1
|
Ren Q, Guo X, Yang D, Zhao C, Zhang X, Xia X. A wide survey of heavy metals-induced in-vitro DNA replication stress characterized by rate-limited replication. Curr Res Toxicol 2024; 6:100152. [PMID: 38327637 PMCID: PMC10848000 DOI: 10.1016/j.crtox.2024.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Heavy metals (HMs) are environmental pollutants that pose a threat to human health and have been accepted to cause various diseases, including cancer and developmental disorders. DNA replication stress has been identified to be associated with such diseases. However, the effect of HMs exclusively on DNA replication stress is still not well understood. In this study, DNA replication stress induced by thirteen HMs was assessed using a simplified in-vitro DNA replication model. Two parameters, Cte/Ctc reflecting the cycle threshold value alteration and Ke/Kc reflecting the linear phase slope change, were calculated based on the DNA replication amplification curve to evaluate the rate of exponential and linear phases. These parameters were used to detect the replication rate reflecting in-vitro DNA replication stress induced by tested HMs. According to the effective concentrations and rate-limiting degree, HMs were ranked as follows: Hg, Ce > Pb > Zn > Cr > Cd > Co > Fe > Mn, Cu, Bi, Sr, Ni. Additionally, EDTA could relieve the DNA replication stress induced by some HMs. In conclusion, this study highlights the potential danger of HMs themselves on DNA replication and provides new insight into the possible links between HMs and DNA replication-related diseases.
Collapse
Affiliation(s)
- Qidong Ren
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xuejun Guo
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Dong Yang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Chuanfang Zhao
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangyuan Zhang
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Yılmaz H, Kalefetoğlu Macar T, Macar O, Çavuşoğlu K, Yalçın E. DNA fragmentation, chromosomal aberrations, and multi-toxic effects induced by nickel and the modulation of Ni-induced damage by pomegranate seed extract in Allium cepa L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110826-110840. [PMID: 37794225 DOI: 10.1007/s11356-023-30193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
This study was designed to assess the recovery effect of pomegranate seed extract (PSEx) against nickel (Ni)-induced damage in Allium cepa. Except for the control group treated with tap water, five experimental groups were exposed to 265 mg L-1 PSEx, 530 mg L-1 PSEx, 1 mg L-1 NiCI2, 265 mg L-1 PSEx + 1 mg L-1 NiCI2, and 530 mg L-1 PSEx + 1 mg L-1 NiCI2, respectively. The toxicity of Ni was examined through the analysis of physiological (germination percentage, weight gain, and root length), cytotoxicity (mitotic index), genotoxicity (micronucleus, chromosomal anomalies, and Comet test), and biochemical (malondialdehyde, proline, chlorophyll a and chlorophyll b contents, the activities of superoxide dismutase and catalase) parameters. Meristematic cell defects were also investigated. The NiCl2-DNA interaction was evaluated through spectral shift analysis. Values of all physiological parameters, mitotic index scores, and chlorophyll contents decreased while micronucleus frequency, DNA tail percentage, chromosomal anomalies, proline, MDA, and enzyme activities increased following Ni administration. According to the tail DNA percentage scale, Ni application caused "high damage" to DNA. Ni-induced chromosomal anomalies were fragment, sticky chromosome, vagrant chromosome, bridge, unbalanced chromatin distribution, reverse polarization, and nucleus with bud. NiCl2-DNA interaction caused a hyperchromic shift in the UV/Vis spectrum of DNA by spectral profile analysis. Ni exposure impaired root meristems as evidenced by the formation of epidermis cell damage, flattened cell nucleus, thickened cortex cell wall, and blurry vascular tissue. Substantial recovery was seen in all parameters with the co-administration of PSEx and Ni. Recovery effects in the parameters were 18-51% and 41-84% in the 265 mg L-1 PSEx + 1 mg L-1 NiCI2 and 530 mg L-1 PSEx + 1 mg L-1 NiCI2 groups, respectively. The Comet scale showed that PSEx applied with Ni reduced DNA damage from "high" to "moderate." Ni-induced thickened cortex cell wall and blurry vascular tissue damage disappeared completely when 530 mg L-1 PSEx was mixed with Ni. PSEx successfully reduced the negative effects of Ni, which can be attributed to its content of antioxidants and bioactive ingredients.
Collapse
Affiliation(s)
- Hüseyin Yılmaz
- Department of Biology, Faculty of Science and Art, Giresun University, 28049, Giresun, Türkiye
| | - Tuğçe Kalefetoğlu Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, 28400, Giresun, Türkiye.
| | - Oksal Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, 28400, Giresun, Türkiye
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, 28049, Giresun, Türkiye
| | - Emine Yalçın
- Department of Biology, Faculty of Science and Art, Giresun University, 28049, Giresun, Türkiye
| |
Collapse
|
3
|
Three-dimensional electron ptychography of organic-inorganic hybrid nanostructures. Nat Commun 2022; 13:4787. [PMID: 35970924 PMCID: PMC9378626 DOI: 10.1038/s41467-022-32548-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Three dimensional scaffolded DNA origami with inorganic nanoparticles has been used to create tailored multidimensional nanostructures. However, the image contrast of DNA is poorer than those of the heavy nanoparticles in conventional transmission electron microscopy at high defocus so that the biological and non-biological components in 3D scaffolds cannot be simultaneously resolved using tomography of samples in a native state. We demonstrate the use of electron ptychography to recover high contrast phase information from all components in a DNA origami scaffold without staining. We further quantitatively evaluate the enhancement of contrast in comparison with conventional transmission electron microscopy. In addition, We show that for ptychography post-reconstruction focusing simplifies the workflow and reduces electron dose and beam damage. The authors demonstrate electron ptychographic computed tomography by simultaneously recording high contrast data from both the organic- and inorganic components in a 3D DNA-origami framework hybrid nanostructure.
