1
|
Russell B, Rogers A, Yoder R, Kurilich M, Krishnamurthi VR, Chen J, Wang Y. Silver Ions Inhibit Bacterial Movement and Stall Flagellar Motor. Int J Mol Sci 2023; 24:11704. [PMID: 37511461 PMCID: PMC10381017 DOI: 10.3390/ijms241411704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Silver (Ag) in different forms has been gaining broad attention due to its antimicrobial activities and the increasing resistance of bacteria to commonly prescribed antibiotics. However, various aspects of the antimicrobial mechanism of Ag have not been understood, including how Ag affects bacterial motility, a factor intimately related to bacterial virulence. Here, we report our study on how Ag+ ions affect the motility of E. coli bacteria using swimming, tethering, and rotation assays. We observed that the bacteria slowed down dramatically by >70% when subjected to Ag+ ions, providing direct evidence that Ag+ ions inhibit the motility of bacteria. In addition, through tethering and rotation assays, we monitored the rotation of flagellar motors and observed that the tumbling/pausing frequency of bacteria increased significantly by 77% in the presence of Ag+ ions. Furthermore, we analyzed the results from the tethering assay using the hidden Markov model (HMM) and found that Ag+ ions decreased bacterial tumbling/pausing-to-running transition rate significantly by 75%. The results suggest that the rotation of bacterial flagellar motors was stalled by Ag+ ions. This work provided a new quantitative understanding of the mechanism of Ag-based antimicrobial agents in bacterial motility.
Collapse
Affiliation(s)
- Benjamin Russell
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ariel Rogers
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ryan Yoder
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Matthew Kurilich
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Jingyi Chen
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yong Wang
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR 72701, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
2
|
Abbasian F, Ghafar-Zadeh E, Magierowski S. Microbiological Sensing Technologies: A Review. Bioengineering (Basel) 2018; 5:E20. [PMID: 29498670 PMCID: PMC5874886 DOI: 10.3390/bioengineering5010020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Microorganisms have a significant influence on human activities and health, and consequently, there is high demand to develop automated, sensitive, and rapid methods for their detection. These methods might be applicable for clinical, industrial, and environmental applications. Although different techniques have been suggested and employed for the detection of microorganisms, and the majority of these methods are not cost effective and suffer from low sensitivity and low specificity, especially in mixed samples. This paper presents a comprehensive review of microbiological techniques and associated challenges for bioengineering researchers with an engineering background. Also, this paper reports on recent technological advances and their future prospects for a variety of microbiological applications.
Collapse
Affiliation(s)
- Firouz Abbasian
- Biologically Inspired Sensors and Actuators Laboratory, Department of EECS, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory, Department of EECS, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
| | - Sebastian Magierowski
- Biologically Inspired Sensors and Actuators Laboratory, Department of EECS, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
3
|
Ouerghi O, Diouani MF, Belkacem A, Elsanousi A, Jaffrezic-Renault N. Adjunction of Avidin to a Cysteamine Self-Assembled Monolayer for Impedimetric Immunosensor. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jbnb.2016.71001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Shin HJ, Lim WK. Comparative evaluation of an electrochemical bioreporter for detecting phenolic compounds. Prep Biochem Biotechnol 2014; 46:71-7. [DOI: 10.1080/10826068.2014.979207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Cho JH, Lee DY, Lim WK, Shin HJ. A RECOMBINANTEscherichia coliBIOSENSOR FOR DETECTING POLYCYCLIC AROMATIC HYDROCARBONS IN GAS AND AQUEOUS PHASES. Prep Biochem Biotechnol 2014; 44:849-60. [DOI: 10.1080/10826068.2014.887577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Holzinger M, Le Goff A, Cosnier S. Supramolecular immobilization of bio-entities for bioelectrochemical applications. NEW J CHEM 2014. [DOI: 10.1039/c4nj00755g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular systems based on host-guest, electrostatic, or metal-ligand interaction and their use in bioelectrochemical applications are reviewed.
