1
|
Li M, Shen G, Zhou Y, Chen Y, Jia L, Li X, Zhang F. Photoelectrochemical analysis of Pb 2+ based on Au@PTCA Schottky junction with Pb 2+-G quadruplex structure. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5049-5059. [PMID: 38989610 DOI: 10.1039/d4ay00716f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Herein, a novel photoelectrochemical (PEC) aptasensor using gold nanoparticles@3,4,9,10-perylene tetracarboxylic (Au@PTCA) Schottky junction as the effective optoelectronic material and lead ion (Pb2+)-G quadruplex structure as the efficient quencher was constructed for the detection of Pb2+ with high sensitivity and excellent selectivity. Au@PTCA Schottky junction, which was proposed by the in situ reduction of Au NPs on the PTCA surface, exhibited a strong unidirectional conductivity, which could generate a significantly enhanced PEC signal compared with the pure PTCA. The Pb2+-G quadruplex structure with a large spatial hindrance effect was formed when the target Pb2+ was present owing to the occurrence of the specific recognition between Pb2+ and its aptamer S1. The formation of a Pb2+-G quadruplex structure effectively quenched the initial signal generated by the Au@PTCA Schottky junction, which was derived from restricted electron transport and light transmission. The obtained prominently decreased PEC signal could achieve the quantitative detection of Pb2+ from 0.5 pM to 500 nM, with a low detection limit of 0.17 pM. The preparation time of this PEC aptasensor was 13 h, and the time for PEC measurement depended on the illumination time, which switched off-on-off for 10 s-20 s-10 s. The study proposed here with high sensitivity and excellent selectivity for Pb2+ analysis offered a novel and reliable tool for environmental monitoring related to heavy metal ions.
Collapse
Affiliation(s)
- Mengjie Li
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China.
- JINSHAN Science & Technology (Group) Co., Ltd, Chongqing 401120, China
- College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Guohao Shen
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - You Zhou
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Yang Chen
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Liping Jia
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Xiang Li
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Feng Zhang
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing 401331, China.
- JINSHAN Science & Technology (Group) Co., Ltd, Chongqing 401120, China
- College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Yee BJ, Zakaria SNA, Chandrawati R, Ahmed MU. Detection of Tetracycline with a CRISPR/Cas12a Aptasensor Using a Highly Efficient Fluorescent Polystyrene Microsphere Reporter System. ACS Synth Biol 2024; 13:2166-2176. [PMID: 38866727 DOI: 10.1021/acssynbio.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
CRISPR-based diagnostics use the CRISPR-Cas system trans-cleavage activity to identify specific target sequences. When activated, this activity cleaves surrounding reporter molecules, producing a detectable signal. This technique has great specificity, sensitivity, and rapid detection, making it an important molecular diagnostic tool for medical and infectious disease applications. Despite its potential, the present CRISPR/Cas system has challenges with its single-stranded DNA reporters, characterized by low stability and limited sensitivity, restricting effective application in complex biological settings. In this work, we investigate the trans-cleavage activity of CRISPR/Cas12a on substrates utilizing fluorescent polystyrene microspheres to detect tetracycline. This innovative discovery led to the development of microsphere probes addressing the stability and sensitivity issues associated with CRISPR/Cas biosensing. By attaching the ssDNA reporter to polystyrene microspheres, we discovered that the Cas12a system exhibits robust and sensitive trans-cleavage activity. Further work revealed that the trans-cleavage activity of Cas12a on the microsphere surface is significantly dependent on the concentration of the ssDNA reporters. Building on these intriguing discoveries, we developed microsphere-based fluorescent probes for CRISPR/Cas aptasensors, which showed stability and sensitivity in tetracycline biosensing. We demonstrated a highly sensitive detection of tetracycline with a detection limit of 0.1 μM. Finally, the practical use of a microsphere-based CRISPR/Cas aptasensor in spiked food samples was proven successful. These findings highlighted the remarkable potential of microsphere-based CRISPR/Cas aptasensors for biological research and medical diagnosis.
