1
|
Lekešytė B, Mickevičiūtė E, Malakauskaitė P, Szewczyk A, Radzevičiūtė-Valčiukė E, Malyško-Ptašinskė V, Želvys A, German N, Ramanavičienė A, Kulbacka J, Novickij J, Novickij V. Application of Gold Nanoparticles for Improvement of Electroporation-Assisted Drug Delivery and Bleomycin Electrochemotherapy. Pharmaceutics 2024; 16:1278. [PMID: 39458609 PMCID: PMC11510895 DOI: 10.3390/pharmaceutics16101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Electrochemotherapy (ECT) is a safe and efficient method of targeted drug delivery using pulsed electric fields (PEF), one that is based on the phenomenon of electroporation. However, the problems of electric field homogeneity within a tumor can cause a diminishing of the treatment efficacy, resulting only in partial response to the procedure. This work used gold nano-particles for electric field amplification, introducing the capability to improve available elec-trochemotherapy methods and solve problems associated with field non-homogeneity. Methods: We characterized the potential use of gold nanoparticles of 13 nm diameter (AuNPs: 13 nm) in combination with microsecond (0.6-1.5 kV/cm × 100 μs × 8 (1 Hz)) and nanosecond (6 kV/cm × 300-700 ns × 100 (1, 10, 100 kHz and 1 MHz)) electric field pulses. Finally, we tested the most prominent protocols (microsecond and nanosecond) in the context of bleomycin-based electrochemotherapy (4T1 mammary cancer cell line). Results: In the nano-pulse range, the synergistic effects (improved permeabilization and electrotransfer) were profound, with increased pulse burst frequency. Addi-tionally, AuNPs not only reduced the permeabilization thresholds but also affected pore resealing. It was shown that a saturated cytotoxic response with AuNPs can be triggered at significantly lower electric fields and that the AuNPs themselves are non-toxic for the cells either separately or in combination with bleomycin. Conclusions: The used electric fields are considered sub-threshold and/or not applicable for electrochemotherapy, however, when combined with AuNPs results in successful ECT, indicating the methodology's prospective applicability as an anticancer treatment method.
Collapse
Affiliation(s)
- Barbora Lekešytė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Eglė Mickevičiūtė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Paulina Malakauskaitė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Anna Szewczyk
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Pharmaceutics, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Eivina Radzevičiūtė-Valčiukė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Veronika Malyško-Ptašinskė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Augustinas Želvys
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Natalija German
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
| | - Almira Ramanavičienė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225 Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Pharmaceutics, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Vitalij Novickij
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (B.L.); (E.M.); (P.M.); (A.S.); (E.R.-V.); (A.Ž.); (N.G.); (A.R.); (J.K.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| |
Collapse
|
2
|
Mickevičiūtė E, Radzevičiūtė-Valčiukė E, Malyško-Ptašinskė V, Malakauskaitė P, Lekešytė B, Rembialkowska N, Kulbacka J, Tunikowska J, Novickij J, Novickij V. The Effects of Bipolar Cancellation Phenomenon on Nano-Electrochemotherapy of Melanoma Tumors: In Vitro and In Vivo Pilot. Int J Mol Sci 2024; 25:9338. [PMID: 39273287 PMCID: PMC11395067 DOI: 10.3390/ijms25179338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The phenomenon known as bipolar cancellation is observed when biphasic nanosecond electric field pulses are used, which results in reduced electroporation efficiency when compared to unipolar pulses of the same parameters. Basically, the negative phase of the bipolar pulse diminishes the effect of the positive phase. Our study aimed to investigate how bipolar cancellation affects Ca2+ electrochemotherapy and cellular response under varying electric field intensities and pulse durations (3-7 kV/cm, 100, 300, and 500 ns bipolar 1 MHz repetition frequency pulse bursts, n = 100). As a reference, standard microsecond range parametric protocols were used (100 µs × 8 pulses). We have shown that the cancellation effect is extremely strong when the pulses are closely spaced (1 MHz frequency), which results in a lack of cell membrane permeabilization and consequent failure of electrochemotherapy in vitro. To validate the observations, we have performed a pilot in vivo study where we compared the efficacy of monophasic (5 kV/cm × ↑500 ns × 100) and biphasic sequences (5 kV/cm × ↑500 ns + ↓500 ns × 100) delivered at 1 MHz frequency in the context of Ca2+ electrochemotherapy (B16-F10 cell line, C57BL/6 mice, n = 24). Mice treated with bipolar pulses did not exhibit prolonged survival when compared to the untreated control (tumor-bearing mice); therefore, the bipolar cancellation phenomenon was also occurrent in vivo, significantly impairing electrochemotherapy. At the same time, the efficacy of monophasic nanosecond pulses was comparable to 1.4 kV/cm × 100 µs × 8 pulses sequence, resulting in tumor reduction following the treatment and prolonged survival of the animals.
Collapse
Affiliation(s)
- Eglė Mickevičiūtė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Eivina Radzevičiūtė-Valčiukė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | | | - Paulina Malakauskaitė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Barbora Lekešytė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Nina Rembialkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Joanna Tunikowska
- Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Vitalij Novickij
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| |
Collapse
|
3
|
Malyško-Ptašinskė V, Nemeikaitė-Čėnienė A, Radzevičiūtė-Valčiukė E, Mickevičiūtė E, Malakauskaitė P, Lekešytė B, Novickij V. Threshold Interphase Delay for Bipolar Pulses to Prevent Cancellation Phenomenon during Electrochemotherapy. Int J Mol Sci 2024; 25:8774. [PMID: 39201461 PMCID: PMC11354671 DOI: 10.3390/ijms25168774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Electroporation-based procedures employing nanosecond bipolar pulses are commonly linked to an undesirable phenomenon known as the cancelation effect. The cancellation effect arises when the second pulse partially or completely neutralizes the effects of the first pulse, simultaneously diminishing cells' plasma membrane permeabilization and the overall efficiency of the procedure. Introducing a temporal gap between the positive and negative phases of the bipolar pulses during electroporation procedures may help to overcome the cancellation phenomenon; however, the exact thresholds are not yet known. Therefore, in this work, we have tested the influence of different interphase delay values (from 0 ms to 95 ms) using symmetric bipolar nanoseconds (300 and 500 ns) on cell permeabilization using 10 Hz, 100 Hz, and 1 kHz protocols. As a model mouse hepatoma, the MH-22a cell line was employed. Additionally, we conducted in vitro electrochemotherapy with cisplatin, employing reduced interphase delay values (0 ms and 0.1 ms) at 10 Hz. Cell plasma membrane permeabilization and viability dependence on a variety of bipolar pulsed electric field protocols were characterized. It was shown that it is possible to minimize bipolar cancellation, enabling treatment efficiency comparable to monophasic pulses with identical parameters. At the same time, it was highlighted that bipolar cancellation has a significant influence on permeabilization, while the effects on the outcome of electrochemotherapy are minimal.
Collapse
Affiliation(s)
- Veronika Malyško-Ptašinskė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
| | - Aušra Nemeikaitė-Čėnienė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Eivina Radzevičiūtė-Valčiukė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Eglė Mickevičiūtė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Paulina Malakauskaitė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Barbora Lekešytė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (E.R.-V.); (E.M.); (P.M.); (B.L.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre of Innovative Medicine, 08406 Vilnius, Lithuania;
| |
Collapse
|
4
|
de Caro A, Talmont F, Rols MP, Golzio M, Kolosnjaj-Tabi J. Therapeutic perspectives of high pulse repetition rate electroporation. Bioelectrochemistry 2024; 156:108629. [PMID: 38159429 DOI: 10.1016/j.bioelechem.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Electroporation, a technique that uses electrical pulses to temporarily or permanently destabilize cell membranes, is increasingly used in cancer treatment, gene therapy, and cardiac tissue ablation. Although the technique is efficient, patients report discomfort and pain. Current strategies that aim to minimize pain and muscle contraction rely on the use of pharmacological agents. Nevertheless, technical improvements might be a valuable tool to minimize adverse events, which occur during the application of standard electroporation protocols. One recent technological strategy involves the use of high pulse repetition rate. The emerging technique, also referred as "high frequency" electroporation, employs short (micro to nanosecond) mono or bipolar pulses at repetition rate ranging from a few kHz to a few MHz. This review provides an overview of the historical background of electric field use and its development in therapies over time. With the aim to understand the rationale for novel electroporation protocols development, we briefly describe the physiological background of neuromuscular stimulation and pain caused by exposure to pulsed electric fields. Then, we summarize the current knowledge on electroporation protocols based on high pulse repetition rates. The advantages and limitations of these protocols are described from the perspective of their therapeutic application.
