1
|
Guette-Marquet S, Saunier V, Pilloux L, Roques C, Bergel A. Electrochemical assay of mammalian cell viability. Bioelectrochemistry 2024; 156:108625. [PMID: 38086275 DOI: 10.1016/j.bioelechem.2023.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
We present the first use of amperometric detection to assess the viability of mammalian cells in continuous mode, directly in the cell culture medium. Vero or HeLa cells were injected into electrochemical sensors equipped with a 3-electrode system and containing DCIP 50 µM used as the redox mediator. DCIP was reduced by the viable cells and the reduced form was detected amperometrically at 300 mV vs silver pseudo-reference. The continuous regeneration of the oxidized form of the mediator ensured a stable redox state of the cell environment, allowing the cells to survive during the measurement time. The electrochemical response was related to cell metabolism (no response with dead cells or lysed cells) and depended on both mediator concentration and cell density. The protocol was applied to both cells in suspension and adhered cells. It was also adapted to detect trans-plasma membrane electron transfer (tPMET) by replacing DCIP by ferricyanide 500 µM and using linear scan voltammetry (2 mV/s). The pioneering results described here pave the way to the development of routine electrochemical assays for cell viability and for designing a cell-based analytical platform.
Collapse
Affiliation(s)
- Simon Guette-Marquet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Valentin Saunier
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires I2MC, Equipe 1, Toulouse, France
| | - Ludovic Pilloux
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
2
|
Georgiev D, Kostova M, de Oliveira AC, Muhovski Y. Investigation of the potential of yeast strains for phytase biosynthesis in a two-step screening procedure. J Microbiol Methods 2024; 217-218:106890. [PMID: 38272400 DOI: 10.1016/j.mimet.2024.106890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/30/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
Research into phytase production is useful for improving the efficiency of animal production, reducing environmental impact, and contributing to the development of sustainable and efficient animal production systems. This study aims to investigate the potential of yeast strains for phytase biosynthesis in nutrient media. Phytase is a phosphomonoesterase (E.C 3.1.3.8) catalyzing in a ladder-like manner the dephosphorylation of phytic acid and its salts, with various resulting myo-inositol phosphates and phosphoric acid. Yeasts of the genera Saccharomyces, Zygosaccharomyces, Candida, and Pichia were evaluated in a two-step screening procedure for phytase production. One hundred and eighteen strains were screened in the first stage, which was conducted on four types of solid culture media containing calcium phytate as the selected background. On PSM medium, many strains were found to form halos as early as the 24th hour of development. Several strains with significant potential for enzyme production were evaluated in the second step of the screening. It was conducted in a liquid culture medium. In conclusion, the strain C. melibiosica 2491 was selected for further studies when cultured in a YPglu culture medium. Further research will focus on finding suitable conditions that increase the biosynthesis of the enzyme, which is of significant technological and practical interest for animal nutrition.
Collapse
Affiliation(s)
- Danail Georgiev
- University of Plovdiv, Faculty of Biology, Department of Biochemistry and Microbiology, 24 Tsar Ivan Asen Str., Plovdiv 4000, Bulgaria
| | - Milena Kostova
- Agricultural University - Plovdiv, Faculty of Agronomy, Department of Plant physiology, Biochemistry, and Genetics, 12 Mendeleev blvd., Plovdiv 4000, Bulgaria.
| | - Ana Caroline de Oliveira
- Department of Life Sciences, Biological Engineering Unit, Walloon Agricultural Research Centre, 234 Chaussée de Charleroi, Gembloux 5030, Belgium
| | - Yordan Muhovski
- Department of Life Sciences, Biological Engineering Unit, Walloon Agricultural Research Centre, 234 Chaussée de Charleroi, Gembloux 5030, Belgium
| |
Collapse
|
3
|
Wahid E, Ocheja OB, Marsili E, Guaragnella C, Guaragnella N. Biological and technical challenges for implementation of yeast-based biosensors. Microb Biotechnol 2022; 16:54-66. [PMID: 36416008 PMCID: PMC9803330 DOI: 10.1111/1751-7915.14183] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Biosensors are low-cost and low-maintenance alternatives to conventional analytical techniques for biomedical, industrial and environmental applications. Biosensors based on whole microorganisms can be genetically engineered to attain high sensitivity and specificity for the detection of selected analytes. While bacteria-based biosensors have been extensively reported, there is a recent interest in yeast-based biosensors, combining the microbial with the eukaryotic advantages, including possession of specific receptors, stability and high robustness. Here, we describe recently reported yeast-based biosensors highlighting their biological and technical features together with their status of development, that is, laboratory or prototype. Notably, most yeast-based biosensors are still in the early developmental stage, with only a few prototypes tested for real applications. Open challenges, including systematic use of advanced molecular and biotechnological tools, bioprospecting, and implementation of yeast-based biosensors in electrochemical setup, are discussed to find possible solutions for overcoming bottlenecks and promote real-world application of yeast-based biosensors.