Collapse
|
4
|
Wang X, Teng Y, Ji C, Wu H, Li F. Critical target identification and human health risk ranking of metal ions based on mechanism-driven modeling. CHEMOSPHERE 2022; 301:134724. [PMID: 35487360 DOI: 10.1016/j.chemosphere.2022.134724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Huge amounts of metals have been released into environment due to various anthropogenic activities, such as smelting and processing of metals and subsequent application in construction, automobiles, batteries, optoelectronic devices, and so on, resulting in widespread detection in environmental media. However, some metal ions are considered as "Environmental health hazards", leading to serious human health concerns through affecting critical targets. Hence, it is necessary to quickly and effectively recognize the key target of metal ions in living organisms. Fortunately, the development of high-throughput analysis and in silico approaches offer a promising tool for target identification. In this study, the key oncogenic target (tumor suppressor protein, p53) was screened by network analysis based on the comparative toxicogenomics database (CTD). Some metal ions could bind to p53 core domain, impair its function and induce the development of cancer risk, but its mechanisms were still unclear. Therefore, a quantitative structure-activity relationship (QSAR) model was constructed to characterize the binding constants (Ka) between DNA binding domain of p53 (p53 DBD) and nine metal ions (Mg2+, Ca2+, Cu2+, Zn2+, Co2+, Ni2+, Mn2+, Fe3+ and Ba2+). It had good robustness and predictive ability, which could be used to predict the Ka values of other six metal ions (Li+, Ag+, Cs+, Cd2+, Hg2+ and Pb2+) within application domain. The results showed strong binding affinity between Cd2+/Hg2+/Pb2+ and p53 DBD. Subsequent mechanism analyses revealed that first hydrolysis constant (|logKOH|) and polarization force (Z2/r) were key metal ion-characteristic parameters. The metal ions with weak hydrolysis constants and strong polarization forces could readily interact with N-containing histidine and S-containing cysteine of p53 DBD, which resulted in high Ka values. This study identified p53 as potential target for metal ions, revealed the key characteristics affecting the actions and provide a basic understanding of metal ions-p53 DBD interaction.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuefa Teng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| |
Collapse
|
5
|
Hájková-Strejcová A, Augustín M, Barek J, Iffelsberger C, Matysik FM, Vyskočil V. New strategy in electrochemical investigation of DNA damage demonstrated on genotoxic derivatives of fluorene. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Electrochemical investigation of DNA-metal complex interactions and development of a highly sensitive electrochemical biosensor. Anal Biochem 2022; 652:114738. [PMID: 35597268 DOI: 10.1016/j.ab.2022.114738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/05/2022] [Accepted: 05/14/2022] [Indexed: 01/29/2023]
Abstract
Metal ion-DNA interactions are important in nature as they often change the genetic material's structure and function. In this work, new Tb complex of TbCl3 (tris(8-hydroxyquinoline-5-sulfonic acid) terbium) (Tb(QS)3) was used as an electrochemical indicator for investigation of DNA-metal interaction and then a new DNA biosensor was designed using this complex. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to study the interaction of Tb(QS)3 with double-stranded DNA (ds-DNA). It was found that Tb(QS)3 presented an excellent electrochemical activity on carbon paste electrode (CPE) and could intercalate into the double helix of double-stranded DNA. The interaction mechanism was elucidated in DNA solution and DNA modified carbon paste electrode by using differential pulse voltammetry and cyclic voltammetry. The binding ratio between this complex and ds-DNA was calculated to be 1:1. The extent of hybridization was evaluated on the basis of the difference between signals of Tb(QS)3 with probe DNA before and after hybridization with complementary DNA. With this approach, target DNA could be detected in the range from 0.03 to 0.185 μM with detection limit of 0.021 μM. The interaction mode between Tb(QS)3 and DNA was found to be mainly intercalative interaction.
Collapse
|
7
|
Hu SQ, Ran SY. Single Molecular Chelation Dynamics Reveals That DNA Has a Stronger Affinity toward Lead(II) than Cadmium(II). J Phys Chem B 2022; 126:1876-1884. [PMID: 35196016 DOI: 10.1021/acs.jpcb.1c10487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lead ions can bind to DNA via nonelectrostatic interactions and hence alter its structure, which may be related to their adverse effects. The dynamics of Pb2+-DNA interaction has not been well understood. In this study, we report the monomolecular dynamics of the Pb2+-DNA interaction using a magnetic tweezers (MT) setup. We found that lead cations could induce DNA compaction at ionic strengths above 1 μM, which was also confirmed by morphology characterization. The chelation behavior of the Pb2+-DNA and the Cd2+-DNA complex solutions after adding EDTA were compared. The results showed that EDTA chelated with the bound metal ions on DNA and consequently led to restoring the DNA to its original length but with different restoration speeds for the two solutions. The fast binding dynamics and the slower chelation dynamics of the Pb2+ scenario compared to that of Cd2+ suggested that Pb2+ was more capable to induce DNA conformational change and that the Pb2+-DNA complex was more stable than the Cd2+-DNA complex. The stronger affinities for DNA bases and the inner binding of lead cations were two possible causes of the dynamics differences. Three agents, including EDTA, sodium gluconate, and SDBS, were used to remove the bound lead ions on DNA. It was shown that EDTA was the most efficient, and sodium gluconate could not fully restore DNA from its compact state. We concluded that both EDTA and SDBS were good candidates to restore the Pb2+-bound DNA to its original state.