Collapse
Affiliation(s)
- Alexia de Caro
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
5
|
Radzevičiūtė-Valčiukė E, Malyško-Ptašinskė V, Mickevičiūtė E, Kulbacka J, Rembiałkowska N, Zinkevičienė A, Novickij J, Novickij V. Calcium electroporation causes ATP depletion in cells and is effective both in microsecond and nanosecond pulse range as a modality of electrochemotherapy. Bioelectrochemistry 2024; 155:108574. [PMID: 37738862 DOI: 10.1016/j.bioelechem.2023.108574] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Calcium electroporation is a modality of electrochemotherapy (ECT), which is based on intracellular electric field-mediated delivery of cytotoxic doses of calcium into the cells resulting in rapid cell death. In this work, we have developed a CHO-K1 luminescent cell line, which allowed the estimation of cell membrane permeabilization, ATP depletion and cytotoxicity evaluation without the use of additional markers and methodologies. We have shown the high efficiency of nanosecond pulses compressed into a MHz burst for application in calcium ECT treatments. The 5 kV/cm and 10 kV/cm nanosecond (100 and 600 ns) pulses were delivered in bursts of 10, 50 and 100 pulses (a total of 12 parametric protocols) and then compared to standard microsecond range sequences (100 µs × 8) of 0.4-1.4 kV/cm. The effects of calcium-free, 2 mM and 5 mM calcium electroporation treatments were characterized. It was shown that reversible electroporation is accompanied by ATP depletion associated with membrane damage, while during calcium ECT the ATP depletion is several-fold higher, which results in cell death. Finally, efficacy-wise equivalent pulse parameters from nanosecond and microsecond ranges were established, which can be used for calcium nano-ECT as a better alternative to ESOPE (European Standard Operating Procedures on Electrochemotherapy) protocols.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė-Valčiukė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania; Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | | | - Eglė Mickevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Julita Kulbacka
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania; Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Auksė Zinkevičienė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Vitalij Novickij
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania; Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| |
Collapse
|
6
|
Peng W, Polajžer T, Yao C, Miklavčič D. Dynamics of Cell Death Due to Electroporation Using Different Pulse Parameters as Revealed by Different Viability Assays. Ann Biomed Eng 2024; 52:22-35. [PMID: 37704904 PMCID: PMC10761553 DOI: 10.1007/s10439-023-03309-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/02/2023] [Indexed: 09/15/2023]
Abstract
The mechanisms of cell death due to electroporation are still not well understood. Recent studies suggest that cell death due to electroporation is not an immediate all-or-nothing response but rather a dynamic process that occurs over a prolonged period of time. To investigate whether the dynamics of cell death depends on the pulse parameters or cell lines, we exposed different cell lines to different pulses [monopolar millisecond, microsecond, nanosecond, and high-frequency bipolar (HFIRE)] and then assessed viability at different times using different viability assays. The dynamics of cell death was observed by changes in metabolic activity and membrane integrity. In addition, regardless of pulse or cell line, the dynamics of cell death was observed only at high electroporation intensities, i.e., high pulse amplitudes and/or pulse number. Considering the dynamics of cell death, the clonogenic assay should remain the preferred viability assay for assessing viability after electroporation.
Collapse
Affiliation(s)
- Wencheng Peng
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Tamara Polajžer
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Chenguo Yao
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Rembiałkowska N, Szlasa W, Radzevičiūtė-Valčiukė E, Kulbacka J, Novickij V. Negative effects of cancellation during nanosecond range High-Frequency calcium based electrochemotherapy in vitro. Int J Pharm 2023; 648:123611. [PMID: 37977287 DOI: 10.1016/j.ijpharm.2023.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Drug delivery using nanosecond pulsed electric fields is a new branch of electroporation-based treatments, which potentially can substitute European standard operating procedures for electrochemotherapy. In this work, for the first time, we characterize the effects of ultra-fast repetition frequency (1-2.5 MHz) nanosecond pulses (5-9 kV/cm, 200 and 400 ns) in the context of nano-electrochemotherapy with calcium. Additionally, we investigate the feasibility of bipolar symmetric (↑200 ns + ↓200 ns) and asymmetric (↑200 ns + ↓400 ns) nanosecond protocols for calcium delivery. The effects of bipolar cancellation and the influence of interphase delay (200 ns) are overviewed. Human lung cancer cell lines A549 and H69AR were used as a model. It was shown that unipolar pulses delivered at high frequency are effective for electrochemotherapy with a significant improvement in efficiency when the delay between separate pulses is reduced. Bipolar symmetric pulses trigger the cancellation phenomenon limiting applications for drug delivery and can be compensated by the asymmetry of the pulse (↑200 ns + ↓400 ns or ↑400 ns + ↓200 ns). The results of this study can be successfully used to derive a new generation of nsPEF protocols for successful electrochemotherapy treatments.
Collapse
Affiliation(s)
- Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Szlasa
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Eivina Radzevičiūtė-Valčiukė
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania.
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania.
| |
Collapse
|
8
|
Radzevičiūtė-Valčiukė E, Želvys A, Mickevičiūtė E, Gečaitė J, Zinkevičienė A, Malyško-Ptašinskė V, Kašėta V, Novickij J, Ivaškienė T, Novickij V. Calcium Electrochemotherapy for Tumor Eradication and the Potential of High-Frequency Nanosecond Protocols. Pharmaceuticals (Basel) 2023; 16:1083. [PMID: 37630998 PMCID: PMC10460074 DOI: 10.3390/ph16081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Calcium electroporation (CaEP) is an innovative approach to treating cancer, involving the internalization of supraphysiological amounts of calcium through electroporation, which leads to cell death. CaEP enables the replacement of chemotherapeutics (e.g., bleomycin). Here, we present a standard microsecond (μsCaEP) and novel high-frequency nanosecond protocols for calcium electroporation (nsCaEP) for the elimination of carcinoma tumors in C57BL/6J mice. We show the efficacy of CaEP in eliminating tumors and increasing their survival rates in vivo. The antitumor immune response after the treatment was observed by investigating immune cell populations in tumors, spleens, lymph nodes, and blood, as well as assessing antitumor antibodies. CaEP treatment resulted in an increased percentage of CD4+ and CD8+ central memory T cells and decreased splenic myeloid-derived suppressor cells (MDSC). Moreover, increased levels of antitumor IgG antibodies after CaEP treatment were detected. The experimental results demonstrated that the administration of CaEP led to tumor growth delay, increased survival rates, and stimulated immune response, indicating a potential synergistic relationship between CaEP and immunotherapy.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė-Valčiukė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Augustinas Želvys
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Eglė Mickevičiūtė
- Department of Biomodels, State Research Institute Centre for Innovative Medicine, 11342 Vilnius, Lithuania; (E.M.); (V.K.)
| | - Jovita Gečaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Veronika Malyško-Ptašinskė
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Vytautas Kašėta
- Department of Biomodels, State Research Institute Centre for Innovative Medicine, 11342 Vilnius, Lithuania; (E.M.); (V.K.)
