1
|
Ummalyma SB, Bhaskar T. Recent advances in the role of biocatalyst in biofuel cells and its application: An overview. Biotechnol Genet Eng Rev 2024; 40:2051-2089. [PMID: 37010302 DOI: 10.1080/02648725.2023.2197715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/09/2023] [Indexed: 04/04/2023]
Abstract
Biofuel cells have recently gained popularity as a green and renewable energy source. Biofuel cells are unique devices of energy and are capable of converting the stored chemical energy from waste materials such as pollutants, organics and wastewater into reliable, renewable, pollution-free energy sources through the action of biocatalysts such as various microorganisms and enzymes. It is a promising technological device to treat waste to compensate for global warming and the energy crisis through the green energy production process. Due to their unique properties, various potential biocatalysts are attracting researchers to apply them to various microbial biofuel cells for improving electricity and power. Recent research in biofuel cells is focusing on the exploitation of different biocatalysts and how they are enhancing power generation for various applications in the field of environmental technology, and biomedical fields such as implantable devices, testing kits, and biosensors. This review focusing the importance of microbial fuel cells (MFCs) and enzymatic fuel cells (ECFs) and role of different types of biocatalysts and their mechanisms for improving biofuel cell efficiency gathered from recent reports. Finally, its multifaceted applications with special emphasis on environmental technology and biomedical field will be described, along with future perspectives.
Collapse
Affiliation(s)
- Sabeela Beevi Ummalyma
- Department of Biotechnology, Govt. of India Takyelpat, Institute of Bioresources and Sustainable Development (IBSD)An Autonomous Institute, Imphal, India
| | - Thallada Bhaskar
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Li J, Shen J, Hou T, Tang H, Zeng C, Xiao K, Hou Y, Wang B. A Self-Assembled MOF-Escherichia Coli Hybrid System for Light-Driven Fuels and Valuable Chemicals Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308597. [PMID: 38664984 PMCID: PMC11220693 DOI: 10.1002/advs.202308597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/25/2024] [Indexed: 07/04/2024]
Abstract
The development of semi-artificial photosynthetic systems, which integrate metal-organic frameworks (MOFs) with industrial microbial cell factories for light-driven synthesis of fuels and valuable chemicals, represents a highly promising avenue for both research advancements and practical applications. In this study, an MOF (PCN-222) utilizing racemic-(4-carboxyphenyl) porphyrin and zirconium chloride (ZrCl4) as primary constituents is synthesized. Employing a self-assembly process, a hybrid system is constructed, integrating engineered Escherichia coli (E. coli) to investigate light-driven hydrogen and lysine production. These results demonstrate that the light-irradiated biohybrid system efficiently produce H2 with a quantum efficiency of 0.75% under full spectrum illumination, the elevated intracellular reducing power NADPH is also observed. By optimizing the conditions, the biohybrid system achieves a maximum lysine production of 18.25 mg L-1, surpassing that of pure bacteria by 332%. Further investigations into interfacial electron transfer mechanisms reveals that PCN-222 efficiently captures light and facilitates the transfer of photo-generated electrons into E. coli cells. It is proposed that the interfacial energy transfer process is mediated by riboflavin, with facilitation by secreted small organic acids acting as hole scavengers for PCN-222. This study establishes a crucial foundation for future research into the light-driven biomanufacturing using E. coli-based hybrid systems.
Collapse
Affiliation(s)
- Jialu Li
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- School of ResourcesEnvironment and MaterialsGuangxi UniversityNanning530004China
| | - Junfeng Shen
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Tianfeng Hou
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Hongting Tang
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Cuiping Zeng
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Kemeng Xiao
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Department of Chemistry and Center for Cell and Developmental BiologyThe Chinese University of Hong KongShatinHong Kong999077China
| | - Yanping Hou
- School of ResourcesEnvironment and MaterialsGuangxi UniversityNanning530004China
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| |
Collapse
|
3
|
Guette-Marquet S, Saunier V, Pilloux L, Roques C, Bergel A. Electrochemical assay of mammalian cell viability. Bioelectrochemistry 2024; 156:108625. [PMID: 38086275 DOI: 10.1016/j.bioelechem.2023.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
We present the first use of amperometric detection to assess the viability of mammalian cells in continuous mode, directly in the cell culture medium. Vero or HeLa cells were injected into electrochemical sensors equipped with a 3-electrode system and containing DCIP 50 µM used as the redox mediator. DCIP was reduced by the viable cells and the reduced form was detected amperometrically at 300 mV vs silver pseudo-reference. The continuous regeneration of the oxidized form of the mediator ensured a stable redox state of the cell environment, allowing the cells to survive during the measurement time. The electrochemical response was related to cell metabolism (no response with dead cells or lysed cells) and depended on both mediator concentration and cell density. The protocol was applied to both cells in suspension and adhered cells. It was also adapted to detect trans-plasma membrane electron transfer (tPMET) by replacing DCIP by ferricyanide 500 µM and using linear scan voltammetry (2 mV/s). The pioneering results described here pave the way to the development of routine electrochemical assays for cell viability and for designing a cell-based analytical platform.
