1
|
Hao J, Wang Z, Li Y, Deng Y, Fan Y, Huang Y. A novel signal amplification strategy for label-free electrochemical DNA sensor based on the interaction between α-cyclodextrin and ferrocenyl indicator. Bioelectrochemistry 2023; 151:108373. [PMID: 36702078 DOI: 10.1016/j.bioelechem.2023.108373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The synthesized ferrocene appended naphthalimide derivative (FND) exhibited great binding ability toward dsDNA, while its usage as the electrochemical hybridization indicator was restricted by the poor water solubility. Herein, a simple and effective signal amplification strategy for FND based label-free DNA biosensors was developed based on the interaction between FND and cyclodextrin. α-Cyclodextrin (α-CD), β-cyclodextrin (β-CD) and γ-cyclodextrin (γ-CD) were helpful to amplify the signal of the DNA biosensor, while the signal amplification effect of α-CD was better than that of β-CD and γ-CD. Under the optimum conditions, there was a 3-fold increase in the sensitivity of the DNA biosensor after the addition of α-CD. The interaction between FND and α-/β-/γ-CD was investigated by differential pulse voltammetry and fluorescence experiment. Experimental results showed that α-CD not only minimized the impact on the electrochemical activity of FND but also improved the dispersity of FND in aqueous solution. That was why the proposed biosensor showed higher sensitivity in the presence of α-CD. This strategy was universal for other ferrocenyl indicators with similar structures as used in this work.
Collapse
Affiliation(s)
- Jie Hao
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Zhenbo Wang
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yafei Li
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yaru Deng
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yanru Fan
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China.
| | - Yu Huang
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Engineering and Technology Research Center of Characteristic Chinese Medicine Modernization, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China.
| |
Collapse
|
2
|
Gao H, Cui D, Zhai S, Yang Y, Wu Y, Yan X, Wu G. A label-free electrochemical impedimetric DNA biosensor for genetically modified soybean detection based on gold carbon dots. Mikrochim Acta 2022; 189:216. [PMID: 35536374 DOI: 10.1007/s00604-022-05223-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
Abstract
A label-free electrochemical impedimetric biosensor was constructed based on gold carbon dots (GCDs) modified screen-printed carbon electrode for the detection of genetic modified (GM) soybean. The structure and property of GCDs were investigated. The GCDs can directly bind to single-stranded DNA probes through Au-thiol interaction and boost electric conductivity for the DNA sensor construction. The quantification of target DNA was monitored by the change of electron-transfer resistance (Ret) upon the DNA hybridization on sensor surface. Under the optimal conditions, the Ret response (vs. Ag reference electrode) increased with the logarithm of target DNA concentrations in a wide linear range of 1.0 × 10-7 - 1.0 × 10-13 M with a detection limit of 3.1 × 10-14 M (S/N = 3). It was also demonstrated that the proposed DNA sensor possessed high specificity for discriminating target DNA from mismatched sequences. Moreover, the developed biosensor was applied to detect SHZD32-1 in actual samples, and the results showed a good consistency with those obtained from the gel electrophoresis method. Compared with the previous reports for DNA detection, the label-free biosensor showed a comparatively simple platform due to elimination of complicated DNA labeling. Therefore, the proposed method showed great potential to be an alternative device for simple, sensitive, specific, and portable DNA sensor.
