1
|
Duan T, Wu ZX, Wang D, Du CW, Li XG, Shen Q. Effect of B. subtilis in simulated acid red soil on the corrosion behavior of X80 pipeline steel. Bioelectrochemistry 2024; 157:108640. [PMID: 38244430 DOI: 10.1016/j.bioelechem.2024.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
The eastern section of China's West-east gas transmission project is laid in acidic red soil. NRB are widespread in soils and play an important role in metal corrosion. In this article, the corrosion failure behavior and mechanism of X80 pipeline steel under the action of NRB in simulated acidic soil were studied. It was found that the biofilm of B. subtilis had significant inhibitory on the overall corrosion of X80 steel. Electrochemical results prove that the corrosion rate of the sterile group after 14 days of immersion was about 4.5 times that of the bacterial group. However, the biofilm promotes the formation of local corrosion pits. Confocal laser scanning microscopy images indicate that that the corrosion pit depth of the bacterial group (46.1 μm) was three times that of the bacterial-free group (15.7 μm) after 14 days. The pH of the acidic environment was slightly improved by B. subtilis. XPS results proved that B. subtilis complicates the corrosion products of X80 steel through its nitrate reduction ability and metabolism.
Collapse
Affiliation(s)
- Teng Duan
- Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhang-Xiang Wu
- Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Dan Wang
- Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Cui-Wei Du
- Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiao-Gang Li
- Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083, China; Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Qing Shen
- Beijing Zhonghang Oil Engineering Construction Co., Ltd, China
| |
Collapse
|
2
|
Liu L, Shen RL, Zhao ZQ, Ding LJ, Cui HL, Li G, Yang YP, Duan GL, Zhu YG. How different nitrogen fertilizers affect arsenic mobility in paddy soil after straw incorporation? JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129135. [PMID: 35594672 DOI: 10.1016/j.jhazmat.2022.129135] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
In straw return fields, nitrogen-fertilizers are added to mitigate microbial competition for nitrogen with plants. However, in arsenic (As)-contaminated paddy fields, the specific effects of different nitrogen fertilizers on As mobility after straw incorporation and the interactions among iron(Fe)/carbon(C)/nitrogen(N)/As are not well understood. In the reported microcosm experiment we monitored As-mobility as a function of different dosages of KNO3, NH4Cl and rice straw incorporation. Addition of both KNO3 and NH4Cl significantly inhibited the As mobilization induced by straw incorporation. Following the KNO3 addition, the As concentration in porewater dropped by 51-66% after 2 days of the incubation by restraining Fe reduction and enhancing Fe oxidation. High-dose NH4Cl addition reduced As in porewater by 22-43% throughout the incubation by decreasing porewater pH. High-throughput sequencing results demonstrated that KNO3 addition enriches both the denitrifying and Fe-oxidizing bacteria, while diminishing Fe-reducing bacteria; NH4Cl addition has the opposite effect on Fe-reducing bacteria. Network analysis revealed that As and Fe concentrations in porewater were positively correlated with the abundance of denitrifying and Fe-reducing bacteria. This study broadens our insight into the As biogeochemistry associated with the N/C/Fe balance in soil, which are of great significance for agronomic management and mitigation the risk of As-contaminated paddy fields.
Collapse
Affiliation(s)
- Lin Liu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Rui-Lin Shen
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhong-Qiu Zhao
- College of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Long-Jun Ding
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Ling Cui
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Ping Yang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Gui-Lan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Understanding biofilm impact on electrochemical impedance spectroscopy analyses in microbial corrosion and microbial corrosion inhibition phenomena. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Chugh B, Sheetal, Singh M, Thakur S, Pani B, Singh AK, Saji VS. Extracellular Electron Transfer by Pseudomonas aeruginosa in Biocorrosion: A Review. ACS Biomater Sci Eng 2022; 8:1049-1059. [PMID: 35199512 DOI: 10.1021/acsbiomaterials.1c01645] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microorganisms with extracellular electron transfer (EET) capability have gained significant attention for their different biotechnological applications, like biosensors, bioremediation, and microbial fuel cells. Current research affirmed that microbial EET potentially promotes corrosion of iron structures, termed microbiologically influenced corrosion (MIC). The sulfate-reducing (SRB) and nitrate-reducing (NRB) bacteria are the most investigated among the different MIC-promoting bacteria. Unlike extensively studied SRB corrosion, NRB corrosion has received less attention from researchers. Hence, this review focuses on EET by Pseudomonas aeruginosa, a pervasive bacterium competent for developing biofilms in marine habitats and oil pipelines. A comprehensive discussion on the fundamentals of EET mechanisms in MIC is provided first. After that, the review offers state-of-the-art insights into the latest research on the EET-assisted MIC by Pseudomonas aeruginosa. The role of electron transfer mediators has also been discussed to understand the mechanisms involved in a better way. This review will be beneficial to open up new opportunities for developing strategies for combating biocorrosion.