Collapse
Affiliation(s)
- Simon Guette-Marquet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Valentin Saunier
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires I2MC, Equipe 1, Toulouse, France
| | - Ludovic Pilloux
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
4
|
Umar A, Mubeen M, Ali I, Iftikhar Y, Sohail MA, Sajid A, Kumar A, Solanki MK, Kumar Divvela P, Zhou L. Harnessing fungal bio-electricity: a promising path to a cleaner environment. Front Microbiol 2024; 14:1291904. [PMID: 38352061 PMCID: PMC10861785 DOI: 10.3389/fmicb.2023.1291904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024] Open
Abstract
Integrating fungi into fuel cell systems presents a promising opportunity to address environmental pollution while simultaneously generating energy. This review explores the innovative concept of constructing wetlands as fuel cells for pollutant degradation, offering a practical and eco-friendly solution to pollution challenges. Fungi possess unique capabilities in producing power, fuel, and electricity through metabolic processes, drawing significant interest for applications in remediation and degradation. Limited data exist on fungi's ability to generate electricity during catalytic reactions involving various enzymes, especially while remediating pollutants. Certain species, such as Trametes versicolor, Ganoderma lucidum, Galactomyces reessii, Aspergillus spp., Kluyveromyce smarxianus, and Hansenula anomala, have been reported to generate electricity at 1200 mW/m3, 207 mW/m2, 1,163 mW/m3, 438 mW/m3, 850,000 mW/m3, and 2,900 mW/m3, respectively. Despite the eco-friendly potential compared to conventional methods, fungi's role remains largely unexplored. This review delves into fungi's exceptional potential as fuel cell catalysts, serving as anodic or cathodic agents to mitigate land, air, and water pollutants while simultaneously producing fuel and power. Applications cover a wide range of tasks, and the innovative concept of wetlands designed as fuel cells for pollutant degradation is discussed. Cost-effectiveness may vary depending on specific contexts and applications. Fungal fuel cells (FFCs) offer a versatile and innovative solution to global challenges, addressing the increasing demand for alternative bioenergy production amid population growth and expanding industrial activities. The mechanistic approach of fungal enzymes via microbial combinations and electrochemical fungal systems facilitates the oxidation of organic substrates, oxygen reduction, and ion exchange membrane orchestration of essential reactions. Fungal laccase plays a crucial role in pollutant removal and monitoring environmental contaminants. Fungal consortiums show remarkable potential in fine-tuning FFC performance, impacting both power generation and pollutant degradation. Beyond energy generation, fungal cells effectively remove pollutants. Overall, FFCs present a promising avenue to address energy needs and mitigate pollutants simultaneously.
Collapse
Affiliation(s)
- Aisha Umar
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Iftikhar Ali
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Yasir Iftikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Aamir Sohail
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ashara Sajid
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | | | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
5
|
Sakr EAE, Khater DZ, Kheiralla ZMH, El-Khatib KM. Statistical optimization of waste molasses-based exopolysaccharides and self-sustainable bioelectricity production for dual chamber microbial fuel cell by Bacillus piscis. Microb Cell Fact 2023; 22:202. [PMID: 37803422 PMCID: PMC10559494 DOI: 10.1186/s12934-023-02216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND The application of exopolysaccharide-producing bacteria (EPS) in dual chamber microbial fuel cells (DCMFC) is critical which can minimize the chemical oxygen demand (COD) of molasses with bioelectricity production. Hence, our study aimed to evaluate the EPS production by the novel strain Bacillus piscis by using molasses waste. Therefore, statistical modeling was used to optimize the EPS production. Its structure was characterized by UV, FTIR, NMR, and monosaccharides compositions. Eventually, to highlight B. piscis' adaptability in energy applications, bioelectricity production by this organism was studied in the BCMFC fed by an optimized molasses medium. RESULTS B. piscis OK324045 characterized by 16S rRNA is a potent EPS-forming organism and yielded a 6.42-fold increase upon supplementation of molasses (5%), MgSO4 (0.05%), and inoculum size (4%). The novel exopolysaccharide produced by Bacillus sp. (EPS-BP5M) was confirmed by the structural analysis. The findings indicated that the MFC's maximum close circuit voltage (CCV) was 265 mV. The strain enhanced the performance of DCMFC achieving maximum power density (PD) of 31.98 mW m-2, COD removal rate of 90.91%, and color removal of 27.68%. Furthermore, cyclic voltammetry (CV) revealed that anodic biofilms may directly transfer electrons to anodes without the use of external redox mediators. Additionally, CV measurements made at various sweep scan rates to evaluate the kinetic studies showed that the electron charge transfer was irreversible. The SEM images showed the biofilm growth distributed over the electrode's surface. CONCLUSIONS This study offers a novel B. piscis strain for EPS-BP5M production, COD removal, decolorization, and electricity generation of the optimized molasses medium in MFCs. The biosynthesis of EPS-BP5M by a Bacillus piscis strain and its electrochemical activity has never been documented before. The approach adopted will provide significant benefits to sugar industries by generating bioelectricity using molasses as fuel and providing a viable way to improve molasses wastewater treatment.
Collapse
Affiliation(s)
- Ebtehag A E Sakr
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt.
| | - Dena Z Khater
- Chemical Engineering and Pilot Plant Department, National Research Centre (NRC), El Buhouth St., Cairo, 12622, Dokki, Egypt
| | - Zeinab M H Kheiralla
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Kamel M El-Khatib
- Chemical Engineering and Pilot Plant Department, National Research Centre (NRC), El Buhouth St., Cairo, 12622, Dokki, Egypt
| |
Collapse
|
6
|
Maity D, Guha Ray P, Buchmann P, Mansouri M, Fussenegger M. Blood-Glucose-Powered Metabolic Fuel Cell for Self-Sufficient Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300890. [PMID: 36893359 DOI: 10.1002/adma.202300890] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Indexed: 05/26/2023]
Abstract
Currently available bioelectronic devices consume too much power to be continuously operated on rechargeable batteries, and are often powered wirelessly, with attendant issues regarding reliability, convenience, and mobility. Thus, the availability of a robust, self-sufficient, implantable electrical power generator that works under physiological conditions would be transformative for many applications, from driving bioelectronic implants and prostheses to programing cellular behavior and patients' metabolism. Here, capitalizing on a new copper-containing, conductively tuned 3D carbon nanotube composite, an implantable blood-glucose-powered metabolic fuel cell is designed that continuously monitors blood-glucose levels, converts excess glucose into electrical power during hyperglycemia, and produces sufficient energy (0.7 mW cm-2 , 0.9 V, 50 mm glucose) to drive opto- and electro-genetic regulation of vesicular insulin release from engineered beta cells. It is shown that this integration of blood-glucose monitoring with elimination of excessive blood glucose by combined electro-metabolic conversion and insulin-release-mediated cellular consumption enables the metabolic fuel cell to restore blood-glucose homeostasis in an automatic, self-sufficient, and closed-loop manner in an experimental model of type-1 diabetes.
