and lipid-metabolism. However, nothing is known about how intracellular lipid-homeostasis and, in particular, triglycerides are affected. As triglycerides are stored in lipid-droplets, which are known to be associated with many diseases, such as Alzheimer's disease, cancer, fatty liver disease and type-2 diabetes, treatment with gemfibrozil could adversely affect these diseases. To address the question whether gemfibrozil also affects intracellular lipid-levels, SH-SY5Y, HEK and Calu-3 cells, representing three different metabolically active organs (brain, lung and kidney), were incubated with gemfibrozil and subsequently analyzed semi-quantitatively by mass-spectrometry. Importantly, all cells showed a strong increase in intracellular triglycerides (SH-SY5Y: 170.3%; HEK: 272.1%; Calu-3: 448.1%), suggesting that the decreased triglyceride-levels might be due to an enhanced cellular uptake. Besides the common intracellular triglyceride increase, a cell-line specific alteration in acylcarnitines are found, suggesting that especially in neuronal cell lines gemfibrozil increases the transport of fatty acids to mitochondria and therefore increases the turnover of fatty acids for the benefit of additional energy supply, which could be important in diseases, such as Alzheimer's disease.
Collapse
|
13
|
de Almeida PE, Pereira de Sousa NM, Rampinelli PG, Silva RVDS, Correa JR, D’Avila H. Lipid droplets as multifunctional organelles related to the mechanism of evasion during mycobacterial infection. Front Cell Infect Microbiol 2023; 13:1102643. [PMID: 36909724 PMCID: PMC9996354 DOI: 10.3389/fcimb.2023.1102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by the bacteria of the Mycobaterium tuberculosis (Mtb) complex. The modulation of the lipid metabolism has been implicated in the immune response regulation, including the formation of lipid droplets (LD)s, LD-phagosome association and eicosanoid synthesis. Mtb, M. bovis BCG and other pathogenic mycobacteria, as well as wall components, such as LAM, can induce LDs formation in a mechanism involving surface receptors, for instance TLRs, CD36, CD14, CD11b/CD18 and others. In addition, the activation of the lipid-activated nuclear receptor PPARγ is involved in the mechanisms of LD biogenesis, as well as in the modulation of the synthesis of lipid mediators. In infected cells, LDs are sites of compartmentalized prostaglandin E2 synthesis involved in macrophage deactivation, bacterial replication and regulation of the host cytokine profile. LDs also have a function in vesicle traffic during infection. Rab7 and RILP, but not Rab5, are located on LDs of infected macrophages, suggesting that LDs and phagosomes could exchange essential proteins for phagosomal maturation, interfering in mycobacterial survival. The pharmacological inhibition of LDs biogenesis affects the bacterial replication and the synthesis of lipid mediators and cytokines, suggesting that LDs may be new targets for antimicrobial therapies. However, it is still controversial if the accumulation of LDs favors the mycobacterial survival acting as an escape mechanism, or promotes the host resistance to infection. Thus, in this mini-review we discuss recent advances in understanding the important role of LDs in the course of infections and the implications for the pathophysiology of mycobacteriosis.
Collapse
Affiliation(s)
- Patrícia Elaine de Almeida
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
- *Correspondence: Heloisa D’Avila, ; Patrícia Elaine de Almeida, ; José Raimundo Correa,
| | - Núbia Maria Pereira de Sousa
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Pollianne Garbero Rampinelli
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Renata Vieira de Sousa Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - José Raimundo Correa
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil
- *Correspondence: Heloisa D’Avila, ; Patrícia Elaine de Almeida, ; José Raimundo Correa,
| | - Heloisa D’Avila
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
- *Correspondence: Heloisa D’Avila, ; Patrícia Elaine de Almeida, ; José Raimundo Correa,
| |
Collapse
|
14
|
Shrimp Lipid Droplet Protein Perilipin Involves in the Pathogenesis of AHPND-Causing Vibrio parahaemolyticus. Int J Mol Sci 2022; 23:ijms231810520. [PMID: 36142431 PMCID: PMC9501514 DOI: 10.3390/ijms231810520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND), caused by a unique strain of Vibrio parahaemolyticus (Vp (AHPND)), has become the world’s most severe debilitating disease in cultured shrimp. Thus far, the pathogenesis of AHPND remains largely unknow. Herein, in Litopenaeus vannamei, we found that a Vp (AHPND) infection significantly increased the expression of lipid droplets (LDs) protein LvPerilipin, as well as promoted the formation of LDs. In addition, the knockdown of LvPerilipin increased the shrimp survival rate in response to the Vp (AHPND) infection, and inhibited the proliferation of Vp (AHPND). Furthermore, we demonstrated that LvPerilipin depletion could increase the production of reactive oxygen species (ROS), which may be responsible for the decreased Vp (AHPND) proliferation. Taken together, our current data for the first time reveal that the shrimp lipid droplets protein Perilipin is involved in the pathogenesis of Vp (AHPND) via promoting LDs accumulation and decreasing ROS production.
Collapse
|
15
|
Increased Heme Oxygenase 1 Expression upon a Primary Exposure to the Respiratory Syncytial Virus and a Secondary Mycobacterium bovis Infection. Antioxidants (Basel) 2022; 11:antiox11081453. [PMID: 35892656 PMCID: PMC9332618 DOI: 10.3390/antiox11081453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/05/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) is the leading cause of severe lower respiratory tract infections in infants. Because recurrent epidemics based on reinfection occur in children and adults, hRSV has gained interest as a potential primary pathogen favoring secondary opportunistic infections. Several infection models have shown different mechanisms by which hRSV promotes immunopathology to prevent the development of adaptive protective immunity. However, little is known about the long-lasting effects of viral infection on pulmonary immune surveillance mechanisms. As a first approach, here we evaluated whether a primary infection by hRSV, once resolved, dampens the host immune response to a secondary infection with an attenuated strain of Mycobacterium bovis (M. Bovis) strain referred as to Bacillus Calmette-Guerin (BCG). We analyzed leukocyte dynamics and immunomodulatory molecules in the lungs after eleven- and twenty-one-days post-infection with Mycobacterium, using previous hRSV infected mice, by flow cytometry and the expression of critical genes involved in the immune response by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Among the latter, we analyzed the expression of Heme Oxygenase (HO)-1 in an immunization scheme in mice. Our data suggest that a pre-infection with hRSV has a conditioning effect promoting lung pathology during a subsequent mycobacterial challenge, characterized by increased infiltration of innate immune cells, including interstitial and alveolar macrophages. Our data also suggest that hRSV impairs pulmonary immune responses, promoting secondary mycobacterial colonization and lung survival, which could be associated with an increase in the expression of HO-1. Additionally, BCG is a commonly used vaccine that can be used as a platform for the generation of new recombinant vaccines, such as a recombinant BCG strain expressing the nucleoprotein of hRSV (rBCG-N-hRSV). Therefore, we evaluated if the immunization with rBCG-N-hRSV could modulate the expression of HO-1. We found a differential expression pattern for HO-1, where a higher induction of HO-1 was detected on epithelial cells compared to dendritic cells during late infection times. This is the first study to demonstrate that infection with hRSV produces damage in the lung epithelium, promoting subsequent mycobacterial colonization, characterized by an increase in the neutrophils and alveolar macrophages recruitment. Moreover, we determined that immunization with rBCG-N-hRSV modulates differentially the expression of HO-1 on immune and epithelial cells, which could be involved in the repair of pulmonary tissue.
