1
|
Ravindran S, Rau CD. The multifaceted role of mitochondria in cardiac function: insights and approaches. Cell Commun Signal 2024; 22:525. [PMID: 39472951 PMCID: PMC11523909 DOI: 10.1186/s12964-024-01899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Cardiovascular disease (CVD) remains a global economic burden even in the 21st century with 85% of deaths resulting from heart attacks. Despite efforts in reducing the risk factors, and enhancing pharmacotherapeutic strategies, challenges persist in early identification of disease progression and functional recovery of damaged hearts. Targeting mitochondrial dysfunction, a key player in the pathogenesis of CVD has been less successful due to its role in other coexisting diseases. Additionally, it is the only organelle with an agathokakological function that is a remedy and a poison for the cell. In this review, we describe the origins of cardiac mitochondria and the role of heteroplasmy and mitochondrial subpopulations namely the interfibrillar, subsarcolemmal, perinuclear, and intranuclear mitochondria in maintaining cardiac function and in disease-associated remodeling. The cumulative evidence of mitochondrial retrograde communication with the nucleus is addressed, highlighting the need to study the genotype-phenotype relationships of specific organelle functions with CVD by using approaches like genome-wide association study (GWAS). Finally, we discuss the practicality of computational methods combined with single-cell sequencing technologies to address the challenges of genetic screening in the identification of heteroplasmy and contributory genes towards CVD.
Collapse
Affiliation(s)
- Sriram Ravindran
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA
| | - Christoph D Rau
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA.
| |
Collapse
|
2
|
Yang X, Bu X, Li Y, Shen R, Duan Y, Shi H, Kong X, Zhang L. Differential regulation of physicochemical properties and myofibrillar protein degradation of yak meat by interactions between reactive oxygen species and reactive nitrogen species during postmortem aging. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39268748 DOI: 10.1002/jsfa.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND This study aimed to explore how interactions between reactive oxygen species (ROS) and reactive nitrogen species (RNS) affect oxidative properties, nitrosative properties, and myofibrillar protein degradation during postmortem aging of yak meat. RESULTS Yak longissimus dorsi was incubated with saline, ROS activator (H2O2)/inhibitor N-Acetyl-L-cysteine (NAC) and RNS activator S-Nitrosoglutathione (GSNO)/inhibitor L-NAME hydrochloride (L-NAME) combined treatments at 4 °C for 12, 24, 72, 120, and 168 h. The results indicated that regardless of whether RNS was activated or inhibited, activated ROS played a dominant role in myofibrillar protein degradation by oxidative modification to increase carbonyl content, disulfide bonds, surface hydrophobicity, and dimerized tyrosine while decreasing sulfhydryl content, thereby degrading nebulin, titin, troponin-t and desmin. Notably, the Warner-Bratzler shear force (WBSF) of the H2O2 + L-NAME group was the smallest, whereas that of the NAC + GSNO group was smaller than that of the NAC + L-NAME group. CONCLUSION These findings provide new insights into meat tenderization patterns through the interaction between ROS and RNS. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xue Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xinrong Bu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yiheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ruheng Shen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yufeng Duan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Hongmei Shi
- Gansu Gannan Animal Husbandry and Veterinary Workstation, Gannan, China
| | - Xiangying Kong
- Qinghai Haibei Animal Husbandry and Veterinary Science Research Institute, Haibei, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Yang X, Bu X, Li Y, Shen R, Duan Y, Liu M, Ma X, Guo Z, Chen C, He L, Shi H, Kong X, Zhang L. Effects of oxidative stress and protein S-nitrosylation interactions on mitochondrial pathway apoptosis and tenderness of yak meat during postmortem aging. Food Res Int 2024; 191:114717. [PMID: 39059914 DOI: 10.1016/j.foodres.2024.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
To reveal the interaction of oxidative stress and protein S-nitrosylation on mitochondrial pathway apoptosis and tenderness development in postmortem yak meat. Herein, we selected yak longissimus dorsi muscle as the research object and treated hydrogen peroxide (H2O2) with S-nitrosoglutathione agent (GSNO) as well as Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) in mixed injections with 0.9 % saline as a control group, followed by incubation at 4 °C for 12, 24, 72, 120 and 168 h. Results showed that this interaction significantly increased mitochondrial ROS and NO content (P < 0.05) while weakening the antioxidant capacity of GSH and TRX redox response systems or accelerating the Ca2+ release process, leading to mitochondrial functional impairment and increased apoptosis rate. Notably, the H2O2 + L-NAME group showed more pronounced apoptosis. Hence, we suggest that the interaction between oxidative stress and protein S-nitrosylation could positively regulate yak meat tenderization.