Collapse
Affiliation(s)
- Shu-Qian Hu
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Shi-Yong Ran
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
8
|
Zhu J, Xue J, Sun D, Zhao W, Zhang C, Feng X, Wang K. Effect of Mono- and Divalent Metal Ions on Current-Voltage Features of a λ-DNA Solution Electrically Driven in a Microfluidic Capillary. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1716-1724. [PMID: 35089718 DOI: 10.1021/acs.langmuir.1c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The interactions of DNA molecules and metal ions lead to changes in their configuration and conformation, which in turn influence the current characteristics of the solution as DNA molecules are translocated through a micro/nanofluidic channel and ultimately cause serious impacts on the practical applications of DNA/gene chips for precisely manipulating and studying the molecular properties of single DNA molecules. In this study, the current characteristics of λ-DNA solutions without or with metal ions (i.e., K+, Na+, Mg2+, and Ca2+) were experimentally investigated when they were transported through a 5 μm microcapillary under an external electric field with asymmetric electrodes. Experimental data indicated some meaningful results. First, the current-voltage relations of the metal ion solutions were all linear, while those of λ-DNA solutions without or with metal ions were all nonlinear and followed power functions, of which the indices were related to the type, valence, and mobility of ions. Furthermore, as the concentrations of metal ions increased, the power indices of the λ-DNA solutions with monovalent metal ions increased, while those of the λ-DNA solutions with divalent ions decreased. Finally, the main reasons for the current characteristics were theoretically attributed to two possible mechanisms: the polarizations on the asymmetric electrodes and the interactions between λ-DNA and metal ions. These findings are helpful for the design of new biomedical micro/nanofluidic sensors and labs on a chip for accurately manipulating single DNA molecules.
Collapse
Affiliation(s)
- Jie Zhu
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi'an 710127, China
| | - Jing Xue
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi'an 710127, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi'an 710127, China
| | - Wei Zhao
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi'an 710127, China
| | - Chen Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi'an 710127, China
| | - Xiaoqiang Feng
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi'an 710127, China
| | - Kaige Wang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi'an 710127, China
| |
Collapse
|
9
|
Kannappan S, Ramisetty BCM. Engineered Whole-Cell-Based Biosensors: Sensing Environmental Heavy Metal Pollutants in Water-a Review. Appl Biochem Biotechnol 2021; 194:1814-1840. [PMID: 34783990 DOI: 10.1007/s12010-021-03734-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022]
Abstract
The frequent exposure and accumulation of heavy metals in organisms cause serious health issues affecting a range of organs such as the brain, liver, and reproductive organs in adults, infants, and children. Several parts of the world have high levels of heavy metals affecting millions of people, costing millions of dollars for improving the potability of water and medical treatment of the affected. Hence, water quality assessment is required to monitor the degree of heavy metal contamination in potable water. In nature, organisms respond to various environmental pollutants such as heavy metals, allowing their survival in a diverse environmental niche. With the advent of recombinant DNA technology, it is now possible to manipulate these natural bioreporters into controlled systems which either turn on or off gene expression or activity of enzymes in the presence of specific heavy metals (compound-specific biosensors) otherwise termed as whole-cell biosensors (WCBs). WCBs provide an upper hand compared to other immunosensors, enzyme-based sensors, and DNA-based sensors since microbes can be relatively easily manipulated, scaled up with relative ease, and can detect only the bioavailable heavy metals. In this review, we summarize the current knowledge of the various mechanisms of toxicity elicited by various heavy metals, thence emphasizing the need to develop heavy metal sensing platforms. Following this, the biosensor-based platforms including WCBs for detecting heavy metals developed thus far have been briefly elaborated upon, emphasizing the challenges and solutions associated with WCBs.
Collapse
Affiliation(s)
- Shrute Kannappan
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
- Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | | |
Collapse
|
10
|
DNA Electrochemical Biosensors for In Situ Probing of Pharmaceutical Drug Oxidative DNA Damage. SENSORS 2021; 21:s21041125. [PMID: 33562790 PMCID: PMC7915242 DOI: 10.3390/s21041125] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Deoxyribonucleic acid (DNA) electrochemical biosensors are devices that incorporate immobilized DNA as a molecular recognition element on the electrode surface, and enable probing in situ the oxidative DNA damage. A wide range of DNA electrochemical biosensor analytical and biotechnological applications in pharmacology are foreseen, due to their ability to determine in situ and in real-time the DNA interaction mechanisms with pharmaceutical drugs, as well as with their degradation products, redox reaction products, and metabolites, and due to their capacity to achieve quantitative electroanalytical evaluation of the drugs, with high sensitivity, short time of analysis, and low cost. This review presents the design and applications of label-free DNA electrochemical biosensors that use DNA direct electrochemical oxidation to detect oxidative DNA damage. The DNA electrochemical biosensor development, from the viewpoint of electrochemical and atomic force microscopy (AFM) characterization, and the bottom-up immobilization of DNA nanostructures at the electrode surface, are described. Applications of DNA electrochemical biosensors that enable the label-free detection of DNA interactions with pharmaceutical compounds, such as acridine derivatives, alkaloids, alkylating agents, alkylphosphocholines, antibiotics, antimetabolites, kinase inhibitors, immunomodulatory agents, metal complexes, nucleoside analogs, and phenolic compounds, which can be used in drug analysis and drug discovery, and may lead to future screening systems, are reviewed.