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Tatjana Ivaškienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
| | - Vitalij Novickij
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (A.Ž.); (J.G.); (A.Z.); (T.I.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 08412 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| |
Collapse
|
9
|
Kim V, Semenov I, Kiester AS, Keppler MA, Ibey BL, Bixler JN, Colunga Biancatelli RML, Pakhomov AG. Control of the Electroporation Efficiency of Nanosecond Pulses by Swinging the Electric Field Vector Direction. Int J Mol Sci 2023; 24:10921. [PMID: 37446096 PMCID: PMC10341945 DOI: 10.3390/ijms241310921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Reversing the pulse polarity, i.e., changing the electric field direction by 180°, inhibits electroporation and electrostimulation by nanosecond electric pulses (nsEPs). This feature, known as "bipolar cancellation," enables selective remote targeting with nsEPs and reduces the neuromuscular side effects of ablation therapies. We analyzed the biophysical mechanisms and measured how cancellation weakens and is replaced by facilitation when nsEPs are applied from different directions at angles from 0 to 180°. Monolayers of endothelial cells were electroporated by a train of five pulses (600 ns) or five paired pulses (600 + 600 ns) applied at 1 Hz or 833 kHz. Reversing the electric field in the pairs (180° direction change) caused 2-fold (1 Hz) or 20-fold (833 kHz) weaker electroporation than the train of single nsEPs. Reducing the angle between pulse directions in the pairs weakened cancellation and replaced it with facilitation at angles <160° (1 Hz) and <130° (833 kHz). Facilitation plateaued at about three-fold stronger electroporation compared to single pulses at 90-100° angle for both nsEP frequencies. The profound dependence of the efficiency on the angle enables novel protocols for highly selective focal electroporation at one electrode in a three-electrode array while avoiding effects at the other electrodes. Nanosecond-resolution imaging of cell membrane potential was used to link the selectivity to charging kinetics by co- and counter-directional nsEPs.
Collapse
Affiliation(s)
- Vitalii Kim
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Allen S. Kiester
- Bioeffects Division, Airman System Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
| | | | - Bennett L. Ibey
- Bioeffects Division, Airman System Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
| | - Joel N. Bixler
- Bioeffects Division, Airman System Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
| | - Ruben M. L. Colunga Biancatelli
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23508, USA
| | - Andrei G. Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
10
|
Isenmann M, Stoddart MJ, Schmelzeisen R, Gross C, Della Bella E, Rothweiler RM. Basic Principles of RNA Interference: Nucleic Acid Types and In Vitro Intracellular Delivery Methods. MICROMACHINES 2023; 14:1321. [PMID: 37512632 PMCID: PMC10383872 DOI: 10.3390/mi14071321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Since its discovery in 1989, RNA interference (RNAi) has become a widely used tool for the in vitro downregulation of specific gene expression in molecular biological research. This basically involves a complementary RNA that binds a target sequence to affect its transcription or translation process. Currently, various small RNAs, such as small interfering RNA (siRNA), micro RNA (miRNA), small hairpin RNA (shRNA), and PIWI interacting RNA (piRNA), are available for application on in vitro cell culture, to regulate the cells' gene expression by mimicking the endogenous RNAi-machinery. In addition, several biochemical, physical, and viral methods have been established to deliver these RNAs into the cell or nucleus. Since each RNA and each delivery method entail different off-target effects, limitations, and compatibilities, it is crucial to understand their basic mode of action. This review is intended to provide an overview of different nucleic acids and delivery methods for planning, interpreting, and troubleshooting of RNAi experiments.
Collapse
Affiliation(s)
- Marie Isenmann
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Martin James Stoddart
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Rainer Schmelzeisen
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
| | - Christian Gross
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
| | - Elena Della Bella
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - René Marcel Rothweiler
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| |
Collapse
|
11
|
Radzevičiūtė-Valčiukė E, Gečaitė J, Želvys A, Zinkevičienė A, Žalnėravičius R, Malyško-Ptašinskė V, Nemeikaitė-Čenienė A, Kašėta V, German N, Novickij J, Ramanavičienė A, Kulbacka J, Novickij V. Improving NonViral Gene Delivery Using MHz Bursts of Nanosecond Pulses and Gold Nanoparticles for Electric Field Amplification. Pharmaceutics 2023; 15:1178. [PMID: 37111663 PMCID: PMC10146442 DOI: 10.3390/pharmaceutics15041178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Gene delivery by the pulsed electric field is a promising alternative technology for nonviral transfection; however, the application of short pulses (i.e., nanosecond) is extremely limited. In this work, we aimed to show the capability to improve gene delivery using MHz frequency bursts of nanosecond pulses and characterize the potential use of gold nanoparticles (AuNPs: 9, 13, 14, and 22 nm) in this context. We have used bursts of MHz pulses 3/5/7 kV/cm × 300 ns × 100 and compared the efficacy of the parametric protocols to conventional microsecond protocols (100 µs × 8, 1 Hz) separately and in combination with nanoparticles. Furthermore, the effects of pulses and AuNPs on the generation of reactive oxygen species (ROS) were analyzed. It was shown that gene delivery using microsecond protocols could be significantly improved with AuNPs; however, the efficacy is strongly dependent on the surface charge of AuNPs and their size. The capability of local field amplification using AuNPs was also confirmed by finite element method simulation. Finally, it was shown that AuNPs are not effective with nanosecond protocols. However, MHz protocols are still competitive in the context of gene delivery, resulting in low ROS generation, preserved viability, and easier procedure to trigger comparable efficacy.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė-Valčiukė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (V.M.-P.)
| | - Jovita Gečaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
| | - Augustinas Želvys
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
| | - Rokas Žalnėravičius
- State Research Institute Center for Physical Science and Technology, 02300 Vilnius, Lithuania;
| | | | - Aušra Nemeikaitė-Čenienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
| | - Vytautas Kašėta
- Department of Biomodels, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Natalija German
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (V.M.-P.)
| | - Almira Ramanavičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
| | - Julita Kulbacka
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Vitalij Novickij
- Department of Immunology, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania; (E.R.-V.); (J.G.); (A.Ž.); (A.Z.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania; (V.M.-P.)
| |
Collapse
|
12
|
Kim V, Semenov I, Kiester AS, Keppler MA, Ibey BL, Bixler JN, Pakhomov AG. Action spectra and mechanisms of (in) efficiency of bipolar electric pulses at electroporation. Bioelectrochemistry 2023; 149:108319. [PMID: 36375440 PMCID: PMC9729435 DOI: 10.1016/j.bioelechem.2022.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
The reversal of the electric field direction inhibits various biological effects of nanosecond electric pulses (nsEP). This feature, known as "bipolar cancellation," enables interference targeting of nsEP bioeffects remotely from stimulating electrodes, for prospective applications such as precise cancer ablation and non-invasive deep brain stimulation. This study was undertaken to achieve the maximum cancellation of electroporation, by quantifying the impact of the pulse shape, duration, number, and repetition rate across a broad range of electric field strengths. Monolayers of endothelial cells (BPAE) were electroporated in a non-uniform electric field. Cell membrane permeabilization was quantified by YO-PRO-1 (YP) dye uptake and correlated to local electric field strength. For most conditions tested, adding an opposite polarity phase reduced YP uptake by 50-80 %. The strongest cancellation, which reduced YP uptake by 95-97 %, was accomplished by adding a 50 % second phase to 600-ns pulses delivered at a high repetition rate of 833 kHz. Strobe photography of nanosecond kinetics of membrane potential in single CHO cells revealed the temporal summation of polarization by individual unipolar nsEP applied at sub-MHz rate, leading to enhanced electroporation. In contrast, there was no summation for bipolar pulses, and increasing their repetition rate suppressed electroporation. These new findings are discussed in the context of bipolar cancellation mechanisms and remote focusing applications.