Collapse
Affiliation(s)
- Xue Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xinrong Bu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yiheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruheng Shen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yufeng Duan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Mengying Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaotong Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaobin Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Long He
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongmei Shi
- Gansu Gannan Animal Husbandry and Veterinary Workstation, Gannan 747000, China
| | - Xiangying Kong
- Qinghai Haibei Animal Husbandry and Veterinary Science Research Institute, Haibei 812200, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Sharma P, Sri Swetha Victoria V, Praneeth Kumar P, Karmakar S, Swetha M, Reddy A. Cross-talk between insulin resistance and nitrogen species in hypoxia leads to deterioration of tissue and homeostasis. Int Immunopharmacol 2023; 122:110472. [PMID: 37392570 DOI: 10.1016/j.intimp.2023.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/19/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Hypoxia has been linked with insulin resistance as it produces changes in the metabolism of the cell; in which the adipocytes impede the insulin receptor tyrosine, phosphorylation, directing at decreased levels of transport of glucose. At this juncture, we are focusing on cross-talk between insulin resistance and nitrogen species in hypoxia, leading to the deterioration of tissue and homeostasis. Physiological levels of nitric oxide play a very crucial role in acting as a priority effector and signaling molecule, arbitrating the body's responses to hypoxia. Both ROS and RNS are associated with a reduction in IRS1 phosphorylation in tyrosine, which leads to reduced levels of IRS1 content and insulin response, which further leads to insulin resistance. Cellular hypoxia is a trigger to inflammatory mediators which signal tissue impairment and initiate survival requirements. But, hypoxia-mediated inflammation act as a protective role by an immune response and promotes wound healing during infection. In this review, we abridge the crosstalk between the inflammation and highlight the dysregulation in physiological consequences due to diabetes mellitus. Finally, we review various treatments available for its related physiological complications.
Collapse
Affiliation(s)
- Priyanshy Sharma
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - V Sri Swetha Victoria
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - P Praneeth Kumar
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - Sarbani Karmakar
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - Mudduluru Swetha
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - Amala Reddy
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India.
| |
Collapse
|
5
|
Saha I, Ghosh A, Dolui D, Fujita M, Hasanuzzaman M, Adak MK. Differential Impact of Nitric Oxide and Abscisic Acid on the Cellular and Physiological Functioning of sub1A QTL Bearing Rice Genotype under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11081084. [PMID: 35448812 PMCID: PMC9029218 DOI: 10.3390/plants11081084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 05/13/2023]
Abstract
Hydroponic culture containing 200 mM NaCl was used to induce oxidative stress in seedlings of cultivars initially primed with 1 mM SNP and 10 µM ABA. Exogenous application of sodium nitroprusside (SNP - a nitric oxide donor) and abscisic acid (ABA) was well sensitized more in cv. Swarna Sub1 than cv. Swarna and also reflected in different cellular responses. The major effects of salinity, irrespective of the cultivar, were lowering the water relation, including relative water content and osmotic potential, and decreasing the compatible solutes like alanine, gamma-aminobutyric acid, and glycine betaine. The accumulated polyamines were reduced more in cv. Swarna with a concomitant decrease in photosynthetic reserves. NADP-malic enzyme activity, sucrose accumulation, ascorbate peroxidase, and glutathione S-transferase activities gradually declined under NaCl stress and the catabolizing enzymes like invertase (both wall and cytosolic forms) also declined. On the contrary, plants suffered from oxidative stress through superoxide, hydrogen peroxide, and their biosynthetic enzymes like NADP(H) oxidase. Moderation of Na+/K+ by both SNP and ABA were correlated with other salt sensitivities in the plants. The maximum effects of SNP and ABA were found in the recovery of antioxidation pathways, osmotic tolerance, and carbohydrate metabolism. Findings predict the efficacy of SNP and ABA either independently or cumulatively in overcoming NaCl toxicity in rice.