Collapse
Affiliation(s)
- Debasis Maity
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Preetam Guha Ray
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Peter Buchmann
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058, Switzerland
| |
Collapse
|
7
|
Electrochemical performance of Paenibacillus profundus YoMME encapsulated in alginate polymer. Bioelectrochemistry 2023; 150:108354. [PMID: 36563455 DOI: 10.1016/j.bioelechem.2022.108354] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Gram-positive bacterium Paenibacillus profundus YoMME, entrapped in an alginate polymer onto graphite paper, preserves its extracellular electron transfer capabilities. A current density of up to 30 mA m-2 was generated at an applied potential of -200 mV (vs. SHE). Fivefold higher initial current density values were recorded at applied potentials of +220 mV and +600 mV. The electrochemical behavior of the encapsulated bioelectrodes has been also explored by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy and evaluated by the parameters of the best-fitted equivalent electric circuit model. Over time the bacteria grow and divide within the alginate matrix, which affects considerably the capacitance and the charge transfer resistance of the coating. The impedance spectra follow the dynamics of the bacterial culture development within the alginate polymer and are useful for the prediction of the bioelectrode performance. A current density of 150 mA m-2 was achieved when the alginate was functionalized by a mixture of the redox dyes thiazolyl blue (MTT) formazan and phenazine methosulfate (PMS). It is supposed that the added artificial mediators facilitate the electron transfer from the bacteria to the electrode surface by forming conductive cascade conduits through the alginate matrix.
Collapse
|
8
|
Umar A, Smółka Ł, Gancarz M. The Role of Fungal Fuel Cells in Energy Production and the Removal of Pollutants from Wastewater. Catalysts 2023. [DOI: 10.3390/catal13040687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Pure water, i.e., a sign of life, continuously circulates and is contaminated by different discharges. This emerging environmental problem has been attracting the attention of scientists searching for methods for the treatment of wastewater contaminated by multiple recalcitrant compounds. Various physical and chemical methods are used to degrade contaminants from water bodies. Traditional methods have certain limitations and complexities for bioenergy production, which motivates the search for new ways of sustainable bioenergy production and wastewater treatment. Biological strategies have opened new avenues to the treatment of wastewater using oxidoreductase enzymes for the degradation of pollutants. Fungal-based fuel cells (FFCs), with their catalysts, have gained considerable attention among scientists worldwide. They are a new, ecofriendly, and alternative approach to nonchemical methods due to easy handling. FFCs are efficiently used in wastewater treatment and the production of electricity for power generation. This article also highlights the construction of fungal catalytic cells and the enzymatic performance of different fungal species in energy production and the treatment of wastewater.
Collapse
Affiliation(s)
- Aisha Umar
- Institute of the Botany, University of the Punjab, Lahore 54590, Pakistan
| | - Łukasz Smółka
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
| | - Marek Gancarz
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
9
|
Zhou Q, Li R, Li T, Zhou R, Hou Z, Zhang X. Interactions among microorganisms functionally active for electron transfer and pollutant degradation in natural environments. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:3-15. [PMID: 38074455 PMCID: PMC10702900 DOI: 10.1016/j.eehl.2023.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 03/03/2024]
Abstract
Compared to single microbial strains, complex interactions between microbial consortia composed of various microorganisms have been shown to be effective in expanding ecological functions and accomplishing biological processes. Electroactive microorganisms (EMs) and degradable microorganisms (DMs) play vital roles in bioenergy production and the degradation of organic pollutants hazardous to human health. These microorganisms can strongly interact with other microorganisms and promote metabolic cooperation, thus facilitating electricity production and pollutant degradation. In this review, we describe several specific types of EMs and DMs based on their ability to adapt to different environments, and summarize the mechanism of EMs in extracellular electron transfer. The effects of interactions between EMs and DMs are evaluated in terms of electricity production and degradation efficiency. The principle of the enhancement in microbial consortia is also introduced, such as improved biomass, changed degradation pathways, and biocatalytic potentials, which are directly or indirectly conducive to human health.
Collapse
Affiliation(s)
- Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruixiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiren Zhou
- Department of Biological and Agricultural Engineering, Texas A&M University, TX 77843-2117, USA
| | - Zelin Hou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaolin Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
10
|
Tsakova V. Electrochemistry born in Bulgaria: the wide spread of ripened seeds at the transition to the twenty-first century. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Pal M, Shrivastava A, Sharma RK. Wheat straw-based microbial electrochemical reactor for azo dye decolorization and simultaneous bioenergy generation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116253. [PMID: 36126599 DOI: 10.1016/j.jenvman.2022.116253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Microbial fuel cells have emerged as a technique that can effectively treat wastewater with simultaneous electricity generation. The present study explored the performance of microbial fuel cell for decolorizing and degradation of azo dyes including, remazol brilliant blue (RBB), mordant blue 9 (MB9), acid red1 (AR1), and orange G (OG), while, simultaneously generating electricity. Wheat straw and its hydrolysate was used as a potential substrate in MFC. The hydrolysate was prepared through the degradation of wheat straw by P. floridensis, P. brevispora and P. chrysosporium, while the yeast Pichia fermentans was used as biocatalyst. Dye decolorization was carried out in a fungus-yeast mediated single-chambered MFC batch mode, U-shaped reactor, and bottle reactor in continuous mode. The maximum power density recorded in U shaped continuous reactor was 34.99 mW m-2 on 21st day of the experiment. The best response of dye decolorization was observed in the case of MB9 (96%) with P. floridensis in the continuous electrochemical reactor followed by RBB (90-95%), OG (76%), and AR1 (38%). The toxicity of the treated wastewater was assessed using phytotoxicity analysis.