Collapse
Affiliation(s)
- Ehtisham Wahid
- DEI – Department of Electrical and Information Engineering – Politecnico di BariBariItaly
| | - Ohiemi Benjamin Ocheja
- Department of Biosciences, Biotechnologies and Environment – University of Bari “A. Moro”BariItaly
| | - Enrico Marsili
- Nottingham Ningbo China Beacons of Excellence Research and Innovation InstituteNingboChina
| | - Cataldo Guaragnella
- DEI – Department of Electrical and Information Engineering – Politecnico di BariBariItaly
| | - Nicoletta Guaragnella
- Department of Biosciences, Biotechnologies and Environment – University of Bari “A. Moro”BariItaly
| |
Collapse
|
4
|
Hubenova Y, Borisov G, Slavcheva E, Mitov M. Gram-positive bacteria covered bioanode in a membrane-electrode assembly for use in bioelectrochemical systems. Bioelectrochemistry 2022; 144:108011. [PMID: 34864272 DOI: 10.1016/j.bioelechem.2021.108011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/15/2023]
Abstract
A novel strain of Gram-positive bacteria Paenibacillus profundus YoMME was recognized by sequencing of 16S rRNA gene and after that tested for exoelectrogenicity for the first time. It was found that at an applied potential of -0.195 V (vs. SHE) the bacteria are capable of generating electricity and forming electroactive biofilms for 3-4 days. A tendency for the decrease in double-layer capacitance and the increase in the charge transfer resistance during the maturation of the biofilm was established. The formed bioanodes were used as a part of a membrane-electrode assembly (MEA) together with a selected cathode (E-Tek) and a separator (Zirfon). The applicability of MEA with the bioanode was tested by operating a newly designed bioelectrochemical system in a microbial fuel cell (MFC) or microbial electrolysis cell (MEC) mode. A current density of 200 mA m-2 was generated by the MFC after the improvement of the cathodic reaction through facilitated air access. The Coulombic efficiency in different MFC runs ranged from 5.2 to 7.4%. It was also determined that 0.65 V applied cell voltage is appropriate for the operation of the cell in the electrolysis mode, during which a current density of 2-3 Am-2 was reached. This, along with the evolved gas on the cathode, shows that as an anodic biocatalyst P. profundus YoMME assists the electrolysis processes at a significantly lower voltage than the theoretical one (1.23 V) for water decomposition. The hydrogen production rate varied between 0.5 and 0.7 m3/m3d and the cathodic hydrogen recovery ranged from 49.5 to 61.5 %. The estimated energy efficiency based on the electricity input exceeds 100 %, which indicates that additional energy is being gained from the biotic oxidation of the available organics.
Collapse
Affiliation(s)
- Yolina Hubenova
- Institute of Electrochemistry and Energy Systems "Acad. E. Budevski" - Bulgarian Academy of Sciences, Sofia, Bulgaria; Plovdiv University "Paisii Hilendarski", Plovdiv, Bulgaria.