Collapse
|
11
|
Zhao L, Zhang X, Zhou Y. Electrochemical Investigation of Heterogeneous Affinity Behaviour of Methylene Blue and G‐quadruplex. ELECTROANAL 2020. [DOI: 10.1002/elan.202060315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ling‐Li Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xin‐Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ying‐Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
12
|
Dalkıran B. Amperometric determination of heavy metal using an HRP inhibition biosensor based on ITO nanoparticles-ruthenium (III) hexamine trichloride composite: Central composite design optimization. Bioelectrochemistry 2020; 135:107569. [PMID: 32464529 DOI: 10.1016/j.bioelechem.2020.107569] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 01/24/2023]
Abstract
A novel horseradish peroxidase (HRP) enzyme inhibition biosensor based on indium tin oxide (ITO) nanoparticles, hexaammineruthenium (III) chloride (RUT), and chitosan (CH) modified glassy carbon electrode (GCE) was developed. The biosensor fabrication process was investigated using scanning electron microscopy, energy-dispersive X-ray spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The amounts of ITO nanoparticles and RUT were optimized using a 22 central composite design for the optimization of electrode composition. The detection limits were determined as 8 nM, 3 nM, and 1 nM for Pb2+, Ni2+, and Cd2+, respectively. The inhibition calibration curves of the biosensor were found to be within the range of 0.009-0.301 µM with a sensitivity of 11.97 µA µM-1 cm-2 (0.85 µA µM-1) for Pb2+, 0.011-0.368 µM with a sensitivity of 10.84 µA µM-1 cm-2 (0.77 µA µM-1) for Ni2+, and 0.008-0.372 µM with a sensitivity of 10.99 µA µM-1 cm-2 (0.78 µA µM-1) for Cd2+. The type of HRP inhibition by Pb2+, Ni2+ and Cd2+ was investigated by the Dixon and Cornish-Bowden plots. The effects of possible interfering species on the biosensor response were examined. The analysis of Pb2+, Ni2+, and Cd2+ in tap water was demonstrated using the HRP/ITO-RUT-CH/GCE with satisfactory experimental results. The proposed method agreed with the atomic absorption spectrometry results.
Collapse
Affiliation(s)
- Berna Dalkıran
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, Turkey.
| |
Collapse
|
13
|
Electrochemical behaviour of anticancer drug lomustine and in situ evaluation of its interaction with DNA. J Pharm Biomed Anal 2019; 176:112786. [DOI: 10.1016/j.jpba.2019.112786] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 11/18/2022]
|
14
|
Nickel Carcinogenesis Mechanism: DNA Damage. Int J Mol Sci 2019; 20:ijms20194690. [PMID: 31546657 PMCID: PMC6802009 DOI: 10.3390/ijms20194690] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Nickel (Ni) is known to be a major carcinogenic heavy metal. Occupational and environmental exposure to Ni has been implicated in human lung and nasal cancers. Currently, the molecular mechanisms of Ni carcinogenicity remain unclear, but studies have shown that Ni-caused DNA damage is an important carcinogenic mechanism. Therefore, we conducted a literature search of DNA damage associated with Ni exposure and summarized known Ni-caused DNA damage effects. In vitro and vivo studies demonstrated that Ni can induce DNA damage through direct DNA binding and reactive oxygen species (ROS) stimulation. Ni can also repress the DNA damage repair systems, including direct reversal, nucleotide repair (NER), base excision repair (BER), mismatch repair (MMR), homologous-recombination repair (HR), and nonhomologous end-joining (NHEJ) repair pathways. The repression of DNA repair is through direct enzyme inhibition and the downregulation of DNA repair molecule expression. Up to now, the exact mechanisms of DNA damage caused by Ni and Ni compounds remain unclear. Revealing the mechanisms of DNA damage from Ni exposure may contribute to the development of preventive strategies in Ni carcinogenicity.
Collapse
|
15
|
Bagherolhashemi F, Bozorgmehr MR, Momen-Heravi M. Biosensor Properties of DA-DA Dinucleotide in the Presence of DI-L-Lysine and Single Carbon Nanotubes: Molecular Dynamics Simulation and Density Functional Theory Approach. J STRUCT CHEM+ 2018. [DOI: 10.1134/s0022476618050311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Ebrahimi M, Raoof JB, Ojani R. Design of an electrochemical DNA-based biosensor for selective determination of cadmium ions using a DNA hybridization indicator. Int J Biol Macromol 2018; 108:1237-1241. [DOI: 10.1016/j.ijbiomac.2017.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
|
17
|
Jarczewska M, Ziółkowski R, Górski Ł, Malinowska E. Application of RNA Aptamers as Recognition Layers for the Electrochemical Analysis of C-Reactive Protein. ELECTROANAL 2017. [DOI: 10.1002/elan.201700620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marta Jarczewska
- The Chair of Medical Biotechnology; Faculty of Chemistry, Warsaw University of Technology; Noakowskiego 3 00-664 Warsaw Poland
| | - Robert Ziółkowski
- The Chair of Medical Biotechnology; Faculty of Chemistry, Warsaw University of Technology; Noakowskiego 3 00-664 Warsaw Poland
| | - Łukasz Górski
- The Chair of Medical Biotechnology; Faculty of Chemistry, Warsaw University of Technology; Noakowskiego 3 00-664 Warsaw Poland
| | - Elżbieta Malinowska
- The Chair of Medical Biotechnology; Faculty of Chemistry, Warsaw University of Technology; Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
18
|
Synthetic biology for microbial heavy metal biosensors. Anal Bioanal Chem 2017; 410:1191-1203. [DOI: 10.1007/s00216-017-0751-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/23/2017] [Accepted: 11/07/2017] [Indexed: 11/26/2022]
|
19
|
Chiorcea-Paquim AM, Oliveira SCB, Diculescu VC, Oliveira-Brett AM. Applications of DNA-Electrochemical Biosensors in Cancer Research. PAST, PRESENT AND FUTURE CHALLENGES OF BIOSENSORS AND BIOANALYTICAL TOOLS IN ANALYTICAL CHEMISTRY: A TRIBUTE TO PROFESSOR MARCO MASCINI 2017. [DOI: 10.1016/bs.coac.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
20
|
Diculescu VC, Chiorcea-Paquim AM, Oliveira-Brett AM. Applications of a DNA-electrochemical biosensor. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Fojta M, Daňhel A, Havran L, Vyskočil V. Recent progress in electrochemical sensors and assays for DNA damage and repair. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.11.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Ramnani P, Saucedo NM, Mulchandani A. Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. CHEMOSPHERE 2016; 143:85-98. [PMID: 25956023 DOI: 10.1016/j.chemosphere.2015.04.063] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 05/15/2023]
Abstract
Carbon allotropes such as graphene and carbon nanotubes, have been incorporated in electrochemical biosensors for highly sensitive and selective detection of various analytes. The superior physical and electrical properties like high carrier mobility, ambipolar electric field effect, high surface area, flexibility and their compatibility with microfabrication techniques makes these carbon nanomaterials easy to integrate in field-effect transistor (FET)/chemiresistor type configuration which is suitable for portable and point-of-use/field-deployable sensors. This review covers the synthesis of carbon nanostructures (graphene and CNTs) and their integration into devices using various fabrication methods. Finally, we discuss the recent reports showing different sensing platforms that incorporate biomolecules like enzymes, antibodies and aptamers as recognition elements for fabrication of simple, low cost, compact biosensors that can be used for on-site, rapid environmental monitoring of environmental pollutants like pathogens, heavy metals, pesticides and explosives.
