1
|
Norberg AE, Bakirci E, Lim KS, Dalton PD, Woodfield TBF, Lindberg GCJ. Bioassembly of hemoglobin-loaded photopolymerizable spheroids alleviates hypoxia-induced cell death. Biofabrication 2024; 16:025026. [PMID: 38373325 DOI: 10.1088/1758-5090/ad2a7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
The delivery of oxygen within tissue engineered constructs is essential for cell survivability; however, achieving this within larger biofabricated constructs poses a significant challenge. Efforts to overcome this limitation often involve the delivery of synthetic oxygen generating compounds. The application of some of these compounds is problematic for the biofabrication of living tissues due to inherent issues such as cytotoxicity, hyperoxia and limited structural stability due to oxygen inhibition of radical-based crosslinking processes. This study aims to develop an oxygen delivering system relying on natural-derived components which are cytocompatible, allow for photopolymerization and advanced biofabrication processes, and improve cell survivability under hypoxia (1% O2). We explore the binding of human hemoglobin (Hb) as a natural oxygen deposit within photopolymerizable allylated gelatin (GelAGE) hydrogels through the spontaneous complex formation of Hb with negatively charged biomolecules (heparin, hyaluronic acid, and bovine serum albumin). We systematically study the effect of biomolecule inclusion on cytotoxicity, hydrogel network properties, Hb incorporation efficiency, oxygen carrying capacity, cell viability, and compatibility with 3D-bioassembly processes within melt electrowritten (MEW) scaffolds. All biomolecules were successfully incorporated within GelAGE hydrogels, displaying controllable mechanical properties and cytocompatibility. Results demonstrated efficient and tailorable Hb incorporation within GelAGE-Heparin hydrogels. The developed system was compatible with microfluidics and photopolymerization processes, allowing for the production of GelAGE-Heparin-Hb spheres. Hb-loaded spheres were assembled into MEW polycaprolactone scaffolds, significantly increasing the local oxygen levels. Ultimately, cells within Hb-loaded constructs demonstrated good cell survivability under hypoxia. Taken together, we successfully developed a hydrogel system that retains Hb as a natural oxygen deposit post-photopolymerization, protecting Hb from free-radical oxidation while remaining compatible with biofabrication of large constructs. The developed GelAGE-Heparin-Hb system allows for physoxic oxygen delivery and thus possesses a vast potential for use across broad tissue engineering and biofabrication strategies to help eliminate cell death due to hypoxia.
Collapse
Affiliation(s)
- Axel E Norberg
- Dept of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
| | - Ezgi Bakirci
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Khoon S Lim
- Dept of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Paul D Dalton
- Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America
| | - Tim B F Woodfield
- Dept of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
| | - Gabriella C J Lindberg
- Dept of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
- Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, United States of America
| |
Collapse
|
2
|
Prado HJ, Matulewicz MC, Ciancia M. Naturally and Chemically Sulfated Polysaccharides in Drug Delivery Systems. ADVANCED PHARMACY 2023:135-196. [DOI: 10.2174/9789815049428123010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Sulfated polysaccharides have always attracted much attention in food,
cosmetic and pharmaceutical industries. These polysaccharides can be obtained from
natural sources such as seaweeds (agarans, carrageenans, fucoidans, mannans and
ulvans), or animal tissues (glucosaminoglycans). In the last few years, several neutral
or cationic polysaccharides have been sulfated by chemical methods and anionic or
amphoteric derivatives were obtained, respectively, for drug delivery and other
biomedical applications. An important characteristic of sulfated polysaccharides in this
field is that they can associate with cationic drugs generating polyelectrolyte-drug
complexes, or with cationic polymers to form interpolyelectrolyte complexes, with
hydrogel properties that expand even more their applications. The aims of this chapter
are to present the structural characteristics of these polysaccharides, to describe the
methods of sulfation applied and to review extensively and discuss developments in
their use or their role in interpolyelectrolyte complexes in drug delivery platforms. A
variety of pharmaceutical dosage forms which were developed and administered by
multiple routes (oral, transdermal, ophthalmic, and pulmonary, among others) to treat
diverse pathologies were considered. Different IPECs were formed employing these sulfated polysaccharides as the anionic component. The most widely investigated is κ-carrageenan. Chitosan is usually employed as a cationic polyelectrolyte, with a variety
of sulfated polysaccharides, besides the applications of chemically sulfated chitosan.