Collapse
|
16
|
Borbora SM, Rajmani RS, Balaji KN. PRMT5 epigenetically regulates the E3 ubiquitin ligase ITCH to influence lipid accumulation during mycobacterial infection. PLoS Pathog 2022; 18:e1010095. [PMID: 35658060 PMCID: PMC9200362 DOI: 10.1371/journal.ppat.1010095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/15/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), triggers enhanced accumulation of lipids to generate foamy macrophages (FMs). This process has been often attributed to the surge in the expression of lipid influx genes with a concomitant decrease in those involved in lipid efflux. Here, we define an Mtb-orchestrated modulation of the ubiquitination of lipid accumulation markers to enhance lipid accretion during infection. We find that Mtb infection represses the expression of the E3 ubiquitin ligase, ITCH, resulting in the sustenance of key lipid accrual molecules viz. ADRP and CD36, that are otherwise targeted by ITCH for proteasomal degradation. In line, overexpressing ITCH in Mtb-infected cells was found to suppress Mtb-induced lipid accumulation. Molecular analyses including loss-of-function and ChIP assays demonstrated a role for the concerted action of the transcription factor YY1 and the arginine methyl transferase PRMT5 in restricting the expression of Itch gene by conferring repressive symmetrical H4R3me2 marks on its promoter. Consequently, siRNA-mediated depletion of YY1 or PRMT5 rescued ITCH expression, thereby compromising the levels of Mtb-induced ADRP and CD36 and limiting FM formation during infection. Accumulation of lipids within the host has been implicated as a pro-mycobacterial process that aids in pathogen persistence and dormancy. In line, we found that perturbation of PRMT5 enzyme activity resulted in compromised lipid levels and reduced mycobacterial survival in mouse peritoneal macrophages (ex vivo) and in a therapeutic mouse model of TB infection (in vivo). These findings provide new insights into the role of PRMT5 and YY1 in augmenting mycobacterial pathogenesis. Thus, we posit that our observations could help design novel adjunct therapies and combinatorial drug regimen for effective anti-TB strategies. Mycobacterium tuberculosis infection leads to the formation of lipid-laden cells (foamy macrophages-FMs) that offer a favorable shelter for its persistence. During infection, we observe a significant reduction in the expression of the E3 ubiquitin ligase, ITCH. This repression allows the sustenance of key lipid accretion molecules (ADRP and CD36), by curbing their proteasomal degradation. Further, we show the repression of ITCH to be dependent on the concerted action of the bifunctional transcription factor, YY1 and the arginine methyl transferase, PRMT5. NOTCH signaling pathway was identified as a master-regulator of YY1 expression. In vitro and in vivo analyses revealed the significance of PRMT5 in regulating FM formation and consequently mycobacterial burden.
Collapse
Affiliation(s)
- Salik Miskat Borbora
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Raju S. Rajmani
- Center for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka, India
| | | |
Collapse
|
17
|
Jurkowitz MS, Azad AK, Monsma PC, Keiser TL, Kanyo J, Lam TT, Bell CE, Schlesinger LS. Mycobacterium tuberculosis encodes a YhhN family membrane protein with lysoplasmalogenase activity that protects against toxic host lysolipids. J Biol Chem 2022; 298:101849. [PMID: 35314194 PMCID: PMC9052158 DOI: 10.1016/j.jbc.2022.101849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
The pathogen Mycobacterium tuberculosis (M.tb) resides in human macrophages, wherein it exploits host lipids for survival. However, little is known about the interaction between M.tb and macrophage plasmalogens, a subclass of glycerophospholipids with a vinyl ether bond at the sn-1 position of the glycerol backbone. Lysoplasmalogens, produced from plasmalogens by hydrolysis at the sn-2 carbon by phospholipase A2, are potentially toxic but can be broken down by host lysoplasmalogenase, an integral membrane protein of the YhhN family that hydrolyzes the vinyl ether bond to release a fatty aldehyde and glycerophospho-ethanolamine or glycerophospho-choline. Curiously, M.tb encodes its own YhhN protein (MtbYhhN), despite having no endogenous plasmalogens. To understand the purpose of this protein, the gene for MtbYhhN (Rv1401) was cloned and expressed in Mycobacterium smegmatis (M.smeg). We found the partially purified protein exhibited abundant lysoplasmalogenase activity specific for lysoplasmenylethanolamine or lysoplasmenylcholine (pLPC) (Vmax∼15.5 μmol/min/mg; Km∼83 μM). Based on cell density, we determined that lysoplasmenylethanolamine, pLPC, lysophosphatidylcholine, and lysophosphatidylethanolamine were not toxic to M.smeg cells, but pLPC and LPC were highly toxic to M.smeg spheroplasts, which are cell wall-deficient mycobacterial forms. Importantly, spheroplasts prepared from M.smeg cells overexpressing MtbYhhN were protected from membrane disruption/lysis by pLPC, which was rapidly depleted from the media. Finally, we found that overexpression of full-length MtbYhhN in M.smeg increased its survival within human macrophages by 2.6-fold compared to vector controls. These data support the hypothesis that MtbYhhN protein confers a growth advantage for mycobacteria in macrophages by cleaving toxic host pLPC into potentially energy-producing products.
Collapse
Affiliation(s)
- Marianne S Jurkowitz
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, USA.
| | - Abul K Azad
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Paula C Monsma
- Department of Neuroscience, Ohio State University, Columbus, Ohio, USA
| | - Tracy L Keiser
- Department of Moleculaire Microbiologie, Vrije Universiteit, Amsterdam, the Netherlands
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale University, New Haven, Connecticut, USA
| | - TuKiet T Lam
- Keck MS & Proteomics Resource, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Charles E Bell
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Larry S Schlesinger
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA.
| |
Collapse
|
18
|
Wang P, Yin B, Zhang Z, Mao S, Bao W, Lian W, Fan Y, Hong C, Su Y, Jia C. Foamy macrophages potentially inhibit tuberculous wound healing by inhibiting the TLRs/NF-κB signalling pathway. Wound Repair Regen 2022; 30:376-396. [PMID: 35384137 DOI: 10.1111/wrr.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/26/2022] [Accepted: 03/20/2022] [Indexed: 11/29/2022]
Abstract
To characterise the distribution, classification, and quantity of foamy macrophages (FMs) in tuberculous wound tissue and the relationship between FM and delayed healing of tuberculous wounds. Morphological studies were performed to explore the distribution of FM and Mycobacterium tuberculosis (Mtb) in tuberculous wounds, with acute and chronic wounds included for comparison. Phorbol-12-myristate-13-acetate stimulation-differentiated THP-1 cells were treated with Mtb to induce their differentiation into FM with oxidised low-density lipoprotein treatment serving as a control. Relative cytokine levels were determined by quantitative PCR and Western blotting. Varied co-culture combinations of Mtb, THP-1, FM, and fibroblasts were performed, and proliferation, migration, ability to contract collagen gel, and protein levels of the chemokines in the supernatants of the fibroblasts were assessed. The differentially expressed genes in human skin fibroblasts (HSFs) after co-culture with or without FM were identified using microarray. Many FM were found in the tissues of tuberculous wounds. The FM that did not engulf Mtb (NM-FM) were mainly distributed in tissues surrounding tuberculous wounds, whereas the FM that engulfed Mtb (M-FM) were dominantly located within granulomatous tissues. Co-culture experiments showed that, with the Mtb co-culture, the portions of NM-FM in the total FM grew over time. The migration, proliferation, chemokine secretion, and the ability of fibroblasts to contract collagen gel were inhibited when co-cultured with Mtb, FM, or a combination of the two. Further investigation showed that the TLRs/NF-κB signalling pathway is involved in fibroblast function under the stimulation of FM. TLRs and NF-κB agonists could reverse the phenotypic changes in HSFs after co-culture with FM. The tuberculous wound microenvironment composed of Mtb and FM may affect wound healing by inhibiting the functions of fibroblasts. FM potentially inhibit fibroblasts' function by inhibiting the TLRs/NF-κB signalling pathway in tuberculous wounds.