| | - Galin Borisov
- Institute of Electrochemistry and Energy Systems "Acad. E. Budevski" - Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Evelina Slavcheva
- Institute of Electrochemistry and Energy Systems "Acad. E. Budevski" - Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mario Mitov
- Innovative Center for Eco Energy Technologies, South-West University "Neofit Rilski", Blagoevgrad, Bulgaria
| |
Collapse
|
5
|
Christwardana M, Yoshi LA, Setyonadi I, Maulana MR, Fudholi A. A novel application of simple submersible yeast-based microbial fuel cells as dissolved oxygen sensors in environmental waters. Enzyme Microb Technol 2021; 149:109831. [PMID: 34311895 DOI: 10.1016/j.enzmictec.2021.109831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/14/2023]
Abstract
In this study, yeast microbial fuel cells (MFCs) were established as biosensors for in-situ monitoring of dissolved oxygen (DO) levels in environmental waters, with yeast and glucose substrates acting as biocatalyst and fuel, respectively. Diverse environmental factors, such as temperature, pH and conductivity, were considered. The sensor performance was first tested with distilled water with different DO levels ranging from 0 mg/L to 8 mg/L and an external resistance of 1000 Ω. The relationship between DO and current density was non-linear (exponential). This MFC capability was further explored under different environmental conditions (pH, temperature and conductivity), and the current density produced was within the range of 0.14-34.88 mA/m2, which increased with elevated DO concentration. The resulting regression was y = 1.3051e0.3548x, with a regression coefficient (R2) = 0.71, indicating that the MFC-based DO meter was susceptible to interference. When used in environmental water samples, DO measurements using MFC resulted in errors ranging from 6.25 % to 15.15 % when compared with commercial DO meters. The simple yeast-based MFC sensors demonstrate promising prospects for future monitoring in a variety of areas, including developing countries and remote locations.
Collapse
Affiliation(s)
- Marcelinus Christwardana
- Department of Chemical Engineering, Institut Teknologi Indonesia, Jl. Raya Puspiptek Serpong, South Tangerang, Banten, 15320, Indonesia.
| | - Linda Aliffia Yoshi
- Department of Chemical Engineering, Institut Teknologi Indonesia, Jl. Raya Puspiptek Serpong, South Tangerang, Banten, 15320, Indonesia
| | - Indraprasta Setyonadi
- Department of Chemical Engineering, Institut Teknologi Indonesia, Jl. Raya Puspiptek Serpong, South Tangerang, Banten, 15320, Indonesia
| | - Mohammad Rizqi Maulana
- Department of Chemical Engineering, Institut Teknologi Indonesia, Jl. Raya Puspiptek Serpong, South Tangerang, Banten, 15320, Indonesia
| | - Ahmad Fudholi
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences (LIPI), Bandung, Indonesia.
| |
Collapse
|
6
|
Guette-Marquet S, Roques C, Bergel A. Catalysis of the electrochemical oxygen reduction reaction (ORR) by animal and human cells. PLoS One 2021; 16:e0251273. [PMID: 33951096 PMCID: PMC8099096 DOI: 10.1371/journal.pone.0251273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/22/2021] [Indexed: 11/21/2022] Open
Abstract
Animal cells from the Vero lineage and MRC5 human cells were checked for their capacity to catalyse the electrochemical oxygen reduction reaction (ORR). The Vero cells needed 72 hours’ incubation to induce ORR catalysis. The cyclic voltammetry curves were clearly modified by the presence of the cells with a shift of ORR of 50 mV towards positive potentials and the appearance of a limiting current (59 μA.cm-2). The MRC5 cells induced considerable ORR catalysis after only 4 h of incubation with a potential shift of 110 mV but with large experimental deviation. A longer incubation time, of 24 h, made the results more reproducible with a potential shift of 90 mV. The presence of carbon nanotubes on the electrode surface or pre-treatment with foetal bovine serum or poly-D-lysine did not change the results. These data are the first demonstrations of the capability of animal and human cells to catalyse electrochemical ORR. The discussion of the possible mechanisms suggests that these pioneering observations could pave the way for electrochemical biosensors able to characterize the protective system of cells against oxidative stress and its sensitivity to external agents.