Collapse
Affiliation(s)
- Vitalii Kim
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Allen S Kiester
- Bioeffects Division, Airman System Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, TX, USA
| | | | - Bennett L Ibey
- Bioeffects Division, Airman System Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, TX, USA
| | - Joel N Bixler
- Bioeffects Division, Airman System Directorate, 711th Human Performance Wing, Air Force Research Laboratory, JBSA Fort Sam Houston, TX, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
13
|
Radzevičiūtė E, Malyško-Ptašinskė V, Kulbacka J, Rembiałkowska N, Novickij J, Girkontaitė I, Novickij V. Nanosecond electrochemotherapy using bleomycin or doxorubicin: Influence of pulse amplitude, duration and burst frequency. Bioelectrochemistry 2022; 148:108251. [DOI: 10.1016/j.bioelechem.2022.108251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/08/2022] [Accepted: 08/21/2022] [Indexed: 11/02/2022]
|
14
|
Silkunas M, Gudvangen E, Novickij V, Pakhomov AG. Sub-MHz bursts of nanosecond pulses excite neurons at paradoxically low electric field thresholds without membrane damage. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184034. [PMID: 35981654 DOI: 10.1016/j.bbamem.2022.184034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Neuromodulation applications of nanosecond electric pulses (nsEP) are hindered by their low potency to elicit action potentials in neurons. Excitation by a single nsEP requires a strong electric field which injures neurons by electroporation. We bypassed the high electric field requirement by replacing single nsEP stimuli with high-frequency brief nsEP bursts. In hippocampal neurons, excitation thresholds progressively decreased at nsEP frequencies above 20-200 kHz, with up to 20-30-fold reduction at sub-MHz and MHz rates. For a fixed burst duration, thresholds were determined by the duty cycle, irrespective of the specific nsEP duration, rate, or number of pulses per burst. For 100-μs bursts of 100-, 400-, or 800-ns pulses, the threshold decreased as a power function when the duty cycle exceeded 3-5 %. nsEP bursts were compared with single "long" pulses whose duration and amplitude matched the duration and the time-average amplitude of the burst. Such pulses deliver the same electric charge as bursts, within the same time interval. High-frequency nsEP bursts excited neurons at the time-average electric field 2-3 times below the threshold for a single long pulse. For example, the excitation threshold of 139 ± 14 V/cm for a single 100-μs pulse decreased to 57 ± 8 V/cm for a 100-μs burst of 100-ns, 0.25-MHz pulses (p < 0.001). Applying nsEP in bursts reduced or prevented the loss of excitability in multiple stimulation attempts. Stimulation by high-frequency nsEP bursts is a powerful novel approach to excite neurons at paradoxically low electric charge while also avoiding the electroporative membrane damage.
Collapse
Affiliation(s)
- Mantas Silkunas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; Institute for Digestive System Research, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Emily Gudvangen
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | | | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| |
Collapse
|
15
|
Xu W, Xie X, Wu H, Wang X, Cai J, Xu Z, E S. Pulsed electromagnetic therapy in cancer treatment: Progress and outlook. VIEW 2022. [DOI: 10.1002/viw.20220029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Wenjun Xu
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province College of Engineering Zhejiang Normal University Jinhua People's Republic of China
- Jinhua Intelligent Manufacturing Research Institute Jinhua People's Republic of China
| | - Xinjun Xie
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province College of Engineering Zhejiang Normal University Jinhua People's Republic of China
- Jinhua Intelligent Manufacturing Research Institute Jinhua People's Republic of China
| | - Hanyang Wu
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province College of Engineering Zhejiang Normal University Jinhua People's Republic of China
- Jinhua Intelligent Manufacturing Research Institute Jinhua People's Republic of China
| | - Xiaolin Wang
- College of Mathematical Medicine Zhejiang Normal University Jinhua People's Republic of China
| | - Jiancheng Cai
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province College of Engineering Zhejiang Normal University Jinhua People's Republic of China
- Jinhua Intelligent Manufacturing Research Institute Jinhua People's Republic of China
| | - Zisheng Xu
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province College of Engineering Zhejiang Normal University Jinhua People's Republic of China
- Jinhua Intelligent Manufacturing Research Institute Jinhua People's Republic of China
| | - Shiju E
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province College of Engineering Zhejiang Normal University Jinhua People's Republic of China
- Jinhua Intelligent Manufacturing Research Institute Jinhua People's Republic of China
| |
Collapse
|
16
|
Novickij V, Rembiałkowska N, Szlasa W, Kulbacka J. Does the shape of the electric pulse matter in electroporation? Front Oncol 2022; 12:958128. [PMID: 36185267 PMCID: PMC9518825 DOI: 10.3389/fonc.2022.958128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Electric pulses are widely used in biology, medicine, industry, and food processing. Numerous studies indicate that electroporation (EP) is a pulse-dependent process, and the electric pulse shape and duration strongly determine permeabilization efficacy. EP protocols are precisely planned in terms of the size and charge of the molecules, which will be delivered to the cell. In reversible and irreversible EP applications, rectangular or sine, polar or bipolar pulses are commonly used. The usage of pulses of the asymmetric shape is still limited to high voltage and low voltage (HV/LV) sequences in the context of gene delivery, while EP-based applications of ultra-short asymmetric pulses are just starting to emerge. This review emphasizes the importance and role of the pulse shape for membrane permeabilization by EP.
Collapse
Affiliation(s)
- Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University (Vilnius TECH), Vilnius, Lithuania
- *Correspondence: Vitalij Novickij, ; Julita Kulbacka,
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- *Correspondence: Vitalij Novickij, ; Julita Kulbacka,
| |
Collapse
|
17
|
Electroporation and cell killing by milli- to nanosecond pulses and avoiding neuromuscular stimulation in cancer ablation. Sci Rep 2022; 12:1763. [PMID: 35110567 PMCID: PMC8811018 DOI: 10.1038/s41598-022-04868-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/31/2021] [Indexed: 12/21/2022] Open
Abstract
Ablation therapies aim at eradication of tumors with minimal impact on surrounding healthy tissues. Conventional pulsed electric field (PEF) treatments cause pain and muscle contractions far beyond the ablation area. The ongoing quest is to identify PEF parameters efficient at ablation but not at stimulation. We measured electroporation and cell killing thresholds for 150 ns–1 ms PEF, uni- and bipolar, delivered in 10- to 300-pulse trains at up to 1 MHz rates. Monolayers of murine colon carcinoma cells exposed to PEF were stained with YO-PRO-1 dye to detect electroporation. In 2–4 h, dead cells were labeled with propidium. Electroporation and cell death thresholds determined by matching the stained areas to the electric field intensity were compared to nerve excitation thresholds (Kim et al. in Int J Mol Sci 22(13):7051, 2021). The minimum fourfold ratio of cell killing and stimulation thresholds was achieved with bipolar nanosecond PEF (nsPEF), a sheer benefit over a 500-fold ratio for conventional 100-µs PEF. Increasing the bipolar nsPEF frequency up to 100 kHz within 10-pulse bursts increased ablation thresholds by < 20%. Restricting such bursts to the refractory period after nerve excitation will minimize the number of neuromuscular reactions while maintaining the ablation efficiency and avoiding heating.
Collapse
|
18
|
Novickij V, Zinkevizčienė A, Radzevičiūtė E, Kulbacka J, Rembiałkowska N, Novickij J, Girkontaitė I. Bioluminescent Calcium Mediated Detection of Nanosecond Electroporation: Grasping the Differences Between 100 ns and 100 µs Pulses. Bioelectrochemistry 2022; 145:108084. [DOI: 10.1016/j.bioelechem.2022.108084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/14/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022]
|
19
|
High Frequency Bipolar Electroporator with Double-Crowbar Circuit for Load-Independent Forming of Nanosecond Pulses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, a novel electroporation system (electroporator) is presented, which is capable of forming high frequency pulses in a broad range of parameters (65 ns–100 µs). The electroporator supports voltages up to 3 kV and currents up to 40 A and is based on H-bridge circuit topology. A synchronized double crowbar driving sequence is introduced to generate short nanosecond range pulses independently of the electroporator load. The resultant circuit generates pulses with repetition frequencies up to 5 MHz and supports unipolar, bipolar, and asymmetrical pulse sequences with arbitrary waveforms. The shortest pulse duration step is hardware limited to 33 ns. The electroporator was experimentally tested on the H69AR human lung cancer cell line using 20 kV/cm bipolar and unipolar 100 ns–1 μs pulses. Based on a YO-PRO-1 permeabilization assay, it was determined that the electroporator is suitable for applied research on electroporation. The system offers high flexibility in experimental design to trigger various electroporation-based phenomena.
Collapse
|
20
|
Novickij V, Baleviciute A, Malysko V, Zelvys A, Radzeviciute E, Kos B, Zinkeviciene A, Miklavcic D, Novickij J, Girkontaite I. Effects of Time Delay Between Unipolar Pulses in High Frequency Nano-Electrochemotherapy. IEEE Trans Biomed Eng 2021; 69:1726-1732. [PMID: 34797759 DOI: 10.1109/tbme.2021.3129176] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This work focuses on bleomycin electrochemotherapy using new modality of high repetition frequency unipolar nanosecond pulses. As a tumor model, Lewis lung carcinoma (LLC1) cell line in C57BL mice (n = 42) was used. Electrochemotherapy was performed with intertumoral injection of bleomycin (50 L of 1500 IU solution) followed by nanosecond and microsecond range electrical pulse delivery via parallel plate electrodes. The 3.5 kV/cm pulses of 200 and 700 ns were delivered in a burst of 200 at frequencies of 1 kHz and 1 MHz. For comparison of treatment efficiency, a standard 1.3 kV/cm x 100 s x 8 protocol was used. It was shown that it is possible to manipulate the efficacy of unipolar sub-microsecond electrochemotherapy solely by the time delay between the pulses. Also, the results suggest that the sub-microsecond range pulses can be as effective as the protocols in European Standard Operating Procedures on Electrochemotherapy (ESOPE) using 100 s pulses.
