1
|
Ali SA, Gooda SM, Aboul Naser AF, Younis EA, Hamed MA, Ahmed YR, Farghaly AA, Khalil WKB, Rizk MZ. Chromosomal aberrations, DNA damage and biochemical disturbances induced by silver nanoparticles in mice: Role of particle size and natural compounds treatment. Biomarkers 2022; 27:349-360. [PMID: 35254184 DOI: 10.1080/1354750x.2022.2046856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
CONTEXT Nanotechnology is widely used nowadays in several fields of industry, engineering, and medicine, the biological action mechanisms of AgNPs, which mainly involve the release of silver ions (Ag+), generation of reactive oxygen species (ROS). OBJECTIVE The potential toxicity AgNPs of damages to hepatic cells, hesperidin, and naringin role for their protective effect against the increase of ROS due to AgNPs toxicity. They can be restored, most cellular biochemical parameters, genotoxicity, mutagenicity, and histopathological analysis. MATERIALS AND METHODS Toxicity was induced by an oral dose of Ag NPs of (20-100 nm) for one month, after that treated with hesperidin, naringin (100 mg/kg) for three weeks, malondialdehyde (MDA) levels, nitric oxide (NO), glutathione (GSH) and catalase were estimated. Also, aminotransferases (AST and ALT), alkaline phosphatase (ALP), γ-glutamyltransferase (GGT), albumin, and total bilirubin were determined, following Chromosomal aberrations, DNA breaks and histological analyses. RESULTS hesperidin, and naringin treatment, recorded amelioration in most biochemical, genetic and spermatogenesis disturbances Also, histological Investigations were improved. CONCLUSION Their biological safety problems such as potential toxicity on cells, tissue, and organs should be paid enough attention, hesperidin and naringin amelioration fundamental alterations, as hepatic architectural and DNA damage, related to its role as antioxidant and anti-inflammatory agent.
Collapse
Affiliation(s)
- Sanaa A Ali
- Departmen of Therapeutic Chemistry, National Research Centre, El-Buhouth St., Dokki, Giza, Egypt
| | - Samar M Gooda
- Departmen of Therapeutic Chemistry, National Research Centre, El-Buhouth St., Dokki, Giza, Egypt
| | - Asmaa F Aboul Naser
- Departmen of Therapeutic Chemistry, National Research Centre, El-Buhouth St., Dokki, Giza, Egypt
| | - Eman A Younis
- Departmen of Therapeutic Chemistry, National Research Centre, El-Buhouth St., Dokki, Giza, Egypt
| | - Manal A Hamed
- Departmen of Therapeutic Chemistry, National Research Centre, El-Buhouth St., Dokki, Giza, Egypt
| | - Yomna R Ahmed
- Departmen of Therapeutic Chemistry, National Research Centre, El-Buhouth St., Dokki, Giza, Egypt
| | - Ayman A Farghaly
- Department of Cell Biology, Genetic Engineering and Biotechnology, National Research Centre (NRC), El-Buhouth St., Dokki, Giza, Egypt
| | - Wagdy K B Khalil
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Research Division National Research Centre, El-Buhouth St., Dokki, Giza, Egypt on National Research Centre, El-Buhouth St., Dokki, Giza, Egypt
| | - Maha Z Rizk
- Departmen of Therapeutic Chemistry, National Research Centre, El-Buhouth St., Dokki, Giza, Egypt
| |
Collapse
|
2
|
Abdelmeguid NE, Khalil MI, Badr NS, Alkhuriji AF, El-Gerbed MS, Sultan AS. Ameliorative effects of colostrum against DMBA hepatotoxicity in rats. Saudi J Biol Sci 2021; 28:2254-2266. [PMID: 33911940 PMCID: PMC8071819 DOI: 10.1016/j.sjbs.2021.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Colostrum, the sole diet for newborns, is an emerging nutraceutical. To date, the chemopreventive effect of Bovine Colostrum against liver injury induced by the potent carcinogen, 7,12-dimethyl-Benz[a]anthracene (DMBA) is unexplored. Humans are daily exposed to DMBA which is a highly lipophilic environmental organic pollutant. The study aimed to investigate the hepatoprotective role of Bovine Colostrum against DMBA-induced hepatotoxicity using a rat model. Fifty male rats were divided into five groups; GI (control), GII (olive oil, vehicle for DMBA), GIII (DMBA), GIV (DMBA + Bovine Colostrum), GV (Bovine Colostrum). After 12 weeks, body weight changes and mortality were calculated. Histological and ultrastructural examinations of liver tissue were performed. Expressions of p53, TGFβ2, TNF-α, S6K2, and c20orf20 were assessed by RT-PCR. Post-treatment with Bovine Colostrum increased both the body weight and the survival rate of rats treated with DMBA. In addition, remarkable protection against the pathological effect of DMBA was noted. Ultrastructurally, Bovine Colostrum ameliorated/prevented most of the toxic effects of DMBA on hepatocytes, including irregularities of nuclear envelope, clumping, and margination of heterochromatin aggregates, segregated nucleoli, and mitochondrial pleomorphism. Bovine Colostrum administration down-regulated p53, C20orf20, and S6K2 mRNA levels, and up-regulated TNF-α and TGFβ2. In conclusion, Bovine Colostrum have a protective effect against DMBA-induced toxicity on the liver of albino rats. Consequently, Bovine Colostrum may prevent polycyclic aromatic hydrocarbons-induced hepatotoxicity and may be useful in promoting human health if supplemented in the diet.