Collapse
Affiliation(s)
- Bong Jing Yee
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Siti Nurul Azian Zakaria
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| |
Collapse
|
3
|
Ram TB, Krishnan S, Jeevanandam J, Danquah MK, Thomas S. Emerging Biohybrids of Aptamer-Based Nano-Biosensing Technologies for Effective Early Cancer Detection. Mol Diagn Ther 2024; 28:425-453. [PMID: 38775897 DOI: 10.1007/s40291-024-00717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/28/2024]
Abstract
Cancer is a leading global cause of mortality, which underscores the imperative of early detection for improved patient outcomes. Biorecognition molecules, especially aptamers, have emerged as highly effective tools for early and accurate cancer cell identification. Aptamers, with superior versatility in synthesis and modification, offer enhanced binding specificity and stability compared with conventional antibodies. Hence, this article reviews diagnostic strategies employing aptamer-based biohybrid nano-biosensing technologies, focusing on their utility in detecting cancer biomarkers and abnormal cells. Recent developments include the synthesis of nano-aptamers using diverse nanomaterials, such as metallic nanoparticles, metal oxide nanoparticles, carbon-derived substances, and biohybrid nanostructures. The integration of these nanomaterials with aptamers significantly enhances sensitivity and specificity, promising innovative and efficient approaches for cancer diagnosis. This convergence of nanotechnology with aptamer research holds the potential to revolutionize cancer treatment through rapid, accurate, and non-invasive diagnostic methods.
Collapse
Affiliation(s)
| | | | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - Michael K Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Sabu Thomas
- School of Polymer Science and Technology and School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
4
|
Pan Y, Liu J, Wang J, Gao Y, Ma N. Application of Biosensors and Biomimetic Sensors in Dairy Products Testing. J Dairy Sci 2024:S0022-0302(24)00894-4. [PMID: 38851568 DOI: 10.3168/jds.2024-24666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
This article summarizes the applications of biosensors and biomimetic sensors in the detection of residues in dairy products. Biosensors utilize biological molecules such as enzymes or antibodies to detect residual substances in dairy products, demonstrating high specificity and sensitivity. Biomimetic sensors, inspired by biosensors, use synthetic materials to mimic biological sensing mechanisms, enhancing stability and reproducibility. Both sensor types have achieved significant success in detecting pesticide residues, veterinary drugs, bacteria, and other contaminants in dairy products. The applications of biological and biomimetic sensors not only improve the efficiency of residue detection in dairy products but also have the potential to reduce the time and cost of traditional methods. Their specificity and high sensitivity make them powerful tools in the dairy industry, thus contributing to ensuring the quality and safety of dairy products and meeting the growing consumer demands for health and food safety.
Collapse
Affiliation(s)
- Yinchuan Pan
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China.; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - Jing Liu
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China
| | - Jianping Wang
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China; Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding 071001, Hebei, P.R. China.
| | - Ning Ma
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China.; Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding 071001, Hebei, P.R. China.
| |
Collapse
|
5
|
Ansari MA, Mohd-Naim NF, Ahmed MU. Electrochemical Nanoaptasensor Based on Graphitic Carbon Nitride/Zirconium Dioxide/Multiwalled Carbon Nanotubes for Matrix Metalloproteinase-9 in Human Serum and Saliva. ACS APPLIED BIO MATERIALS 2024; 7:1579-1587. [PMID: 38386014 DOI: 10.1021/acsabm.3c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In this study, a nanocomposite was synthesized by incorporating graphitic carbon nanosheets, carboxyl-functionalized multiwalled carbon nanotubes, and zirconium oxide nanoparticles. The resulting nanocomposite was utilized for the modification of a glassy carbon electrode. Subsequently, matrix metalloproteinase aptamer (AptMMP-9) was immobilized onto the electrode surface through the application of ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride-N-hydroxysuccinimide (EDC-NHS) chemistry. Morphological characterization of the nanomaterials and the nanocomposite was performed using field-emission scanning electron microscopy (FESEM). The nanocomposite substantially increased the electroactive surface area by 205%, facilitating enhanced immobilization of AptMMP-9. The efficacy of the biosensor was evaluated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimal conditions, the fabricated sensor demonstrated a broad range of detection from 50 to 1250 pg/mL with an impressive lower limit of detection of 10.51 pg/mL. In addition, the aptasensor exhibited remarkable sensitivity, stability, excellent selectivity, reproducibility, and real-world applicability when tested with human serum and saliva samples. In summary, our developed aptasensor exhibits significant potential as an advanced biosensing tool for the point-of-care quantification of MMP-9, promising advancements in biomarker detection for practical applications.