Collapse
Affiliation(s)
- Mamta Pal
- Department of Biosciences, Manipal University Jaipur, Jaipur-303007, Rajasthan, India
| | - Akansha Shrivastava
- Department of Biosciences, Manipal University Jaipur, Jaipur-303007, Rajasthan, India
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur-303007, Rajasthan, India.
| |
Collapse
|
12
|
Hubenova Y, Borisov G, Slavcheva E, Mitov M. Gram-positive bacteria covered bioanode in a membrane-electrode assembly for use in bioelectrochemical systems. Bioelectrochemistry 2022; 144:108011. [PMID: 34864272 DOI: 10.1016/j.bioelechem.2021.108011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/15/2023]
Abstract
A novel strain of Gram-positive bacteria Paenibacillus profundus YoMME was recognized by sequencing of 16S rRNA gene and after that tested for exoelectrogenicity for the first time. It was found that at an applied potential of -0.195 V (vs. SHE) the bacteria are capable of generating electricity and forming electroactive biofilms for 3-4 days. A tendency for the decrease in double-layer capacitance and the increase in the charge transfer resistance during the maturation of the biofilm was established. The formed bioanodes were used as a part of a membrane-electrode assembly (MEA) together with a selected cathode (E-Tek) and a separator (Zirfon). The applicability of MEA with the bioanode was tested by operating a newly designed bioelectrochemical system in a microbial fuel cell (MFC) or microbial electrolysis cell (MEC) mode. A current density of 200 mA m-2 was generated by the MFC after the improvement of the cathodic reaction through facilitated air access. The Coulombic efficiency in different MFC runs ranged from 5.2 to 7.4%. It was also determined that 0.65 V applied cell voltage is appropriate for the operation of the cell in the electrolysis mode, during which a current density of 2-3 Am-2 was reached. This, along with the evolved gas on the cathode, shows that as an anodic biocatalyst P. profundus YoMME assists the electrolysis processes at a significantly lower voltage than the theoretical one (1.23 V) for water decomposition. The hydrogen production rate varied between 0.5 and 0.7 m3/m3d and the cathodic hydrogen recovery ranged from 49.5 to 61.5 %. The estimated energy efficiency based on the electricity input exceeds 100 %, which indicates that additional energy is being gained from the biotic oxidation of the available organics.
Collapse
Affiliation(s)
- Yolina Hubenova
- Institute of Electrochemistry and Energy Systems "Acad. E. Budevski" - Bulgarian Academy of Sciences, Sofia, Bulgaria; Plovdiv University "Paisii Hilendarski", Plovdiv, Bulgaria.
| | - Galin Borisov
- Institute of Electrochemistry and Energy Systems "Acad. E. Budevski" - Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Evelina Slavcheva
- Institute of Electrochemistry and Energy Systems "Acad. E. Budevski" - Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mario Mitov
- Innovative Center for Eco Energy Technologies, South-West University "Neofit Rilski", Blagoevgrad, Bulgaria
| |
Collapse
|
13
|
Ramya M, Senthil Kumar P. A review on recent advancements in bioenergy production using microbial fuel cells. CHEMOSPHERE 2022; 288:132512. [PMID: 34634275 DOI: 10.1016/j.chemosphere.2021.132512] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/05/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The generation of energy and its efficient use in industries and agriculture are critical to any country's growth. A country like India, which is still developing, faces a major challenge in terms of generating adequate electricity. With the current crisis and environmental concerns, the government must look past carbon-based energy sources and into long-term energy sources. Microbial fuel cells (MFCs) are a form of technology that can be used to both treat wastewater and generate electricity on a large scale. Researchers play a critical role in making this technology practical and effective enough to be implemented. However, since the charge of building microbial fuel cells is superior than the cost of fossil fuels, it is unlikely that power production will continually be aggressive with existing energy generation approaches. However, improvements in power densities and lower material expenses could render microbial fuel cells a viable option for energy making in the future. Following a thorough literature review, the analysis resumes the role of micro-organisms and substrates in the anode chamber. Microbial fuel cells are discussed in terms of their forms, materials, mechanism, and activity. This analysis discusses the various factors that influence microbial fuel cells, as well as contemporary challenges and applications in the development of sustainable electrical power.
Collapse
Affiliation(s)
- M Ramya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| |
Collapse
|
14
|
Yuan J, Huang H, Chatterjee SG, Wang Z, Wang S. Effective factors for the performance of a co-generation system for bioethanol and electricity production via microbial fuel cell technology. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Sarma H, Bhattacharyya P, Jadhav DA, Pawar P, Thakare M, Pandit S, Mathuriya AS, Prasad R. Fungal-mediated electrochemical system: Prospects, applications and challenges. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100041. [PMID: 34841332 PMCID: PMC8610361 DOI: 10.1016/j.crmicr.2021.100041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022] Open
Abstract
Microbial fuel cells (MFCs) that generate bioelectricity from biodegradable waste have received considerable attention from biologists. Fungi play a significant role as both anodic and cathodic catalysts in MFCs. Saccharomyces cerevisiae is a fungus with an ability to transfer electrons through mediators such as methylene blue (MB), neutral red (NR) or even without a mediator. This unique role of fungal cells in exocellular electron transfer (EET) and their interactions with electrodes hold a lot of promise in areas such as wastewater treatment where yeast cell-based MFCs can be used. The present article highlights the physico-chemical factors affecting the performance of fungal-mediated MFCs in terms of power output and degradation of organic pollutants, along with the challenges associated with fungal MFCs. In addition, to this comparative assessment of fungal-mediated bio-electrochemical systems, their development, possible applications and potential challenges are also discussed.