Collapse
Affiliation(s)
| | - Alan Le Goff
- Univ. Grenoble Alpes - CNRS
- DCM UMR 5250
- F-38000 Grenoble, France
| | - Serge Cosnier
- Univ. Grenoble Alpes - CNRS
- DCM UMR 5250
- F-38000 Grenoble, France
| |
Collapse
|
7
|
Shin HJ. Agarose-gel-immobilized recombinant bacterial biosensors for simple and disposable on-site detection of phenolic compounds. Appl Microbiol Biotechnol 2011; 93:1895-904. [DOI: 10.1007/s00253-011-3700-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 10/19/2011] [Accepted: 11/01/2011] [Indexed: 10/15/2022]
|
8
|
Cheng Y, Luo X, Tsao CY, Wu HC, Betz J, Payne GF, Bentley WE, Rubloff GW. Biocompatible multi-address 3D cell assembly in microfluidic devices using spatially programmable gel formation. LAB ON A CHIP 2011; 11:2316-2318. [PMID: 21629950 DOI: 10.1039/c1lc20306a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Programmable 3D cell assembly under physiological pH conditions is achieved using electrodeposited stimuli-responsive alginate gels in a microfluidic device, with parallel sidewall electrodes enabling direct observation of the cell assembly. Electrically triggered assembly and subsequent viability of mammalian cells is demonstrated, along with spatially programmable, multi-address assembly of different strains of E. coli cells. Our approach enables in vitro study of dynamic cellular and inter-cellular processes, from cell growth and stimulus/response to inter-colony and inter-species signaling.
Collapse
Affiliation(s)
- Yi Cheng
- Institute for Systems Research (ISR), University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
We chemically immobilized live, motile Escherichia coli on micrometer-scale, photocatalytically patterned silicon surfaces via amine- and carboxylic acid-based chemistries. Immobilization facilitated (i) controlled positioning; (ii) high resolution cell wall imaging via atomic force microscopy (AFM); and (iii) chemical analysis with time-of-flight-secondary ion mass spectrometry (ToF-SIMS). Spinning motion of tethered bacteria, captured with fast-acquisition video, proved microbe viability. We expect our protocols to open new experimental doors for basic and applied studies of microorganisms, from host-pathogen relationships, to microbial forensics and drug discovery, to biosensors and biofuel cell optimization.
Collapse
|
10
|
Surface plasmon resonance assay for real-time monitoring of somatic coliphages in wastewaters. Appl Environ Microbiol 2008; 74:4054-8. [PMID: 18469134 DOI: 10.1128/aem.02806-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The surface plasmon resonance (SPR) technique is a well-established method for the measurement of molecules binding to surfaces and the quantification of binding constants between surface-immobilized proteins and proteins in solution. In this paper we describe an extension of the methodology to study bacteriophage-bacterium interactions. A two-channel microfluidic SPR sensor device was used to detect the presence of somatic coliphages, a group of bacteriophages that have been proposed as fecal pollution indicators in water, using their host, Escherichia coli WG5, as a target for their selective detection. The bacterium, E. coli WG5, was immobilized on gold sensor chips using avidin-biotin and bacteriophages extracted from wastewater added. The initial binding of the bacteriophage was observed at high concentrations, and a separate, time-delayed cell lysis event also was observed, which was sensitive to bacteriophage at low concentrations. As few as 1 PFU/ml of bacteriophage injected into the chamber could be detected after a phage incubation period of 120 min, which equates to an approximate limit of detection of around 10(2) PFU/ml. The bacteriophage-bacterium interaction appeared to cause a structural change in the surface-bound bacteria, possibly due to collapse of the cell, which was observed as an increase in mass density on the sensor chip. These results suggest that this methodology could be employed for future biosensor technologies and for quantification of the bacteriophage concentration.
Collapse
|
11
|
Barhoumi H, Maaref A, Cosnier S, Martelet C, Jaffrezic-Renault N. Urease immobilization on biotinylated polypyrrole coated ChemFEC devices for urea biosensor development. Ing Rech Biomed 2008. [DOI: 10.1016/j.rbmret.2007.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Lange U, Roznyatovskaya NV, Mirsky VM. Conducting polymers in chemical sensors and arrays. Anal Chim Acta 2008; 614:1-26. [PMID: 18405677 DOI: 10.1016/j.aca.2008.02.068] [Citation(s) in RCA: 403] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 02/22/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
Abstract
The review covers main applications of conducting polymers in chemical sensors and biosensors. The first part is focused on intrinsic and induced receptor properties of conducting polymers, such as pH sensitivity, sensitivity to inorganic ions and organic molecules as well as sensitivity to gases. Induced receptor properties can be also formed by molecularly imprinted polymerization or by immobilization of biological receptors. Immobilization strategies are reviewed in the second part. The third part is focused on applications of conducting polymers as transducers and includes usual optical (fluorescence, SPR, etc.) and electrical (conductometric, amperometric, potentiometric, etc.) transducing techniques as well as organic chemosensitive semiconductor devices. An assembly of stable sensing structures requires strong binding of conducting polymers to solid supports. These aspects are discussed in the next part. Finally, an application of combinatorial synthesis and high-throughput analysis to the development and optimization of sensing materials is described.