Collapse
Key Words
- BC, Bovine Colostrum
- CAM, Complementary and Alternative Medicine
- Colostrum
- DMBA
- DMBA, 7,12-dimethyl-Benz[a]anthracene
- Hepatoprotective
- IGF, insulin-like growth factor
- IL-1β, cytokines including interleukin-1 beta
- IL-6, interleukin-6
- INF-γ, interferon-gamma
- Nutraceutical
- PAHs, polycyclic aromatic hydrocarbons
- ROS, reactive oxygen species
- S6K, 40S ribosomal protein S6 kinase
- S6K2
- TGFβ, transforming growth factor-beta
- TNFα, tumor necrosis factor-alpha
- p53
Collapse
Affiliation(s)
| | - Mahmoud I. Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Lebanon
- Molecular Biology Unit, Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nada S. Badr
- Zoology Department, Faculty of Science, Damanhur University, Damanhur, Egypt
| | - Afrah F. Alkhuriji
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Ahmed S. Sultan
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Evaluation of folic acid functionalized BSA-CaFe2O4 nanohybrid carrier for the controlled delivery of natural cytotoxic drugs hesperidin and eugenol. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Koolaji N, Shammugasamy B, Schindeler A, Dong Q, Dehghani F, Valtchev P. Citrus Peel Flavonoids as Potential Cancer Prevention Agents. Curr Dev Nutr 2020; 4:nzaa025. [PMID: 32391511 PMCID: PMC7199889 DOI: 10.1093/cdn/nzaa025] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/11/2019] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
Citrus fruit and in particular flavonoid compounds from citrus peel have been identified as agents with utility in the treatment of cancer. This review provides a background and overview regarding the compounds found within citrus peel with putative anticancer potential as well as the associated in vitro and in vivo studies. Historical studies have identified a number of cellular processes that can be modulated by citrus peel flavonoids including cell proliferation, cell cycle regulation, apoptosis, metastasis, and angiogenesis. More recently, molecular studies have started to elucidate the underlying cell signaling pathways that are responsible for the flavonoids' mechanism of action. These growing data support further research into the chemopreventative potential of citrus peel extracts, and purified flavonoids in particular. This critical review highlights new research in the field and synthesizes the pathways modulated by flavonoids and other polyphenolic compounds into a generalized schema.
Collapse
Affiliation(s)
- Nooshin Koolaji
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
| | - Balakrishnan Shammugasamy
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
- Bioengineering & Molecular Medicine, The Children's Hospital at Westmead, Sydney, Australia
| | - Qihan Dong
- School of Science and Health, Western Sydney University, Sydney, Australia
- Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, University of Sydney, Sydney, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
- Center for Advanced Food Enginomics, University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Rajakumar T, Pugalendhi P, Thilagavathi S, Ananthakrishnan D, Gunasekaran K. Allyl isothiocyanate, a potent chemopreventive agent targets AhR/Nrf2 signaling pathway in chemically induced mammary carcinogenesis. Mol Cell Biochem 2017; 437:1-12. [PMID: 28585088 DOI: 10.1007/s11010-017-3091-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/01/2017] [Indexed: 01/04/2023]
Abstract
In the present study, we investigated the effect of allyl isothiocyanate (AITC) on liver detoxification signaling pathway in 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary carcinogenesis. Mammary tumor was induced by a single dose of DMBA (25 mg/rat) injected subcutaneously near the mammary gland in Sprague-Dawley rats. DMBA-alone-treated rats show an increased synthesis of phase I detoxification enzymes, lipid peroxidative markers, liver marker enzymes, and lipid profiles whereas, depletion of phase II detoxification enzymes and antioxidants in rat liver tissues. Oral administration of AITC restored the levels of biochemical markers in DMBA-treated rats. Furthermore, histopathological results also confirmed that AITC protects DMBA-mediated hepatocellular damage. We also observed that AITC treatment significantly downregulates AhR and upregulates the expression of Nrf2 in DMBA-treated rats. The binding efficacy of AITC with AhR and Nrf2 analysis by molecular docking studies reveals that AITC has strong interaction with AhR and Nrf2 proteins through hydrogen and hydrophobic interactions. Thus, AITC prevents DMBA-induced mammary carcinogenesis via inhibition of phase I and induction of phase II detoxification enzymes by modulating AhR/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Thangarasu Rajakumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, 608 002, India
| | - Pachaiappan Pugalendhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, 608 002, India.