Collapse
Affiliation(s)
- Pankaj Ramnani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States
| | - Nuvia M Saucedo
- Department of Chemistry, University of California, Riverside, CA 92521, United States
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
23
|
Verma N, Kaur G. Trends on Biosensing Systems for Heavy Metal Detection. BIOSENSORS FOR SUSTAINABLE FOOD - NEW OPPORTUNITIES AND TECHNICAL CHALLENGES 2016. [DOI: 10.1016/bs.coac.2016.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Progress in the biosensing techniques for trace-level heavy metals. Biotechnol Adv 2016; 34:47-60. [DOI: 10.1016/j.biotechadv.2015.12.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/21/2015] [Accepted: 12/02/2015] [Indexed: 01/08/2023]
|
25
|
Wang L, Song J, Liu S, Hao C, Kuang N, He Y. Reaction analysis on Yb3+ and DNA based on quantum dots: The design of a fluorescent reversible off–on mode. J Colloid Interface Sci 2015; 457:162-8. [DOI: 10.1016/j.jcis.2015.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 01/09/2023]
|
26
|
Tomé LI, Marques NV, Diculescu VC, Oliveira-Brett AM. In situ dsDNA-bevacizumab anticancer monoclonal antibody interaction electrochemical evaluation. Anal Chim Acta 2015; 898:28-33. [DOI: 10.1016/j.aca.2015.09.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/26/2022]
|
27
|
Bal-Demirci T, Congur G, Erdem A, Erdem-Kuruca S, Özdemir N, Akgün-Dar K, Varol B, Ülküseven B. Iron(iii) and nickel(ii) complexes as potential anticancer agents: synthesis, physicochemical and structural properties, cytotoxic activity and DNA interactions. NEW J CHEM 2015. [DOI: 10.1039/c5nj00594a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The iron complex 3 was cytotoxic at low concentrations in K562 cells and could damage the DNA, specifically the adenine base.
Collapse
Affiliation(s)
- Tülay Bal-Demirci
- Department of Chemistry
- Engineering Faculty
- İstanbul University
- İstanbul
- Turkey
| | - Gulsah Congur
- Ege University
- Faculty of Pharmacy
- Analytical Chemistry Department
- İzmir
- Turkey
| | - Arzum Erdem
- Ege University
- Faculty of Pharmacy
- Analytical Chemistry Department
- İzmir
- Turkey
| | - Serap Erdem-Kuruca
- Department of Physiology
- İstanbul Medical Faculty
- İstanbul University
- İstanbul
- Turkey
| | - Namık Özdemir
- Department of Physics
- Faculty of Arts and Sciences
- Ondokuz Mayıs University
- Samsun
- Turkey
| | - Kadriye Akgün-Dar
- Department of Biology
- İstanbul Science Faculty
- İstanbul University
- İstanbul
- Turkey
| | - Başak Varol
- Department of Biophysic
- İstanbul Medical Faculty
- İstanbul University
- İstanbul
- Turkey
| | - Bahri Ülküseven
- Department of Chemistry
- Engineering Faculty
- İstanbul University
- İstanbul
- Turkey
| |
Collapse
|
28
|
Jarczewska M, Kierzkowska E, Ziółkowski R, Górski L, Malinowska E. Electrochemical oligonucleotide-based biosensor for the determination of lead ion. Bioelectrochemistry 2014; 101:35-41. [PMID: 25042900 DOI: 10.1016/j.bioelechem.2014.06.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 01/25/2023]
Abstract
The possibility of utilization of gold electrodes modified with short guanine-rich ssDNA probes for determination of Pb(2+) was examined. Interaction between guanine residues and lead ion followed by formation of G-quadruplex structures was confirmed by electrochemical impedance spectroscopy investigations. An external cationic redox label, methylene blue, was employed in voltammetric measurements for analytical signal generation. It was shown that due to the G-quadruplex formation, the oligonucleotides in the recognition layer fold, which enhances the electron transfer between methylene blue and the electrode surface. The MB current signal rises proportionally to the lead ion concentration in the range from 0.05 to 1μmol/L. The developed biosensor demonstrated high selectivity towards Pb(2+) ion, with only minor response towards interfering metal cations. The calculated limit of detection was of 34.7nmol/L. The utilization of the biosensor for Pb(2+) determination in real samples of water was also tested.