Collapse
Affiliation(s)
- Ulrich Lange
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | | | | |
Collapse
|
13
|
|
14
|
Mercey E, Grosjean L, Roget A, Livache T. Surface plasmon resonance imaging on polypyrrole protein chips: application to streptavidin immobilization and immunodetection. Methods Mol Biol 2007; 385:159-175. [PMID: 18365711 DOI: 10.1007/978-1-59745-426-1_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Initially developed for the construction of DNA chips, the polypyrrole approach has been extended to other biochemical compounds (mainly proteins and oligosaccharides). This method allows one to copolymerize a pyrrole monomer with a biomolecule bearing a pyrrole group; this reaction is based on an electrochemical process allowing a very fast coupling of the biomolecule (probe) to a gold layer used as a working electrode. Fluorescence-based detection processes are classically used for evidence biorecognition on biochips; in order to avoid the labeling of the targets, we propose an alternative method--surface plasmon resonance imaging (SPRi). Surface plasmon resonance (SPR) is a typical label-free method for real-time detection of the binding of biological molecules onto functionalized surfaces. This surface-sensitive optical method is based upon evanescent wave sensing on a thin metal layer. The SPR approach described herein is performed in an imaging geometry that allows simultaneous monitoring of biorecognition reactions occurring on an array of immobilized probes (chip). In a SPRi experiment, local changes in reflectivity are recorded with a charge-coupled device (CCD) camera and are exploited to monitor up to 100 different biological reactions occurring on the molecules linked to the polypyrrole matrix. This method will be applied to protein recognition.
Collapse
Affiliation(s)
- Emilie Mercey
- CEA Grenoble, Département de Recherche Fondamentale sur la matière condensée, France
| | | | | | | |
Collapse
|
15
|
Electrochemical immunoassay of estrone at an antibody-modified conducting polymer electrode towards immunobiosensors. J Electroanal Chem (Lausanne) 2006. [DOI: 10.1016/j.jelechem.2006.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Zacco E, Pividori MI, Alegret S. Electrochemical biosensing based on universal affinity biocomposite platforms. Biosens Bioelectron 2006; 21:1291-301. [PMID: 16098736 DOI: 10.1016/j.bios.2005.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 05/25/2005] [Accepted: 05/26/2005] [Indexed: 10/25/2022]
Abstract
Rigid conducting biocomposites are versatile and effective transducing materials for the construction of a wide range of amperometric biosensors such as immunosensors, genosensors and enzymosensors, particularly if the transducer is bulk-modified with universal affinity biomolecules. The strept(avidin)-graphite-epoxy biocomposite could be considered as an universal immobilization platform whereon biotinylated DNAs, oligonucleotides, enzymes or antibodies can be captured by means of the highly affinity (strept)avidin-biotin reaction. Universal affinity biocomposite-based biosensors offer many potential advantages compared to more traditional electrochemical biosensors commonly based on a biologically surface-modified transducer. The integration of many materials into one matrix is their main advantage. As biological bulk-modified materials, the conducting biocomposites act not only as transducers, but also as reservoir for the biomaterial. After its use, the electrode surface can be renewed by a simple polishing procedure, establishing a clear advantage of these approaches relative to classical biosensors and other common biological assays. Moreover, the same material is useful for the analysis of many molecules whose determinations are based on genetic, enzymatic or immunological reactions. The different strategies for electrochemical genosensing, immunosensing and enzymosensing, all of them being dependent on the presence of a redox enzyme marker for the generation of the electrochemical signal, based on this universal affinity biocomposite platform are all presented and discussed.