Collapse
Affiliation(s)
- Peng Wang
- Department of Burns and Plastic & Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bin Yin
- Department of Burns and Plastic & Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zexin Zhang
- Department of Burns and Plastic & Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shuting Mao
- Department of Burns and Plastic & Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wu Bao
- Department of Burns and Plastic & Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenqin Lian
- Department of Burns and Plastic & Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yueying Fan
- Department of Burns and Plastic & Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chao Hong
- Xiamen Center for Disease Control and Prevention, Xiamen, China
| | - Yingjun Su
- Department of Burns and Plastic Surgery, Plastic Surgery Hospital of Xi'an International Medical Center, Xi'an, China
| | - Chiyu Jia
- Department of Burns and Plastic & Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
19
|
Bosch M, Pol A. Eukaryotic lipid droplets: metabolic hubs, and immune first responders. Trends Endocrinol Metab 2022; 33:218-229. [PMID: 35065875 DOI: 10.1016/j.tem.2021.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
As major eukaryotic lipid storage organelles, lipid droplets (LDs) are metabolic hubs coordinating energy flux and building block distribution. Infectious pathogens often promote accumulation and physically interact with LDs. The most accepted view is that host LDs are hijacked by invaders to draw on nutrients for host colonisation. However, unique traits such as biogenesis plasticity, dynamic proteome, signalling capacity, and ability to interact with other organelles endow LDs with competencies to face complex biological challenges. Here, we focus on published data suggesting that LDs are not usurped organelles but innate immunity first responders. By comparison with analogous mechanisms activated on LDs in nutrient-poor environments, our review supports the hypothesis that host LDs actively participate in immunometabolism, immune signalling, and microbial killing.
Collapse
Affiliation(s)
- Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona
| |
Collapse
|
20
|
Yoon H, Kim HC, Kim J, You K, Cho Y, Kim S. Toxicity impact of hydrogen peroxide on the fate of zebrafish and antibiotic resistant bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114072. [PMID: 34781050 DOI: 10.1016/j.jenvman.2021.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen peroxide (H2O2) is applied in various environments. It could be present at concentrations ranging from nanomolar to micromolar in a water system. It is produced through pollutants and natural activities. Since few studies have been conducted about the impact of naturally produced H2O2 on aquatic organisms, the objective of the present study was to monitor changes in responses of aquatic model organisms such as zebrafish and antibiotic-resistant bacteria to different exogenous H2O2 exposure. Increases in exposure concentration and time induced decreases in the perception of zebrafish larvae (up to 69%) and movement of adult zebrafish (average speed, average acceleration, movement distance, and activity time) compared to the control (non-exposed group). In addition, as a function of H2O2 exposure concentration (0-100,000 nM) and time, up to 20-fold increase (p = 5.00*10-6) of lipid peroxidation compared to control was observed. For microorganisms, biofilm, an indirect indicator of resistance to external stressors, was increased up to 68% and gene transfer was increased (p = 2.00*10-6) by more than 30% after H2O2 exposure. These results imply that naturally generated H2O2 could adversely affect aquatic environment organisms and public health. Thus, more careful attention is needed for H2O2 production in an aquatic system.
Collapse
Affiliation(s)
- Hyojik Yoon
- Program in Environmental Technology and Policy, Korea University, Sejong, 30019, Republic of Korea; Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Hyun-Chul Kim
- Research Institute for Advanced Industrial Technology, College of Science and Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Jongrack Kim
- UnU Inc., Samsung IT Valley, 27 Digital-ro 33-gil, Guro-Gu, Seoul, 08380, Republic of Korea
| | - Kwangtae You
- UnU Inc., Samsung IT Valley, 27 Digital-ro 33-gil, Guro-Gu, Seoul, 08380, Republic of Korea
| | - Yunchul Cho
- Department of Environmental Engineering, Daejeon University, 62 Daehak-Ro, Dong-Gu, Daejeon, 34520, Republic of Korea.
| | - Sungpyo Kim
- Program in Environmental Technology and Policy, Korea University, Sejong, 30019, Republic of Korea; Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
21
|
Mekonnen D, Derbie A, Mihret A, Yimer SA, Tønjum T, Gelaw B, Nibret E, Munshae A, Waddell SJ, Aseffa A. Lipid droplets and the transcriptome of Mycobacterium tuberculosis from direct sputa: a literature review. Lipids Health Dis 2021; 20:129. [PMID: 34602073 PMCID: PMC8487580 DOI: 10.1186/s12944-021-01550-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the main etiology of tuberculosis (TB), is predominantly an intracellular pathogen that has caused infection, disease and death in humans for centuries. Lipid droplets (LDs) are dynamic intracellular organelles that are found across the evolutionary tree of life. This review is an evaluation of the current state of knowledge regarding Mtb-LD formation and associated Mtb transcriptome directly from sputa.Based on the LD content, Mtb in sputum may be classified into three groups: LD positive, LD negative and LD borderline. However, the clinical and evolutionary importance of each state is not well elaborated. Mounting evidence supports the view that the presence of LD positive Mtb bacilli in sputum is a biomarker of slow growth, low energy state, towards lipid degradation, and drug tolerance. In Mtb, LD may serve as a source of chemical energy, scavenger of toxic compounds, prevent destruction of Mtb through autophagy, delay trafficking of lysosomes towards the phagosome, and contribute to Mtb persistence. It is suggest that LD is a key player in the induction of a spectrum of phenotypic and metabolic states of Mtb in the macrophage, granuloma and extracellular sputum microenvironment. Tuberculosis patients with high proportion of LD positive Mtb in pretreatment sputum was associated with higher rate of poor treatment outcome, indicating that LD may have a clinical application in predicting treatment outcome.The propensity for LD formation among Mtb lineages is largely unknown. The role of LD on Mtb transmission and disease phenotype (pulmonary TB vs extra-pulmonary TB) is not well understood. Thus, further studies are needed to understand the relationships between LD positivity and Mtb lineage, Mtb transmission and clinical types.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Medical Microbiology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia.
- Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Awoke Derbie
- Department of Medical Microbiology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
- Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- The Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia
| | - Adane Mihret
- Armauer Hansen Research Institute, Jimma Road, ALERT Compound, PO Box 1005, Addis Ababa, Ethiopia
- Department of Medical Microbiology, Immunology and Parasitology, College of Medicine and Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Abebe Yimer
- Department of Microbiology, University of Oslo, PO Box 1071, Blindern, NO-0316, Oslo, Norway
- Coalition for Epidemic Preparedness Innovations, CEPI, P.O. Box 123, Torshov, 0412, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, PO Box 1071, Blindern, NO-0316, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, PO Box 4950, Nydalen, NO-0424, Oslo, Norway
| | - Baye Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Endalkachew Nibret
- Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abaineh Munshae
- Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Jimma Road, ALERT Compound, PO Box 1005, Addis Ababa, Ethiopia
| |
Collapse
|
22
|
Allen PE, Noland RC, Martinez JJ. Rickettsia conorii survival in THP-1 macrophages involves host lipid droplet alterations and active rickettsial protein production. Cell Microbiol 2021; 23:e13390. [PMID: 34464019 DOI: 10.1111/cmi.13390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022]
Abstract
Rickettsia conorii is a Gram-negative, cytosolic intracellular bacterium that has classically been investigated in terms of endothelial cell infection. However, R. conorii and other human pathogenic Rickettsia species have evolved mechanisms to grow in various cell types, including macrophages, during mammalian infection. During infection of these phagocytes, R. conorii shifts the host cell's overall metabolism towards an anti-inflammatory M2 response, metabolically defined by an increase in host lipid metabolism and oxidative phosphorylation. Lipid metabolism has more recently been identified as a key regulator of host homeostasis through modulation of immune signalling and metabolism. Intracellular pathogens have adapted mechanisms of hijacking host metabolic pathways including host lipid catabolic pathways for various functions required for growth and survival. In the present study, we hypothesised that alterations of host lipid droplets initiated by lipid catabolic pathways during R. conorii infection is important for bacterial survival in macrophages. Herein, we determined that host lipid droplet modulation is initiated early during R. conorii infection, and these alterations rely on active bacteria and lipid catabolic pathways. We also find that these lipid catabolic pathways are essential for efficient bacterial survival. Unlike the mechanisms used by other intracellular pathogens, the catabolism of lipid droplets induced by R. conorii infection is independent of upstream host peroxisome proliferator-activated receptor-alpha (PPARα) signalling. Inhibition of PPARɣ signalling and lipid droplet accumulation in host cells cause a significant decrease in R. conorii survival suggesting a negative correlation with lipid droplet production and R. conorii survival. Together, these results strongly suggest that the modulation of lipid droplets in macrophage cells infected by R. conorii is an important and underappreciated aspect of the infection process. TAKE AWAYS: Host lipid droplets are differentially altered in early and replicative stages of THP-1 macrophage infection with R. conorii. Lipid droplet alterations are initiated in a bacterial-dependent manner and do not require host peroxisome proliferator-activated receptors α or ɣ activation. Pharmacological inhibition of host lipid catabolic processes during R. conorii infection indicates a requirement of lipid catabolism for bacterial survival and initiation of lipid droplet modulation. A significant increase in host lipid droplets during infection has a negative impact on R. conorii survival in THP-1 macrophages.