Collapse
Affiliation(s)
- Marta Jarczewska
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Ewa Kierzkowska
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Robert Ziółkowski
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Lukasz Górski
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Elżbieta Malinowska
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
29
|
Santarino IB, Oliveira SCB, Oliveira-Brett AM. In Situ Evaluation of the Anticancer Antibody Rituximab-dsDNA Interaction Using a DNA-Electrochemical Biosensor. ELECTROANAL 2014. [DOI: 10.1002/elan.201300488] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 232:1-44. [PMID: 24984833 DOI: 10.1007/978-3-319-06746-9_1] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
As a result of the industrial revolution, anthropogenic activities have enhanced there distribution of many toxic heavy metals from the earth's crust to different environmental compartments. Environmental pollution by toxic heavy metals is increasing worldwide, and poses a rising threat to both the environment and to human health.Plants are exposed to heavy metals from various sources: mining and refining of ores, fertilizer and pesticide applications, battery chemicals, disposal of solid wastes(including sewage sludge), irrigation with wastewater, vehicular exhaust emissions and adjacent industrial activity.Heavy metals induce various morphological, physiological, and biochemical dysfunctions in plants, either directly or indirectly, and cause various damaging effects. The most frequently documented and earliest consequence of heavy metal toxicity in plants cells is the overproduction of ROS. Unlike redox-active metals such as iron and copper, heavy metals (e.g, Pb, Cd, Ni, AI, Mn and Zn) cannot generate ROS directly by participating in biological redox reactions such as Haber Weiss/Fenton reactions. However, these metals induce ROS generation via different indirect mechanisms, such as stimulating the activity of NADPH oxidases, displacing essential cations from specific binding sites of enzymes and inhibiting enzymatic activities from their affinity for -SH groups on the enzyme.Under normal conditions, ROS play several essential roles in regulating the expression of different genes. Reactive oxygen species control numerous processes like the cell cycle, plant growth, abiotic stress responses, systemic signalling, programmed cell death, pathogen defence and development. Enhanced generation of these species from heavy metal toxicity deteriorates the intrinsic antioxidant defense system of cells, and causes oxidative stress. Cells with oxidative stress display various chemical,biological and physiological toxic symptoms as a result of the interaction between ROS and biomolecules. Heavy-metal-induced ROS cause lipid peroxidation, membrane dismantling and damage to DNA, protein and carbohydrates. Plants have very well-organized defense systems, consisting of enzymatic and non-enzymatic antioxidation processes. The primary defense mechanism for heavy metal detoxification is the reduced absorption of these metals into plants or their sequestration in root cells.Secondary heavy metal tolerance mechanisms include activation of antioxidant enzymes and the binding of heavy metals by phytochelatins, glutathione and amino acids. These defense systems work in combination to manage the cascades of oxidative stress and to defend plant cells from the toxic effects of ROS.In this review, we summarized the biochemiCal processes involved in the over production of ROS as an aftermath to heavy metal exposure. We also described the ROS scavenging process that is associated with the antioxidant defense machinery.Despite considerable progress in understanding the biochemistry of ROS overproduction and scavenging, we still lack in-depth studies on the parameters associated with heavy metal exclusion and tolerance capacity of plants. For example, data about the role of glutathione-glutaredoxin-thioredoxin system in ROS detoxification in plant cells are scarce. Moreover, how ROS mediate glutathionylation (redox signalling)is still not completely understood. Similarly, induction of glutathione and phytochelatins under oxidative stress is very well reported, but it is still unexplained that some studied compounds are not involved in the detoxification mechanisms. Moreover,although the role of metal transporters and gene expression is well established for a few metals and plants, much more research is needed. Eventually, when results for more metals and plants are available, the mechanism of the biochemical and genetic basis of heavy metal detoxification in plants will be better understood. Moreover, by using recently developed genetic and biotechnological tools it may be possible to produce plants that have traits desirable for imparting heavy metal tolerance.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| | | | | | | | | | | |
Collapse
|
31
|
Jarczewska M, Ziółkowski R, Górski Ł, Malinowska E. Electrochemical uranyl cation biosensor with DNA oligonucleotides as receptor layer. Bioelectrochemistry 2013; 96:1-6. [PMID: 24334186 DOI: 10.1016/j.bioelechem.2013.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 12/31/2022]
Abstract
The present study aims at the further development of the uranyl oligonucleotide-based voltammetric biosensor, which takes advantage of strong interaction between UO2(2+) and phosphate DNA backbone. Herein we report the optimization of working parameters of previously elaborated electrochemical DNA biosensor. It is shown that the sensor sensitivity is highly dependent on the oligonucleotide probe length and the incubation time of sensor in a sample solution. Consequently, the highest sensitivity was obtained for 10-nucleotide sequence and 60 min incubation time. The lower detection limit towards uranyl cation for developed biosensor was 30 nM. The influence of mixed monolayers and the possibility of developing a non-calibration device were also investigated. The selectivity of the proposed biosensor was significantly improved via elimination of adenine nucleobases from the DNA probe. Moreover, the regeneration procedure was elaborated and tested to prolong the use of the same biosensor for 4 subsequent determinations of UO2(2+).