Although chemical sulfation is often carried out in neutral polysaccharides and, to a
less extent, in cationic ones, examples of oversulfation of naturally sulfated fucoidan
have been found which improve its drug binding capacity and biological properties.
Collapse
Affiliation(s)
- Héctor J. Prado
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| | - María C. Matulewicz
- CONICET-Universidad de Buenos Aires. Centro de Investigación de Hidratos de Carbono
(CIHIDECAR), Ciudad Universitaria-Pabellón 2, C1428EGA, Buenos Aires, Argentina
| | - Marina Ciancia
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y
Alimentos, Cátedra de Química de Biomoléculas. Av. San Martín, 4453, C1417DSE Buenos Aires,
Argentina
| |
Collapse
|
3
|
Shafaei N, Khorshidi S, Karkhaneh A. The immune-stealth polymeric coating on drug delivery nanocarriers: In vitro engineering and in vivo fate. J Biomater Appl 2023:8853282231185352. [PMID: 37480331 DOI: 10.1177/08853282231185352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Although essential nanosystems such as nanoparticles and nanocarriers are desirable options for transporting various drug molecules into the biological environment, they rapidly remove from the circulatory system due to their interaction with multiple in vivo barriers, especially the immune barrier, which will result in their short-term effects. In order to improve their effectiveness and durability in the circulatory system, the polymer coatings can use to cover the surface of nanoparticles and nanocarriers to conceal them from the immune system. Due to their different properties (like charge, elasticity, and hydrophilicity/hydrophobicity), these coatings can improve drug delivery nanosystem durability and therapeutic applications. The mentioned coatings have different types and are divided into various categories, such as synthetic polymers, polysaccharides, and zwitterionic polymers. Each of these polymers has unique properties based on its category, origin, and chemical structure that make them suitable for producing stealth drug delivery nanocarriers. In this review article, we have tried to explain the importance of these diverse polymer coatings in determining the fate of drug nanocarriers and then introduced the different types of these coatings and, finally, described various methods that directly and indirectly analyze the nanocoatings to determine the stability of nanoparticles in the body.
Collapse
Affiliation(s)
- Nadia Shafaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sajedeh Khorshidi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
4
|
Tunable self-assemblies of whey protein isolate fibrils for pickering emulsions structure regulation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Hickey R, Palmer AF. Synthesis of Hemoglobin-Based Oxygen Carrier Nanoparticles By Desolvation Precipitation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14166-14172. [PMID: 33205655 DOI: 10.1021/acs.langmuir.0c01698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hemoglobin (Hb)-based oxygen carriers (HBOCs) present an alternative to red blood cells (RBCs) when blood is not available. However, the most widely used synthesis techniques have fundamental flaws, which may have contributed toward disappointing clinical application. Polymerized Hb contains a heterogeneous distribution of particle size and shape, while Hb encapsulation inside liposomes results in high lipid burden and low Hb content. Meanwhile, there are a variety of other nanoparticle synthetic techniques which, having found success as drug delivery vehicles, may be well suited to function as an HBOC. We synthesized desolvated Hb nanoparticles (Hb-dNPs) with diameters of approximately 250 nm by the controlled precipitation of Hb with ethanol. Oxidized dextran was found to be an effective surface stabilizing agent that maintained particle integrity. In vitro biophysical characterization showed a high-affinity oxygen delivery profile (P50 = 7.72 mm Hg), suggesting a potential for therapeutic use and opening a new avenue for HBOC research.