Collapse
Affiliation(s)
- Hongfei Gao
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Dandan Cui
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shanshan Zhai
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yao Yang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yuhua Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xiaohong Yan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
3
|
Malecka K, Kaur B, Cristaldi DA, Chay CS, Mames I, Radecka H, Radecki J, Stulz E. Silver or gold? A comparison of nanoparticle modified electrochemical genosensors based on cobalt porphyrin-DNA. Bioelectrochemistry 2020; 138:107723. [PMID: 33360955 DOI: 10.1016/j.bioelechem.2020.107723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 11/18/2022]
Abstract
We applied a cobalt-porphyrin modified DNA as electrochemical marker, which was attached to nanoparticles, to detect specific DNA sequences. We compare the performance of gold and silver NPs in oligonucleotide sensors to determine if a change in metal will lead to either higher sensitivity or different selectivity, based on the redox behaviour of silver vs. gold. Surprisingly, we find that using either gold or silver NPs yields very similar overall performance. The electrochemical measurements of both types of sensors show the same redox behaviour which is dominated by the cobalt porphyrin, indicating that the electron pathway does not include the NP, but there is direct electron transfer between the porphyrin and the electrode. Both sensors show a linear response in the range of 5 × 10-17-1 × 10-16 M; the limit of detection (LOD) is 3.8 × 10-18 M for the AuNP sensor, and 5.0 × 10-18 M for the AgNP sensor, respectively, which corresponds to the detection of about 20-50 DNA molecules in the analyte. Overall, the silver system results in a better DNA economy and using cheaper starting materials for the NPs, thus shows better cost-effectivness and could be more suitable for the mass-production of highly sensitive DNA sensors.
Collapse
Affiliation(s)
- Kamila Malecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Balwinder Kaur
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - D Andrea Cristaldi
- School of Chemistry and Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Clarissa S Chay
- School of Chemistry and Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Iwona Mames
- School of Chemistry and Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Eugen Stulz
- School of Chemistry and Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| |
Collapse
|
4
|
Yeter EÇ, Şahin S, Caglayan MO, Üstündağ Z. An electrochemical label-free DNA impedimetric sensor with AuNP-modified glass fiber/carbonaceous electrode for the detection of HIV-1 DNA. CHEMICKE ZVESTI 2020; 75:77-87. [PMID: 32836707 PMCID: PMC7354876 DOI: 10.1007/s11696-020-01280-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022]
Abstract
In this study, a highly sensitive, electrochemical, and label-free DNA impedimetric sensor was developed using carbonized glass fiber-coal tar pitch (GF-CTP) electrodes supported with gold nanoparticles (AuNPs) for the detection of HIV-1 gene. Thiol-modified GF-CTP electrodes were prepared using amine crosslinking chemistry and AuNPs were self-assembled obtaining highly conductive nanoelectrodes, GF-CTP-ATP-Au. All steps of electrode modifications were characterized using electrochemical, spectroscopic, and microscopic methods. GF-CTP-ATP-Au electrode was then modified with a capture DNA probe (C-ssDNA) and optimized with a target DNA probe in terms of hybridization time and temperature between 30 and 180 min and 20-50 °C, respectively. Finally, the analytic performance of the developed ssDNA biosensor was evaluated using electrochemical impedance spectroscopy. The calibration of the sensor was obtained between 0.1 pM and 10 nM analyte working range. The limit of detection was calculated using signal to noise ratio of 3 (S/N = 3) as 13 fM. Moreover, interference results for two noncomplementary DNA probes were also tested to demonstrate non-specific ssDNA interactions. An electrochemical label-free DNA impedimetric sensor was successfully developed using a novel GF-CTP-ATP-Au electrode. This study suggests that highly sensitive DNA-based biosensors can be developed using relatively low-cost carbonaceous materials.
Collapse
Affiliation(s)
- Ece Ç. Yeter
- Department of Chemistry, Kütahya Dumlupınar University, 43100 Kütahya, Turkey
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
| | - M. Oguzhan Caglayan
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, 43100 Kütahya, Turkey
| |
Collapse
|
5
|
Škugor Rončević I, Krivić D, Buljac M, Vladislavić N, Buzuk M. Polyelectrolytes Assembly: A Powerful Tool for Electrochemical Sensing Application. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3211. [PMID: 32517055 PMCID: PMC7313698 DOI: 10.3390/s20113211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
The development of sensing coatings, as important sensor elements that integrate functionality, simplicity, chemical stability, and physical stability, has been shown to play a major role in electrochemical sensing system development trends. Simple and versatile assembling procedures and scalability make polyelectrolytes highly convenient for use in electrochemical sensing applications. Polyelectrolytes are mainly used in electrochemical sensor architectures for entrapping (incorporation, immobilization, etc.) various materials into sensing layers. These materials can often increase sensitivity, selectivity, and electronic communications with the electrode substrate, and they can mediate electron transfer between an analyte and transducer. Analytical performance can be significantly improved by the synergistic effect of materials (sensing material, transducer, and mediator) present in these composites. As most reported methods for the preparation of polyelectrolyte-based sensing layers are layer-by-layer and casting/coating methods, this review focuses on the use of the latter methods in the development of electrochemical sensors within the last decade. In contrast to many reviews related to electrochemical sensors that feature polyelectrolytes, this review is focused on architectures of sensing layers and the role of polyelectrolytes in the development of sensing systems. Additionally, the role of polyelectrolytes in the preparation and modification of various nanoparticles, nanoprobes, reporter probes, nanobeads, etc. that are used in electrochemical sensing systems is also reviewed.