Collapse
Affiliation(s)
- Mohd Afaque Ansari
- Biosensors and Nanobiotechnology Laboratory, Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam
| |
Collapse
|
6
|
Althomali RH, Hamoud Alshahrani S, Qasim Almajidi Y, Kamal Hasan W, Gulnoza D, Romero-Parra RM, Abid MK, Radie Alawadi AH, Alsalamyh A, Juyal A. Current Trends in Nanomaterials-Based Electrochemiluminescence Aptasensors for the Determination of Antibiotic Residues in Foodstuffs: A Comprehensive Review. Crit Rev Anal Chem 2023; 54:3252-3268. [PMID: 37480552 DOI: 10.1080/10408347.2023.2238059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Veterinary pharmaceuticals have been recently recognized as newly emerging environmental contaminants. Indeed, because of their uncontrolled or overused disposal, we are now facing undesirable amounts of these constituents in foodstuff and its related human health concerns. In this context, developing a well-organized environmental and foodstuff screening toward antibiotic levels is of paramount importance to ensure the safety of food products as well as human health. In this case, with the development and progress of electric/photo detecting, nanomaterials, and nucleic acid aptamer technology, their incorporation-driven evolving electrochemiluminescence aptasensing strategy has presented the hopeful potentials in identifying the residual amounts of different antibiotics toward sensitivity, economy, and practicality. In this context, we reviewed the up-to-date development of ECL aptasensors with aptamers as recognition elements and nanomaterials as the active elements for quantitative sensing the residual antibiotics in foodstuff and agriculture-related matrices, dissected the unavoidable challenges, and debated the upcoming prospects.
Collapse
Affiliation(s)
- Raed H Althomali
- Department of Chemistry, College of Arts and Science, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | | | - Wajeeh Kamal Hasan
- Department of Radiology and Sonar Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Djakhangirova Gulnoza
- Department of Food Products Technology, Tashkent Institute of Chemical Technology, Tashkent, Uzbekistan
| | | | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | | | - Ali Alsalamyh
- College of Technical Engineering, Imam Jafar Al-Sadiq University, Al-Muthanna, Iraq
| | - Ashima Juyal
- Division of Research & Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
7
|
Liu S, Jiang S, Yao Z, Liu M. Aflatoxin detection technologies: recent advances and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79627-79653. [PMID: 37322403 DOI: 10.1007/s11356-023-28110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Aflatoxins have posed serious threat to food safety and human health. Therefore, it is important to detect aflatoxins in samples rapidly and accurately. In this review, various technologies to detect aflatoxins in food are discussed, including conventional ones such as thin-layer chromatography (TLC), high performance liquid chromatography (HPLC), enzyme linked immunosorbent assay (ELISA), colloidal gold immunochromatographic assay (GICA), radioimmunoassay (RIA), fluorescence spectroscopy (FS), as well as emerging ones (e.g., biosensors, molecular imprinting technology, surface plasmon resonance). Critical challenges of these technologies include high cost, complex processing procedures and long processing time, low stability, low repeatability, low accuracy, poor portability, and so on. Critical discussion is provided on the trade-off relationship between detection speed and detection accuracy, as well as the application scenario and sustainability of different technologies. Especially, the prospect of combining different technologies is discussed. Future research is necessary to develop more convenient, more accurate, faster, and cost-effective technologies to detect aflatoxins.
Collapse
Affiliation(s)
- Shenqi Liu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| | - Minhua Liu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
8
|
Mwanza C, Ding SN. Newly Developed Electrochemiluminescence Based on Bipolar Electrochemistry for Multiplex Biosensing Applications: A Consolidated Review. BIOSENSORS 2023; 13:666. [PMID: 37367031 PMCID: PMC10295983 DOI: 10.3390/bios13060666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Recently, there has been an upsurge in the extent to which electrochemiluminescence (ECL) working in synergy with bipolar electrochemistry (BPE) is being applied in simple biosensing devices, especially in a clinical setup. The key objective of this particular write-up is to present a consolidated review of ECL-BPE, providing a three-dimensional perspective incorporating its strengths, weaknesses, limitations, and potential applications as a biosensing technique. The review encapsulates critical insights into the latest and novel developments in the field of ECL-BPE, including innovative electrode designs and newly developed, novel luminophores and co-reactants employed in ECL-BPE systems, along with challenges, such as optimization of the interelectrode distance, electrode miniaturization and electrode surface modification for enhancing sensitivity and selectivity. Moreover, this consolidated review will provide an overview of the latest, novel applications and advances made in this field with a bias toward multiplex biosensing based on the past five years of research. The studies reviewed herein, indicate that the technology is rapidly advancing at an outstanding purse and has an immense potential to revolutionize the general field of biosensing. This perspective aims to stimulate innovative ideas and inspire researchers alike to incorporate some elements of ECL-BPE into their studies, thereby steering this field into previously unexplored domains that may lead to unexpected, interesting discoveries. For instance, the application of ECL-BPE in other challenging and complex sample matrices such as hair for bioanalytical purposes is currently an unexplored area. Of great significance, a substantial fraction of the content in this review article is based on content from research articles published between the years 2018 and 2023.