Collapse
Affiliation(s)
- Richard Hickey
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Zhang K, Xiao X, Li L, Fan Y, Cai Q, Lee IS, Li X. Development of novel oxygen carriers by coupling hemoglobin to functionalized multiwall carbon nanotubes. J Mater Chem B 2020; 7:4821-4832. [PMID: 31389959 DOI: 10.1039/c9tb00894b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparation of stable and effective artificial oxygen carriers (AOCs) is a promising strategy to temporarily replace transfused blood and solve tissue hypoxia. Developing hemoglobin (Hb) loaded particles is one of the main ways to prepare suitable AOCs. Particles with a hierarchical micro/nanostructure can be loaded with plenty of proteins and have attracted great attention. Therefore, multiwall carbon nanotubes (MWCNTs) were chosen to fabricate AOCs. To improve the Hb-loading capacity of MWCNTs, functionalized MWCNTs, including carboxyl-functionalized MWCNTs (MWCNT-COOH), amino-functionalized MWCNTs (MWCNT-NH2), and heparin-conjugated MWCNTs (MWCNT-Hep), were prepared. Then, in this study, Hb was coupled to the functionalized MWCNTs to fabricate the AOCs. The functionalized MWCNTs and the AOCs were characterized by FTIR, SEM, TEM, and zeta potential analysis. The oxygen/Hb-loading capacity of the AOCs was also measured. The adverse effects of the AOCs on human umbilical vein endothelial cells (HUVECs) and human red blood cells (RBCs) were evaluated. The results showed that (1) the functional groups were grafted on the surface of the MWCNTs, and Hb was bound to the functionalized MWCNTs, thus the AOCs were successfully prepared; (2) MWCNT-Hep-Hb had the most stable dispersibility (i.e., the most negative zeta potential) in 0.9 wt% NaCl solution (MWCNT-Hep-Hb < MWCNT-COOH-Hb < MWCNT-Hb < MWCNT-NH2-Hb < 0); (3) MWCNT-Hep had the best Hb-loading capability, which was three times that of purified MWCNTs; (4) with concentrations increased up to 400 μg mL-1, MWCNT-Hep-Hb still had the highest cell viability (97.63% > 80%, ISO 10993-5:2009) and excellent blood biocompatibility. Therefore, MWCNT-Hep-Hb might be a satisfactory candidate as a blood substitute.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Moghimi SM, Simberg D, Papini E, Farhangrazi ZS. Complement activation by drug carriers and particulate pharmaceuticals: Principles, challenges and opportunities. Adv Drug Deliv Rev 2020; 157:83-95. [PMID: 32389761 DOI: 10.1016/j.addr.2020.04.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Considering the multifaceted protective and homeostatic roles of the complement system, many consequences arise when drug carriers, and particulate pharmaceutical formulations clash with complement proteins, and trigger complement cascade. Complement activation may induce formulation destabilization, promote opsonization, and affect biological and therapeutic performance of pharmaceutical nano- and micro-particles. In some cases, complement activation is beneficial, where complement may play a role in prophylactic protection, whereas uncontrolled complement activation is deleterious, and contributes to disease progression. Accordingly, design initiatives with particulate medicines should consider complement activation properties of the end formulation within the context of administration route, dosing, systems biology, and therapeutic perspective. Here we examine current progress in mechanistic processes underlying complement activation by pre-clinical and clinical particles, identify opportunities and challenges ahead, and suggest future directions in nanomedicine-complement interface research.
Collapse
Affiliation(s)
- S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, Skagg's School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Dmitri Simberg
- Colorado Center for Nanomedicine and Nanosafety, Skagg's School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Translational Bio-Nanosciences Laboratory, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padua, Padua 35121, Italy; CRIBI Biotechnology Center, University of Padua, Padua 35121, Italy
| | - Z Shadi Farhangrazi
- S. M. Discovery Group Inc., Denver, CO, USA; S. M. Discovery Group Ltd., Durham, UK
| |
Collapse
|
9
|
Ishihara M, Nakamura S, Sato Y, Takayama T, Fukuda K, Fujita M, Murakami K, Yokoe H. Heparinoid Complex-Based Heparin-Binding Cytokines and Cell Delivery Carriers. Molecules 2019; 24:molecules24244630. [PMID: 31861225 PMCID: PMC6943580 DOI: 10.3390/molecules24244630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Heparinoid is the generic term that is used for heparin, heparan sulfate (HS), and heparin-like molecules of animal or plant origin and synthetic derivatives of sulfated polysaccharides. Various biological activities of heparin/HS are attributed to their specific interaction and regulation with various heparin-binding cytokines, antithrombin (AT), and extracellular matrix (ECM) biomolecules. Specific domains with distinct saccharide sequences in heparin/HS mediate these interactions are mediated and require different highly sulfated saccharide sequences with different combinations of sulfated groups. Multivalent and cluster effects of the specific sulfated sequences in heparinoids are also important factors that control their interactions and biological activities. This review provides an overview of heparinoid-based biomaterials that offer novel means of engineering of various heparin-binding cytokine-delivery systems for biomedical applications and it focuses on our original studies on non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) and polyelectrolyte complex-nano/microparticles (N/MPs), in addition to heparin-coating devices.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