Collapse
Affiliation(s)
- Paige E Allen
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Juan J Martinez
- Vector Borne Disease Laboratories, Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| |
Collapse
|
23
|
Crotta Asis A, Savoretti F, Cabruja M, Gramajo H, Gago G. Characterization of key enzymes involved in triacylglycerol biosynthesis in mycobacteria. Sci Rep 2021; 11:13257. [PMID: 34168231 PMCID: PMC8225852 DOI: 10.1038/s41598-021-92721-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Phosphatidic acid phosphatase (PAP) catalyzes the dephosphorylation of phosphatidic acid (PA) yielding diacylglycerol (DAG), the lipid precursor for triacylglycerol (TAG) biosynthesis. PAP activity has a key role in the regulation of PA flux towards TAG or glycerophospholipid synthesis. In this work we have characterized two Mycobacterium smegmatis genes encoding for functional PAP proteins. Disruption of both genes provoked a sharp reduction in de novo TAG biosynthesis in early growth phase cultures under stress conditions. In vivo labeling experiments demonstrated that TAG biosynthesis was restored in the ∆PAP mutant when bacteria reached exponential growth phase, with a concomitant reduction of phospholipid synthesis. In addition, comparative lipidomic analysis showed that the ∆PAP strain had increased levels of odd chain fatty acids esterified into TAGs, suggesting that the absence of PAP activity triggered other rearrangements of lipid metabolism, like phospholipid recycling, in order to maintain the wild type levels of TAG. Finally, the lipid changes observed in the ∆PAP mutant led to defective biofilm formation. Understanding the interaction between TAG synthesis and the lipid composition of mycobacterial cell envelope is a key step to better understand how lipid homeostasis is regulated during Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Agostina Crotta Asis
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Franco Savoretti
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Matías Cabruja
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Stanford University, Stanford, USA
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| | - Gabriela Gago
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
24
|
Robbe-Saule M, Foulon M, Poncin I, Esnault L, Varet H, Legendre R, Besnard A, Grzegorzewicz AE, Jackson M, Canaan S, Marsollier L, Marion E. Transcriptional adaptation of Mycobacterium ulcerans in an original mouse model: New insights into the regulation of mycolactone. Virulence 2021; 12:1438-1451. [PMID: 34107844 PMCID: PMC8204960 DOI: 10.1080/21505594.2021.1929749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mycobacterium ulcerans is the causal agent of Buruli ulcer, a chronic infectious disease and the third most common mycobacterial disease worldwide. Without early treatment, M. ulcerans provokes massive skin ulcers, caused by the mycolactone toxin, its main virulence factor. However, spontaneous healing may occur in Buruli ulcer patients several months or years after the disease onset. We have shown, in an original mouse model, that bacterial load remains high and viable in spontaneously healed tissues, with a switch of M. ulcerans to low levels of mycolactone production, adapting its strategy to survive in such a hostile environment. This original model offers the possibility to investigate the regulation of mycolactone production, by using an RNA-seq strategy to study bacterial adaptation during mouse infection. Pathway analysis and characterization of the tissue environment showed that the bacillus adapted to its new environment by modifying its metabolic activity and switching nutrient sources. Thus, M. ulcerans ensures its survival in healing tissues by reducing its secondary metabolism, leading to an inhibition of mycolactone synthesis. These findings shed new light on mycolactone regulation and pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Hugo Varet
- Plate-forme Transcriptome Et Epigenome, Biomics, Centre De Ressources Et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France.,Hub De Bioinformatique Et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Plate-forme Transcriptome Et Epigenome, Biomics, Centre De Ressources Et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France.,Hub De Bioinformatique Et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | | | - Anna E Grzegorzewicz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States
| | | | | | | |
Collapse
|
25
|
Dong W, Nie X, Zhu H, Liu Q, Shi K, You L, Zhang Y, Fan H, Yan B, Niu C, Lyu LD, Zhao GP, Yang C. Mycobacterial fatty acid catabolism is repressed by FdmR to sustain lipogenesis and virulence. Proc Natl Acad Sci U S A 2021; 118:e2019305118. [PMID: 33853942 PMCID: PMC8072231 DOI: 10.1073/pnas.2019305118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Host-derived fatty acids are an important carbon source for pathogenic mycobacteria during infection. How mycobacterial cells regulate the catabolism of fatty acids to serve the pathogenicity, however, remains unknown. Here, we identified a TetR-family transcriptional factor, FdmR, as the key regulator of fatty acid catabolism in the pathogen Mycobacterium marinum by combining use of transcriptomics, chromatin immunoprecipitation followed by sequencing, dynamic 13C-based flux analysis, metabolomics, and lipidomics. An M. marinum mutant deficient in FdmR was severely attenuated in zebrafish larvae and adult zebrafish. The mutant showed defective growth but high substrate consumption on fatty acids. FdmR was identified as a long-chain acyl-coenzyme A (acyl-CoA)-responsive repressor of genes involved in fatty acid degradation and modification. We demonstrated that FdmR functions as a valve to direct the flux of exogenously derived fatty acids away from β-oxidation toward lipid biosynthesis, thereby avoiding the overactive catabolism and accumulation of biologically toxic intermediates. Moreover, we found that FdmR suppresses degradation of long-chain acyl-CoAs endogenously synthesized through the type I fatty acid synthase. By modulating the supply of long-chain acyl-CoAs for lipogenesis, FdmR controls the abundance and chain length of virulence-associated lipids and mycolates and plays an important role in the impermeability of the cell envelope. These results reveal that despite the fact that host-derived fatty acids are used as an important carbon source, overactive catabolism of fatty acids is detrimental to mycobacterial cell growth and pathogenicity. This study thus presents FdmR as a potentially attractive target for chemotherapy.
Collapse
Affiliation(s)
- Wenyue Dong
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqun Nie
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Hong Zhu
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Kunxiong Shi
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
| | - Linlin You
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Hongyan Fan
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
| | - Bo Yan
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
| | - Chen Niu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China;
| | - Liang-Dong Lyu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China;
| | - Guo-Ping Zhao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chen Yang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| |
Collapse
|
26
|
Høgset H, Horgan CC, Armstrong JPK, Bergholt MS, Torraca V, Chen Q, Keane TJ, Bugeon L, Dallman MJ, Mostowy S, Stevens MM. In vivo biomolecular imaging of zebrafish embryos using confocal Raman spectroscopy. Nat Commun 2020; 11:6172. [PMID: 33268772 PMCID: PMC7710741 DOI: 10.1038/s41467-020-19827-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
Zebrafish embryos provide a unique opportunity to visualize complex biological processes, yet conventional imaging modalities are unable to access intricate biomolecular information without compromising the integrity of the embryos. Here, we report the use of confocal Raman spectroscopic imaging for the visualization and multivariate analysis of biomolecular information extracted from unlabeled zebrafish embryos. We outline broad applications of this method in: (i) visualizing the biomolecular distribution of whole embryos in three dimensions, (ii) resolving anatomical features at subcellular spatial resolution, (iii) biomolecular profiling and discrimination of wild type and ΔRD1 mutant Mycobacterium marinum strains in a zebrafish embryo model of tuberculosis and (iv) in vivo temporal monitoring of the wound response in living zebrafish embryos. Overall, this study demonstrates the application of confocal Raman spectroscopic imaging for the comparative bimolecular analysis of fully intact and living zebrafish embryos.