Collapse
Affiliation(s)
- Bhawna Chugh
- Department of Chemistry, Netaji Subhas University of Technology, Sector-3, Dwarka, New Delhi-110078, India
| | - Sheetal
- Department of Chemistry, Netaji Subhas University of Technology, Sector-3, Dwarka, New Delhi-110078, India
| | - Manjeet Singh
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, Mizoram-796004, India
| | - Sanjeeve Thakur
- Department of Chemistry, Netaji Subhas University of Technology, Sector-3, Dwarka, New Delhi-110078, India
| | - Balaram Pani
- Department of Chemistry, Bhaskaracharya College of Applied Sciences, University of Delhi, Sector -2, Dwarka, New Delhi-110075, India
| | - Ashish Kumar Singh
- Department of Chemistry, Netaji Subhas University of Technology, Sector-3, Dwarka, New Delhi-110078, India.,Department of Applied Sciences, Bharati Vidyapeeth's College of Engineering, Paschim Vihar, New Delhi-110063, India
| | - Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
5
|
Vejar N, Gutiérrez S, Tareelap N, Alvarado C, Solís R, Guerra C, Pineda F, Sancy M, Páez M. Influence of Bacillus safensis and Bacillus pumilus on the electrochemical behavior of 2024-T3 aluminum alloy. Bioelectrochemistry 2022; 143:107950. [PMID: 34592630 DOI: 10.1016/j.bioelechem.2021.107950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022]
Abstract
In this work, electrochemical techniques were employed to evaluate the contribution to the corrosion and corrosion inhibition of 2024-T3 aluminum alloy by two Gram-positive bacteria. In addition, polarized impedance was used to determine the microbial effect on the cathodic and anodic reactions. These microorganisms were collected from a tropical environment due to the favorable bacterial growth of this kind of climate. The alloy was exposed to the sterile medium and inoculated for up to 12 days evaluating the microbiological and electrochemical behavior. The results by linear scanning voltammetry showed that the B. safensis and B. pumilus caused a dual effect of increase and decrease currents, and through electrochemical impedance spectroscopy, showed in some cases, inductive loop, which could be associated with local corrosion and another case, an increasing impedance could be related to protection. In addition, a morphological characterization was performed by scanning electron microscopy before and after exposure, showing an increase in copper precipitation in the vicinity of the intermetallic phases by bacteria, attributed to local corrosion, but, in general, a significant effect of damages was not observed.
Collapse
Affiliation(s)
- Nelson Vejar
- Centro de Investigación y Desarrollo en Ciencias Aeroespaciales, Fuerza Aérea de Chile, Av. José Miguel Carrera 11087, Santiago, Chile.
| | - Sebastián Gutiérrez
- Centro de Investigación y Desarrollo en Ciencias Aeroespaciales, Fuerza Aérea de Chile, Av. José Miguel Carrera 11087, Santiago, Chile
| | - Napachat Tareelap
- School of Energy, Environment and Materials, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bangmod, Thungkru, Bangkok 10140, Thailand
| | - Claudia Alvarado
- Centro de Investigación y Desarrollo en Ciencias Aeroespaciales, Fuerza Aérea de Chile, Av. José Miguel Carrera 11087, Santiago, Chile
| | - Roberto Solís
- Centro de Investigación y Desarrollo en Ciencias Aeroespaciales, Fuerza Aérea de Chile, Av. José Miguel Carrera 11087, Santiago, Chile
| | - Carolina Guerra
- Escuela de Construcción Civil, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Fabiola Pineda
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Santiago, 8580745, Chile
| | - Mamié Sancy
- Escuela de Construcción Civil, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Maritza Páez
- Universidad de Santiago de Chile, Av. Libertador Bernardo ÓHiggins 3363, Santiago, Chile
| |
Collapse
|
6
|
Tong X, Leung MHY, Shen Z, Lee JYY, Mason CE, Lee PKH. Metagenomic insights into the microbial communities of inert and oligotrophic outdoor pier surfaces of a coastal city. MICROBIOME 2021; 9:213. [PMID: 34724986 PMCID: PMC8562002 DOI: 10.1186/s40168-021-01166-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/20/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Studies of the microbiomes on surfaces in built environment have largely focused on indoor spaces, while outdoor spaces have received far less attention. Piers are engineered infrastructures commonly found in coastal areas, and due to their unique locations at the interface between terrestrial and aquatic ecosystems, pier surfaces are likely to harbor interesting microbiology. In this study, the microbiomes on the metal and concrete surfaces at nine piers located along the coastline of Hong Kong were investigated by metagenomic sequencing. The roles played by different physical attributes and environmental factors in shaping the taxonomic composition and functional traits of the pier surface microbiomes were determined. Metagenome-assembled genomes were reconstructed and their putative biosynthetic gene clusters were characterized in detail. RESULTS Surface material was found to be the strongest factor in structuring the taxonomic and functional compositions of the pier surface microbiomes. Corrosion-related bacteria were significantly enriched on metal surfaces, consistent with the pitting corrosion observed. The differential enrichment of taxa mediating biodegradation suggests differences between the metal and concrete surfaces in terms of specific xenobiotics being potentially degraded. Genome-centric analysis detected the presence of many novel species, with the majority of them belonging to the phylum Proteobacteria. Genomic characterization showed that the potential metabolic functions and secondary biosynthetic capacity were largely correlated with taxonomy, rather than surface attributes and geography. CONCLUSIONS Pier surfaces are a rich reservoir of abundant novel bacterial species. Members of the surface microbial communities use different mechanisms to counter the stresses under oligotrophic conditions. A better understanding of the outdoor surface microbiomes located in different environments should enhance the ability to maintain outdoor surfaces of infrastructures. Video Abstract.