| | - Subbaiyan Thilagavathi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, 608 002, India
| | - Dhanabalan Ananthakrishnan
- Center of Advanced Studies in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600 025, India
| | - Krishnaswamy Gunasekaran
- Center of Advanced Studies in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600 025, India
| |
Collapse
|
6
|
Hamdy SM, Sayed ON, Abdel Latif AKM, Abdel-Aziz AM, Amin AM. Hesperidin and tiger nut reduced carcinogenicity of DMBA in female rats. Biomed Pharmacother 2016; 83:718-724. [DOI: 10.1016/j.biopha.2016.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/27/2016] [Accepted: 07/18/2016] [Indexed: 11/16/2022] Open
|
7
|
Ahmadi A, Shadboorestan A. Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutr Cancer 2015; 68:29-39. [PMID: 26381129 DOI: 10.1080/01635581.2015.1078822] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cancer is the third cause of death worldwide, with complex etiology, and is defined as an uncontrolled growth of cells. A high proportion of cancer incidence and deaths are due to different environmental and genetic factors such as high body mass index, low fruit and vegetable intake, lack of physical activity, tobacco use, alcohol consumption, exposure to radiation, chronic infections, and heredity also. In addition, oxidative stress plays a crucial role in the pathophysiology of different types of cancer. Hence, screening and testing of more effective compounds with minimum side effects for the prevention and treatment of cancers started a few decades ago. Regarding this, much attention has been paid to natural antioxidants as a novel prevention and treatment strategy for cancer. Flavonoids are one of the most important ingredients in vegetables and fruits, especially in the genus Citrus. Hesperidin is a flavonone glycoside, belonging to the flavonoid family, which is widely found in Citrus species and acts as a potent antioxidant and anticancer agent. In the present review, we attempt to provide an overview and summarize the scientific literature about the cancer chemoprotective effects of hesperidin with an emphasis on its relation to the protection roles against oxidative stress.
Collapse
Affiliation(s)
- Amirhossein Ahmadi
- b Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences , Sari , Iran
| | - Amir Shadboorestan
- a Department of Toxicology and Pharmacology , Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
8
|
Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci 2015; 124:64-74. [PMID: 25625242 DOI: 10.1016/j.lfs.2014.12.030] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/09/2014] [Accepted: 12/31/2014] [Indexed: 01/27/2023]
Abstract
Hesperidin (Hsd) and its aglycone, hesperetin (Hst), are two flavonoids from citrus species that have various biological properties, particularly those for the prevention of cancer and cardiovascular diseases. Studies have shown both anti-cancer and cancer chemopreventive effects for Hsd and Hst. Cancer chemopreventive properties of Hsd and Hst are mainly associated with their antioxidant, radical scavenging and anti-inflammatory activities. In addition, Hsd and Hst interfere at different stages of cancer. Unlike conventional anti-cancer drugs, Hsd and Hst inhibit tumor growth by targeting multiple cellular protein targets at the same time, including caspases, Bcl-2 (B-cell lymphoma 2) and Bax (Bcl-2 associated X protein) for the induction of apoptosis, and COX-2 (cyclooxygenase-2), MMP-2 (matrix metalloproteinase-2) and MMP-9 for the inhibition of angiogenesis and metastasis. The results of the recent basic and clinical studies revealed the beneficial effects for Hst, Hsd and their derivatives in the treatment of heart failure and cardiac remodeling, myocardial ischemia and infarction, and hypertension. In addition, the valuable effects of Hst and Hsd in the treatment of diabetes and dyslipidemia with their anti-platelet and anticoagulant effects make them good candidates in the treatment of various cardiovascular diseases. In this review, new findings regarding the molecular targets of Hsd and Hst, animal studies and clinical trials are discussed.