Collapse
Affiliation(s)
- Håkon Høgset
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Conor C Horgan
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - James P K Armstrong
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Mads S Bergholt
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Craniofacial Development & Stem Cell Biology, Kings College London, Tower Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Vincenzo Torraca
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Qu Chen
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Timothy J Keane
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Laurence Bugeon
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Margaret J Dallman
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
27
|
Paik S, Jo EK. An Interplay Between Autophagy and Immunometabolism for Host Defense Against Mycobacterial Infection. Front Immunol 2020; 11:603951. [PMID: 33262773 PMCID: PMC7688515 DOI: 10.3389/fimmu.2020.603951] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Autophagy, an intracellular catabolic pathway featuring lysosomal degradation, is a central component of the host immune defense against various infections including Mycobacterium tuberculosis (Mtb), the pathogen that causes tuberculosis. Mtb can evade the autophagic defense and drive immunometabolic remodeling of host phagocytes. Co-regulation of the autophagic and metabolic pathways may play a pivotal role in shaping the innate immune defense and inflammation during Mtb infection. Two principal metabolic sensors, AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) kinase, function together to control the autophagy and immunometabolism that coordinate the anti-mycobacterial immune defense. Here, we discuss our current understanding of the interplay between autophagy and immunometabolism in terms of combating intracellular Mtb, and how AMPK-mTOR signaling regulates antibacterial autophagy in terms of Mtb infection. We describe several autophagy-targeting agents that promote host antimicrobial defenses by regulating the AMPK-mTOR axis. A better understanding of the crosstalk between immunometabolism and autophagy, both of which are involved in host defense, is crucial for the development of innovative targeted therapies for tuberculosis.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
28
|
Walther TC, Farese RV. Un-phased: Lipid Droplets Modulate the Bioavailability of Antibiotics. Dev Cell 2020; 50:530-532. [PMID: 31505174 DOI: 10.1016/j.devcel.2019.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In a paper recently published in Science (Greenwood et al., 2019), Greenwood and colleagues now describe a fascinating example of how partitioning of a small lipophilic molecule into a phase-separated cellular constituent, the lipid droplet (LD), contributes to its antibacterial action against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Tobias C Walther
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Robert V Farese
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
29
|
Tang X, Zhang Y, Zhou Y, Liu R, Shen Z. Quantitative proteomic analysis of ovaries from Nosema bombycis-infected silkworm (Bombyx mori). J Invertebr Pathol 2020; 172:107355. [DOI: 10.1016/j.jip.2020.107355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/30/2022]
|
30
|
Roque NR, Lage SL, Navarro R, Fazolini N, Maya-Monteiro CM, Rietdorf J, Melo RCN, D'Avila H, Bozza PT. Rab7 controls lipid droplet-phagosome association during mycobacterial infection. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158703. [PMID: 32229179 DOI: 10.1016/j.bbalip.2020.158703] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
Abstract
Lipid droplets (LDs) are organelles that have multiple roles in inflammatory and infectious diseases. LD act as essential platforms for immunometabolic regulation, including as sites for lipid storage and metabolism, inflammatory lipid mediator production, and signaling pathway compartmentalization. Accumulating evidence indicates that intracellular pathogens may exploit host LDs as source of nutrients and as part of their strategy to promote immune evasion. Notably, numerous studies have demonstrated the interaction between LDs and pathogen-containing phagosomes. However, the mechanism involved in this phenomenon remains elusive. Here, we observed LDs and PLIN2 surrounding M. bovis BCG-containing phagosomes, which included observations of a bacillus cell surrounded by lipid content inside a phagosome and LAM from mycobacteria co-localizing with LDs; these results were suggestive of exchange of contents between these compartments. By using beads coated with M.tb lipids, we demonstrated that LD-phagosome associations are regulated through the mycobacterial cell wall components LAM and PIM. In addition, we demonstrated that Rab7 and RILP, but not Rab5, localizes to LDs of infected macrophages and observed the presence of Rab7 at the site of interaction with an infected phagosome. Moreover, treatment of macrophages with the Rab7 inhibitor CID1067700 significantly inhibited the association between LDs and LAM-coated beads. Altogether, our data demonstrate that LD-phagosome interactions are controlled by mycobacterial cell wall components and Rab7, which enables the exchange of contents between LDs and phagosomes and may represent a fundamental aspect of bacterial pathogenesis and immune evasion.
Collapse
Affiliation(s)
- Natalia R Roque
- Laboratório de Imunofarmacologia, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Silvia L Lage
- Laboratório de Imunofarmacologia, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Roberta Navarro
- Laboratório de Imunofarmacologia, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Narayana Fazolini
- Laboratório de Imunofarmacologia, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Clarissa M Maya-Monteiro
- Laboratório de Imunofarmacologia, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Jens Rietdorf
- Centro de Desenvolvimento Tecnológico em Saúde, CDTS, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Rossana C N Melo
- Laboratório de Biologia Celular, Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-330, MG, Brazil
| | - Heloisa D'Avila
- Laboratório de Biologia Celular, Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-330, MG, Brazil
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil.
| |
Collapse
|
31
|
Knobloch P, Koliwer-Brandl H, Arnold FM, Hanna N, Gonda I, Adenau S, Personnic N, Barisch C, Seeger MA, Soldati T, Hilbi H. Mycobacterium marinum produces distinct mycobactin and carboxymycobactin siderophores to promote growth in broth and phagocytes. Cell Microbiol 2020; 22:e13163. [PMID: 31945239 DOI: 10.1111/cmi.13163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Mycobacterium marinum is a model organism for pathogenic Mycobacterium species, including Mycobacterium tuberculosis, the causative agent of tuberculosis. These pathogens enter phagocytes and replicate within the Mycobacterium-containing vacuole, possibly followed by vacuole exit and growth in the host cell cytosol. Mycobacteria release siderophores called mycobactins to scavenge iron, an essential yet poorly soluble and available micronutrient. To investigate the role of M. marinum mycobactins, we purified by organic solvent extraction and identified by mass spectrometry the lipid-bound mycobactin (MBT) and the water-soluble variant carboxymycobactin (cMBT). Moreover, we generated by specialised phage transduction a defined M. marinum ΔmbtB deletion mutant predicted to be defective for mycobactin production. The M. marinum ΔmbtB mutant strain showed a severe growth defect in broth and phagocytes, which was partially complemented by supplying the mbtB gene on a plasmid. Furthermore, purified Fe-MBT or Fe-cMBT improved the growth of wild type as well as ΔmbtB mutant bacteria on minimal plates, but only Fe-cMBT promoted the growth of wild-type M. marinum during phagocyte infection. Finally, the intracellular growth of M. marinum ΔmbtB in Acanthamoeba castellanii amoebae was restored by coinfection with wild-type bacteria. Our study identifies and characterises the M. marinum MBT and cMBT siderophores and reveals the requirement of mycobactins for extra- and intracellular growth of the pathogen.