Collapse
Affiliation(s)
- Marta Jarczewska
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Robert Ziółkowski
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Łukasz Górski
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Elżbieta Malinowska
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
32
|
Optical nanobiosensor: A new analytical tool for monitoring carboplatin–DNA interaction in vitro. Talanta 2012; 97:218-21. [DOI: 10.1016/j.talanta.2012.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/02/2012] [Accepted: 04/06/2012] [Indexed: 11/18/2022]
|
33
|
Oliveira SCB, Oliveira-Brett AM. In situ DNA oxidative damage by electrochemically generated hydroxyl free radicals on a boron-doped diamond electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4896-4901. [PMID: 22335175 DOI: 10.1021/la300070x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In situ DNA oxidative damage by electrochemically generated hydroxyl free radicals has been directly demonstrated on a boron-doped diamond electrode. The DNA-electrochemical biosensor incorporates immobilized double-stranded DNA (dsDNA) as molecular recognition element on the electrode surface, and measures in situ specific binding processes with dsDNA, as it is a complementary tool for the study of bimolecular interaction mechanisms of compounds binding to DNA and enabling the screening and evaluation of the effect caused to DNA by radicals and health hazardous compounds. Oxidants, particularly reactive oxygen species (ROS), play an important role in dsDNA oxidative damage which is strongly related to mutagenesis, carcinogenesis, autoimmune inflammatory, and neurodegenerative diseases. The hydroxyl radical is considered the main contributing ROS to endogenous oxidation of cellular dsDNA causing double-stranded and single-stranded breaks, free bases, and 8-oxoguanine occurrence. The dsDNA-electrochemical biosensor was used to study the interaction between dsDNA immobilized on a boron-doped diamond electrode surface and in situ electrochemically generate hydroxyl radicals. Non-denaturing agarose gel-electrophoresis of the dsDNA films on the electrode surface after interaction with the electrochemically generated hydroxyl radicals clearly showed the occurrence of in situ dsDNA oxidative damage. The importance of the dsDNA-electrochemical biosensor in the evaluation of the dsDNA-hydroxyl radical interactions is clearly demonstrated.
Collapse
Affiliation(s)
- S Carlos B Oliveira
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal
| | | |
Collapse
|
34
|
Interaction study of ss-DNA and Yb3+ ions in aqueous solutions by electrochemical and spectroscopic techniques. J Mol Liq 2012. [DOI: 10.1016/j.molliq.2011.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Maranho LA, Pereira CDS, Choueri RB, Cesar A, Gusso-Choueri PK, Torres RJ, Abessa DMDS, Morais RD, Mozeto AA, DelValls TA, Martín-Díaz ML. The application of biochemical responses to assess environmental quality of tropical estuaries: field surveys. ACTA ACUST UNITED AC 2012; 14:2608-15. [DOI: 10.1039/c2em30465a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Liu W, Fu Y, Zheng B, Cheng S, Li W, Lau TC, Liang H. Kinetics and mechanism of conformational changes in a G-quadruplex of thrombin-binding aptamer induced by Pb2+. J Phys Chem B 2011; 115:13051-6. [PMID: 21950308 DOI: 10.1021/jp2074489] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been shown that guanine-rich DNA can fold into a G-quadruplex with certain metal cations. The spectral characteristics, thermostability, and kinetics for the formation of a Pb(2+)-driven G-quadruplex of thrombin-binding aptamer (TBA) were measured in the current work using a combination of ultraviolet (UV) and circular dichroism (CD) spectroscopy along with stopped-flow technique. CD spectra demonstrated that TBA could fold into a unique G-quadruplex with a strong positive peak at 312 nm. Analysis of the titration data reveals that the binding stoichiometry is 1:1 for the titration of TBA with Pb(NO(3))(2), which is in accordance with the localization of the Pb(2+) ion between the adjacent G-quartets. Thermal denaturation profiles indicate that the Pb(2+)-induced intramolecular G-quadruplex is more stable than those driven by Na(+) or K(+) ions. Kinetic studies suggest that the Pb(2+)-induced folding G-quadruplex of TBA probably proceeds through the rapid formation of an intermediate Pb(2+)-TBA complex, which then isomerizes to the fully folded structure. Conformational changes transpire after the addition of Pb(NO(3))(2) to the Na(+)- or K(+)-induced G-quadruplexes, which may be attributed to the replacement of Na(+) or K(+) ions by Pb(2+) ions and the generation of a more compact structure of the Pb(2+)-TBA structure. The relaxation time, τ, of folding the G-quadruplex is reduced from 1.05 s in the presence of Pb(2+) ions alone to 0.34 s under the cooperation of initially added Na(+) ions, while τ is increased to 8.33 s under the competition of initially added K(+) ions.
Collapse
Affiliation(s)
- Wei Liu
- Hefei National Laboratory for Physics Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, P R China
| | | | | | | | | | | | | |
Collapse
|
37
|
Verma N, Kaur H, Kumar S. Whole Cell Based Electrochemical Biosensor for Monitoring Lead ions in Milk. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/biotech.2011.259.266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
38
|
Turdean GL. Design and Development of Biosensors for the Detection of Heavy Metal Toxicity. INTERNATIONAL JOURNAL OF ELECTROCHEMISTRY 2011. [DOI: 10.4061/2011/343125] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Many compounds (including heavy metals, HMs) used in different fields of industry and/or agriculture act as inhibitors of enzymes, which, as consequence, are unable to bind the substrate. Even if it is not so sensitive, the method for detecting heavy metal traces using biosensors has a dynamic trend and is largely applied for improving the “life quality”, because of biosensor's sensitivity, selectivity, and simplicity. In the last years, they also become more and more a synergetic combination between biotechnology and microelectronics. Dedicated biosensors were developed for offline and online analysis, and also, their extent and diversity could be called a real “biosensor revolution”. A panel of examples of biosensors: enzyme-, DNA-, imuno-, whole-cell-based biosensors were systematised depending on the reaction type, transduction signal, or analytical performances. The mechanism of enzyme-based biosensor and the kinetic of detection process are described and compared. In this context, is explainable why bioelectronics, nanotechnology, miniaturization, and bioengineering will compete for developing sensitive and selective biosensors able to determine multiple analytes simultaneously and/or integrated in wireless communications systems.