Collapse
Affiliation(s)
- Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Zhiyong Shen
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Justin Y Y Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Dou W, Xu D, Gu T. Biocorrosion caused by microbial biofilms is ubiquitous around us. Microb Biotechnol 2021; 14:803-805. [PMID: 33320430 PMCID: PMC8085924 DOI: 10.1111/1751-7915.13690] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/30/2022] Open
Abstract
Biocorrosion first surfaced in the scientific literature when Richard H. Gaines associated corrosion with bacterial activities in 1910. It is also known as microbiologically influenced corrosion (MIC). In general, it covers two scenarios. One is that microbes cause corrosion directly, which usually means microbes secrete corrosive metabolites or microbes harvest electrons from a metal for respiration to produce energy. In the second scenario, microbes are behind the initiation or acceleration of corrosion caused by a pre-existing corrosive agent such as water and CO2 , by compromising the passive film (often a metal oxide film on a metal). MIC is caused by microbial biofilms. It is everywhere around us. This work dissects some notable examples with perspectives.
Collapse
Affiliation(s)
- Wenwen Dou
- Institute of Marine Science and TechnologyShandong UniversityQingdaoChina
| | - Dake Xu
- Shenyang National Lab for Materials ScienceNortheastern UniversityShenyangChina
| | - Tingyue Gu
- Department of Chemical and Biomolecular EngineeringInstitute for Corrosion and Multiphase TechnologyOhio UniversityAthensOH45701USA
| |
Collapse
|
8
|
Lekbach Y, Liu T, Li Y, Moradi M, Dou W, Xu D, Smith JA, Lovley DR. Microbial corrosion of metals: The corrosion microbiome. Adv Microb Physiol 2021; 78:317-390. [PMID: 34147188 DOI: 10.1016/bs.ampbs.2021.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microbially catalyzed corrosion of metals is a substantial economic concern. Aerobic microbes primarily enhance Fe0 oxidation through indirect mechanisms and their impact appears to be limited compared to anaerobic microbes. Several anaerobic mechanisms are known to accelerate Fe0 oxidation. Microbes can consume H2 abiotically generated from the oxidation of Fe0. Microbial H2 removal makes continued Fe0 oxidation more thermodynamically favorable. Extracellular hydrogenases further accelerate Fe0 oxidation. Organic electron shuttles such as flavins, phenazines, and possibly humic substances may replace H2 as the electron carrier between Fe0 and cells. Direct Fe0-to-microbe electron transfer is also possible. Which of these anaerobic mechanisms predominates in model pure culture isolates is typically poorly documented because of a lack of functional genetic studies. Microbial mechanisms for Fe0 oxidation may also apply to some other metals. An ultimate goal of microbial metal corrosion research is to develop molecular tools to diagnose the occurrence, mechanisms, and rates of metal corrosion to guide the implementation of the most effective mitigation strategies. A systems biology approach that includes innovative isolation and characterization methods, as well as functional genomic investigations, will be required in order to identify the diagnostic features to be gleaned from meta-omic analysis of corroding materials. A better understanding of microbial metal corrosion mechanisms is expected to lead to new corrosion mitigation strategies. The understanding of the corrosion microbiome is clearly in its infancy, but interdisciplinary electrochemical, microbiological, and molecular tools are available to make rapid progress in this field.