Collapse
Affiliation(s)
- Ivana Škugor Rončević
- Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; (I.Š.R.); (N.V.)
| | - Denis Krivić
- Division of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria;
| | - Maša Buljac
- Department of Environmental Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia;
| | - Nives Vladislavić
- Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; (I.Š.R.); (N.V.)
| | - Marijo Buzuk
- Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; (I.Š.R.); (N.V.)
| |
Collapse
|
6
|
Steinmetz M, Lima D, Viana AG, Fujiwara ST, Pessôa CA, Etto RM, Wohnrath K. A sensitive label-free impedimetric DNA biosensor based on silsesquioxane-functionalized gold nanoparticles for Zika Virus detection. Biosens Bioelectron 2019; 141:111351. [DOI: 10.1016/j.bios.2019.111351] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023]
|
7
|
Rafique S, Khan S, Bashir S, Nasir R. Facile development of highly sensitive femtomolar electrochemical DNA biosensor using gold nanoneedle-modified electrode. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00874-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Yang K, Huang LJ, Wang YX, Du YC, Tang JG, Wang Y, Cheng MM, Zhang Y, Kipper MJ, Belfiore LA, Wickramasinghe SR. Graphene oxide/nanometal composite membranes for nanofiltration: synthesis, mass transport mechanism, and applications. NEW J CHEM 2019. [DOI: 10.1039/c8nj06045b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We reviewed the recent developments in graphene-based composite membranes and discussed their challenges in this paper.
Collapse
|
9
|
Kaur B, Malecka K, Cristaldi DA, Chay CS, Mames I, Radecka H, Radecki J, Stulz E. Approaching single DNA molecule detection with an ultrasensitive electrochemical genosensor based on gold nanoparticles and cobalt-porphyrin DNA conjugates. Chem Commun (Camb) 2018; 54:11108-11111. [DOI: 10.1039/c8cc05362f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ultrasensitive genosensor is obtained by using gold nanoparticles and cobalt-porphyrin labelled DNA reporter strands with an attomolar detection limit.
Collapse
Affiliation(s)
- Balwinder Kaur
- Institute of Animal Reproduction and Food Research
- Polish Academy of Sciences
- 10-748 Olsztyn
- Poland
| | - Kamila Malecka
- Institute of Animal Reproduction and Food Research
- Polish Academy of Sciences
- 10-748 Olsztyn
- Poland
| | - Domenico A. Cristaldi
- School of Chemistry & Institute for Life Sciences
- University of Southampton
- Southampton SO17 1BJ
- UK
| | - Clarissa S. Chay
- School of Chemistry & Institute for Life Sciences
- University of Southampton
- Southampton SO17 1BJ
- UK
| | - Iwona Mames
- School of Chemistry & Institute for Life Sciences
- University of Southampton
- Southampton SO17 1BJ
- UK
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research
- Polish Academy of Sciences
- 10-748 Olsztyn
- Poland
| | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research
- Polish Academy of Sciences
- 10-748 Olsztyn
- Poland
| | - Eugen Stulz
- School of Chemistry & Institute for Life Sciences
- University of Southampton
- Southampton SO17 1BJ
- UK
| |
Collapse
|
10
|
Chen LL, Cui HF, Fan SF, Li ZY, Han SY, Ma X, Luo SW, Song X, Lv QY. Detection of Helicobacter pylori in dental plaque using a DNA biosensor for noninvasive diagnosis. RSC Adv 2018; 8:21075-21083. [PMID: 35539942 PMCID: PMC9080877 DOI: 10.1039/c8ra03134g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/02/2018] [Indexed: 01/08/2023] Open
Abstract
H. pylori in dental plaque was detected with a DNA biosensor with results correlating well with the 13C urea breath test.