Collapse
|
9
|
Mariga AM, Yang WJ, Mugambi DK, Pei F, Zhao LY, Shao YN, Hu Q. Antiproliferative and immunostimulatory activity of a protein from Pleurotus eryngii. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:3152-3162. [PMID: 24652704 DOI: 10.1002/jsfa.6665] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/02/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Currently, the use of mushrooms as functional foods, nutraceuticals or phytopharmaceuticals source has risen. In contrast, the possible cellular cytotoxicity and immunostimulatory activity of Pleurotus eryngii (DC. ex Fr.) Quel protein (PEQP) is unknown. Here we report extraction, anti-tumorigenic and immunostimulatory activity of PEQP in vitro. RESULTS PEQP was extracted from the dried fruiting bodies of P. eryngii, purified and characterised. Its in vitro antiproliferative activity was then evaluated in human non-small cell lung cancer A549 (NSCLC), stomach adenocarcinoma BGC-823, hepatocellular carcinoma HepG2 and gastric carcinoma HGC-27 cell lines using conventional cancer drugs (paclitaxel, doxorubicin and mitomycin C) as positive controls. The protein fractions (PEQP 1, 2, 3 and 4) obtained inhibited tumour cell proliferation dose-dependently with fraction PEQP 2 having significant (P < 0.05) toxicity in all tumour cells. PEQP had no significant toxicity on normal liver Chang cells but their proliferation was significantly inhibited by mitomycin C. Moreover, PEQP stimulated the proliferation, lysosomal enzyme activity, pinocytosis, nitric oxide and hydrogen peroxide production of RAW 264.7 cell lines dose-dependently. CONCLUSION Based on these results, P. eryngii protein has a potential application in functional foods as a natural anti-tumour agent with immunostimulatory activity.
Collapse
Affiliation(s)
- Alfred Mugambi Mariga
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Rd, Nanjing, 210095, P.R. China
| | | | | | | | | | | | | |
Collapse
|
10
|
Curcumin and hesperidin improve cognition by suppressing mitochondrial dysfunction and apoptosis induced by D-galactose in rat brain. Food Chem Toxicol 2014; 74:51-9. [PMID: 25217884 DOI: 10.1016/j.fct.2014.08.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/25/2014] [Accepted: 08/30/2014] [Indexed: 12/21/2022]
Abstract
D-galactose, a reducing sugar, induces oxidative stress resulting in alteration in mitochondrial dynamics and apoptosis of neurons. Curcumin and hesperidin are antioxidants possessing multimodal functions; hence, their contribution in minimizing D-galactose induced ageing was assessed in the present study. A week prior to D-galactose treatment (150 mg/kg; s.c. for 56 days), animals were treated with curcumin alone, hesperidin alone and a combination of curcumin (50 and 100 mg/kg; orally) with hesperidin (10 and 25 mg/kg; orally) for 63 days. A naïve control was also maintained. Behavioural studies, tricarboxylic acid cycle enzymes, mitochondrial complexes, protein and lipid oxidation and glutathione levels were assessed in the brain mitochondrial fraction. Western blot analysis of caspase-3, cleaved caspase-3 and histological assessment of the CA1 region of the hippocampus were carried out. D-galactose induced significant cognitive deficits, biochemical changes and histological alterations. Individually, curcumin was more effective than hesperidin in reducing the levels of oxidized lipids, proteins, cleaved caspase-3 expression and mitochondrial enzymes. The combination reduced the expression of cleaved caspase-3, malondialdehyde, improved mitochondrial enzymes and glutathione levels. In combination, curcumin and hesperidin protect the morphological facets and improve biochemical functions of neurons thereby improving cognition.