Collapse
Affiliation(s)
- Graziella L. Turdean
- Physical Chemistry Department, Babes-Bolyai, University of Cluj-Napoca, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| |
Collapse
|
39
|
Oliveira SCB, Oliveira-Brett AM. Boron doped diamond electrode pre-treatments effect on the electrochemical oxidation of dsDNA, DNA bases, nucleotides, homopolynucleotides and biomarker 8-oxoguanine. J Electroanal Chem (Lausanne) 2010. [DOI: 10.1016/j.jelechem.2010.06.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Oliveira SCB, Oliveira-Brett AM. In situ evaluation of chromium–DNA damage using a DNA-electrochemical biosensor. Anal Bioanal Chem 2010; 398:1633-41. [DOI: 10.1007/s00216-010-4051-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 11/25/2022]
|
41
|
dsDNA modified carbon nanofiber—solidified paste electrodes: probing Ni(II)—dsDNA interactions. Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0388-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Yin CX, Yang T, Zhang W, Zhou XD, Jiao K. Electrochemical biosensing for dsDNA damage induced by PbSe quantum dots under UV irradiation. CHINESE CHEM LETT 2010. [DOI: 10.1016/j.cclet.2009.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Experimental and computational approach to the rational monitoring of hydrogen-bonding interaction of 2-Imidazolidinethione with DNA and guanine. Food Chem Toxicol 2010; 48:29-36. [DOI: 10.1016/j.fct.2009.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 09/09/2009] [Accepted: 09/14/2009] [Indexed: 11/20/2022]
|
44
|
Bin X, Kraatz HB. Interaction of metal ions and DNA films on gold surfaces: an electrochemical impedance study. Analyst 2009; 134:1309-13. [PMID: 19562195 DOI: 10.1039/b821670c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical impedance spectroscopy (EIS) has been used to investigate the effects of a number of metal ions with DNA films on gold surfaces exploiting [Fe(CN)6](3-/4-) as a solution-based redox probe. Alkaline earth metal ions Mg2+, Ca2+, trivalent Al3+, La3+ and divalent transition metal ions Ni2+, Cu2+, Cd2+ and Hg2+ have been selected in this study and the results are compared with previous studies on the effects of Zn2+ on the EIS of DNA films. All experimental results were evaluated with the help of equivalent circuits which allowed the extraction of resistive and capacitive components. For all metal ions studied here, addition of the metal ions causes a decrease in the charge transfer resistance. The difference of charge transfer resistance (DeltaR(ct)) of ds-DNA films in the presence and absence of the various metal ions is different and particular to any given metal ion. In addition, we studied the EIS of ds-DNA films containing a single A-C mismatch in the presence and absence of Ca2+, Zn2+, Cd2+ and Hg2+. DeltaR(ct) values for ds-DNA films with a single A-C mismatch is smaller than those of fully matched ds-DNA films.
Collapse
Affiliation(s)
- Xiaomin Bin
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | | |
Collapse
|
45
|
Chiorcea-Paquim AM, Corduneanu O, Oliveira S, Diculescu V, Oliveira-Brett A. Electrochemical and AFM evaluation of hazard compounds–DNA interaction. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2008.07.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Haldsrud R, Krøkje A. Induction of DNA double-strand breaks in the H4IIE cell line exposed to environmentally relevant concentrations of copper, cadmium, and zinc, singly and in combinations. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:155-163. [PMID: 19184730 DOI: 10.1080/15287390802538964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Xenobiotics, including heavy metals, exist in nature as complex mixtures of compounds with possible interactions. Induction of DNA damage such as DNA strand breaks may exert detrimental consequences to both individuals and populations. In this study, the induction of DNA double-strand breaks was assessed using the H4IIE rat hepatoma cell line following exposure to high and environmentally relevant concentrations of chloride salts of the metals cadmium (Cd), copper (Cu), and zinc (Zn), both singly and in combination. DNA strand break analysis was performed using agarose gel electrophoresis. Median molecular lengths were calculated from fragment size distributions acquired from gel image data and were used as a quantitative measure of DNA double-strand break induction. Exposure to high concentrations of Cu and Cd in combination produced a significant increase in the occurrence of DNA strand break. However, exposing cells to high concentrations of Cu, Cd, and Zn in combination resulted in significantly lower DNA double-strand break compared to control cells. Addition of low Zn to the Cd/Cu mixture restored DNA damage level back to that of the control. Environmentally relevant concentrations of Cd, Cu, and Zn did not appear to induce DNA strand breaks in the H4IIE cell line.
Collapse
MESH Headings
- Animals
- Cadmium/analysis
- Cadmium/toxicity
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Cell Survival/drug effects
- Copper/analysis
- Copper/toxicity
- DNA Breaks, Double-Stranded/drug effects
- DNA, Neoplasm/drug effects
- Dose-Response Relationship, Drug
- Drug Combinations
- Electrophoresis, Agar Gel
- Environmental Pollutants/toxicity
- Formazans/metabolism
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Liver/chemistry
- Liver/drug effects
- Liver/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Metals, Heavy/analysis
- Metals, Heavy/toxicity
- Rats
- Tetrazolium Salts/metabolism
- Water Pollutants, Chemical/analysis
- Water Pollutants, Chemical/metabolism
- Water Pollutants, Chemical/toxicity
- Zinc/analysis
- Zinc/toxicity
Collapse
Affiliation(s)
- Renate Haldsrud
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | |
Collapse
|
47
|
Liu SQ, Cao ML, Dong SL. Electrochemical and Ultraviolet–visible spectroscopic studies on the interaction of deoxyribonucleic acid with vitamin B6. Bioelectrochemistry 2008; 74:164-9. [DOI: 10.1016/j.bioelechem.2008.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 11/16/2022]
|