Collapse
Affiliation(s)
- Li-Li Chen
- Department of Bioengineering
- School of Life Sciences
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Hui-Fang Cui
- Department of Bioengineering
- School of Life Sciences
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Shuang-Fei Fan
- Department of Bioengineering
- School of Life Sciences
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Zong-Yi Li
- Department of Bioengineering
- School of Life Sciences
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Shuang-Yin Han
- Division of Gastroenterology
- Henan Provincial People's Hospital
- Zhengzhou
- P. R. China
| | - Xin Ma
- Division of Stomatology
- Henan Provincial People's Hospital
- Zhengzhou
- P. R. China
| | - Shu-Wen Luo
- Division of Stomatology
- Henan Provincial People's Hospital
- Zhengzhou
- P. R. China
| | - Xiaojie Song
- Department of Bioengineering
- School of Life Sciences
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Qi-Yan Lv
- Department of Bioengineering
- School of Life Sciences
- Zhengzhou University
- Zhengzhou
- P. R. China
| |
Collapse
|
11
|
Rashid JIA, Yusof NA. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2017.09.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
12
|
Ferreira FP, Honorato-Castro AC, da Silva JV, Orellana SC, Oliveira GC, Madurro JM, Brito-Madurro AG. A novel polymer-based genosensor for the detection and quantification of Streptococcus pneumoniae
in genomic DNA sample. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fábio P. Ferreira
- Institute of Chemistry; Federal University of Uberlândia; Uberlândia 38400902 Minas Gerais Brazil
| | - Ana C. Honorato-Castro
- Institute of Genetics and Biochemistry; Federal University of Uberlândia; Uberlândia 38400902 Minas Gerais Brazil
| | - Jussara Vieira da Silva
- Institute of Chemistry; Federal University of Uberlândia; Uberlândia 38400902 Minas Gerais Brazil
| | | | | | - João M. Madurro
- Institute of Chemistry; Federal University of Uberlândia; Uberlândia 38400902 Minas Gerais Brazil
| | - Ana G. Brito-Madurro
- Institute of Genetics and Biochemistry; Federal University of Uberlândia; Uberlândia 38400902 Minas Gerais Brazil
| |
Collapse
|
13
|
Construction of electrochemical DNA biosensors for investigation of potential risk chemical and physical agents. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-2012-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Analysis of the evolution of the detection limits of electrochemical nucleic acid biosensors II. Anal Bioanal Chem 2017; 409:4335-4352. [DOI: 10.1007/s00216-017-0377-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 01/07/2023]
|
15
|
Impedimetric nanostructured genosensor for detection of schistosomiasis in cerebrospinal fluid and serum samples. J Pharm Biomed Anal 2017; 137:163-169. [DOI: 10.1016/j.jpba.2017.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 11/22/2022]
|
16
|
Electroconductive Composites from Polystyrene Block Copolymers and Cu-Alumina Filler. MATERIALS 2016; 9:ma9120989. [PMID: 28774110 PMCID: PMC5456950 DOI: 10.3390/ma9120989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 12/04/2022]
Abstract
Technological advancements and development of new materials may lead to the manufacture of sustainable energy-conducting devices used in the energy sector. This research attempts to fabricate novel electroconductive and mechanically stable nanocomposites via an electroless deposition (ELD) technique using electrically insulating materials. Metallic Cu is coated onto Al2O3 by ELD, and the prepared filler is then integrated (2–14 wt %) into a matrix of polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene-graft-maleic anhydride (PS-b-(PE-r-B)-b-PS-g-MA). Considerable variations in composite phases with filler inclusion exist. The Cu crystallite growth onto Al2O3 was evaluated by X-ray diffraction (XRD) analysis and energy dispersive spectrometry (EDS). Scanning electron microscopy (SEM) depicts a uniform Cu coating on Al2O3, while homogeneous filler dispersion is exhibited in the case of composites. The electrical behavior of composites is enhanced drastically (7.7 × 10−5 S/cm) upon incorporation of Cu–Al2O3 into an insulating polymer matrix (4.4 × 10−16 S/cm). Moreover, mechanical (Young’s modulus, tensile strength and % elongation at break) and thermal (thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC)) properties of the nanocomposites also improve substantially. These composites are likely to meet the demands of modern high-strength electroconductive devices.