- Correspondence: ; Tel.: +81-429-95-1211 (ext. 2610)
| | - Shingo Nakamura
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Yoko Sato
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Tomohiro Takayama
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| | - Koichi Fukuda
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Masanori Fujita
- Division of Environmental Medicine, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-1324, Japan;
| | - Kaoru Murakami
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| |
Collapse
|
10
|
Moghimi SM, Simberg D, Skotland T, Yaghmur A, Hunter AC. The Interplay Between Blood Proteins, Complement, and Macrophages on Nanomedicine Performance and Responses. J Pharmacol Exp Ther 2019; 370:581-592. [PMID: 30940695 PMCID: PMC11047092 DOI: 10.1124/jpet.119.258012] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022] Open
Abstract
In the blood, depending on their physicochemical characteristics, nanoparticles attract a wide range of plasma biomolecules. The majority of blood biomolecules bind nonspecifically to nanoparticles. On the other hand, biomolecules such as pattern-recognition complement-sensing proteins may recognize some structural determinants of the pristine surface, causing complement activation. Adsorption of nonspecific blood proteins could also recruit natural antibodies and initiate complement activation, and this seems to be a global process with many preclinical and clinical nanomedicines. We discuss these issues, since complement activation has ramifications in nanomedicine stability and pharmacokinetics, as well as in inflammation and disease progression. Some studies have also predicted a role for complement systems in infusion-related reactions, whereas others show a direct role for macrophages and other immune cells independent of complement activation. We comment on these discrepancies and suggest directions for exploring the underlying mechanisms.
Collapse
Affiliation(s)
- S Moein Moghimi
- School of Pharmacy and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (S.M.M.); Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus (S.M.M., D.S.), and Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences (D.S.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway (T.S.); Department of Pharmacy, University of Copenhagen, Copenhagen Ø, Denmark (A.Y.); and Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, United Kingdom (A.C.H.)
| | - Dmitri Simberg
- School of Pharmacy and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (S.M.M.); Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus (S.M.M., D.S.), and Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences (D.S.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway (T.S.); Department of Pharmacy, University of Copenhagen, Copenhagen Ø, Denmark (A.Y.); and Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, United Kingdom (A.C.H.)
| | - Tore Skotland
- School of Pharmacy and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (S.M.M.); Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus (S.M.M., D.S.), and Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences (D.S.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway (T.S.); Department of Pharmacy, University of Copenhagen, Copenhagen Ø, Denmark (A.Y.); and Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, United Kingdom (A.C.H.)
| | - Anan Yaghmur
- School of Pharmacy and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (S.M.M.); Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus (S.M.M., D.S.), and Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences (D.S.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway (T.S.); Department of Pharmacy, University of Copenhagen, Copenhagen Ø, Denmark (A.Y.); and Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, United Kingdom (A.C.H.)
| | - A Christy Hunter
- School of Pharmacy and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (S.M.M.); Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus (S.M.M., D.S.), and Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences (D.S.), University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway (T.S.); Department of Pharmacy, University of Copenhagen, Copenhagen Ø, Denmark (A.Y.); and Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, United Kingdom (A.C.H.)