Collapse
Affiliation(s)
- Simon Guette-Marquet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Fac. Sci. Pharmaceutique, 31062, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Fac. Sci. Pharmaceutique, 31062, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31432, Toulouse, France
- * E-mail:
| |
Collapse
|
7
|
Hubenova Y, Hubenova E, Mitov M. Electroactivity of the Gram-positive bacterium Paenibacillus dendritiformis MA-72. Bioelectrochemistry 2020; 136:107632. [PMID: 32795939 DOI: 10.1016/j.bioelechem.2020.107632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 01/23/2023]
Abstract
Whilst most of the microorganisms recognized as exoelectrogens are Gram-negative bacteria, the electrogenicity of Gram-positive bacteria has not been sufficiently explored. In this study, the putative electroactivity of the Gram-positive Paenibacillus dendritiformis MA-72 strain, isolated from the anodic biofilm of long-term operated Sediment Microbial Fuel Cell (SMFC), has been investigated. SEM observations show that under polarization conditions P. dendritiformis forms a dense biofilm on carbon felt electrodes. A current density, reaching 5 mA m-2, has been obtained at a prolonged applied potential of -0.195 V (vs. SHE), which represents 35% of the value achieved with the SMFC. The voltammetric studies confirm that the observed Faradaic current is associated with the electrochemical activity of the bacterial biofilm and not with a soluble redox mediator. The results suggest that a direct electron transfer takes place through the conductive extracellular polymer matrix via pili/nanowires and multiple cytochromes. All these findings demonstrate for the first time that the Gram-positive Paenibacillus dendritiformis MA-72 is a new exoelectrogenic bacterial strain.
Collapse
Affiliation(s)
- Yolina Hubenova
- Department of Electrocatalysis and Electrocrystallization, Institute of Electrochemistry and Energy Systems "Acad. E. Budevski" - Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Biochemistry and Microbiology, Plovdiv University "Paisii Hilendarski", Plovdiv, Bulgaria.
| | - Eleonora Hubenova
- Medical Faculty of the Rhein Friedrich Wilhelm University of Bonn, Bonn, Germany
| | - Mario Mitov
- Innovative Center for Eco Energy Technologies, South-West University "Neofit Rilski", Blagoevgrad, Bulgaria
| |
Collapse
|
8
|
Abstract
In this study, graphite–metal oxide (Gr–MO) composites were produced and explored as potential anodic catalysts for microbial fuel cells. Fe2O3, Fe3O4, or Mn3O4 were used as a catalyst precursor. The morphology and structure of the fabricated materials were analyzed by scanning electron microscopy and X-ray diffraction, respectively, and their corrosion resistance was examined by linear voltammetry. The manufactured Gr–MO electrodes were tested at applied constant potential +0.2 V (vs. Ag/AgCl) in the presence of pure culture Pseudomonas putida 1046 used as a model biocatalyst. The obtained data showed that the applied poising resulted in a generation of anodic currents, which gradually increased during the long-term experiments, indicating a formation of electroactive biofilms on the electrode surfaces. All composite electrodes exhibited higher electrocatalytic activity compared to the non-modified graphite. The highest current density (ca. 100 mA.m−2), exceeding over eight-fold that with graphite, was achieved with Gr–Mn3O4. The additional analyses performed by cyclic voltammetry and electrochemical impedance spectroscopy supported the changes in the electrochemical activity and revealed substantial differences in the mechanism of current generation processes with the use of different catalysts.
Collapse
|
9
|
Geng BY, Cao LY, Li F, Song H, Liu CG, Zhao XQ, Bai FW. Potential of Zymomonas mobilis as an electricity producer in ethanol production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:36. [PMID: 32158500 PMCID: PMC7057670 DOI: 10.1186/s13068-020-01672-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Microbial fuel cell (MFC) convokes microorganism to convert biomass into electricity. However, most well-known electrogenic strains cannot directly use glucose to produce valuable products. Zymomonas mobilis, a promising bacterium for ethanol production, owns special Entner-Doudoroff pathway with less ATP and biomass produced and the low-energy coupling respiration, making Z. mobilis a potential exoelectrogen. RESULTS A glucose-consuming MFC is constructed by inoculating Z. mobilis. The electricity with power density 2.0 mW/m2 is derived from the difference of oxidation-reduction potential (ORP) between anode and cathode chambers. Besides, two-type electricity generation is observed as glucose-independent process and glucose-dependent process. For the sake of enhancing MFC efficiency, extracellular and intracellular strategies are implemented. Biofilm removal and addition of c-type cytochrome benefit electricity performance and Tween 80 accelerates the electricity generation. Perturbation of cellular redox balance compromises the electricity output, indicating that redox homeostasis is the principal requirement to reach ideal voltage. CONCLUSION This study identifies potential feature of electricity activity for Z. mobilis and provides multiple strategies to enhance the electricity output. Therefore, additional electricity generation will benefit the techno-economic viability of the commercial bulk production for biochemicals or biofuels in an efficient and environmentally sustainable manner.