Collapse
Affiliation(s)
- Paulina Knobloch
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | | | - Fabian M Arnold
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Imre Gonda
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Sophia Adenau
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Nicolas Personnic
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Caroline Barisch
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
32
|
Harjula SKE, Saralahti AK, Ojanen MJT, Rantapero T, Uusi-Mäkelä MIE, Nykter M, Lohi O, Parikka M, Rämet M. Characterization of immune response against Mycobacterium marinum infection in the main hematopoietic organ of adult zebrafish (Danio rerio). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103523. [PMID: 31626817 DOI: 10.1016/j.dci.2019.103523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Tuberculosis remains a major global health challenge. To gain information about genes important for defense against tuberculosis, we used a well-established tuberculosis model; Mycobacterium marinum infection in adult zebrafish. To characterize the immunological response to mycobacterial infection at 14 days post infection, we performed a whole-genome level transcriptome analysis using cells from kidney, the main hematopoietic organ of adult zebrafish. Among the upregulated genes, those associated with immune signaling and regulation formed the largest category, whereas the largest group of downregulated genes had a metabolic role. We also performed a forward genetic screen in adult zebrafish and identified a fish line with severely impaired survival during chronic mycobacterial infection. Based on transcriptome analysis, these fish have decreased expression of several immunological genes. Taken together, these results give new information about the genes involved in the defense against mycobacterial infection in zebrafish.
Collapse
Affiliation(s)
- Sanna-Kaisa E Harjula
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Anni K Saralahti
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Markus J T Ojanen
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland; Laboratory of Immunoregulation, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Tommi Rantapero
- Laboratory of Computational Biology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Meri I E Uusi-Mäkelä
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Matti Nykter
- Laboratory of Computational Biology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Olli Lohi
- Tampere Center for Child Health Research, Tampere University and Tays Cancer Center, Tampere University Hospital, FI-33014, Tampere University, Finland.
| | - Mataleena Parikka
- Laboratory of Infection Biology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland; Oral and Maxillofacial Unit, Tampere University Hospital, P.O. Box 2000, FI-33521, Tampere, Finland.
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland; Department of Pediatrics, Tampere University Hospital, P.O. Box 2000, FI-33521, Tampere, Finland; PEDEGO Research Unit, Medical Research Center Oulu, P.O. Box 8000, FI-90014, University of Oulu, Finland; Department of Children and Adolescents, Oulu University Hospital, P.O. Box 10, FI-90029, OYS, Finland.
| |
Collapse
|
33
|
Mietto BS, de Souza BJ, Rosa PS, Pessolani MCV, Lara FA, Sarno EN. Myelin breakdown favours Mycobacterium leprae survival in Schwann cells. Cell Microbiol 2019; 22:e13128. [PMID: 31652371 DOI: 10.1111/cmi.13128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/06/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022]
Abstract
Leprosy neuropathy is a chronic degenerative infectious disorder of the peripheral nerve caused by the intracellular obligate pathogen Mycobacterium leprae (M. leprae). Among all nonneuronal cells that constitute the nerve, Schwann cells are remarkable in supporting M. leprae persistence intracellularly. Notably, the success of leprosy infection has been attributed to its ability in inducing the demyelination phenotype after contacting myelinated fibres. However, the exact role M. leprae plays during the ongoing process of myelin breakdown is entirely unknown. Here, we provided evidence showing an unexpected predilection of leprosy pathogen for degenerating myelin ovoids inside Schwann cells. In addition, M. leprae infection accelerated the rate of myelin breakdown and clearance leading to increased formation of lipid droplets, by modulating a set of regulatory genes involved in myelin maintenance, autophagy, and lipid storage. Remarkably, the blockage of myelin breakdown significantly reduced M. leprae content, demonstrating a new unpredictable role of myelin dismantling favouring M. leprae physiology. Collectively, our study provides novel evidence that may explain the demyelination phenotype as an evolutionarily conserved mechanism used by leprosy pathogen to persist longer in the peripheral nerve.
Collapse
Affiliation(s)
- Bruno Siqueira Mietto
- Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil.,Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | - Flavio Alves Lara
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | |
Collapse
|
34
|
Microbial Control of Intestinal Homeostasis via Enteroendocrine Cell Innate Immune Signaling. Trends Microbiol 2019; 28:141-149. [PMID: 31699645 DOI: 10.1016/j.tim.2019.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/28/2019] [Accepted: 09/25/2019] [Indexed: 01/02/2023]
Abstract
A community of commensal microbes, known as the intestinal microbiota, resides within the gastrointestinal tract of animals and plays a role in maintenance of host metabolic homeostasis and resistance to pathogen invasion. Enteroendocrine cells, which are relatively rare in the intestinal epithelium, have evolved to sense and respond to these commensal microbes. Specifically, they express G-protein-coupled receptors and functional innate immune signaling pathways that recognize products of microbial metabolism and microbe-associated molecular patterns, respectively. Here we review recent evidence from Drosophila melanogaster that microbial cues recruit antimicrobial, mechanical, and metabolic branches of the enteroendocrine innate immune system and argue that this response may play a role not only in maintaining host metabolic homeostasis but also in intestinal resistance to invasion by bacterial, viral, and parasitic pathogens.
Collapse
|
35
|
Lipid Droplets: A Significant but Understudied Contributor of Host⁻Bacterial Interactions. Cells 2019; 8:cells8040354. [PMID: 30991653 PMCID: PMC6523240 DOI: 10.3390/cells8040354] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
Lipid droplets (LDs) are cytosolic lipid storage organelles that are important for cellular lipid metabolism, energy homeostasis, cell signaling, and inflammation. Several bacterial, viral and protozoal pathogens exploit host LDs to promote infection, thus emphasizing the importance of LDs at the host–pathogen interface. In this review, we discuss the thus far reported relation between host LDs and bacterial pathogens including obligate and facultative intracellular bacteria, and extracellular bacteria. Although there is less evidence for a LD–extracellular bacterial interaction compared to interactions with intracellular bacteria, in this review, we attempt to compare the bacterial mechanisms that target LDs, the host signaling pathways involved and the utilization of LDs by these bacteria. Many intracellular bacteria employ unique mechanisms to target host LDs and potentially obtain nutrients and lipids for vacuolar biogenesis and/or immune evasion. However, extracellular bacteria utilize LDs to either promote host tissue damage or induce host death. We also identify several areas that require further investigation. Along with identifying LD interactions with bacteria besides the ones reported, the precise mechanisms of LD targeting and how LDs benefit pathogens should be explored for the bacteria discussed in the review. Elucidating LD–bacterial interactions promises critical insight into a novel host–pathogen interaction.
Collapse
|
36
|
Menon D, Singh K, Pinto SM, Nandy A, Jaisinghani N, Kutum R, Dash D, Prasad TSK, Gandotra S. Quantitative Lipid Droplet Proteomics Reveals Mycobacterium tuberculosis Induced Alterations in Macrophage Response to Infection. ACS Infect Dis 2019; 5:559-569. [PMID: 30663302 PMCID: PMC6466475 DOI: 10.1021/acsinfecdis.8b00301] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Growing
evidence suggests the importance of lipid metabolism in pathogenesis
of tuberculosis. Neutral lipids form the majority of lipids in a caseous
granuloma, a pathology characteristic of tuberculosis. Cytosolic lipid
droplets (LDs) of macrophages form the store house of these lipids
and have been demonstrated to contribute to the inflammatory response
to infection. The proteome of lipid droplets reflects the mechanisms
of lipid metabolism active under a condition. However, infection induced
changes in the proteome of these dynamic organelles remains elusive.
Here, we employed quantitative proteomics to identify alterations
induced upon infection with live Mycobacterium tuberculosis (Mtb) in comparison with heat killed bacilli or uninfected macrophages.