| |
Collapse
|
11
|
Ismail M, Du Y, Ling L, Li X. Artesunate-heparin conjugate based nanocapsules with improved pharmacokinetics to combat malaria. Int J Pharm 2019; 562:162-171. [DOI: 10.1016/j.ijpharm.2019.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/17/2022]
|
12
|
Obinu A, Rassu G, Corona P, Maestri M, Riva F, Miele D, Giunchedi P, Gavini E. Poly (ethyl 2-cyanoacrylate) nanoparticles (PECA-NPs) as possible agents in tumor treatment. Colloids Surf B Biointerfaces 2019; 177:520-528. [PMID: 30822627 DOI: 10.1016/j.colsurfb.2019.02.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 01/04/2023]
Abstract
Tumor eradication has many challenges due to the difficulty of selectively delivering anticancer drugs to malignant cells avoiding contact with healthy tissues/organs. The improvement of antitumor efficacy and the reduction of systemic side effects can be achieved using drug loaded nanoparticles. In this study, poly (ethyl 2-cyanoacrylate) nanoparticles (PECA-NPs) were prepared using an emulsion polymerization method and their potential for cancer treatment was investigated. The size, polydispersity index and zeta potential of prepared nanoparticles are about 80 nm, 0.08 and -39.7 mV, respectively. The stability test shows that the formulation is stable for 15 days, while an increase in particle size occurs after 30 days. TEM reveals the spherical morphology of nanoparticles; furthermore, FTIR and 1H NMR analyses confirm the structure of PECA-NPs and the complete polymerization. The nanoparticles demonstrate an in vitro concentration-dependent cytotoxicity against human epithelial colorectal adenocarcinoma cell lines (Caco-2), as assessed by MTT assay. The anticancer activity of PECA-NPs was studied on 3D tumor spheroids models of hepatocellular carcinoma (HepG2) and kidney adenocarcinoma cells (A498) to better understand how the nanoparticles could interact with a complex structure such as a tumor. The results confirm the antitumor activity of PECA-NPs. Therefore, these systems can be considered good candidates in tumor treatment.
Collapse
Affiliation(s)
- Antonella Obinu
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Paola Corona
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Marcello Maestri
- IRCCS Policlinico San Matteo Foundation and Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Federica Riva
- Department of Public Health, Experimental and Forensic Medicine-Histology and Embryology Unit, University of Pavia, Pavia, Italy
| | - Dalila Miele
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy.
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy.
| |
Collapse
|
13
|
Manipulating hemoglobin oxygenation using silica nanoparticles: a novel prospect for artificial oxygen carriers. Blood Adv 2019; 2:90-94. [PMID: 29365316 DOI: 10.1182/bloodadvances.2017012153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/14/2017] [Indexed: 12/23/2022] Open
Abstract
Recently, nanoparticles have attracted much attention as new scaffolds for hemoglobin-based oxygen carriers (HBOCs). Indeed, the development of bionanotechnology paves the way for the rational design of blood substitutes, providing that the interaction between the nanoparticles and hemoglobin at a molecular scale and its effect on the oxygenation properties of hemoglobin are finely controlled. Here, we show that human hemoglobin has a high affinity for silica nanoparticles, leading to the adsorption of hemoglobin tetramers on the surface. The adsorption process results in a remarkable retaining of the oxygenation properties of human adult hemoglobin and sickle cell hemoglobin, associated with an increase of the oxygen affinity. The cooperative oxygen binding exhibited by adsorbed hemoglobin and the comparison with the oxygenation properties of diaspirin cross-linked hemoglobin confirmed the preservation of the tetrameric structure of hemoglobin loaded on silica nanoparticles. Our results show that silica nanoparticles can act as an effector for human native and mutant hemoglobin. Manipulating hemoglobin oxygenation using nanoparticles opens the way to the design of novel HBOCs.
Collapse
|
14
|
Sun H, Cao D, Wu H, Liu H, Ke X, Ci T. Development of low molecular weight heparin based nanoparticles for metastatic breast cancer therapy. Int J Biol Macromol 2018; 112:343-355. [PMID: 29409771 DOI: 10.1016/j.ijbiomac.2018.01.195] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/07/2018] [Accepted: 01/29/2018] [Indexed: 01/16/2023]
Abstract
Tumor metastasis is the primary obstacle in cancer treatment and is always the leading cause of human death. And heparin and its derivatives are potential anti-metastatic agents with good biocompatibility. In this work, low molecular weight heparin (LMWH) based LMWH-Cholesterol (LHC) conjugates were prepared for intravenous delivery of doxorubicin (DOX). The DOX/LHC nanoparticles (DOX/LHC NPs) exhibited a spherical shape with a mean diameter of 135.5±2.2nm and had a longer circulation time than that of DOX. The in vitro results confirmed that the DOX/LHC NPs was more effectively taken up by 4T1 cells and showed a stronger anti-metastatic effect by cell invasion and cell migration compared with DOX. Meanwhile, DOX/LHC NPs also exhibited superior anti-metastatic effects in the pulmonary metastasis model compared with other groups. The reason may be account for the synergistic effect between the cytotoxic drug of DOX and its drug carrier of LMWH based nanoparticles, which is capable of anti-metastatic and anti-angiogenic efficiency. Thus DOX/LHC nanoparticles could be a promising anti-metastatic drug delivery system for postoperative chemotherapy.