Collapse
|
21
|
Ca 2+ roles in electroporation-induced changes of cancer cell physiology: From membrane repair to cell death. Bioelectrochemistry 2021; 142:107927. [PMID: 34425390 DOI: 10.1016/j.bioelechem.2021.107927] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
The combination of Ca2+ ions and electroporation has gained attention as potential alternative to electrochemotherapy. Ca2+ is an important component of the cell membrane repair system and its presence directly influences the dynamics of the pore cycle after electroporation which can be exploited for cancer therapies. Here, the influence of Ca2+ concentration is investigated on small molecule electrotransfer and release of Calcein from 4T1, MX-1, B16F10, U87 cancer cells after cell exposure to microsecond electric pulses. Moreover, we investigated simultaneous molecule electrotransfer and intracellular calcium ion influx when media was supplemented with different Ca2+ concentrations. Results show that increased concentrations of calcium ions reduce the electrotransfer of small molecules to different lines of cancer cells as well as the release of Calcein. These effects are related with an enhanced membrane repair mechanism. Overall, we show that the efficiency of molecular electrotransfer can be controlled by regulating Ca2+ concentration in the electroporation medium. For the first time, the cause of cancer cell death in vitro from 1 mM CaCl2 concentrations is related to the irreversible loss of Ca2+ homeostasis after cell electroporation. Our findings provide fundamental insight on the mechanisms of Ca2+ electroporation that might lead to improved therapeutic outcomes.
Collapse
|
22
|
Kiełbik A, Szlasa W, Novickij V, Szewczyk A, Maciejewska M, Saczko J, Kulbacka J. Effects of high-frequency nanosecond pulses on prostate cancer cells. Sci Rep 2021; 11:15835. [PMID: 34349171 PMCID: PMC8339066 DOI: 10.1038/s41598-021-95180-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Electroporation with pulsed electric fields show a potential to be applied as an experimental focal therapy of tumors. Sub-microsecond regime of electric pulses displays unique electrophysical features operative in cells and membranes. Recently, MHz compression of nanosecond pulses electric fields (nsPEFs) bursts proved to enhance the effectiveness of the therapy. High morbidity of prostate cancer (PCa) and risk of overtreatment associated with this malignancy call for new minimal-invasive treatment alternative. Herein we present the in vitro study for developing applications based on this new technology. In this study, we used flow cytometric analysis, cell viability assay, caspase activity analysis, wound healing assay, confocal microscopy study, and immunofluorescence to investigate the biological effect of high-frequency nsPEFs on PCa cells. Our results show that high-frequency nsPEFs induces the permeabilization and cell death of PCa cells. The cytotoxicity is significantly enhanced in MHz compression of pulses and with the presence of extracellular Ca2+. High-frequency nsPEFs trigger changes in PCa cells' cytoskeleton and their mobility. The presented data show a therapeutic potential of high-frequency nsPEFs in a PCa setting. The sub-microsecond regime of pulses can potentially be applied in nanosecond electroporation protocols for PCa treatment.
Collapse
Affiliation(s)
- Aleksander Kiełbik
- grid.4495.c0000 0001 1090 049XMedical University Hospital, Borowska 213, 50-556 Wrocław, Poland ,grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| | - Wojciech Szlasa
- grid.4495.c0000 0001 1090 049XFaculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Vitalij Novickij
- grid.9424.b0000 0004 1937 1776Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Anna Szewczyk
- grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland ,grid.8505.80000 0001 1010 5103Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wrocław, Poland
| | - Magdalena Maciejewska
- grid.413454.30000 0001 1958 0162Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Jolanta Saczko
- grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| | - Julita Kulbacka
- grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
23
|
Zhang B, Liu F, Fang Z, Ding L, Moser MAJ, Zhang W. An in vivo study of a custom-made high-frequency irreversible electroporation generator on different tissues for clinically relevant ablation zones. Int J Hyperthermia 2021; 38:593-603. [PMID: 33853496 DOI: 10.1080/02656736.2021.1912417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
PURPOSE To examine the ablation zone, muscle contractions, and temperature increases in both rabbit liver and kidney models in vivo for a custom-made high-frequency irreversible electroporation (H-FIRE) generator. MATERIALS AND METHODS A total of 18 New Zealand white rabbits were used to investigate five H-FIRE protocols (n = 3 for each protocol) and an IRE protocol (n = 3) for the performance of the designed H-FIRE device in both liver and kidney tissues. The ablation zone was determined by using histological analysis 72 h after treatment. The extent of muscle contractions and temperature change during the application of pulse energy were measured by a commercial accelerometer attached to animals and fiber optic temperature probe inserted into organs with IRE electrodes, respectively. RESULTS All H-FIRE protocols were able to generate visible ablation zones without muscle contractions, for both liver and kidney tissues. The area of ablation zone generated in H-FIRE pulse protocols (e.g., 0.3-1 μs, 2000 V, and 90-195 bursts) appears similar to that of IRE protocol (100 μs, 1000 V, and 90 pulses) in both liver and kidney tissues. No significant temperature increase was noticed except for the protocol with the highest pulse energy (e.g., 1 μs, 2000 V, and 180 bursts). CONCLUSION Our work serves to complement the current H-FIRE pulse waveforms, which can be optimized to significantly improve the quality of ablation zone in terms of precision for liver and kidney tumors in clinical setting.
Collapse
Affiliation(s)
- Bing Zhang
- Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Fanning Liu
- Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Zheng Fang
- Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Lujia Ding
- Energy-based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Michael A J Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, Canada
| | - Wenjun Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
24
|
Mi Y, Dai L, Xu N, Zheng W, Ma C, Chen W, Zhang Q. Viability inhibition of A375 melanoma cells in vitroby a high-frequency nanosecond-pulsed magnetic field combined with targeted iron oxide nanoparticles via membrane magnetoporation. NANOTECHNOLOGY 2021; 32:385101. [PMID: 34144549 DOI: 10.1088/1361-6528/ac0caf] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/18/2021] [Indexed: 06/12/2023]
Abstract
Poor efficacy and low electrical safety are issues in the treatment of tumours with pulsed magnetic fields (PMFs). Based on the cumulative effect of high-frequency pulses and the enhanced perforation effect of targeted nanoparticles, this article proposes for the first time a new method that combines high-frequency nanosecond-pulsed magnetic fields (nsPMFs) with folic acid-superparamagnetic iron oxide nanoparticles (SPIONs-FA) to kill tumour cells. After determining the safe concentration of the targeted iron oxide nanoparticles, CCK-8 reagent was used to detect the changes in cell viability after utilising the combined method. After that, PI macromolecular dyes were used to stain the cells. Then, the state of the cell membrane was observed by scanning electron microscopy, and other methods were applied to study the cell membrane permeability changes after the combined treatment of the cells. It was finally confirmed that the high-frequency PMF can significantly reduce cell viability through the cumulative effect. In addition, the targeted iron oxide nanoparticles can reduce the magnetic field amplitude and the number of pulses required for the high-frequency PMF to kill tumour cellsin vitrothrough magnetoporation. The objective of this research is to improve the electrical safety of the PMF with the use of nsPMFs for the safe, efficient and low-intensity treatment of tumours.