We found increased abundance of proteins coupled with lipid metabolism,
protein synthesis, and vesicular transport function in LDs upon infection
with live Mtb. Using biochemical methods and microscopy, we validated
ADP-ribosyltransferase (Arf)-like 8 (ARL8B) to be increased on the
lipid droplet surface of live Mtb infected macrophages and that ARL8B
is a bonafide LD protein. This study provides the first proteomic
evidence that the dynamic responses to infection also encompass changes
at the level of LDs. This information will be important in understanding
how Mtb manipulates lipid metabolism and defense mechanisms of the
host macrophage.
Collapse
Affiliation(s)
- Dilip Menon
- Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kaurab Singh
- Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sneha M. Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Ananya Nandy
- Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neetika Jaisinghani
- Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rintu Kutum
- Informatics and Big Data, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debasis Dash
- Informatics and Big Data, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore 575018, India
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Sheetal Gandotra
- Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
37
|
Cabezas-Cruz A, Espinosa P, Alberdi P, de la Fuente J. Tick-Pathogen Interactions: The Metabolic Perspective. Trends Parasitol 2019; 35:316-328. [PMID: 30711437 DOI: 10.1016/j.pt.2019.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/03/2023]
Abstract
The first tick genome published in 2016 provided an invaluable tool for studying the molecular basis of tick-pathogen interactions. Metabolism is a key element in host-pathogen interactions. However, our knowledge of tick-pathogen metabolic interactions is very limited. Recently, a systems biology approach, using omics datasets, has revealed that tick-borne pathogen infection induces transcriptional reprograming affecting several metabolic pathways in ticks, facilitating infection, multiplication, and transmission. Results suggest that the response of tick cells to tick-borne pathogens is associated with tolerance to infection. Here we review our current understanding of the modulation of tick metabolism by tick-borne pathogens, with a focus on the model intracellular bacterium Anaplasma phagocytophilum.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France.
| | - Pedro Espinosa
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
38
|
Scott CC, Vossio S, Rougemont J, Gruenberg J. TFAP2 transcription factors are regulators of lipid droplet biogenesis. eLife 2018; 7:36330. [PMID: 30256193 PMCID: PMC6170152 DOI: 10.7554/elife.36330] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
How trafficking pathways and organelle abundance adapt in response to metabolic and physiological changes is still mysterious, although a few transcriptional regulators of organellar biogenesis have been identified in recent years. We previously found that the Wnt signaling directly controls lipid droplet formation, linking the cell storage capacity to the established functions of Wnt in development and differentiation. In the present paper, we report that Wnt-induced lipid droplet biogenesis does not depend on the canonical TCF/LEF transcription factors. Instead, we find that TFAP2 family members mediate the pro-lipid droplet signal induced by Wnt3a, leading to the notion that the TFAP2 transcription factor may function as a 'master' regulator of lipid droplet biogenesis.
Collapse
Affiliation(s)
- Cameron C Scott
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Stefania Vossio
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Jacques Rougemont
- Department of Theoretical Physics, University of Geneva, Geneva, Switzerland
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,Department of Theoretical Physics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
39
|
Antonova AV, Gryadunov DA, Zimenkov DV. Molecular Mechanisms of Drug Tolerance in Mycobacterium tuberculosis. Mol Biol 2018. [DOI: 10.1134/s0026893318030020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Chai Q, Zhang Y, Liu CH. Mycobacterium tuberculosis: An Adaptable Pathogen Associated With Multiple Human Diseases. Front Cell Infect Microbiol 2018; 8:158. [PMID: 29868514 PMCID: PMC5962710 DOI: 10.3389/fcimb.2018.00158] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/25/2018] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), is an extremely successful pathogen that adapts to survive within the host. During the latency phase of infection, M. tuberculosis employs a range of effector proteins to be cloud the host immune system and shapes its lifestyle to reside in granulomas, sophisticated, and organized structures of immune cells that are established by the host in response to persistent infection. While normally being restrained in immunocompetent hosts, M. tuberculosis within granulomas can cause the recrudescence of TB when host immunity is compromised. Aside from causing TB, accumulating evidence suggests that M. tuberculosis is also associated with multiple other human diseases, such as pulmonary complications, autoimmune diseases, and metabolic syndromes. Furthermore, it has been recently appreciated that M. tuberculosis infection can also reciprocally interact with the human microbiome, which has a strong link to immune balance and health. In this review, we highlight the adaptive survival of M. tuberculosis within the host and provide an overview for regulatory mechanisms underlying interactions between M. tuberculosis infection and multiple important human diseases. A better understanding of how M. tuberculosis regulates the host immune system to cause TB and reciprocally regulates other human diseases is critical for developing rational treatments to better control TB and help alleviate its associated comorbidities.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Aguilar-Ayala DA, Cnockaert M, Vandamme P, Palomino JC, Martin A, Gonzalez-Y-Merchand J. Antimicrobial activity against Mycobacterium tuberculosis under in vitro lipid-rich dormancy conditions. J Med Microbiol 2018; 67:282-285. [DOI: 10.1099/jmm.0.000681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Diana Angelica Aguilar-Ayala
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Juan Carlos Palomino
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Anandi Martin
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
- Laboratory of Medical Microbiology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Jorge Gonzalez-Y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| |
Collapse
|
42
|
Altering lipid droplet homeostasis affects Coxiella burnetii intracellular growth. PLoS One 2018; 13:e0192215. [PMID: 29390006 PMCID: PMC5794150 DOI: 10.1371/journal.pone.0192215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen and a causative agent of culture-negative endocarditis. While C. burnetii initially infects alveolar macrophages, it has also been found in lipid droplet (LD)-containing foamy macrophages in the cardiac valves of endocarditis patients. In addition, transcriptional studies of C. burnetii-infected macrophages reported differential regulation of the LD coat protein-encoding gene perilipin 2 (plin-2). To further investigate the relationship between LDs and C. burnetii, we compared LD numbers using fluorescence microscopy in mock-infected and C. burnetii-infected alveolar macrophages. On average, C. burnetii-infected macrophages contained twice as many LDs as mock-infected macrophages. LD numbers increased as early as 24 hours post-infection, an effect reversed by blocking C. burnetii protein synthesis. The observed LD accumulation was dependent on the C. burnetii Type 4B Secretion System (T4BSS), a major virulence factor that manipulates host cellular processes by secreting bacterial effector proteins into the host cell cytoplasm. To determine the importance of LDs during C. burnetii infection, we manipulated LD homeostasis and assessed C. burnetii intracellular growth. Surprisingly, blocking LD formation with the pharmacological inhibitors triacsin C or T863, or knocking out acyl-CoA transferase-1 (acat-1) in alveolar macrophages, increased C. burnetii growth at least 2-fold. Conversely, preventing LD lipolysis by inhibiting adipose triglyceride lipase (ATGL) with atglistatin almost completely blocked bacterial growth, suggesting LD breakdown is essential for C. burnetii. Together these data suggest that maintenance of LD homeostasis, possibly via the C. burnetii T4BSS, is critical for bacterial growth.