Collapse
|
11
|
Mariga AM, Pei F, Yang WJ, Zhao LY, Shao YN, Mugambi DK, Hu QH. Immunopotentiation of Pleurotus eryngii (DC. ex Fr.) Quel. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:604-614. [PMID: 24650999 DOI: 10.1016/j.jep.2014.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/19/2014] [Accepted: 03/01/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pleurotus eryngii (DC. ex Fr.) Quel has been collected from the wild, cultivated and used in traditional medicines to treat various disorders and diseases since antiquity. In traditional Chinese medicine, the powdered fruiting bodies of Pleurotus eryngii were used for immunostimulation, skin-care, wound-healing, cancer and lumbago treatment. In the current study, we investigated the antiproliferative activity of Pleurotus eryngii powder on A549, BGC-823, HepG2 and HGC-27 cancer cells and its immunomodulating activity on macrophage, RAW 264.7 cells based on its active compound. MATERIALS AND METHODS A novel bioactive protein (PEP) was extracted from Pleurotus eryngii fruiting bodies powder and purified on DEAE-52, CM-52 and Superdex 75 column chromatographies using an ÄKTA purifier. Its cytotoxicity on A549, BGC-823, HepG2, HGC-27 and RAW 267.4 cell lines was then evaluated using MTT, alamar blue (AB), trypan blue (TB), neutral red (NR), lactate dehydrogenase (LDH), Annexin V FITC/PI and morphological change assays. Moreover, lysosomal enzyme activity, pinocytosis, nitric oxide (NO) and hydrogen peroxide (H₂O₂) production assays were used to examine immunomostimulatory activity of PEP on RAW 267.4 cells. RESULTS Based on high performance gel permeation chromatography (HPGPC), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) analyses, the isolated protein (PEP) had a molecular weight of 63 kDa, a secondary (α-helical) structure and was mainly composed of arginine, serine and glycine. PEP significantly (P<0.05) inhibited A549, BGC-823, HepG2 and HGC-27 tumor cells proliferation dose-dependently with an IC₅₀ range of 36.5 ± 0.84 to 229.0 ± 1.24 µg/ml. Contrarily, PEP stimulated the proliferation of macrophages. CONCLUSION Pleurotus eryngii fruiting bodies powder has a potential application as a natural antitumor agent with immunomodulatory activity, proposedly, by targeting the lysosomes of cancerous cells and stimulating macrophage-mediated immune responses.
Collapse
Affiliation(s)
- Alfred Mugambi Mariga
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, PR China; Department of Dairy and Food Science and Technology, Egerton University, Egerton 536, Kenya
| | - Fei Pei
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, PR China
| | - Wen-jian Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing 210046, PR China
| | - Li-yan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, PR China
| | - Ya-ni Shao
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, PR China
| | - Dorothy Kemuma Mugambi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, PR China
| | - Qiu-hui Hu
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, PR China.
| |
Collapse
|
12
|
Nandakumar N, Rengarajan T, Balamurugan A, Balasubramanian MP. Modulating effects of hesperidin on key carbohydrate-metabolizing enzymes, lipid profile, and membrane-bound adenosine triphosphatases against 7,12-dimethylbenz(a)anthracene-induced breast carcinogenesis. Hum Exp Toxicol 2013; 33:504-16. [PMID: 23690228 DOI: 10.1177/0960327113485252] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to document the effect of hesperidin on the key enzyme activities of carbohydrate metabolism, lipid profile, and membrane-bound adenosine triphosphatases (ATPases) during 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast carcinogenesis. Hesperidin has been reported to have multiple biological properties. Breast cancer was induced by single dose of DMBA (20 mg/kg body weight (bw)). The results revealed that there was a significant increase in the activities of hexokinase, phosphoglucoisomerase, and aldolase and a concomitant decrease in the activities of glucose-6-phosphatase and fructose-1,6-diphosphatase in cancer-induced animals. The activities of ATPases were found to be decreased both in erythrocyte membrane and in the liver of mammary cancer-bearing animals. The lipid profiles such as total cholesterol, free cholesterol, phospholipids, triglycerides, and free fatty acids significantly increased and in contrast the ester cholesterol in plasma was found to be decreased, whereas it was found to be elevated in the liver of cancer-bearing groups. The altered levels of the above-mentioned biochemical parameters in cancer-bearing animals were significantly ameliorated by the administration of hesperidin at the dosage of 30 mg/kg bw for 45 days. The histopathological analysis of breast and liver tissues were well supported the modulatory property of hesperidin, and this might be associated with normalizing the gluconeogenesis process, stabilization of cell membranes, and modulation of lipid biosynthesis.
Collapse
Affiliation(s)
- N Nandakumar
- Department of Pharmacology and Environmental Toxicology, Dr A. L. Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | | | | | | |
Collapse
|
13
|
Rengarajan T, Nandakumar N, Balasubramanian MP. D-Pinitol prevents rat breast carcinogenesis induced by 7, 12 -Dimethylbenz [a] anthracene through inhibition of Bcl-2 and induction of p53, caspase-3 proteins and modulation of hepatic biotransformation enzymes and antioxidants. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bionut.2012.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|