Collapse
Affiliation(s)
- Yan Mi
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Lujian Dai
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ning Xu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wei Zheng
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Chi Ma
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wenjuan Chen
- Chongqing University Cancer Hospital, Chongqing 400044, People's Republic of China
| | - Qin Zhang
- Chongqing University Cancer Hospital, Chongqing 400044, People's Republic of China
| |
Collapse
|
25
|
Guo F, Qian K, Zhang L, Liu X, Peng H. Multiphysics modelling of electroporation under uni- or bipolar nanosecond pulse sequences. Bioelectrochemistry 2021; 141:107878. [PMID: 34198114 DOI: 10.1016/j.bioelechem.2021.107878] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
A nonlinear dispersive multiphysics model of single-cell electroporation was proposed in this paper. The time-domain Debye model was utilised to describe the membrane dispersion while the dynamic pore radius function was deployed to modify the plasma membrane conductivity. The dynamic spatial distributions of the ion concentration were dominated by the Nernst-Planck function. First, a single nanosecond pulsed electric field was applied to verify our model and to explore the effects of dispersion and dynamic pore radius on the redistribution of the electric field. The dispersive membrane was found to increase the transmembrane potential, expedite the electroporation process, and weaken the membrane permeability; however, adding the dynamic pore radius function had the opposite effect on transmembrane potential and membrane permeability. The responses of the cells exposed to unipolar and bipolar nanosecond pulse sequences were subsequently simulated. During the application of unipolar pulse sequences, the pore radius and perforation area showed a step-like accumulation, and significant increases in the perforation area and intracellular ion concentration were observed with higher frequency pulse sequences and wider subpulse intervals. The bipolar cancellation effect was also observed in terms of membrane permeability and pore radius.
Collapse
Affiliation(s)
- Fei Guo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Kun Qian
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Lin Zhang
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xin Liu
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Hao Peng
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
26
|
Aguilar AA, Ho MC, Chang E, Carlson KW, Natarajan A, Marciano T, Bomzon Z, Patel CB. Permeabilizing Cell Membranes with Electric Fields. Cancers (Basel) 2021; 13:2283. [PMID: 34068775 PMCID: PMC8126200 DOI: 10.3390/cancers13092283] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
The biological impact of exogenous, alternating electric fields (AEFs) and direct-current electric fields has a long history of study, ranging from effects on embryonic development to influences on wound healing. In this article, we focus on the application of electric fields for the treatment of cancers. In particular, we outline the clinical impact of tumor treating fields (TTFields), a form of AEFs, on the treatment of cancers such as glioblastoma and mesothelioma. We provide an overview of the standard mechanism of action of TTFields, namely, the capability for AEFs (e.g., TTFields) to disrupt the formation and segregation of the mitotic spindle in actively dividing cells. Though this standard mechanism explains a large part of TTFields' action, it is by no means complete. The standard theory does not account for exogenously applied AEFs' influence directly upon DNA nor upon their capacity to alter the functionality and permeability of cancer cell membranes. This review summarizes the current literature to provide a more comprehensive understanding of AEFs' actions on cell membranes. It gives an overview of three mechanistic models that may explain the more recent observations into AEFs' effects: the voltage-gated ion channel, bioelectrorheological, and electroporation models. Inconsistencies were noted in both effective frequency range and field strength between TTFields versus all three proposed models. We addressed these discrepancies through theoretical investigations into the inhomogeneities of electric fields on cellular membranes as a function of disease state, external microenvironment, and tissue or cellular organization. Lastly, future experimental strategies to validate these findings are outlined. Clinical benefits are inevitably forthcoming.
Collapse
Affiliation(s)
- Alondra A. Aguilar
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.A.A.); (M.C.H.); (E.C.); (A.N.)
| | - Michelle C. Ho
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.A.A.); (M.C.H.); (E.C.); (A.N.)
| | - Edwin Chang
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.A.A.); (M.C.H.); (E.C.); (A.N.)
| | - Kristen W. Carlson
- Beth Israel Deaconess Medical Center, Department of Neurosurgery, Harvard Medical School, Boston, MA 02215, USA;
| | - Arutselvan Natarajan
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.A.A.); (M.C.H.); (E.C.); (A.N.)
| | - Tal Marciano
- Novocure, Ltd., 31905 Haifa, Israel; (T.M.); (Z.B.)
| | - Ze’ev Bomzon
- Novocure, Ltd., 31905 Haifa, Israel; (T.M.); (Z.B.)
| | - Chirag B. Patel
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.A.A.); (M.C.H.); (E.C.); (A.N.)
- Department of Neurology & Neurological Sciences, Division of Neuro-Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Mi Y, Xu J, Liu Q, Wu X, Zhang Q, Tang J. Single-cell electroporation with high-frequency nanosecond pulse bursts: Simulation considering the irreversible electroporation effect and experimental validation. Bioelectrochemistry 2021; 140:107822. [PMID: 33915340 DOI: 10.1016/j.bioelechem.2021.107822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
To study the electroporation characteristics of cells under high-frequency nanosecond pulse bursts (HFnsPBs), the original electroporation mathematical model was improved. By setting a threshold value for irreversible electroporation (IRE) and considering the effect of an electric field on the surface tension of a cell membrane, a mathematical model of electroporation considering the effect of IRE is proposed for the first time. A typical two-dimensional cell system was discretized into nodes using MATLAB, and a mesh transport network method (MTNM) model was established for simulation. The dynamic processes of single-cell electroporation and molecular transport under the application of 50 unipolar HFnsPBs with field intensities of 9 kV cm-1 and different frequencies (10 kHz, 100 kHz and 500 kHz) to the target system was simulated with a 300 s simulation time. The IRE characteristics and molecular transport were evaluated. In addition, a PI fluorescent dye assay was designed to verify the correctness of the model by providing time-domain and spatial results that were compared with the simulation results. The simulation achieved IRE and demonstrated the cumulative effects of multipulse bursts and intraburst frequency on irreversible pores. The model can also reflect the cumulative effect of multipulse bursts on reversible pores by introducing an assumption of stable reversible pores. The experimental results agreed qualitatively with the simulation results. A relative calibration of the fluorescence data gave time-domain molecular transport results that were quantitatively similar to the simulation results. This article reveals the cell electroporation characteristics under HFnsPBs from a mechanism perspective and has important guidance for fields involving the IRE of cells.
Collapse
Affiliation(s)
- Yan Mi
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.
| | - Jin Xu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Quan Liu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Xiao Wu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Zhang
- First Affiliated Hospital of Chongqing Medical Science University, Chongqing 400016, China
| | - Junying Tang
- First Affiliated Hospital of Chongqing Medical Science University, Chongqing 400016, China
| |
Collapse
|
28
|
Sözer EB, Pakhomov AG, Semenov I, Casciola M, Kim V, Vernier PT, Zemlin CW. Analysis of electrostimulation and electroporation by high repetition rate bursts of nanosecond stimuli. Bioelectrochemistry 2021; 140:107811. [PMID: 33862549 DOI: 10.1016/j.bioelechem.2021.107811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022]
Abstract
Exposures to short-duration, strong electric field pulses have been utilized for stimulation, ablation, and the delivery of molecules into cells. Ultrashort, nanosecond duration pulses have shown unique benefits, but they require higher field strengths. One way to overcome this requirement is to use trains of nanosecond pulses with high repetition rates, up to the MHz range. Here we present a theoretical model to describe the effects of pulse trains on the plasma membrane and intracellular membranes modeled as resistively charged capacitors. We derive the induced membrane potential and the stimulation threshold as functions of pulse number, pulse duration, and repetition rate. This derivation provides a straightforward method to calculate the membrane charging time constant from experimental data. The derived excitation threshold agrees with nerve stimulation experiments, indicating that nanosecond pulses are not more effective than longer pulses in charging nerve fibers. The derived excitation threshold does not, however, correctly predict the nanosecond stimulation of cardiomyocytes. We show that a better agreement is possible if multiple charging time constants are considered. Finally, we expand the model to intracellular membranes and show that pulse trains do not lead to charge buildup, but can create significant oscillations of the intracellular membrane potential.