Collapse
|
17
|
Tezerjani MD, Benvidi A, Jahanbani S, Moshtaghioun SM, Mazloum-Ardakani M. A comparative investigation for prostate cancer detection using two electrochemical biosensors based on various nanomaterials and the linker of thioglycolic acid. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
A novel self-powered and sensitive label-free DNA biosensor in microbial fuel cell. Biosens Bioelectron 2016; 82:173-6. [DOI: 10.1016/j.bios.2016.04.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/27/2016] [Accepted: 04/07/2016] [Indexed: 01/06/2023]
|
19
|
Nassi A, Guillon FX, Amar A, Hainque B, Amriche S, Maugé D, Markova E, Tsé C, Bigey P, Lazerges M, Bedioui F. Electrochemical DNA-biosensors based on long-range electron transfer: optimization of the amperometric detection in the femtomolar range using two-electrode setup and ultramicroelectrode. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.04.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Nadeem Q, Rizwan M, Gill R, Rafique M, Shahid M. Fabrication of alumina based electrically conductive polymer composites. J Appl Polym Sci 2015. [DOI: 10.1002/app.42939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- QuratulAin Nadeem
- Department of Environmental Sciences; Fatima Jinnah Women University; Rawalpindi 46000 Pakistan
| | - Muhammad Rizwan
- Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Rohama Gill
- Department of Environmental Sciences; Fatima Jinnah Women University; Rawalpindi 46000 Pakistan
| | - Muhammad Rafique
- Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Muhammad Shahid
- Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| |
Collapse
|
21
|
Park S, Kim J, Ock H, Dutta G, Seo J, Shin EC, Yang H. Sensitive electrochemical detection of vaccinia virus in a solution containing a high concentration of l-ascorbic acid. Analyst 2015; 140:5481-7. [DOI: 10.1039/c5an01086a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A new redox cycling scheme allows sensitive detection of vaccinia virus in a solution containing a high concentration of l-ascorbic acid.
Collapse
Affiliation(s)
- Seonhwa Park
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 609-735
- Korea
| | - Jihye Kim
- Graduate School of Medical Science & Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon
- Korea
| | - Hwiseok Ock
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 609-735
- Korea
| | - Gorachand Dutta
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 609-735
- Korea
| | - Jeongwook Seo
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 609-735
- Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science & Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon
- Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 609-735
- Korea
| |
Collapse
|
22
|
Mayorga-Martinez CC, Chamorro-García A, Serrano L, Rivas L, Quesada-Gonzalez D, Altet L, Francino O, Sánchez A, Merkoçi A. An iridium oxide nanoparticle and polythionine thin film based platform for sensitive Leishmania DNA detection. J Mater Chem B 2015; 3:5166-5171. [DOI: 10.1039/c5tb00545k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel impedimetric label-free genosensor for highly sensitive DNA detection using a sensing platform based on thionine and iridium oxide nanoparticles.