Collapse
Affiliation(s)
- Hemen Sarma
- Department of Botany, Nanda Nath Saikia College, Titabar 785630, Assam, India
| | - P.N. Bhattacharyya
- Mycology and Microbiology Department, Tocklai Tea Research Institute, Tea Research Association, Jorhat 785008, Assam, India
| | - Dipak A. Jadhav
- Department of Agricultural Engineering, Maharashtra Institute of Technology, Aurangabad, 431010, India
| | - Prajakta Pawar
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Mayur Thakare
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - Abhilasha Singh Mathuriya
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845401, Bihar, India
| |
Collapse
|
16
|
Verma M, Mishra V. Recent trends in upgrading the performance of yeast as electrode biocatalyst in microbial fuel cells. CHEMOSPHERE 2021; 284:131383. [PMID: 34216925 DOI: 10.1016/j.chemosphere.2021.131383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/04/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cell (MFC) is an optimistic fuel cell technology that applies microorganism's biochemical catalytic activities in consuming organic substrate and produce electricity. In the past, several researchers have reported power generation from Saccharomyces cerevisiae, but nowadays, most of the studies are centred around bacterial biofilms (prokaryotes) as anode biocatalyst. Yeast (a eukaryote) has also been applied as a biocatalyst in MFCs as they are non-pathogenic, easy to handle and tolerant to various environmental conditions. Yeast strains such as Arxula adeninvorans, Candida melibiosica, Hansenula polymorpha, Hansenula anomala, Kluyveromyces marxianus and Saccharomyces cerevisiae have been utilized in MFCs. This review summarizes the application of yeast as an anode biocatalyst together with a discussion on the mechanism of electron transfer from yeast cells to the anode and highlights the techniques applied in improving the efficiency of yeast-based MFCs. The recent challenges and benefits of utilizing yeast in MFCs have been also encapsulated in this review.
Collapse
Affiliation(s)
- Manisha Verma
- School of Biochemical Engineering, IIT (BHU), Varanasi, U. P., 221005, India.
| | - Vishal Mishra
- School of Biochemical Engineering, IIT (BHU), Varanasi, U. P., 221005, India.
| |
Collapse
|
17
|
Performance of Yeast Microbial Fuel Cell Integrated with Sugarcane Bagasse Fermentation for COD Reduction and Electricity Generation. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.3.9739.446-458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this analysis is to evaluate the efficiency of the Microbial Fuel Cell (MFC) system incorporated with the fermentation process, with the aim of reducing COD and generating electricity, using sugarcane bagasse extract as a substrate, in the presence and absence of sugarcane fibers. There is a possibility of turning bagasse extract into renewable bioenergy to promote the sustainability of the environment and energy. As a result, the integration of liquid fermentation (LF) with MFC has improved efficiency compared to semi-solid state fermentation (S-SSF). The maximum power generated was 14.88 mW/m2, with an average COD removal of 39.68% per cycle. The variation margin of the liquid fermentation pH readings remained slightly decrease, with a slight deflection of +0.14 occurring from 4.33. With the absence of bagasse fibers, biofilm can grow freely on the anode surface so that the transfer of electrons is fast and produces a relatively high current. Experimental data showed a positive potential after an effective integration of the LF and MFC systems in the handling of waste. The product is then simultaneously converted into electrical energy. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
18
|
Guette-Marquet S, Roques C, Bergel A. Catalysis of the electrochemical oxygen reduction reaction (ORR) by animal and human cells. PLoS One 2021; 16:e0251273. [PMID: 33951096 PMCID: PMC8099096 DOI: 10.1371/journal.pone.0251273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/22/2021] [Indexed: 11/21/2022] Open
Abstract
Animal cells from the Vero lineage and MRC5 human cells were checked for their capacity to catalyse the electrochemical oxygen reduction reaction (ORR). The Vero cells needed 72 hours’ incubation to induce ORR catalysis. The cyclic voltammetry curves were clearly modified by the presence of the cells with a shift of ORR of 50 mV towards positive potentials and the appearance of a limiting current (59 μA.cm-2). The MRC5 cells induced considerable ORR catalysis after only 4 h of incubation with a potential shift of 110 mV but with large experimental deviation. A longer incubation time, of 24 h, made the results more reproducible with a potential shift of 90 mV. The presence of carbon nanotubes on the electrode surface or pre-treatment with foetal bovine serum or poly-D-lysine did not change the results. These data are the first demonstrations of the capability of animal and human cells to catalyse electrochemical ORR. The discussion of the possible mechanisms suggests that these pioneering observations could pave the way for electrochemical biosensors able to characterize the protective system of cells against oxidative stress and its sensitivity to external agents.
Collapse
Affiliation(s)
- Simon Guette-Marquet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Fac. Sci. Pharmaceutique, 31062, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Fac. Sci. Pharmaceutique, 31062, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31432, Toulouse, France
- * E-mail:
| |
Collapse
|
19
|
Torres NH, Santos GDOS, Romanholo Ferreira LF, Américo-Pinheiro JHP, Eguiluz KIB, Salazar-Banda GR. Environmental aspects of hormones estriol, 17β-estradiol and 17α-ethinylestradiol: Electrochemical processes as next-generation technologies for their removal in water matrices. CHEMOSPHERE 2021; 267:128888. [PMID: 33190907 DOI: 10.1016/j.chemosphere.2020.128888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Hormones as a group of emerging contaminants have been increasingly used worldwide, which has increased their concern at the environmental level in various matrices, as they reach the water bodies through effluents due to the ineffectiveness of conventional treatments. Here we review the environmental scenario of hormones estriol (E3), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2), explicitly their origins, their characteristics, interactions, how they reach the environment, and, above all, the severe pathological and toxicological damage to animals and humans they produce. Furthermore, studies for the treatment of these endocrine disruptors (EDCs) are deepened using electrochemical processes as the remediation methods of the respective hormones. In the reported studies, these micropollutants were detected in samples of surface water, underground, soil, and sediment at concentrations that varied from ng L-1 to μg L-1 and are capable of causing changes in the endocrine system of various organisms. However, although there are studies on the ecotoxicological effects concerning E3, E2, and EE2 hormones, little is known about their environmental dispersion and damage in quantitative terms. Moreover, biodegradation becomes the primary mechanism of removal of steroid estrogens removal by sewage treatment plants, but it is still inefficient, which shows the importance of studying electrochemically-driven processes such as the Electrochemical Advanced Oxidation Processes (EAOP) and electrocoagulation for the removal of emerging micropollutants. Thus, this review covers information on the occurrence of these hormones in various environmental matrices, their respective treatment, and effects on exposed organisms for ecotoxicology purposes.