Collapse
Affiliation(s)
- Indraneel Saha
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 74 1235, India; (I.S.); (A.G.); (D.D.)
| | - Arijit Ghosh
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 74 1235, India; (I.S.); (A.G.); (D.D.)
| | - Debabrata Dolui
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 74 1235, India; (I.S.); (A.G.); (D.D.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
- Correspondence: (M.F.); (M.H.); (M.K.A.)
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
- Correspondence: (M.F.); (M.H.); (M.K.A.)
| | - Malay Kumar Adak
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 74 1235, India; (I.S.); (A.G.); (D.D.)
- Correspondence: (M.F.); (M.H.); (M.K.A.)
| |
Collapse
|
6
|
Penjweini R, Roarke B, Alspaugh G, Link KA, Andreoni A, Mori MP, Hwang PM, Sackett DL, Knutson JR. Intracellular imaging of metmyoglobin and oxygen using new dual purpose probe EYFP-Myoglobin-mCherry. JOURNAL OF BIOPHOTONICS 2022; 15:e202100166. [PMID: 34689421 PMCID: PMC8901566 DOI: 10.1002/jbio.202100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The biological relevance of nitric oxide (NO) and reactive oxygen species (ROS) in signaling, metabolic regulation, and disease treatment has become abundantly clear. The dramatic change in NO/ROS processing that accompanies a changing oxygen landscape calls for new imaging tools that can provide cellular details about both [O2 ] and the production of reactive species. Myoglobin oxidation to the met state by NO/ROS is a known sensor with absorbance changes in the visible range. We previously employed Förster resonance energy transfer to read out the deoxygenation/oxygenation of myoglobin, creating the subcellular [O2 ] sensor Myoglobin-mCherry. We now add the fluorescent protein EYFP to this sensor to create a novel probe that senses both met formation, a proxy for ROS/NO exposure, and [O2 ]. Since both proteins are present in the construct, it can also relieve users from the need to measure fluorescence lifetime, making [O2 ] sensing available to a wider group of laboratories.
Collapse
Affiliation(s)
- Rozhin Penjweini
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| | - Branden Roarke
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| | - Greg Alspaugh
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| | - Katie A. Link
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| | - Alessio Andreoni
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
- Laboratory of Optical Neurophysiology, Department of Biochemistry and Molecular Medicine, University of California Davis, Tupper Hall, Davis, CA 95616
| | - Mateus P. Mori
- Laboratory of Cardiovascular and Cancer Genetics, NHLBI, NIH, Bethesda, MD 20892-1412
| | - Paul M. Hwang
- Laboratory of Cardiovascular and Cancer Genetics, NHLBI, NIH, Bethesda, MD 20892-1412
| | - Dan L. Sackett
- Cytoskeletal Dynamics Group, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda MD, 20892-0924
| | - Jay R. Knutson
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| |
Collapse
|
7
|
Gangwar A, Paul S, Arya A, Ahmad Y, Bhargava K. Altitude acclimatization via hypoxia-mediated oxidative eustress involves interplay of protein nitrosylation and carbonylation: A redoxomics perspective. Life Sci 2021; 296:120021. [PMID: 34626604 DOI: 10.1016/j.lfs.2021.120021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
AIM Hypoxia is an important feature of multiple diseases like cancer and obesity and also an environmental stressor to high altitude travelers. Emerging research suggests the importance of redox signaling in physiological responses transforming the notion of oxidative stress into eustress and distress. However, the behavior of redox protein post-translational modifications (PTMs), and their correlation with stress acclimatization in humans remains sketchy. Scant information exists about modifications in redoxome during physiological exposure to environmental hypoxia. In this study, we investigated redox PTMs, nitrosylation and carbonylation, in context of extended environmental hypoxia exposure. METHODS The volunteers were confirmed to be free of any medical conditions and matched for age and weight. The human global redoxome and the affected networks were investigated using TMT-labeled quantitative proteo-bioinformatics and biochemical assays. The percolator PSM algorithm was used for peptide-spectrum match (PSM) validation in database searches. The FDR for peptide matches was set to 0.01. 1-way ANOVA and Tukey's Multiple Comparison test were used for biochemical assays. p-value<0.05 was considered statistically significant. Three independent experiments (biological replicates) were performed. Results were presented as Mean ± standard error of mean (SEM). KEY FINDINGS This investigation revealed direct and indirect interplay between nitrosylation and carbonylation especially within coagulation and inflammation networks; interlinked redox signaling (via nitrosylation‑carbonylation); and novel nitrosylation and carbonylation sites in individual proteins. SIGNIFICANCE This study elucidates the role of redox PTMs in hypoxia signaling favoring tolerance and survival. Also, we demonstrated direct and indirect interplay between nitrosylation and carbonylation is crucial to extended hypoxia tolerance.