Collapse
Affiliation(s)
- Esin B Sözer
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Maura Casciola
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Vitalii Kim
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - P Thomas Vernier
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Christian W Zemlin
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| |
Collapse
|
29
|
Irreversible Electroporation Enhanced by Radiofrequency Ablation: An In Vitro and Computational Study in a 3D Liver Tumor Model. Ann Biomed Eng 2021; 49:2126-2138. [PMID: 33594637 DOI: 10.1007/s10439-021-02734-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022]
Abstract
In the present study, we used a computational and experimental study in a 3D liver tumor model (LTM) to explore the tumor ablation enhancement of irreversible electroporation (IRE) by pre-heating with radiofrequency ablation (RFA) and elucidate the mechanism whereby this enhancement occurs. Three ablation protocols, including IRE alone, RFA45 → IRE (with the pre-heating temperature of 45 °C), and RFA60 → IRE (with the pre-heating temperature of 60 °C) were investigated. Both the thermal conductivity and electrical conductivity of the 3D LTM were characterized with the change in the pre-heating temperature. The results showed, compared to IRE alone, a significant increase in the tumor ablation volume (19.59 [Formula: see text] 0.61 vs. 15.29 ± 0.61 mm3, p = 0.002 and 22.87 [Formula: see text] 0.35 vs. 15.29 ± 0.61 mm3, p < 0.001) was observed with both RFA45 → IRE and RFA60 → IRE, leading to a decrease in lethal electric filed strength (8 and 17%, correspondingly). The mechanism can be attributed to the change of cell microenvironment by pre-heating and/or a synergistic effect of RFA and IRE. The proposed enhancing method might contribute to the improvement of interventional oncology in the treatment of large tumors close to critical organs (e.g., large blood vessels and bile ducts).
Collapse
|
30
|
Novickij V, Balevičiūtė A, Ruzgys P, Šatkauskas S, Novickij J, Zinkevičienė A, Girkontaitė I. Sub-microsecond electrotransfection using new modality of high frequency electroporation. Bioelectrochemistry 2020; 136:107594. [PMID: 32679337 DOI: 10.1016/j.bioelechem.2020.107594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 12/21/2022]
Abstract
Micro-millisecond range electric field pulses have been used for decades to facilitate DNA transfer into cells and tissues, while the growing number of clinical trials underline the strong potential of DNA electroporation. In this work, we present new sub-microsecond range protocols and methodology enabling successful electrotransfection in the sub-microsecond range. To facilitate DNA transfer, a 3 kV/60 A and high frequency (1 MHz) sub-microsecond range square wave generator was applied in the study. As a model, Chinese hamster ovary (CHO-K1) cells were used. Sub-microsecond range (300-700 ns) high frequency pulsed electric fields of 2-15 kV/cm were applied. The efficiency of electrotransfection was evaluated using two green fluorescent protein encoding plasmids of different size (3.5 kbp and 4.7 kbp). It was shown that transfection efficiency cannot be effectively improved with increase of the number of pulses after a certain threshold, however, independently on the plasmid size, the proposed sub-microsecond range pulsing methodology (2-5 kV/cm; n = 250) efficiency-wise was equivalent to 1.5 kV/cm × 100 μs × 4 electroporation procedure. The results of the study are useful for further development of in vitro and in vivo methods for effective electrotransfer of DNA using shorter pulses.
Collapse
Affiliation(s)
- Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| | - Austėja Balevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Paulius Ruzgys
- Biophysical Research Group, Vytautas Magnus University, Kaunas, Lithuania
| | - Saulius Šatkauskas
- Biophysical Research Group, Vytautas Magnus University, Kaunas, Lithuania
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Auksė Zinkevičienė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Irutė Girkontaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| |
Collapse
|
31
|
Murauskas A, Staigvila G, Girkontaitė I, Zinkevičienė A, Ruzgys P, Šatkauskas S, Novickij J, Novickij V. Predicting electrotransfer in ultra-high frequency sub-microsecond square wave electric fields. Electromagn Biol Med 2019; 39:1-8. [PMID: 31884821 DOI: 10.1080/15368378.2019.1710529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Measurement of cell transmembrane potential (TMP) is a complex methodology involving patch-clamp methods or fluorescence-based potentiometric markers, which have limited to no applicability during ultrafast charging and relaxation phenomena. In such a case, analytical methods are applied for evaluation of the voltage potential changes in biological cells. In this work, the TMP-based electrotransfer mechanism during ultra-high frequency (≥1 MHz) electric fields is studied and the phenomenon of rapid membrane charge accumulation, which is non-occurrent during conventional low-frequency electroporation is simulated using finite element method (FEM). The influence of extracellular medium conductivity (0.1, 1.5 S/m) and pulse rise/fall times (10-50 ns) TMP generation are presented. It is shown that the medium conductivity has a dramatic influence on the electroporation process in the high-frequency range of applied pulsed electric fields (PEF). The applied model allowed to grasp the differences in polarization between 100 and 900 ns PEF and enabled successful prediction of the experimental outcome of propidium iodide electrotransfer into CHO-K1 cells and the conductivity-dependent patterns of MHz range PEF-triggered electroporation were determined. The results of this study form recommendations for development and pre-evaluation of future PEF protocols and generators based on ultra-high frequency electroporation for anticancer and gene therapies.
Collapse
Affiliation(s)
- Arūnas Murauskas
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Gediminas Staigvila
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Irutė Girkontaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Paulius Ruzgys
- Biophysics Group, Vytautas Magnus University, Kaunas, Lithuania
| | | | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
32
|
Excitation and electroporation by MHz bursts of nanosecond stimuli. Biochem Biophys Res Commun 2019; 518:759-764. [PMID: 31472962 DOI: 10.1016/j.bbrc.2019.08.133] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Intense nanosecond pulsed electric field (nsPEF) is a novel modality for cell activation and nanoelectroporation. Applications of nsPEF in research and therapy are hindered by a high electric field requirement, typically from 1 to over 50 kV/cm to elicit any bioeffects. We show how this requirement can be overcome by engaging temporal summation when pulses are compressed into high-rate bursts (up to several MHz). This approach was tested for excitation of ventricular cardiomyocytes and peripheral nerve fibers; for membrane electroporation of cardiomyocytes, CHO, and HEK cells; and for killing EL-4 cells. MHz compression of nsPEF bursts (100-1000 pulses) enables excitation at only 0.01-0.15 kV/cm and electroporation already at 0.4-0.6 kV/cm. Clear separation of excitation and electroporation thresholds allows for multiple excitation cycles without membrane disruption. The efficiency of nsPEF bursts increases with the duty cycle (by increasing either pulse duration or repetition rate) and with increasing the total time "on" (by increasing either pulse duration or number). For some endpoints, the efficiency of nsPEF bursts matches a single "long" pulse whose amplitude and duration equal the time-average amplitude and duration of the bursts. For other endpoints this rule is not valid, presumably because of nsPEF-specific bioeffects and/or possible modification of targets already during the burst. MHz compression of nsPEF bursts is a universal and efficient way to lower excitation thresholds and facilitate electroporation.
Collapse
|
33
|
Abstract
In this paper, we present an analysis and a validation of a simulation program with integrated circuit emphasis (SPICE) model for a pulse forming circuit of a high frequency electroporation system, which can deliver square-wave sub-microsecond (100–900 ns) electric field pulses. The developed SPICE model is suggested for use in evaluation of transient processes that occur due to high frequency operations in prototype systems. A controlled crowbar circuit was implemented to support a variety of biological loads and to ensure a constant electric pulse rise and fall time during electroporation to be independent of the applied buffer bioimpedance. The SPICE model was validated via a comparison of the simulation and experimental results obtained from the already existing prototype system. The SPICE model results were in good agreement with the experimental results, and the model complexity was found to be sufficient for analysis of transient processes. As result, the proposed SPICE model can be useful for evaluation and compensation of transient processes in sub-microsecond pulsed power set-ups during the development of new prototypes.
Collapse
|
34
|
Influence of the electrode material on ROS generation and electroporation efficiency in low and high frequency nanosecond pulse range. Bioelectrochemistry 2019; 127:87-93. [DOI: 10.1016/j.bioelechem.2019.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 11/24/2022]
|
35
|
Low concentrations of acetic and formic acids enhance the inactivation of Staphylococcus aureus and Pseudomonas aeruginosa with pulsed electric fields. BMC Microbiol 2019; 19:73. [PMID: 30943901 PMCID: PMC6448289 DOI: 10.1186/s12866-019-1447-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Background Skin infections, particularly caused by drug-resistant pathogens, represent a clinical challenge due to being a frequent cause of morbidity and mortality. The objectives of this study were to examine if low concentrations of acetic and formic acids can increase sensitivity of Staphylococcus aureus and Pseudomonas aeruginosa to pulsed electric field (PEF) and thus, promote a fast and efficient treatment methodology for wound treatment. Results We have shown that the combination of PEF (10–30 kV/cm) with organic acids (0.1% formic and acetic acids) increased the bactericidal properties of treatment. The effect was apparent for both acids. The proposed methodology allowed to reduce the energy of electrical pulses and the inhibitory concentrations of acids, while still maintain high efficiency of bacteria eradication. Conclusions Application of weak organic acids as bactericidal agents has many advantages over antibiotics because they do not trigger development of drug-resistance in bacteria. The combination with PEF can make the treatment effective even against biofilms. The results of this study are particularly useful for the development of new methodologies for the treatment of extreme cases of wound infections when the chemical treatment is no longer effective or hinders wound healing.