Collapse
Affiliation(s)
- Christopher Mwanza
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Chemistry Department, University of Zambia, Lusaka 10101, Zambia
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
9
|
Yee BJ, Shafiqah NF, Mohd-Naim NF, Ahmed MU. A CRISPR/Cas12a-based fluorescence aptasensor for the rapid and sensitive detection of ampicillin. Int J Biol Macromol 2023:125211. [PMID: 37271263 DOI: 10.1016/j.ijbiomac.2023.125211] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
This study introduces CRISPR/Cas-based aptasensor for the highly sensitive and specific detection of the antibiotic, ampicillin. Ampicillin (AMPI) is a commonly used antibiotic for treating pathogenic bacteria and is additionally added to livestock feed in agriculture. This study can enable early detection of antibiotic residues, prevent their accumulation in the environment, and ensure compliance with food safety regulations. Herein, the aptasensor was developed with the CRISPR/Cas system by utilizing three different ampicillin-specific aptamers, each conjugated with a biotin at the 5'-end. The ssDNA activator was bound to the aptamers through complementary base pairings. The attraction of the aptamers to the ampicillin target released the bound ssDNA, causing the activation of the CRISPR/Cas system. The DNA reporter probe, labelled with Cy3 and a quencher, turns on the fluorescence signal when cleaved by the activated Cas12a through trans-cleavage measured using a fluorescence spectrophotometer at 590 nm. The fluorescence signal was linearly proportional to the ampicillin target concentration with a 0.01 nM limit of detection and a read-out time of 30 min. This aptasensor showed high sensitivity towards ampicillin even in the presence of other antibiotics. The method was also successfully implemented for ampicillin detection in spiked food samples.
Collapse
Affiliation(s)
- Bong Jing Yee
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Nurul Faizeemah Shafiqah
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- PAPRSB Institute of Health Science, Univesiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| |
Collapse
|
10
|
Li Y, Gao X, Fang Y, Cui B, Shen Y. Nanomaterials-driven innovative electrochemiluminescence aptasensors in reporting food pollutants. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Yang Y, Dong H, Yin H, Gu J, Zhang Y, Xu M, Wang X, Zhou Y. Controllable preparation of silver-doped hollow carbon spheres and its application as electrochemical probes for determination of glycated hemoglobin. Bioelectrochemistry 2023; 152:108450. [PMID: 37116231 DOI: 10.1016/j.bioelechem.2023.108450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
Silver-doped hollow carbon spheres (Ag@HCS) were firstly introduced as electrochemical probes for glycated hemoglobin (HbA1c) sensing at a molecularly imprinted polymer (MIP)-based carbon cloth (CC) electrode. Herein, Ag@HCS was prepared using one-pot polymerization of resorcinol and formaldehyde with AgNO3 on the SiO2 template, subsequent carbonization, and template removal. Furthermore, poly-aminophenylboronic acid (PABA) as the MIP film was used as a sensing platform for recognition of HbA1c, which captured the Ag@HCS probe by binding of HbA1c with aptamer modified on the probe surface. Due to regular geometry, large specific surface area, superior electrical conductivity, and highly-dispersed Ag, the prepared Ag@HCS probe provided an amplified electrochemical signal based on the Ag oxidation. By use of the sandwich-type electrochemical sensor, the ultrahigh sensitivity of 4.365 μA (μg mL-1)-1 cm-2 and a wide detection range of 0.8-78.4 μg mL-1 for HbA1c detection with a low detection limit of 0.35 μg mL-1 were obtained. Excellent selectivity was obtained due to the specific binding between HbA1c and PABA-based MIP film. The fabricated electrochemical sensing platform was also implemented successfully for the determination of HbA1c concentrations in the serum of healthy individuals.