Collapse
Affiliation(s)
- Bo-Yu Geng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences of Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Lian-Ying Cao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences of Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Feng Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Hao Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences of Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences of Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences of Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
10
|
Triclosan Removal in Microbial Fuel Cell: The Contribution of Adsorption and Bioelectricity Generation. ENERGIES 2020. [DOI: 10.3390/en13030761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The occurrence of Triclosan (TCS) in natural aquatic systems has been drawing increasing attention due to its endocrine-disruption effects as well as for the development of antibiotic resistances. Wastewater discharge is the main source of water contamination by TCS. In this study, the removal of TCS in microbial fuel cells (MFCs) was carefully investigated. A 94% removal of TCS was observed with 60 mV electricity generation as well as a slight drop in pH. In addition, we found that adsorption also contributed to the removal of TCS in aqueous solution and 21.73% and 19.92% of the total mass was adsorbed to the inner wall of the reactor and to the electrode, respectively. The results revealed that the attenuation of TCS depends on both biodegradation and physical adsorption in the anode chamber. Thus, the outcomes of our study provide a better understanding of the TCS removal mechanism in MFCs.
Collapse
|
11
|
Kaneko M, Ishikawa M, Ishihara K, Nakanishi S. Cell-Membrane Permeable Redox Phospholipid Polymers Induce Apoptosis in MDA-MB-231 Human Breast Cancer Cells. Biomacromolecules 2019; 20:4447-4456. [DOI: 10.1021/acs.biomac.9b01184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Masahiro Kaneko
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahito Ishikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Graduate School of Engineering Science Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
12
|
Logan BE, Rossi R, Ragab A, Saikaly PE. Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol 2019; 17:307-319. [DOI: 10.1038/s41579-019-0173-x] [Citation(s) in RCA: 546] [Impact Index Per Article: 109.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Electrodeposited styrylquinolinium dye as molecular electrocatalyst for coupled redox reactions. Bioelectrochemistry 2018; 123:173-181. [PMID: 29778044 DOI: 10.1016/j.bioelechem.2018.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
Abstract
Modification of carbonaceous materials with different conductive coatings is a successful approach to enhance their electrocatalytic activity and thus to increase the electrical outputs when used as electrodes in biofuel cells. In this study, a methodology for electrodeposition of styrylquinolinium dye on carbon felt was developed. The produced dye electrodeposits were characterized by means of AFM, ESI-MS/MS and NMR spectroscopy. The obtained data reveal that the dye forms overlaid layers consisting of monomer molecules most likely with an antiparallel orientation. The UV-VIS spectroscopy, CV and EIS analyses show that the dye molecules preserve their redox activity within the coating and a charge transfer between NADH/NAD+ and electrodeposit is possible as a coupled redox reaction. The fabricated nano-modified electrodes were also tested as anodes in batch-mode operating yeast-based biofuel cell. The results indicate that the electrodeposited dye acts as an immobilized exogenous mediator, contributing to enhanced extracellular electron transfer.