Collapse
Affiliation(s)
- Carmen C. Mayorga-Martinez
- Nanobioelectronics & Biosensors Group
- Institut Catala de Nanociencia i Nanotecnologia (ICN2)
- Bellaterra (Barcelona) 08193
- Spain
| | - Alejandro Chamorro-García
- Nanobioelectronics & Biosensors Group
- Institut Catala de Nanociencia i Nanotecnologia (ICN2)
- Bellaterra (Barcelona) 08193
- Spain
- Autonomous University of Barcelona
| | - Lorena Serrano
- Vetgenomics
- Edifici Eureka
- Parc de Recerca UAB
- 08193 Bellaterra (Barcelona)
- Spain
| | - Lourdes Rivas
- Nanobioelectronics & Biosensors Group
- Institut Catala de Nanociencia i Nanotecnologia (ICN2)
- Bellaterra (Barcelona) 08193
- Spain
- Autonomous University of Barcelona
| | - Daniel Quesada-Gonzalez
- Nanobioelectronics & Biosensors Group
- Institut Catala de Nanociencia i Nanotecnologia (ICN2)
- Bellaterra (Barcelona) 08193
- Spain
- Autonomous University of Barcelona
| | - Laura Altet
- Vetgenomics
- Edifici Eureka
- Parc de Recerca UAB
- 08193 Bellaterra (Barcelona)
- Spain
| | - Olga Francino
- Autonomous University of Barcelona
- 08193 Bellaterra
- Spain
- Vetgenomics
- Edifici Eureka
| | - Armand Sánchez
- Vetgenomics
- Edifici Eureka
- Parc de Recerca UAB
- 08193 Bellaterra (Barcelona)
- Spain
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group
- Institut Catala de Nanociencia i Nanotecnologia (ICN2)
- Bellaterra (Barcelona) 08193
- Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)
| |
Collapse
|
23
|
Sun X, Jia M, Ji J, Guan L, Zhang Y, Tang L, Li Z. Enzymatic amplification detection of peanut allergen Ara h1 using a stem-loop DNA biosensor modified with a chitosan-mutiwalled carbon nanotube nanocomposite and spongy gold film. Talanta 2014; 131:521-7. [PMID: 25281135 DOI: 10.1016/j.talanta.2014.07.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/24/2014] [Accepted: 07/26/2014] [Indexed: 11/30/2022]
Abstract
In this paper, a highly sensitive biosensor was constructed for peanut allergen Ara h1 detection. The biosensor was constructed by coating a glassy carbon electrode with a chitosan-mutiwalled carbon nanotube nanocomposite and then adding a spongy gold film via electro-deposition to increase the effective area. The probe switched from an "on" to an "off" state in the presence of target DNA, which detached biotin from the electrode surface. This also detached streptavidin-horseradish peroxidase (HRP-SA), which was bound to the electrode via specific interaction with biotin. The HRP-SA catalyzed chemical oxidation of hydroquinone by H2O2 to form benzoquinone, and when it was detached, electrochemical reduction of the signal of benzoquinone could be used to monitor DNA hybridization via chronoamperometry. Under optimum conditions, a wide dynamic detection range (3.91 × 10(-17)-1.25 × 10(-15) mol L(-1)) and a low detection limit (1.3 × 10(-17) mol L(-1)) were achieved for the complementary sequence. Furthermore, the DNA biosensor exhibited an excellent ability to discriminate between a complementary target and a one-base mismatch or non-complementary sequence. The sensor was successfully applied to Ara h1 analysis in peanuts.
Collapse
Affiliation(s)
- Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, Synergetic Innovation Center of Food Safety, Wuxi 214122, Jiangsu, China.