Collapse
Affiliation(s)
- Yujie Yang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China
| | - Hewen Yin
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jie Gu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China
| | - Xiaobing Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
12
|
Afaque Ansari M, Juen Liew W, Padmakumari Kurup C, Uddin Ahmed M. Label-free electrochemical aptasensor for ultrasensitive thrombin detection using graphene nanoplatelets and carbon nano onion-based nanocomposite. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
13
|
Szymczyk A, Ziółkowski R, Malinowska E. Modern Electrochemical Biosensing Based on Nucleic Acids and Carbon Nanomaterials. SENSORS (BASEL, SWITZERLAND) 2023; 23:3230. [PMID: 36991941 PMCID: PMC10057701 DOI: 10.3390/s23063230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
To meet the requirements of novel therapies, effective treatments should be supported by diagnostic tools characterized by appropriate analytical and working parameters. These are, in particular, fast and reliable responses that are proportional to analyte concentration, with low detection limits, high selectivity, cost-efficient construction, and portability, allowing for the development of point-of-care devices. Biosensors using nucleic acids as receptors has turned out to be an effective approach for meeting the abovementioned requirements. Careful design of the receptor layers will allow them to obtain DNA biosensors that are dedicated to almost any analyte, including ions, low and high molecular weight compounds, nucleic acids, proteins, and even whole cells. The impulse for the application of carbon nanomaterials in electrochemical DNA biosensors is rooted in the possibility to further influence their analytical parameters and adjust them to the chosen analysis. Such nanomaterials enable the lowering of the detection limit, the extension of the biosensor linear response, or the increase in selectivity. This is possible thanks to their high conductivity, large surface-to-area ratio, ease of chemical modification, and introduction of other nanomaterials, such as nanoparticles, into the carbon structures. This review discusses the recent advances on the design and application of carbon nanomaterials in electrochemical DNA biosensors that are dedicated especially to modern medical diagnostics.
Collapse
Affiliation(s)
- Anna Szymczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Doctoral School, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
| | - Robert Ziółkowski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
14
|
Tian JY, Liu X, Zhang S, Chen K, Zhu L, Song Y, Wang M, Zhang Z, Du M. Novel aptasensing strategy for efficiently quantitative analyzing Staphylococcus aureus based on defective copper-based metal–organic framework. Food Chem 2023; 402:134357. [DOI: 10.1016/j.foodchem.2022.134357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022]
|
15
|
Husna R, Kurup CP, Ansari MA, Mohd-Naim NF, Ahmed MU. An electrochemical aptasensor based on AuNRs/AuNWs for sensitive detection of apolipoprotein A-1 (ApoA1) from human serum. RSC Adv 2023; 13:3890-3898. [PMID: 36756582 PMCID: PMC9890643 DOI: 10.1039/d2ra06600a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
For early detection and diagnosis of cancer, it is essential to develop an electrochemical biosensor that is quick, accurate, and sensitive. Here, we use gold nanorod (AuNR) and gold nanowire (AuNW) nanocomposites (AuNR/AuNW/CS) as electrode modifiers on a glassy carbon electrode (GCE) to construct a sensitive label-free electrochemical aptasensor to detect ApoA1. The thiolated ApoA1-specific aptamers were immobilized onto the modified electrode surface through self-assembled monolayers. Electrochemical techniques, such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV), were used to analyze the fabrication steps. The concentration of ApoA1 was measured with DPV on the aptasensor, with a linear range of 0.1 to 1000 pg mL-1 and a detection limit of 0.04 pg mL-1. When compared to results from ELISA tests (which have a detection limit of 80 pg mL-1), the results achieved here were over 2000 times better. The aptasensor's performance was successfully evaluated using human serum spiked with ApoA1, suggesting that it has great potential for practical application. The electrochemical apatsensor additionally demonstrated outstanding selectivity responses and strong stability toward the target analyte.