Collapse
Affiliation(s)
- Haifeng Sun
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Dinglingge Cao
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Hao Wu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Huan Liu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Xue Ke
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | - Tianyuan Ci
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
15
|
Xu T, Chi B, Chu M, Zhang Q, Zhan S, Shi R, Xu H, Mao C. Hemocompatible ɛ-polylysine-heparin microparticles: A platform for detecting triglycerides in whole blood. Biosens Bioelectron 2017; 99:571-577. [PMID: 28826001 DOI: 10.1016/j.bios.2017.08.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/19/2017] [Accepted: 08/12/2017] [Indexed: 01/06/2023]
Abstract
Triglycerides are clinically important marker for atherosclerosis, heart disease and hypertension. Here, a platform for detecting triglycerides in whole blood directly was developed based on hemocompatible ɛ-polylysine-heparin microparticles. The obtained products of ɛ-polylysine-heparin microparticles were characterized by fourier transform infrared (FT-IR) spectra, transmission electron microscopy (TEM) and ζ-potential. Moreover, the blood compatibility of ɛ-polylysine-heparin microparticles was characterized by in vitro coagulation tests, hemolysis assay and whole blood adhesion tests. Considering of uniform particle size, good dispersibility and moderate long-term anticoagulation capability of the microparticles, a Lipase-(ɛ-polylysine-heparin)-glassy carbon electrode (GCE) was constructed to detect triglycerides. The proposed biosensor had good electrocatalytic activity towards triglycerides, in which case the sensitivity was 0.40μAmg-1dLcm-2 and the detection limit was 4.67mgdL-1 (S/N = 3). Meanwhile, the Lipase-(ɛ-polylysine-heparin)-GCE electrode had strong anti-interference ability as well as a long shelf-life. Moreover, for the detection of triglycerides in whole blood directly, the detection limit was as low as 5.18mgdL-1. The new constructed platform is suitable for detecting triglycerides in whole blood directly, which provides new analytical systems for clinical illness diagnosis.
Collapse
Affiliation(s)
- Tingting Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China; National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Meilin Chu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qicheng Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shuyue Zhan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Rongjia Shi
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
16
|
|
17
|
Li B, Juenet M, Aid-Launais R, Maire M, Ollivier V, Letourneur D, Chauvierre C. Development of Polymer Microcapsules Functionalized with Fucoidan to Target P-Selectin Overexpressed in Cardiovascular Diseases. Adv Healthc Mater 2017; 6. [PMID: 27943662 DOI: 10.1002/adhm.201601200] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 12/17/2022]
Abstract
New tools for molecular imaging and targeted therapy for cardiovascular diseases are still required. Herein, biodegradable microcapsules (MCs) made of polycyanoacrylate and polysaccharide and functionalized with fucoidan (Fuco-MCs) are designed as new carriers to target arterial thrombi overexpressing P-selectin. Physicochemical characterizations demonstrated that microcapsules have a core-shell structure and that fucoidan is present onto the surface of Fuco-MCs. Furthermore, their sizes range from 2 to 6 µm and they are stable on storage over 30 d at 4 °C. Flow cytometry experiments evidenced the binding of Fuco-MCs for human activated platelets as compared to MCs (mean fluorescence intensity: 12 008 vs. 9, p < 0.001) and its absence for nonactivated platelets (432). An in vitro flow adhesion assay showed high specific binding efficiency of Fuco-MCs to P-selectin and to activated platelet aggregates under arterial shear stress conditions. Moreover, both types of microcapsules reveal excellent compatibility with 3T3 cells in cytotoxicity assay. One hour after intravenous injection of microcapsules, histological analysis revealed that Fuco-MCs are localized in the rat abdominal aortic aneurysm thrombotic wall and that the binding in the healthy aorta is low. In conclusion, these microcapsules appear as promising carriers for targeting of tissues characterized by P-selectin overexpression and for their molecular imaging or treatment.