| | - Min Jia
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, Synergetic Innovation Center of Food Safety, Wuxi 214122, Jiangsu, China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, Synergetic Innovation Center of Food Safety, Wuxi 214122, Jiangsu, China
| | - Lu Guan
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, Synergetic Innovation Center of Food Safety, Wuxi 214122, Jiangsu, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, Synergetic Innovation Center of Food Safety, Wuxi 214122, Jiangsu, China
| | - Lili Tang
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, Synergetic Innovation Center of Food Safety, Wuxi 214122, Jiangsu, China
| | - Zaijun Li
- School of Chemical and Material Engineering of Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
24
|
Fernandes AM, Abdalhai MH, Ji J, Xi BW, Xie J, Sun J, Noeline R, Lee BH, Sun X. Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Biosens Bioelectron 2014; 63:399-406. [PMID: 25127474 DOI: 10.1016/j.bios.2014.07.054] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/27/2014] [Accepted: 07/22/2014] [Indexed: 12/28/2022]
Abstract
In this paper, we reported the construction of new high sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth complex (MWCNT-Chi-Bi) and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Lead sulfide nanoparticles capped with 5'-(NH2) oligonucleotides thought amide bond was used as signalizing probe DNA (sz-DNA) and thiol-modified oligonucleotides sequence was used as fixing probe DNA (fDNA). The two probes hybridize with target Aeromonas DNA (tDNA) sequence (fDNA-tDNA-szDNA). The signal of hybridization is detected by differential pulse voltammetry (DPV) after electrodeposition of released lead nanoparticles (PbS) from sz-DNA on the surface of glass carbon electrode decorated with MWCNT-Chi-Bi, which improves the deposition and traducing electrical signal. The optimization of incubation time, hybridization temperature, deposition potential, deposition time and the specificity of the probes were investigated. Our results showed the highest sensibility to detect the target gene when compared with related biosensors and polymerase chain reaction (PCR). The detection limit for this biosensor was 1.0×10(-14) M. We could detect lower than 10(2) CFU mL(-1) of Aeromonas in spiked tap water. This method is rapid and sensitive for the detection of pathogenic bacteria and would become a potential application in biomedical diagnosis, food safety and environmental monitoring.
Collapse
Affiliation(s)
- António Maximiano Fernandes
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 7214122, China.
| | - Mandour H Abdalhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 7214122, China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 7214122, China
| | - Bing-Wen Xi
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jun Xie
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 7214122, China
| | - Rasoamandrary Noeline
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 7214122, China
| | - Byong H Lee
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 7214122, China.
| |
Collapse
|
25
|
Yola ML, Eren T, Atar N. A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.01.074] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
26
|
Mazloum-Ardakani M, Ahmadi R, Heidari MM, Sheikh-Mohseni MA. Electrochemical detection of the MT-ND6 gene and its enzymatic digestion: application in human genomic sample. Anal Biochem 2014; 455:60-4. [PMID: 24650582 DOI: 10.1016/j.ab.2014.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/05/2014] [Accepted: 03/08/2014] [Indexed: 10/25/2022]
Abstract
A simple electrochemical biosensor was developed for the detection of the mitochondrial NADH dehydrogenase 6 gene (MT-ND6) and its enzymatic digestion by BamHI enzyme. This biosensor was fabricated by modification of a glassy carbon electrode with gold nanoparticles (AuNPs/GCE) and a probe oligonucleotide (ssDNA/AuNPs/GCE). The probe, which is a thiolated segment of the MT-ND6 gene, was deposited by self-assembling immobilization on AuNPs/GCE. Two indicators including methylene blue (MB) and neutral red (NR) were used as the electroactive indicators and the electrochemical response of the modified electrode was measured by differential pulse voltammetry. The proposed biosensor can detect the complementary sequences of the MT-ND6 gene. Also the modified electrode was used for the detection of an enzymatic digestion process by BamHI enzyme. The electrochemical biosensor can detect the MT-ND6 gene and its enzymatic digestion in polymerase chain reaction (PCR)-amplified DNA extracted from human blood. Also the biosensor was used directly for detection of the MT-ND6 gene in all of the human genome.