Collapse
Affiliation(s)
- Nádia Hortense Torres
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil.
| | - Géssica de Oliveira Santiago Santos
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | | | - Katlin Ivon Barrios Eguiluz
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | - Giancarlo Richard Salazar-Banda
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| |
Collapse
|
20
|
Rozene J, Morkvenaite-Vilkonciene I, Bruzaite I, Dzedzickis A, Ramanavicius A. Yeast-based microbial biofuel cell mediated by 9,10-phenantrenequinone. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137918] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Exploration of Electrochemcially Active Bacterial Strains for Microbial Fuel Cells: An Innovation in Bioelectricity Generation. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Geng BY, Cao LY, Li F, Song H, Liu CG, Zhao XQ, Bai FW. Potential of Zymomonas mobilis as an electricity producer in ethanol production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:36. [PMID: 32158500 PMCID: PMC7057670 DOI: 10.1186/s13068-020-01672-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Microbial fuel cell (MFC) convokes microorganism to convert biomass into electricity. However, most well-known electrogenic strains cannot directly use glucose to produce valuable products. Zymomonas mobilis, a promising bacterium for ethanol production, owns special Entner-Doudoroff pathway with less ATP and biomass produced and the low-energy coupling respiration, making Z. mobilis a potential exoelectrogen. RESULTS A glucose-consuming MFC is constructed by inoculating Z. mobilis. The electricity with power density 2.0 mW/m2 is derived from the difference of oxidation-reduction potential (ORP) between anode and cathode chambers. Besides, two-type electricity generation is observed as glucose-independent process and glucose-dependent process. For the sake of enhancing MFC efficiency, extracellular and intracellular strategies are implemented. Biofilm removal and addition of c-type cytochrome benefit electricity performance and Tween 80 accelerates the electricity generation. Perturbation of cellular redox balance compromises the electricity output, indicating that redox homeostasis is the principal requirement to reach ideal voltage. CONCLUSION This study identifies potential feature of electricity activity for Z. mobilis and provides multiple strategies to enhance the electricity output. Therefore, additional electricity generation will benefit the techno-economic viability of the commercial bulk production for biochemicals or biofuels in an efficient and environmentally sustainable manner.
Collapse
Affiliation(s)
- Bo-Yu Geng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences of Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Lian-Ying Cao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences of Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Feng Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Hao Song
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences of Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences of Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences of Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
23
|
A sustainable fungal microbial fuel cell (FMFC) for the bioremediation of acetaminophen (APAP) and its main by-product (PAP) and energy production from biomass. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101376] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Chong P, Erable B, Bergel A. Effect of pore size on the current produced by 3-dimensional porous microbial anodes: A critical review. BIORESOURCE TECHNOLOGY 2019; 289:121641. [PMID: 31300306 DOI: 10.1016/j.biortech.2019.121641] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Microbial anodes are the cornerstone of most electro-microbial processes. Designing 3-dimensional porous electrodes to increase the surface area of the electroactive biofilm they support is a key challenge in order to boost their performance. In this context, the critical review presented here aims to assess whether an optimal range of pore size may exist for the design of microbial anodes. Pore sizes of a few micrometres can enable microbial cells to penetrate but in conditions that do not favour efficient development of electroactive biofilms. Pores of a few tens of micrometres are subject to clogging. Sizes of a few hundreds of micrometres allow penetration of the biofilm inside the structure, but its development is limited by internal acidification. Consequently, pore sizes of a millimetre or so appear to be the most suitable. In addition, a simple theoretical approach is described to establish basis for porous microbial anode design.
Collapse
Affiliation(s)
- Poehere Chong
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Benjamin Erable
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France.
| |
Collapse
|
25
|
Hubenova Y, Hubenova E, Burdin B, Vladikova D, Mitov M. Development of coupled redox active network in Ca-alginate polymer for immobilization of Pseudomonas putida 1046 on electrode surface. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Pal M, Sharma RK. Exoelectrogenic response of Pichia fermentans influenced by mediator and reactor design. J Biosci Bioeng 2019; 127:714-720. [DOI: 10.1016/j.jbiosc.2018.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
|
27
|
Guo J, Suástegui M, Sakimoto KK, Moody VM, Xiao G, Nocera DG, Joshi NS. Light-driven fine chemical production in yeast biohybrids. Science 2019; 362:813-816. [PMID: 30442806 DOI: 10.1126/science.aat9777] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
Inorganic-biological hybrid systems have potential to be sustainable, efficient, and versatile chemical synthesis platforms by integrating the light-harvesting properties of semiconductors with the synthetic potential of biological cells. We have developed a modular bioinorganic hybrid platform that consists of highly efficient light-harvesting indium phosphide nanoparticles and genetically engineered Saccharomyces cerevisiae, a workhorse microorganism in biomanufacturing. The yeast harvests photogenerated electrons from the illuminated nanoparticles and uses them for the cytosolic regeneration of redox cofactors. This process enables the decoupling of biosynthesis and cofactor regeneration, facilitating a carbon- and energy-efficient production of the metabolite shikimic acid, a common precursor for several drugs and fine chemicals. Our work provides a platform for the rational design of biohybrids for efficient biomanufacturing processes with higher complexity and functionality.