Collapse
Affiliation(s)
- Anamika Gangwar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Subhojit Paul
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Aditya Arya
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Yasmin Ahmad
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India.
| | - Kalpana Bhargava
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India.
| |
Collapse
|
8
|
Gangwar A, Paul S, Ahmad Y, Bhargava K. Intermittent hypoxia modulates redox homeostasis, lipid metabolism associated inflammatory processes and redox post-translational modifications: Benefits at high altitude. Sci Rep 2020; 10:7899. [PMID: 32404929 PMCID: PMC7220935 DOI: 10.1038/s41598-020-64848-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/09/2020] [Indexed: 01/27/2023] Open
Abstract
Intermittent hypoxia, initially associated with adverse effects of sleep apnea, has now metamorphosed into a module for improved sports performance. The regimen followed for improved sports performance is milder intermittent hypoxic training (IHT) as compared to chronic and severe intermittent hypoxia observed in sleep apnea. Although several studies have indicated the mechanism and enough data on physiological parameters altered by IH is available, proteome perturbations remain largely unknown. Altitude induced hypobaric hypoxia is known to require acclimatization as it causes systemic redox stress and inflammation in humans. In the present study, a short IHT regimen consisting of previously reported physiologically beneficial FIO2 levels of 13.5% and 12% was administered to human subjects. These subjects were then airlifted to altitude of 3500 m and their plasma proteome along with associated redox parameters were analyzed on days 4 and 7 of high altitude stay. We observed that redox stress and associated post-translational modifications, perturbed lipid metabolism and inflammatory signaling were induced by IHT exposure at Baseline. However, this caused activation of antioxidants, energy homeostasis mechanisms and anti-inflammatory responses during subsequent high-altitude exposure. Thus, we propose IHT as a beneficial non-pharmacological intervention that benefits individuals venturing to high altitude areas.
Collapse
Affiliation(s)
- Anamika Gangwar
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Subhojit Paul
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Yasmin Ahmad
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Kalpana Bhargava
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
9
|
R. Babu K, Tay Y. The Yin-Yang Regulation of Reactive Oxygen Species and MicroRNAs in Cancer. Int J Mol Sci 2019; 20:ijms20215335. [PMID: 31717786 PMCID: PMC6862169 DOI: 10.3390/ijms20215335] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/17/2023] Open
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen-containing chemical species formed as a by-product of normal aerobic respiration and also from a number of other cellular enzymatic reactions. ROS function as key mediators of cellular signaling pathways involved in proliferation, survival, apoptosis, and immune response. However, elevated and sustained ROS production promotes tumor initiation by inducing DNA damage or mutation and activates oncogenic signaling pathways to promote cancer progression. Recent studies have shown that ROS can facilitate carcinogenesis by controlling microRNA (miRNA) expression through regulating miRNA biogenesis, transcription, and epigenetic modifications. Likewise, miRNAs have been shown to control cellular ROS homeostasis by regulating the expression of proteins involved in ROS production and elimination. In this review, we summarized the significance of ROS in cancer initiation, progression, and the regulatory crosstalk between ROS and miRNAs in cancer.