Collapse
Affiliation(s)
- Bo Li
- INSERM; U1148; Laboratory for Vascular Translational Science; CHU X. Bichat; Paris Diderot University; 46 rue H. Huchard 75018 Paris France
- Institut Galilée; Paris 13 University; 99 av JB Clément 93430 Villetaneuse France
| | - Maya Juenet
- INSERM; U1148; Laboratory for Vascular Translational Science; CHU X. Bichat; Paris Diderot University; 46 rue H. Huchard 75018 Paris France
- Institut Galilée; Paris 13 University; 99 av JB Clément 93430 Villetaneuse France
| | - Rachida Aid-Launais
- INSERM; U1148; Laboratory for Vascular Translational Science; CHU X. Bichat; Paris Diderot University; 46 rue H. Huchard 75018 Paris France
- Institut Galilée; Paris 13 University; 99 av JB Clément 93430 Villetaneuse France
| | - Murielle Maire
- INSERM; U1148; Laboratory for Vascular Translational Science; CHU X. Bichat; Paris Diderot University; 46 rue H. Huchard 75018 Paris France
- Institut Galilée; Paris 13 University; 99 av JB Clément 93430 Villetaneuse France
| | - Véronique Ollivier
- INSERM; U1148; Laboratory for Vascular Translational Science; CHU X. Bichat; Paris Diderot University; 46 rue H. Huchard 75018 Paris France
- Institut Galilée; Paris 13 University; 99 av JB Clément 93430 Villetaneuse France
| | - Didier Letourneur
- INSERM; U1148; Laboratory for Vascular Translational Science; CHU X. Bichat; Paris Diderot University; 46 rue H. Huchard 75018 Paris France
- Institut Galilée; Paris 13 University; 99 av JB Clément 93430 Villetaneuse France
| | - Cédric Chauvierre
- INSERM; U1148; Laboratory for Vascular Translational Science; CHU X. Bichat; Paris Diderot University; 46 rue H. Huchard 75018 Paris France
- Institut Galilée; Paris 13 University; 99 av JB Clément 93430 Villetaneuse France
| |
Collapse
|
18
|
Mei L, Liu Y, Xia C, Zhou Y, Zhang Z, He Q. Polymer–Drug Nanoparticles Combine Doxorubicin Carrier and Heparin Bioactivity Functionalities for Primary and Metastatic Cancer Treatment. Mol Pharm 2017; 14:513-522. [PMID: 28026951 DOI: 10.1021/acs.molpharmaceut.6b00979] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ling Mei
- Key Laboratory of Drug Targeting and Drug
Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Yayuan Liu
- Key Laboratory of Drug Targeting and Drug
Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Chunyu Xia
- Key Laboratory of Drug Targeting and Drug
Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Yubei Zhou
- Key Laboratory of Drug Targeting and Drug
Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug
Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug
Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| |
Collapse
|
19
|
Wang W, Wang L, Huang Y, Xie Z, Jing X. Nanoscale Metal-Organic Framework-Hemoglobin Conjugates. Chem Asian J 2016; 11:750-6. [DOI: 10.1002/asia.201501216] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/08/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Weiqi Wang
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- The University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| |
Collapse
|
20
|
Zhao H, Lin ZY, Yildirimer L, Dhinakar A, Zhao X, Wu J. Polymer-based nanoparticles for protein delivery: design, strategies and applications. J Mater Chem B 2016; 4:4060-4071. [DOI: 10.1039/c6tb00308g] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Therapeutic proteins have attracted significant attention as they perform vital roles in various biological processes. Polymeric nanoparticles can offer not only physical protection from environmental stimuli but also targeted delivery of such proteins to specific sites, enhancing their therapeutic efficacy.