Collapse
|
14
|
Stelmach KB, Neveu M, Vick-Majors TJ, Mickol RL, Chou L, Webster KD, Tilley M, Zacchei F, Escudero C, Flores Martinez CL, Labrado A, Fernández EJG. Secondary Electrons as an Energy Source for Life. ASTROBIOLOGY 2018; 18:73-85. [PMID: 29314901 DOI: 10.1089/ast.2016.1510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Life on Earth is found in a wide range of environments as long as the basic requirements of a liquid solvent, a nutrient source, and free energy are met. Previous hypotheses have speculated how extraterrestrial microbial life may function, among them that particle radiation might power living cells indirectly through radiolytic products. On Earth, so-called electrophilic organisms can harness electron flow from an extracellular cathode to build biomolecules. Here, we describe two hypothetical mechanisms, termed "direct electrophy" and "indirect electrophy" or "fluorosynthesis," by which organisms could harness extracellular free electrons to synthesize organic matter, thus expanding the ensemble of potential habitats in which extraterrestrial organisms might be found in the Solar System and beyond. The first mechanism involves the direct flow of secondary electrons from particle radiation to a microbial cell to power the organism. The second involves the indirect utilization of impinging secondary electrons and a fluorescing molecule, either biotic or abiotic in origin, to drive photosynthesis. Both mechanisms involve the attenuation of an incoming particle's energy to create low-energy secondary electrons. The validity of the hypotheses is assessed through simple calculations showing the biomass density attainable from the energy supplied. Also discussed are potential survival strategies that could be used by organisms living in possible habitats with a plentiful supply of secondary electrons, such as near the surface of an icy moon. While we acknowledge that the only definitive test for the hypothesis is to collect specimens, we also describe experiments or terrestrial observations that could support or nullify the hypotheses. Key Words: Radiation-Electrophiles-Subsurface life. Astrobiology 18, 73-85.
Collapse
Affiliation(s)
- Kamil B Stelmach
- 1 Department of Chemistry and Biochemistry, George Mason University , Fairfax, Virginia, USA
| | - Marc Neveu
- 2 School of Earth and Space Exploration, Arizona State University , Tempe, Arizona, USA
| | - Trista J Vick-Majors
- 3 Department of Land Resources and Environmental Sciences, Montana State University , Bozeman, Montana, USA
- 4 Département des sciences biologiques, Université du Québec à Montréal , Montréal, Canada
| | - Rebecca L Mickol
- 5 Arkansas Center for Space and Planetary Sciences, University of Arkansas , Fayetteville, Arkansas, USA
| | - Luoth Chou
- 6 Department of Earth and Environmental Sciences, University of Illinois at Chicago , Chicago, Illinois, USA
| | - Kevin D Webster
- 7 Department of Ecology and Evolutionary Biology, University of Arizona , Tucson, Arizona, USA
- 8 School of Natural Resources and the Environment, University of Arizona , Tucson, Arizona, USA
| | - Matt Tilley
- 9 Department of Earth and Space Sciences, University of Washington , Seattle, Washington, USA
| | - Federica Zacchei
- 10 Instituut voor Sterrenkunde, University of Leuven , Leuven, Belgium
| | | | | | - Amanda Labrado
- 13 Department of Geosciences, The Pennsylvania State University , University Park, Pennsylvania, USA
| | | |
Collapse
|
15
|
The glyoxylate pathway contributes to enhanced extracellular electron transfer in yeast-based biofuel cell. Bioelectrochemistry 2017; 116:10-16. [DOI: 10.1016/j.bioelechem.2017.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/23/2017] [Accepted: 03/12/2017] [Indexed: 11/18/2022]
|
16
|
Kaneko M, Ishikawa M, Hashimoto K, Nakanishi S. Molecular design of cytocompatible amphiphilic redox-active polymers for efficient extracellular electron transfer. Bioelectrochemistry 2017; 114:8-12. [DOI: 10.1016/j.bioelechem.2016.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
|
17
|
Hubenova Y, Bakalska R, Hubenova E, Mitov M. Mechanisms of electron transfer between a styrylquinolinium dye and yeast in biofuel cell. Bioelectrochemistry 2016; 112:158-65. [PMID: 26924617 DOI: 10.1016/j.bioelechem.2016.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 11/26/2022]
Abstract
In the present study, the influence of the recently synthesized styrylquinolinium dye 4-{(E)-2-[4-(dimethylamino)naphthalen-1-yl]ethenyl}-1-methylquinolinium iodide (DANSQI) on the intracellular processes as well as the electrical outputs of Candida melibiosica 2491 yeast-based biofuel cell was investigated. The addition of nanomolar quantities of DANSQI to the yeast suspension results in an increase of the current outputs right after the startup of the biofuel cells, associated with an electrooxidation of the dye on the anode. After that, the formed cation radical of the dye penetrates the yeast cells, provoking a set of intracellular changes. Studies of the subcellular anolyte fractions show that 1μM dye increased the peroxisomal catalase activity 30-times (1.15±0.06Unit/mg protein) and over twice the mitochondrial cytochrome c oxidase activity (92±5Unit/mg protein). The results obtained by electrochemical and spectrophotometric analyses let to the supposition that the dye acts as subcellular shuttle, on account of its specific intramolecular charge transfer properties. The transition between its benzoid, quinolyl radical and ion forms and their putative role for the extracellular and intracellular charge transfer mechanisms are discussed.