Collapse
Affiliation(s)
| | - Roya Ahmadi
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Islamic Republic of Iran
| | - Mohammad Mehdi Heidari
- Department of Biology, Faculty of Science, Yazd University, Yazd, Islamic Republic of Iran
| | | |
Collapse
|
27
|
Sex determination based on amelogenin DNA by modified electrode with gold nanoparticle. Anal Biochem 2013; 443:132-8. [DOI: 10.1016/j.ab.2013.08.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 11/19/2022]
|
28
|
LUO XW, DU FJ, WU Y, GAO LJ, LI XX. Electrochemical DNA Sensor for Determination of p53 Tumor Suppressor Gene Incorporating Gold Nanoparticles Modification. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1016/s1872-2040(13)60689-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Analysis of the evolution of the detection limits of electrochemical DNA biosensors. Anal Bioanal Chem 2013; 405:3705-14. [DOI: 10.1007/s00216-012-6672-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/04/2012] [Accepted: 12/18/2012] [Indexed: 11/26/2022]
|
30
|
Devadoss A, Han H, Song T, Kim YP, Paik U. Gold nanoparticle-composite nanofibers for enzymatic electrochemical sensing of hydrogen peroxide. Analyst 2013; 138:5025-30. [DOI: 10.1039/c3an00317e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Wu NY, Gao W, He XL, Chang Z, Xu MT. Direct electrochemical sensor for label-free DNA detection based on zero current potentiometry. Biosens Bioelectron 2013; 39:210-4. [DOI: 10.1016/j.bios.2012.07.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/16/2012] [Accepted: 07/21/2012] [Indexed: 11/29/2022]
|
32
|
ZHAO JING, BO BING, YIN YONGMEI, LI GENXI. GOLD NANOPARTICLES-BASED BIOSENSORS FOR BIOMEDICAL APPLICATION. ACTA ACUST UNITED AC 2012. [DOI: 10.1142/s1793984412300087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gold nanoparticles are the most extensively studied nanomaterials for biomedical application due to their unique properties, such as rapid and simple synthesis, large surface area, strong adsorption ability and facile conjugation to various biomolecules. The remarkable photophysical properties of gold nanoparticles have provided plenty of opportunities for the preparation of gold nanoparticles-based optical biosensors, while the excellent biocompatibility, conductivity, catalytic properties and large surface-to-volume ratio have facilitated the application of gold nanoparticles in the construction of electrochemical biosensors. In this review, we mainly detail the gold nanoparticles-based optical and electrochemical biosensors for biomedical application in the recent two years, which have exhibited greatly enhanced analytical performances in the detection of DNA, proteins and some important small molecules.
Collapse
Affiliation(s)
- JING ZHAO
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - BING BO
- Department of Oncology, The First Affiliated, Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - YONG-MEI YIN
- Department of Oncology, The First Affiliated, Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - GEN-XI LI
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- Department of Biochemistry and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
33
|
Colorimetric sensing of clenbuterol using gold nanoparticles in the presence of melamine. Biosens Bioelectron 2012; 34:112-7. [DOI: 10.1016/j.bios.2012.01.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 11/18/2022]
|
34
|
Scida K, Stege PW, Haby G, Messina GA, García CD. Recent applications of carbon-based nanomaterials in analytical chemistry: critical review. Anal Chim Acta 2011; 691:6-17. [PMID: 21458626 PMCID: PMC3088727 DOI: 10.1016/j.aca.2011.02.025] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/20/2011] [Accepted: 02/09/2011] [Indexed: 11/19/2022]
Abstract
The objective of this review is to provide a broad overview of the advantages and limitations of carbon-based nanomaterials with respect to analytical chemistry. Aiming to illustrate the impact of nanomaterials on the development of novel analytical applications, developments reported in the 2005-2010 period have been included and divided into sample preparation, separation, and detection. Within each section, fullerenes, carbon nanotubes, graphene, and composite materials will be addressed specifically. Although only briefly discussed, included is a section highlighting nanomaterials with interesting catalytic properties that can be used in the design of future devices for analytical chemistry.
Collapse
Affiliation(s)
- Karen Scida
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, United States of America
| | - Patricia W. Stege
- INQUISAL, Department of Analytical Chemistry, National University of San Luis – CONICET, Chacabuco y Pedernera. D5700BWS. San Luis, Argentina
| | - Gabrielle Haby
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, United States of America
| | - Germán A. Messina
- INQUISAL, Department of Analytical Chemistry, National University of San Luis – CONICET, Chacabuco y Pedernera. D5700BWS. San Luis, Argentina
| | - Carlos D. García
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, United States of America
| |
Collapse
|
35
|
Development of an electrochemical DNA biosensor with a high sensitivity of fM by dendritic gold nanostructure modified electrode. Biosens Bioelectron 2011; 26:2619-25. [DOI: 10.1016/j.bios.2010.11.020] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/14/2010] [Accepted: 11/15/2010] [Indexed: 11/22/2022]
|