Collapse
Affiliation(s)
- Kamesh R. Babu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence: ; Tel.: +65-6516-7756
| |
Collapse
|
10
|
Sandalio LM, Gotor C, Romero LC, Romero-Puertas MC. Multilevel Regulation of Peroxisomal Proteome by Post-Translational Modifications. Int J Mol Sci 2019; 20:E4881. [PMID: 31581473 PMCID: PMC6801620 DOI: 10.3390/ijms20194881] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
Peroxisomes, which are ubiquitous organelles in all eukaryotes, are highly dynamic organelles that are essential for development and stress responses. Plant peroxisomes are involved in major metabolic pathways, such as fatty acid β-oxidation, photorespiration, ureide and polyamine metabolism, in the biosynthesis of jasmonic, indolacetic, and salicylic acid hormones, as well as in signaling molecules such as reactive oxygen and nitrogen species (ROS/RNS). Peroxisomes are involved in the perception of environmental changes, which is a complex process involving the regulation of gene expression and protein functionality by protein post-translational modifications (PTMs). Although there has been a growing interest in individual PTMs in peroxisomes over the last ten years, their role and cross-talk in the whole peroxisomal proteome remain unclear. This review provides up-to-date information on the function and crosstalk of the main peroxisomal PTMs. Analysis of whole peroxisomal proteomes shows that a very large number of peroxisomal proteins are targeted by multiple PTMs, which affect redox balance, photorespiration, the glyoxylate cycle, and lipid metabolism. This multilevel PTM regulation could boost the plasticity of peroxisomes and their capacity to regulate metabolism in response to environmental changes.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| | - Cecilia Gotor
- Institute of Plant Biochemistry and Photosynthesis, CSIC and the University of Seville, 41092 Seville, Spain.
| | - Luis C Romero
- Institute of Plant Biochemistry and Photosynthesis, CSIC and the University of Seville, 41092 Seville, Spain.
| | - Maria C Romero-Puertas
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| |
Collapse
|
11
|
Neuroprotective Effect of DAHP via Antiapoptosis in Cerebral Ischemia. Behav Neurol 2018; 2018:5050469. [PMID: 30018670 PMCID: PMC6029460 DOI: 10.1155/2018/5050469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/18/2018] [Accepted: 05/13/2018] [Indexed: 11/17/2022] Open
Abstract
Aberrant production of nitric oxide following inducible nitric oxide synthase (iNOS) expression has been implicated in cell death and contributes to ischemic brain injury. Tetrahydrobiopterin (BH4) is an essential cofactor of NOS activity. Herein, we evaluated antiapoptotic and anti-inflammatory effects of diamino-6-hydroxypyrimidine (DAHP), a guanosine 5'-triphosphate cyclohydrolase 1 (GTPCH1) inhibitor on focal cerebral ischemia-reperfusion injury by middle cerebral artery occlusion and reperfusion (MCAO) and investigated the underlying mechanism. Sprague-Dawley rats were divided into five groups. Experimental groups were subjected to 1.5 h transient MCAO. T2-weighted imaging was performed to evaluate brain edema lesions in the stroke rats. Infarct volume was estimated by 2,3,5-triphenyltetrazolium chloride (TTC) staining after 24 h reperfusion. Western blotting and immunohistochemistry were performed to detect iNOS, caspase-3, Bcl-2, COX-2, and TNF-α protein expressions. Apoptosis was determined by TUNEL staining. T2 hyperintensity changes were observed in primary ischemic region. DAHP pretreatment significantly suppressed iNOS overexpression, caspase-3, and TNF-α. There was also attenuation of neuronal apoptosis with decrement in proteins Bcl-2 and COX-2 expressions. On the basis of our results, we hypothesize DAHP to have a neuroprotective function against focal cerebral ischemia and might attenuate brain injury by decreasing reactive oxygen species (ROS) production, subsequently inhibiting apoptosis.
Collapse
|