Collapse
Affiliation(s)
- Junling Guo
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | - Miguel Suástegui
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | - Kelsey K Sakimoto
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Vanessa M Moody
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, PA 19104, USA
| | - Gao Xiao
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Neel S Joshi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA. .,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
28
|
Nikbakht M, Pakbin B, Nikbakht Brujeni G. Evaluation of a new lymphocyte proliferation assay based on cyclic voltammetry; an alternative method. Sci Rep 2019; 9:4503. [PMID: 30872745 PMCID: PMC6418162 DOI: 10.1038/s41598-019-41171-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/27/2019] [Indexed: 11/09/2022] Open
Abstract
Lymphocyte proliferation assays are widely used to assess the cell-mediated immunity. Current in vitro testing methods that are being used have extensive applications but still more problematic, due to the technical complexity and the needs for specialized equipment and reagents. Electrochemical methods such as cyclic voltammetry represent a very promising tool for the development of label-free in vitro assays of cell proliferation and viability. Here, a novel procedure based on voltammetric behaviours of proliferating cells was fabricated. Results indicated that proliferation in cell cultures and whole blood can be monitored electrochemically using cyclic voltammetry. In the comparison with colorimetric (MTT) assay, cyclic voltammetry gave the best correlation with cell count data over a range of 1200-300,000 cells/well of a microplate. Besides the advantages of short assay duration (4 hours) and the rapidness, the possibility use of fresh blood without further processing, would give more accurate results because cells are monitoring in an intact environment. Cyclic voltammetry assay is an efficient analytical method, which can provide a simple platform for the electrochemical study of lymphocyte proliferation.
Collapse
Affiliation(s)
- Mohammad Nikbakht
- Department of Electronic Engineering, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Babak Pakbin
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gholamreza Nikbakht Brujeni
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
29
|
Logan BE, Rossi R, Ragab A, Saikaly PE. Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol 2019; 17:307-319. [DOI: 10.1038/s41579-019-0173-x] [Citation(s) in RCA: 546] [Impact Index Per Article: 109.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Li M, Zhou M, Tian X, Tan C, McDaniel CT, Hassett DJ, Gu T. Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol Adv 2018; 36:1316-1327. [DOI: 10.1016/j.biotechadv.2018.04.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 10/17/2022]
|
31
|
Electrodeposited styrylquinolinium dye as molecular electrocatalyst for coupled redox reactions. Bioelectrochemistry 2018; 123:173-181. [PMID: 29778044 DOI: 10.1016/j.bioelechem.2018.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
Abstract
Modification of carbonaceous materials with different conductive coatings is a successful approach to enhance their electrocatalytic activity and thus to increase the electrical outputs when used as electrodes in biofuel cells. In this study, a methodology for electrodeposition of styrylquinolinium dye on carbon felt was developed. The produced dye electrodeposits were characterized by means of AFM, ESI-MS/MS and NMR spectroscopy. The obtained data reveal that the dye forms overlaid layers consisting of monomer molecules most likely with an antiparallel orientation. The UV-VIS spectroscopy, CV and EIS analyses show that the dye molecules preserve their redox activity within the coating and a charge transfer between NADH/NAD+ and electrodeposit is possible as a coupled redox reaction. The fabricated nano-modified electrodes were also tested as anodes in batch-mode operating yeast-based biofuel cell. The results indicate that the electrodeposited dye acts as an immobilized exogenous mediator, contributing to enhanced extracellular electron transfer.
Collapse
|
32
|
Evaluation of Kefir as a New Anodic Biocatalyst Consortium for Microbial Fuel Cell. Appl Biochem Biotechnol 2018; 185:1118-1131. [DOI: 10.1007/s12010-018-2718-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/09/2018] [Indexed: 12/21/2022]
|
33
|
Islam MA, Ethiraj B, Cheng CK, Yousuf A, Thiruvenkadam S, Prasad R, Rahman Khan MM. Enhanced Current Generation Using Mutualistic Interaction of Yeast-Bacterial Coculture in Dual Chamber Microbial Fuel Cell. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b01855] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Amirul Islam
- Faculty
of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Pahang, Malaysia
| | - Baranitharan Ethiraj
- Department
of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam,
Erode District, Tamil Nadu 638401, India
| | - Chin Kui Cheng
- Faculty
of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Pahang, Malaysia
- Centre
of Excellence for advancement Research Fluid Flow (CARIFF), Universiti Malaysia Pahang, 26300 Pahang, Malaysia
| | - Abu Yousuf
- Faculty
of Engineering Technology, Universiti Malaysia Pahang, 26300 Pahang, Malaysia
| | - Selvakumar Thiruvenkadam
- Department
of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Reddy Prasad
- Department
of Petroleum and Chemical Engineering, Institut Teknologi, Gadong BE1410, Brunei
| | - Md. Maksudur Rahman Khan
- Faculty
of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Pahang, Malaysia
- Centre
of Excellence for advancement Research Fluid Flow (CARIFF), Universiti Malaysia Pahang, 26300 Pahang, Malaysia
| |
Collapse
|
34
|
|
35
|
Huang W, Chen J, Hu Y, Zhang L. Enhancement of Congo red decolorization by membrane-free structure and bio-cathode in a microbial electrolysis cell. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Aslan S, Ó Conghaile P, Leech D, Gorton L, Timur S, Anik U. Development of a Bioanode for Microbial Fuel Cells Based on the Combination of a MWCNT-Au-Pt Hybrid Nanomaterial, an Osmium Redox Polymer andGluconobacter oxydansDSM 2343 Cells. ChemistrySelect 2017. [DOI: 10.1002/slct.201702868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sema Aslan
- Muğla Sıtkı Koçman University; Faculty of Science, Chemistry Department; 48000 Kötekli / Muğla Turkey
| | - Peter Ó Conghaile
- School of Chemistry; National University of Ireland Galway; University Road Galway Ireland
| | - Dónal Leech
- School of Chemistry; National University of Ireland Galway; University Road Galway Ireland
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology; Lund University; PO Box 124 SE-22100 Lund Sweden
| | - Suna Timur
- Ege University; Faculty of Science, Biochemistry Department; 35100-Bornova Izmir Turkey
- Central Research Testing and Analysis Laboratory Research and Application Center; Ege University; 35100-Bornova Izmir/ Turkey
| | - Ulku Anik
- Muğla Sıtkı Koçman University; Faculty of Science, Chemistry Department; 48000 Kötekli / Muğla Turkey
| |
Collapse
|
37
|
The glyoxylate pathway contributes to enhanced extracellular electron transfer in yeast-based biofuel cell. Bioelectrochemistry 2017; 116:10-16. [DOI: 10.1016/j.bioelechem.2017.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/23/2017] [Accepted: 03/12/2017] [Indexed: 11/18/2022]
|
38
|
Christwardana M, Kwon Y. Yeast and carbon nanotube based biocatalyst developed by synergetic effects of covalent bonding and hydrophobic interaction for performance enhancement of membraneless microbial fuel cell. BIORESOURCE TECHNOLOGY 2017; 225:175-182. [PMID: 27889476 DOI: 10.1016/j.biortech.2016.11.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 05/23/2023]
Abstract
Membraneless microbial fuel cell (MFC) employing new microbial catalyst formed as yeast cultivated from Saccharomyces cerevisiae and carbon nanotube (yeast/CNT) is suggested. To analyze its catalytic activity and performance and stability of MFC, several characterizations are performed. According to the characterizations, the catalyst shows excellent catalytic activities by facile transfer of electrons via reactions of NAD, FAD, cytochrome c and cytochrome a3, while it induces high maximum power density (MPD) (344mW·m-2). It implies that adoption of yeast induces increases in catalytic activity and MFC performance. Furthermore, MPD is maintained to 86% of initial value even after eight days, showing excellent MFC stability.