Collapse
Affiliation(s)
- E Zacco
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | | | | |
Collapse
|
17
|
|
18
|
Inoue H, Anzai JI. Stimuli-sensitive thin films prepared by a layer-by-layer deposition of 2-iminobiotin-labeled poly(ethyleneimine) and avidin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:8354-9. [PMID: 16114942 DOI: 10.1021/la0508341] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Layered thin films composed of avidin and 2-iminobiotin-labeled poly(ethyleneimine) (ib-PEI) were prepared by a layer-by-layer deposition of avidin and ib-PEI on a solid surface, and the disintegration induced by changing environmental pH and adding biotin in the solution was studied. The avidin/ib-PEI layered film could be deposited only from the solutions of pH 10-12. The film did not form in pH 9 or more acidic media because of a low affinity of protonated 2-iminobiotin residues in ib-PEI to avidin. The avidin/ib-PEI layered films were stable in pH 8-12 solutions, while in pH 5-7 media the film decomposed spontaneously as a result of the protonation to 2-iminobiotin residues in ib-PEI. The avidin/ib-PEI films were disintegrated also upon addition of biotin and analogues in the solution owing to the preferential binding of biotin or analogues to the binding site of avidin. The decomposition rate was arbitrarily controlled by changing the type of stimulant (biotin or analogues) and its concentration. The avidin/ib-PEI films were disintegrated rapidly by addition of 10(-)(5) M of biotin or desthiobiotin, while the rate was slower upon adding the same concentration of lipoic acid or 2-(4'-hydroxyphenylazo)benzoic acid. On the other hand, the film was fully decomposed within 1 min in the 10(-)(3) M lipoic acid or 2-(4'-hydroxyphenylazo)benzoic acid solution. Thus, the decomposition rate is highly dependent on the concentration of the stimulants. It was observed that the stimuli-induced decomposition of the films is slow at pH 12, in contrast to a rapid decomposition in pH 8 medium due to a low affinity of the protonated 2-iminobiotin to avidin. The present system may be useful for constructing stimuli-sensitive devices that can release drug or other functional molecules.
Collapse
Affiliation(s)
- Hiroyuki Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Arammaki, Aoba-ku, Sendai 980-8578, Japan
| | | |
Collapse
|
19
|
Evans SA, Brakha K, Billon M, Mailley P, Denuault G. Scanning electrochemical microscopy (SECM): localized glucose oxidase immobilization via the direct electrochemical microspotting of polypyrrole–biotin films. Electrochem commun 2005. [DOI: 10.1016/j.elecom.2004.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
20
|
Dubois MP, Gondran C, Renaudet O, Dumy P, Driguez H, Fort S, Cosnier S. Electrochemical detection of Arachis hypogaea(peanut) agglutinin binding to monovalent and clustered lactosyl motifs immobilized on a polypyrrole film. Chem Commun (Camb) 2005:4318-20. [PMID: 16113734 DOI: 10.1039/b506699a] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct detection of peanut agglutinin/lactose interactions was realized by an electrochemical approach based on a polypyrrole coated electrode displaying pendant carbohydrates.
Collapse
Affiliation(s)
- Marie-Pierre Dubois
- Centre de Recherches sur les Macromolécules Végétales (CERMAV), Institut de Chimie Moléculaire de Grenoble FR-CNRS 2607, BP 53, F-38041 Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Cosnier S, Mousty C, de?Melo J, Lepellec A, Novoa A, Polyak B, Marks R. Organic Phase PPO Biosensors Prepared by Multilayer Deposition of Enzyme and Alginate Through Avidin-Biotin Interactions. ELECTROANAL 2004. [DOI: 10.1002/elan.200303084] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Haddour N, Cosnier S, Gondran C. Electrogeneration of a biotinylated poly(pyrrole–ruthenium(ii)) film for the construction of photoelectrochemical immunosensor. Chem Commun (Camb) 2004:2472-3. [PMID: 15514821 DOI: 10.1039/b410727f] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A biotinylated photosensitive polymer was electrogenerated from on a ruthenium complex bearing biotin and pyrrole groups; the resulting polypyrrolic film allowed the bioaffine immobilisation of avidin and biotinylated cholera toxin and the photoelectrochemical detection of the corresponding antibody.
Collapse
Affiliation(s)
- Naoufel Haddour
- Laboratoire d'Electrochimie Organique et de Photochimie Rèdox, Institut de Chimie Moléculaire de Grenoble FR CNRS 2607, Université Joseph Fourier BP 53, 38041 Grenoble cedex9, France
| | | | | |
Collapse
|