Collapse
|
36
|
Novickij V, Zinkevičienė A, Stanevičienė R, Gruškienė R, Servienė E, Vepštaitė-Monstavičė I, Krivorotova T, Lastauskienė E, Sereikaitė J, Girkontaitė I, Novickij J. Inactivation of Escherichia coli Using Nanosecond Electric Fields and Nisin Nanoparticles: A Kinetics Study. Front Microbiol 2018; 9:3006. [PMID: 30619116 PMCID: PMC6299027 DOI: 10.3389/fmicb.2018.03006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/20/2018] [Indexed: 01/24/2023] Open
Abstract
Nisin is a recognized bacteriocin widely used in food processing, however, being ineffective against gram-negative bacteria and in complex food systems. As a result, the research of methods that have cell wall–permeabilizing activity is required. In this study, electroporation to trigger sensitization of gram-negative bacteria to nisin-loaded pectin nanoparticles was used. As a model microorganism, bioluminescent strain of E. coli was introduced. Inactivation kinetics using nanosecond pulsed electric fields (PEFs) and nisin nanoparticles have been studied in a broad range (100–900 ns, 10–30 kV/cm) of pulse parameters. As a reference, the microsecond range protocols (100 μs × 8) have been applied. It was determined that the 20–30 kV/cm electric field with pulse duration ranging from 500 to 900 ns was sufficient to cause significant permeabilization of E. coli to trigger a synergistic response with the nisin treatment. The kinetics of the inactivation was studied with a time resolution of 2.5 min, which provided experimental evidence that the efficacy of nisin-based treatment can be effectively controlled in time using PEF. The results and the proposed methodology for rapid detection of bacteria inactivation rate based on bioluminescence may be useful in the development and optimization of protocols for PEF-based treatments.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | - Rūta Gruškienė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Elena Servienė
- Laboratory of Genetics, Nature Research Centre, Vilnius, Lithuania.,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | | | - Tatjana Krivorotova
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania.,Institute of Chemistry, Vilnius University, Vilnius, Lithuania
| | - Eglė Lastauskienė
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Jolanta Sereikaitė
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Irutė Girkontaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Jurij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania.,Institute for Telecommunications, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
37
|
Ruzgys P, Novickij V, Novickij J, Šatkauskas S. Nanosecond range electric pulse application as a non-viral gene delivery method: proof of concept. Sci Rep 2018; 8:15502. [PMID: 30341389 PMCID: PMC6195529 DOI: 10.1038/s41598-018-33912-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022] Open
Abstract
Current electrotransfection protocols are well-established for decades and, as a rule, employ long micro-millisecond range electric field pulses to facilitate DNA transfer while application of nanosecond range pulses is limited. The purpose of this paper is to show that the transfection using ultrashort pulses is possible by regulating the pulse repetition frequency. We have used 200 ns pulses (10-18 kV/cm) in bursts of ten with varied repetition frequency (1 Hz-1 MHz). The Chinese Hamster Ovary (CHO) cells were used as a cell model. Experiments were performed using green fluorescent protein (GFP) and luciferase (LUC) coding plasmids. Transfection expression levels were evaluated using flow cytometry or luminometer. It was shown that with the increase of frequency from 100 kHz to 1 MHz, the transfection expression levels increased up to 17% with minimal decrease in cell viability. The LUC coding plasmid was transferred more efficiently using high frequency bursts compared to single pulses of equivalent energy. The first proof of concept for frequency-controlled nanosecond electrotransfection was shown, which can find application as a new non-viral gene delivery method.
Collapse
Affiliation(s)
- Paulius Ruzgys
- Biophysical Research Group, Vytautas Magnus University, Vileikos g. 8-212, 44404, Kaunas, Lithuania
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| | - Jurij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Saulius Šatkauskas
- Biophysical Research Group, Vytautas Magnus University, Vileikos g. 8-212, 44404, Kaunas, Lithuania
| |
Collapse
|
38
|
Novickij V, Zinkevičienė A, Perminaitė E, Čėsna R, Lastauskienė E, Paškevičius A, Švedienė J, Markovskaja S, Novickij J, Girkontaitė I. Non-invasive nanosecond electroporation for biocontrol of surface infections: an in vivo study. Sci Rep 2018; 8:14516. [PMID: 30266920 PMCID: PMC6162327 DOI: 10.1038/s41598-018-32783-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/14/2018] [Indexed: 12/20/2022] Open
Abstract
Invasive infections caused by drug-resistant bacteria are frequently responsible for fatal sepsis, morbidity and mortality rates. In this work, we propose a new methodology based on nanosecond high frequency electric field bursts, which enables successful eradication of bacteria in vivo. High frequency (15 kHz) 15–25 kV/cm 300–900 ns pulsing bursts were used separately and in combination with acetic acid (0.1–1%) to treat Pseudomonas aeruginosa in a murine model. Acetic acid 1% alone was effective resulting in almost 10-fold reduction of bacteria viability, however combination of nanosecond electric field and acetic acid 1% treatment was the most successful showing almost full eradication (0.01% survival compared to control) of the bacteria in the contaminated area. The short duration of the pulses (sub-microsecond) and high frequency (kHz range) of the burst enabled reduction of the muscle contractions to barely detectable level while the proposed applicators ensured predominantly topical treatment, without electroporation of deeper tissues. The results of our study have direct application for treatment of wounds and ulcers when chemical treatment is no longer effective.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| | - Auksė Zinkevičienė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Emilija Perminaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Robertas Čėsna
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Eglė Lastauskienė
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | | | - Jurgita Švedienė
- Laboratory of Biodeterioration Research, Nature Research Centre, Vilnius, Lithuania
| | | | - Jurij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Irutė Girkontaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| |
Collapse
|
39
|
Sweeney DC, Douglas TA, Davalos RV. Characterization of Cell Membrane Permeability In Vitro Part II: Computational Model of Electroporation-Mediated Membrane Transport. Technol Cancer Res Treat 2018; 17:1533033818792490. [PMID: 30231776 PMCID: PMC6149036 DOI: 10.1177/1533033818792490] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
Electroporation is the process by which applied electric fields generate nanoscale defects in biological membranes to more efficiently deliver drugs and other small molecules into the cells. Due to the complexity of the process, computational models of cellular electroporation are difficult to validate against quantitative molecular uptake data. In part I of this two-part report, we describe a novel method for quantitatively determining cell membrane permeability and molecular membrane transport using fluorescence microscopy. Here, in part II, we use the data from part I to develop a two-stage ordinary differential equation model of cellular electroporation. We fit our model using experimental data from cells immersed in three buffer solutions and exposed to electric field strengths of 170 to 400 kV/m and pulse durations of 1 to 1000 μs. We report that a low-conductivity 4-(2-hydroxyethyl)-1 piperazineethanesulfonic acid buffer enables molecular transport into the cell to increase more rapidly than with phosphate-buffered saline or culture medium-based buffer. For multipulse schemes, our model suggests that the interpulse delay between two opposite polarity electric field pulses does not play an appreciable role in the resultant molecular uptake for delays up to 100 μs. Our model also predicts the per-pulse permeability enhancement decreases as a function of the pulse number. This is the first report of an ordinary differential equation model of electroporation to be validated with quantitative molecular uptake data and consider both membrane permeability and charging.
Collapse
Affiliation(s)
- Daniel C. Sweeney
- Department of Biomedical Engineering and Mechanics, Virginia Tech,
Blacksburg, VA, USA
| | - Temple A. Douglas
- Department of Biomedical Engineering and Mechanics, Virginia Tech,
Blacksburg, VA, USA
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech,
Blacksburg, VA, USA
| |
Collapse
|