Collapse
Affiliation(s)
- Raudhatul Husna
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Chitra Padmakumari Kurup
- PAPRSB Institute of Health Sciences, Universiti Brunei DarussalamJalan Tungku LinkGadong BE 1410Brunei Darussalam
| | - Mohd Afaque Ansari
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam .,PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| |
Collapse
|
16
|
Si F, Liu Z, Li J, Yang H, Liu Y, Kong J. Sensitive electrochemical detection of A549 exosomes based on DNA/ferrocene-modified single-walled carbon nanotube complex. Anal Biochem 2023; 660:114971. [PMID: 36328214 DOI: 10.1016/j.ab.2022.114971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022]
Abstract
Exosome is an emerging tumor marker, whose concentration level can reflect the occurrence and development of tumors. The development of rapid and sensitive exosome detection platform is of great significance for early warning of cancer occurrence. Here, a strategy for electrochemical detection of A549-cell-derived exosomes was established based on DNA/ferrocene-modified single-walled carbon nanotube complex (DNA/SWCNT-Fc). DNA/SWCNT-Fc complexes function as a signal amplification platform to promote electron transfer between electrochemical signal molecules and electrodes, thereby improving sensitivity. At the same time, the exosomes can be attached to DNA/SWCNT-Fc nanocomposites via the established PO43--Ti4+-PO43- method. Moreover, the application of EGFR antibody, which can specifically capture A549 exosomes, could improve the accuracy of this sensing system. Under optimal experimental conditions, the biosensor showed good linear relationship between the peak current and the logarithm of exosomes concentration from 4.66 × 106 to 9.32 × 109 exosomes/mL with a detection limit of 9.38 × 104 exosomes/mL. Furthermore, this strategy provides high selectivity for exosomes of different cancer cells, which can be applied to the detection of exosomes in serum samples. Thus, owing to its advantages of high sensitivity and good selectivity, this method provides a diversified platform for exosomes identification and has great potential in early diagnosis and biomedical applications.
Collapse
Affiliation(s)
- Fuchun Si
- Henan Key Laboratory of TCM Syndrome and Prescription Signaling, Henan International Joint Laboratory of TCM Syndrome and Prescription Signaling, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Zenghui Liu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Jinge Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Yanju Liu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
17
|
Chen C, Zhou J, Men D, Zhang XE. Promoter-regulated in vivo asymmetric self-assembly strategy to synthesize heterogeneous nanoparticles for signal amplification. NANOSCALE 2022; 14:16180-16184. [PMID: 36278831 DOI: 10.1039/d2nr04661j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Signal amplification is commonly used to enhance the sensitivity of biological analysis. Here, we present a strategy involving in vivo asymmetric self-assembly combined with promoter strength regulation to synthesize heterogeneous nanoparticles for signal amplification. Two expression vectors were constructed by genetically inserting, respectively, signal and binding molecules into the hepatitis B core antigen protein (HBcAg) structure. Because of differential expression of the two recombinant proteins in the presence of a strong promoter (T7) and a weak promoter (Tac-1) and spontaneous asymmetric self-assembly in vivo, heterogeneous HBcAg nanoparticles (NPs) with a high ratio of signal-bearing to target-binding molecules were obtained. These nanoparticles contained a large number of green fluorescent proteins as signal molecules and a small number of B1 immunoglobulin-binding domains from protein G for antibody binding, thus enabling sensitive immunoassays. As a proof of concept, improved sensitivity for antibody detection was achieved using the heterogeneous nanoparticle conjugated with a secondary antibody molecule.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Faculty of Synthetic Biology and Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
18
|
Strategies for Enhancing the Sensitivity of Electrochemiluminescence Biosensors. BIOSENSORS 2022; 12:bios12090750. [PMID: 36140135 PMCID: PMC9496703 DOI: 10.3390/bios12090750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Electrochemiluminescence (ECL) has received considerable attention as a powerful analytical technique for the sensitive and accurate detection of biological analytes owing to its high sensitivity and selectivity and wide dynamic range. To satisfy the growing demand for ultrasensitive analysis techniques with high efficiency and accuracy in complex real sample matrices, considerable efforts have been dedicated to developing ECL strategies to improve the sensitivity of bioanalysis. As one of the most effective approaches, diverse signal amplification strategies have been integrated with ECL biosensors to achieve desirable analytical performance. This review summarizes the recent advances in ECL biosensing based on various signal amplification strategies, including DNA-assisted amplification strategies, efficient ECL luminophores, surface-enhanced electrochemiluminescence, and ratiometric strategies. Sensitivity-enhancing strategies and bio-related applications are discussed in detail. Moreover, the future trends and challenges of ECL biosensors are discussed.
Collapse
|