Collapse
Affiliation(s)
- Yolina Hubenova
- Department of Biochemistry and Microbiology, University of Plovdiv, Bulgaria.
| | - Rumyana Bakalska
- Department of Organic Chemistry, University of Plovdiv, Bulgaria
| | | | - Mario Mitov
- Innovative Center of Eco Energy Technologies, South-West University "Neofit Rilski", Bulgaria
| |
Collapse
|
18
|
Lee YY, Kim TG, Cho KS. Isolation and characterization of a novel electricity-producing yeast, Candida sp. IR11. BIORESOURCE TECHNOLOGY 2015; 192:556-563. [PMID: 26092068 DOI: 10.1016/j.biortech.2015.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 06/04/2023]
Abstract
A novel iron-reducing yeast, Candida sp. IR11, was isolated from an anodic biofilm in a MFC reactor fed glucose as a feedstock. 200-250 mV of voltage was produced in the air-cathode MFC inoculated with a pure culture of the strain IR11 where glucose was supplied as a feedstock. When the strain IR11 was inoculated into a conventional MFC treating rejected wastewater from an upflow anaerobic sludge blanket, maximum power density and coulombic efficiency were enhanced from 15.2 ± 0.36 to 20.6 ± 1.52 mW m(-2) and from 14.4 ± 0.45% to 21.9 ± 0.71%, respectively. In addition, the inoculation with IR11 improved COD removal from 79.1 ± 1.53% to 91.3 ± 5.29%. The quantitative PCR results showed that the strain IR11 successfully attached the anodic biofilm of the MFC reactors. These results indicate that Candida sp. IR11 is a promising biocatalyst for the enhancement of MFC performance.
Collapse
Affiliation(s)
- Yun-Yeong Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Tae Gwan Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
19
|
Mitochondrial Respiratory Chain Inhibitors Involved in ROS Production Induced by Acute High Concentrations of Iodide and the Effects of SOD as a Protective Factor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:217670. [PMID: 26294939 PMCID: PMC4532905 DOI: 10.1155/2015/217670] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/12/2015] [Accepted: 03/24/2015] [Indexed: 11/23/2022]
Abstract
A major source of reactive oxygen species (ROS) generation is the mitochondria. By using flow cytometry of the mitochondrial fluorescent probe, MitoSOX Red, western blot of mitochondrial ROS scavenger Peroxiredoxin (Prx) 3 and fluorescence immunostaining, ELISA of cleaved caspases 3 and 9, and TUNEL staining, we demonstrated that exposure to 100 μM KI for 2 hours significantly increased mitochondrial superoxide production and Prx 3 protein expression with increased expressions of cleaved caspases 3 and 9. Besides, we indicated that superoxide dismutase (SOD) at 1000 unit/mL attenuated the increase in mitochondrial superoxide production, Prx 3 protein expression, and lactate dehydrogenase (LDH) release and improved the relative cell viability at 100 μM KI exposure. However, SOD inhibitor diethyldithiocarbamic acid (DETC) (2 mM), Rotenone (0.5 μM), a mitochondrial complex I inhibitor, and Antimycin A (10 μM), a complex III inhibitor, caused an increase in mitochondrial superoxide production, Prx 3 protein expression, and LDH release and decreased the relative cell viability. We conclude that the inhibitors of mitochondrial respiratory chain complex I or III may be involved in oxidative stress caused by elevated concentrations of iodide, and SOD demonstrates its protective effect on the Fischer rat thyroid cell line (FRTL) cells.
Collapse
|