Collapse
|
43
|
Vijay S, Hai HT, Thu DDA, Johnson E, Pielach A, Phu NH, Thwaites GE, Thuong NTT. Ultrastructural Analysis of Cell Envelope and Accumulation of Lipid Inclusions in Clinical Mycobacterium tuberculosis Isolates from Sputum, Oxidative Stress, and Iron Deficiency. Front Microbiol 2018; 8:2681. [PMID: 29379477 PMCID: PMC5770828 DOI: 10.3389/fmicb.2017.02681] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/22/2017] [Indexed: 11/13/2022] Open
Abstract
Introduction: Mycobacteria have several unique cellular characteristics, such as multiple cell envelope layers, elongation at cell poles, asymmetric cell division, and accumulation of intracytoplasmic lipid inclusions, which contributes to their survival under stress conditions. However, the understanding of these characteristics in clinical Mycobacterium tuberculosis (M. tuberculosis) isolates and under host stress is limited. We previously reported the influence of host stress on the cell length distribution in a large set of clinical M. tuberculosis isolates (n = 158). Here, we investigate the influence of host stress on the cellular ultrastructure of few clinical M. tuberculosis isolates (n = 8) from that study. The purpose of this study is to further understand the influence of host stress on the cellular adaptations of clinical M. tuberculosis isolates. Methods: We selected few M. tuberculosis isolates (n = 8) for analyzing the cellular ultrastructure ex vivo in sputum and under in vitro stress conditions by transmission electron microscopy. The cellular adaptations of M. tuberculosis in sputum were correlated with the ultrastructure of antibiotic sensitive and resistant isolates in liquid culture, under oxidative stress, iron deficiency, and exposure to isoniazid. Results: In sputum, M. tuberculosis accumulated intracytoplasmic lipid inclusions. In liquid culture, clinical M. tuberculosis revealed isolate to isolate variation in the extent of intracytoplasmic lipid inclusions, which were absent in the laboratory strain H37Rv. Oxidative stress, iron deficiency, and exposure to isoniazid increased the accumulation of lipid inclusions and decreased the thickness of the cell envelope electron transparent layer in M. tuberculosis cells. Furthermore, intracytoplasmic compartments were observed in iron deficient cells. Conclusion: Our ultrastructural analysis has revealed significant influence of host stress on the cellular adaptations in clinical M. tuberculosis isolates. These adaptations may contribute to the survival of M. tuberculosis under host and antibiotic stress conditions. Variation in the cellular adaptations among clinical M. tuberculosis isolates may correlate with their ability to persist in tuberculosis patients during antibiotic treatment. These observations indicate the need for further analyzing these cellular adaptations in a large set of clinical M. tuberculosis isolates. This will help to determine the significance of these cellular adaptations in the tuberculosis treatment.
Collapse
Affiliation(s)
- Srinivasan Vijay
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hoang T Hai
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Do D A Thu
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Anna Pielach
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Nguyen H Phu
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nguyen T T Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Cardenal-Muñoz E, Barisch C, Lefrançois LH, López-Jiménez AT, Soldati T. When Dicty Met Myco, a (Not So) Romantic Story about One Amoeba and Its Intracellular Pathogen. Front Cell Infect Microbiol 2018; 7:529. [PMID: 29376033 PMCID: PMC5767268 DOI: 10.3389/fcimb.2017.00529] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023] Open
Abstract
In recent years, Dictyostelium discoideum has become an important model organism to study the cell biology of professional phagocytes. This amoeba not only shares many molecular features with mammalian macrophages, but most of its fundamental signal transduction pathways are conserved in humans. The broad range of existing genetic and biochemical tools, together with its suitability for cell culture and live microscopy, make D. discoideum an ideal and versatile laboratory organism. In this review, we focus on the use of D. discoideum as a phagocyte model for the study of mycobacterial infections, in particular Mycobacterium marinum. We look in detail at the intracellular cycle of M. marinum, from its uptake by D. discoideum to its active or passive egress into the extracellular medium. In addition, we describe the molecular mechanisms that both the mycobacterial invader and the amoeboid host have developed to fight against each other, and compare and contrast with those developed by mammalian phagocytes. Finally, we introduce the methods and specific tools that have been used so far to monitor the D. discoideum-M. marinum interaction.
Collapse
Affiliation(s)
- Elena Cardenal-Muñoz
- Department of Biochemistry, Sciences II, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
45
|
Teng O, Ang CKE, Guan XL. Macrophage-Bacteria Interactions-A Lipid-Centric Relationship. Front Immunol 2017; 8:1836. [PMID: 29326713 PMCID: PMC5742358 DOI: 10.3389/fimmu.2017.01836] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/05/2017] [Indexed: 11/13/2022] Open
Abstract
Macrophages are professional phagocytes at the front line of immune defenses against foreign bodies and microbial pathogens. Various bacteria, which are responsible for deadly diseases including tuberculosis and salmonellosis, are capable of hijacking this important immune cell type and thrive intracellularly, either in the cytoplasm or in specialized vacuoles. Tight regulation of cellular metabolism is critical in shaping the macrophage polarization states and immune functions. Lipids, besides being the bulk component of biological membranes, serve as energy sources as well as signaling molecules during infection and inflammation. With the advent of systems-scale analyses of genes, transcripts, proteins, and metabolites, in combination with classical biology, it is increasingly evident that macrophages undergo extensive lipid remodeling during activation and infection. Each bacterium species has evolved its own tactics to manipulate host metabolism toward its own advantage. Furthermore, modulation of host lipid metabolism affects disease susceptibility and outcome of infections, highlighting the critical roles of lipids in infectious diseases. Here, we will review the emerging roles of lipids in the complex host-pathogen relationship and discuss recent methodologies employed to probe these versatile metabolites during the infection process. An improved understanding of the lipid-centric nature of infections can lead to the identification of the Achilles' heel of the pathogens and host-directed targets for therapeutic interventions. Currently, lipid-moderating drugs are clinically available for a range of non-communicable diseases, which we anticipate can potentially be tapped into for various infections.
Collapse
Affiliation(s)
- Ooiean Teng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Candice Ke En Ang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
46
|
Nolan SJ, Fu MS, Coppens I, Casadevall A. Lipids Affect the Cryptococcus neoformans-Macrophage Interaction and Promote Nonlytic Exocytosis. Infect Immun 2017; 85:e00564-17. [PMID: 28947642 PMCID: PMC5695111 DOI: 10.1128/iai.00564-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022] Open
Abstract
Many microbes exploit host cellular lipid droplets during the host-microbe interaction, but this phenomenon has not been extensively studied for fungal pathogens. In this study, we analyzed the role of lipid droplets during the interaction of Cryptococcus neoformans with macrophages in the presence and the absence of exogenous lipids, in particular, oleate. The addition of oleic acid increased the frequency of lipid droplets in both C. neoformans and macrophages. C. neoformans responded to oleic acid supplementation by faster growth inside and outside macrophages. Fungal cells were able to harvest lipids from macrophage lipid droplets. Supplementation of C. neoformans and macrophages with oleic acid significantly increased the rate of nonlytic exocytosis while having no effect on lytic exocytosis. The process for lipid modulation of nonlytic exocytosis was associated with actin changes in macrophages. In summary, C. neoformans harvests lipids from macrophages, and the C. neoformans-macrophage interaction is modulated by exogenous lipids, providing a new tool for studying nonlytic exocytosis.
Collapse
Affiliation(s)
- Sabrina J Nolan
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Sprenger M, Kasper L, Hensel M, Hube B. Metabolic adaptation of intracellular bacteria and fungi to macrophages. Int J Med Microbiol 2017; 308:215-227. [PMID: 29150190 DOI: 10.1016/j.ijmm.2017.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/21/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
The mature phagosome of macrophages is a hostile environment for the vast majority of phagocytosed microbes. In addition to active destruction of the engulfed microbes by antimicrobial compounds, restriction of essential nutrients in the phagosomal compartment contributes to microbial growth inhibition and killing. However, some pathogenic microorganisms have not only developed various strategies to efficiently withstand or counteract antimicrobial activities, but also to acquire nutrients within macrophages for intracellular replication. Successful intracellular pathogens are able to utilize host-derived amino acids, carbohydrates and lipids as well as trace metals and vitamins during intracellular growth. This requires sophisticated strategies such as phagosome modification or escape, efficient nutrient transporters and metabolic adaptation. In this review, we discuss the metabolic adaptation of facultative intracellular bacteria and fungi to the intracellular lifestyle inside macrophages.
Collapse
Affiliation(s)
- Marcel Sprenger
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Michael Hensel
- Division of Microbiology, University Osnabrück, Osnabrück, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany; Friedrich Schiller University, Jena, Germany; Center for Sepsis Control and Care, University Hospital, Jena, Germany.
| |
Collapse
|