Collapse
Affiliation(s)
- Marcelinus Christwardana
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743, Republic of Korea
| | - Yongchai Kwon
- Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743, Republic of Korea.
| |
Collapse
|
39
|
Bombelli P, Dennis RJ, Felder F, Cooper MB, Madras Rajaraman Iyer D, Royles J, Harrison STL, Smith AG, Harrison CJ, Howe CJ. Electrical output of bryophyte microbial fuel cell systems is sufficient to power a radio or an environmental sensor. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160249. [PMID: 27853542 PMCID: PMC5098967 DOI: 10.1098/rsos.160249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Plant microbial fuel cells are a recently developed technology that exploits photosynthesis in vascular plants by harnessing solar energy and generating electrical power. In this study, the model moss species Physcomitrella patens, and other environmental samples of mosses, have been used to develop a non-vascular bryophyte microbial fuel cell (bryoMFC). A novel three-dimensional anodic matrix was successfully created and characterized and was further tested in a bryoMFC to determine the capacity of mosses to generate electrical power. The importance of anodophilic microorganisms in the bryoMFC was also determined. It was found that the non-sterile bryoMFCs operated with P. patens delivered over an order of magnitude higher peak power output (2.6 ± 0.6 µW m-2) than bryoMFCs kept in near-sterile conditions (0.2 ± 0.1 µW m-2). These results confirm the importance of the microbial populations for delivering electrons to the anode in a bryoMFC. When the bryoMFCs were operated with environmental samples of moss (non-sterile) the peak power output reached 6.7 ± 0.6 mW m-2. The bryoMFCs operated with environmental samples of moss were able to power a commercial radio receiver or an environmental sensor (LCD desktop weather station).
Collapse
Affiliation(s)
- Paolo Bombelli
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Ross J. Dennis
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Division of Plant Industry, Canberra, Queensland, Australia
| | - Fabienne Felder
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Matt B. Cooper
- Department of Plant Sciences, University of Cambridge, Downing Site, Downing Street, Cambridge CB2 3EA, UK
| | - Durgaprasad Madras Rajaraman Iyer
- Department of Chemical Engineering, Centre for Bioprocess Engineering Research, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | - Jessica Royles
- Department of Plant Sciences, University of Cambridge, Downing Site, Downing Street, Cambridge CB2 3EA, UK
| | - Susan T. L. Harrison
- Department of Chemical Engineering, Centre for Bioprocess Engineering Research, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Downing Site, Downing Street, Cambridge CB2 3EA, UK
| | - C. Jill Harrison
- School of Biological Sciences, University of Bristol, Life Sciences Building, Downing, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Christopher J. Howe
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
40
|
|
41
|
Hubenova Y, Bakalska R, Hubenova E, Mitov M. Mechanisms of electron transfer between a styrylquinolinium dye and yeast in biofuel cell. Bioelectrochemistry 2016; 112:158-65. [PMID: 26924617 DOI: 10.1016/j.bioelechem.2016.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 11/26/2022]
Abstract
In the present study, the influence of the recently synthesized styrylquinolinium dye 4-{(E)-2-[4-(dimethylamino)naphthalen-1-yl]ethenyl}-1-methylquinolinium iodide (DANSQI) on the intracellular processes as well as the electrical outputs of Candida melibiosica 2491 yeast-based biofuel cell was investigated. The addition of nanomolar quantities of DANSQI to the yeast suspension results in an increase of the current outputs right after the startup of the biofuel cells, associated with an electrooxidation of the dye on the anode. After that, the formed cation radical of the dye penetrates the yeast cells, provoking a set of intracellular changes. Studies of the subcellular anolyte fractions show that 1μM dye increased the peroxisomal catalase activity 30-times (1.15±0.06Unit/mg protein) and over twice the mitochondrial cytochrome c oxidase activity (92±5Unit/mg protein). The results obtained by electrochemical and spectrophotometric analyses let to the supposition that the dye acts as subcellular shuttle, on account of its specific intramolecular charge transfer properties. The transition between its benzoid, quinolyl radical and ion forms and their putative role for the extracellular and intracellular charge transfer mechanisms are discussed.
Collapse
Affiliation(s)
- Yolina Hubenova
- Department of Biochemistry and Microbiology, University of Plovdiv, Bulgaria.
| | - Rumyana Bakalska
- Department of Organic Chemistry, University of Plovdiv, Bulgaria
| | | | - Mario Mitov
- Innovative Center of Eco Energy Technologies, South-West University "Neofit Rilski", Bulgaria
| |
Collapse
|