Collapse
Affiliation(s)
- Yassir Lekbach
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China
| | - Tao Liu
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China
| | - Yingchao Li
- Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/Gas Facility Materials, College of New Energy and Materials, China University of Petroleum-Beijing, Beijing, China
| | - Masoumeh Moradi
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China
| | - Wenwen Dou
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China.
| | - Jessica A Smith
- Department of Biomolecular Sciences, Central Connecticut State University, New Britain, CT, United States
| | - Derek R Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China; Department of Microbiology, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|
9
|
Liu B, Sun M, Lu F, Du C, Li X. Study of biofilm-influenced corrosion on X80 pipeline steel by a nitrate-reducing bacterium, Bacillus cereus, in artificial Beijing soil. Colloids Surf B Biointerfaces 2020; 197:111356. [PMID: 33007505 DOI: 10.1016/j.colsurfb.2020.111356] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 11/29/2022]
Abstract
The biofilm of Bacillus cereus on the surface of X80 pipeline steel was investigated from forming to shedding. Based on the observed biofilm morphology and pit analysis, it was found that B. cereus biofilm could stimulate X80 pipeline steel pitting corrosion, which was attributed to the nitrate reduction of bacteria beneath the biofilm. Electrochemical measurements and general corrosion rate results showed that B. cereus biofilm can better accelerate X80 pipeline steel corrosion compared to sterile solutions. Interestingly, the results also showed that thick biofilms had a slight tendency to inhibit the general corrosion process compared with its formation and exfoliation, which was confirmed by scanning Kelvin probe. The corrosion rate of X80 pipeline steel in artificial Beijing soil is closely related to the state of the biofilm, and nitrate reducing bacteria accelerates the occurrence of pits. The corresponding corrosion mechanisms are proposed.
Collapse
Affiliation(s)
- Bo Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China; Key Laboratory for Corrosion and Protection of Ministry of Education (MOE), Beijing, 100083, China
| | - Meihui Sun
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China; Key Laboratory for Corrosion and Protection of Ministry of Education (MOE), Beijing, 100083, China
| | - Fangyuan Lu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China; Key Laboratory for Corrosion and Protection of Ministry of Education (MOE), Beijing, 100083, China
| | - Cuiwei Du
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China; Key Laboratory for Corrosion and Protection of Ministry of Education (MOE), Beijing, 100083, China; Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China; National Materials Corrosion and Protection Scientific Data Center, Institute of Advanced Materials and Technology, Beijing, 100083, China.
| | - Xiaogang Li
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China; Key Laboratory for Corrosion and Protection of Ministry of Education (MOE), Beijing, 100083, China; Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China; National Materials Corrosion and Protection Scientific Data Center, Institute of Advanced Materials and Technology, Beijing, 100083, China
| |
Collapse
|
10
|
Zhang R, Jiang L, Jiang D, Wang S, Zhang D, Zhong M, Xia T, Fu Q. Peculiar attenuation of soil toluene at contaminated coking sites. CHEMOSPHERE 2020; 255:126957. [PMID: 32402885 DOI: 10.1016/j.chemosphere.2020.126957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
In the soil of contaminated coking sites, polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene and xylene (BTEX) are typical indicator compounds. Generally, PAHs are enriched in the topsoil layer. BTEX, with higher water solubilities and lower organic carbon-water partitioning coefficients (Koc), are distributed deeper than PAHs. However, current models have employed predictions using single compounds to mimic the migration of BTEX at contaminated coking sites. Such models have not considered the influence of the upper soil layer, where PAHs are enriched. An attempt to fill this gap was made by setting up a control soil column experiment in this study. One column was filled with undisturbed soil (column #1) and the other with PAH-contaminated soil (column #2) to simulate the theoretical and actual surface soil layers, respectively. The results showed that in column #2, the toluene gas concentration of the headspace and time required to reach steady state were notably greater than those in column #1. High-throughput sequencing revealed that there were large microbial community structure differences between the two soil columns throughout the experiment, while some genera that degrade toluene with high efficiency emerged noteworthily in column #2. This implied that the upper soil layer enriched with PAHs was conducive to the degradation of toluene vapor. Applying this finding to human health exposure assessment of toluene suggests that the potential exposure level should be reduced from the current predicted level given the unanticipated attenuation at contaminated coking sites.
Collapse
Affiliation(s)
- Ruihuan Zhang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China.
| | - Lin Jiang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China.
| | - Dengdeng Jiang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environmental of the People's Republic of China, No. 8 Jiangwangmiao Street, 210042, Nanjing, PR China.
| | - Shijie Wang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China.
| | - Dan Zhang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China.
| | - Maosheng Zhong
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China.
| | - Tianxiang Xia
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China.
| | - Quankai Fu
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, No. 59 Beiyingfang Middle Street, Xicheng District, 100037, Beijing, PR China.
| |
Collapse
|