Collapse
Affiliation(s)
- Hong Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Zhi Yuan Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Lara Yildirimer
- Centre for Nanotechnology and Regenerative Medicine
- UCL Division of Surgery and Interventional Science
- University College London
- London WC1E 6AU
- UK
| | - Arvind Dhinakar
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Xin Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Jun Wu
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|
21
|
Rheological properties and physical stability of o/w emulsions stabilized by OSA starch with trehalose. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.08.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Babazada H, Yamashita F, Yanamoto S, Hashida M. Self-assembling lipid modified glycol-split heparin nanoparticles suppress lipopolysaccharide-induced inflammation through TLR4-NF-κB signaling. J Control Release 2014; 194:332-40. [PMID: 25234820 DOI: 10.1016/j.jconrel.2014.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/15/2014] [Accepted: 09/08/2014] [Indexed: 01/23/2023]
Abstract
Self-assembling heparin nanoparticles have attracted much attention as promising drug carriers for various drugs, genes and imaging agents. In the present investigation, we found that heparin nanoparticles are selective Toll-like receptor 4 (TLR-4) antagonists and have a much greater anti-inflammatory effect than native heparin. More specifically, we developed self-assembling nanoparticles composed of glycol-split heparin/D-erythro-sphingosine conjugates (NAHNP), characterized their physicochemical properties and anti-inflammatory effect in vitro. Unlike native heparin, NAHNP significantly inhibited lipopolysaccharide-induced activation of MyD88-dependent NF-κB signaling pathway and production of pro-inflammatory cytokines such as TNF-alpha from mouse macrophages with IC50 = 0.019 mg/mL. Furthermore, we investigated the structure-activity relationship of the conjugates and identified the length of attached alkyl chains of d-erythro-sphingosine to be critical for anti-inflammatory effect. Decrease in alkyl chain length of NAHNP resulted in loss of inhibitory activity. In line with these findings, 6-O-sulfate groups of D-glucosamine residue were essential for effective inhibition, while removal of 2-O-sulfo and 3-O-sulfo groups as well as replacement of N-sulfo groups with N-acetyl did not alter anti-inflammatory activity. Therefore, NAHNP would be a promising candidate in acute and chronic inflammatory disorders, in addition to the nature of a drug carrier.
Collapse
Affiliation(s)
- Hasan Babazada
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Yanamoto
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshidaushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
23
|
Li B, Qi Y, He S, Wang Y, Xie Z, Jing X, Huang Y. Asymmetric copolymer vesicles to serve as a hemoglobin vector for ischemia therapy. Biomater Sci 2014; 2:1254-1261. [DOI: 10.1039/c4bm00123k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Silva AKA, Letourneur D, Chauvierre C. Polysaccharide nanosystems for future progress in cardiovascular pathologies. Theranostics 2014; 4:579-91. [PMID: 24723980 PMCID: PMC3982129 DOI: 10.7150/thno.7688] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/16/2013] [Indexed: 11/09/2022] Open
Abstract
Natural polysaccharides have received a lot of attention in the biomedical field. Indeed, sources of polysaccharides, extracted or produced from plants, bacteria, fungi or algae, are diverse and renewable. Moreover, recent progresses in polysaccharide chemistry and nanotechnologies allow elaborating new dedicated nanosystems. Polysaccharide-based nanosystems may be designed for interacting in several biological processes. In particular, the atherothrombotic pathology is highly concerned by polysaccharide-mediated recognition. Atherothrombotic diseases, regardless of the anatomical localization, remain the main causes of morbidity and mortality in the industrialized world. This review intends to provide an overview on polysaccharide-based nanosystems as drug delivery systems and targeted contrast agents for molecular imaging with an emphasis on the treatment and imaging of cardiovascular pathologies.
Collapse
Affiliation(s)
| | | | - Cédric Chauvierre
- Inserm, U698, Cardiovascular Bio-Engineering; X. Bichat hospital, 46 rue H. Huchard, F-75018, Paris, France; Université Paris 13, Sorbonne Paris Cité, F-93430, Villetaneuse, France
| |
Collapse
|
25
|
Abstract
Current advances in nanotechnology have paved the way for the early detection, prevention and treatment of various diseases such as vascular disorders and cancer. These advances have provided novel approaches or modalities of incorporating or adsorbing therapeutic, biosensor and targeting agents into/on nanoparticles. With significant progress, nanomedicine for vascular therapy has shown significant advantages over traditional medicine because of its ability to selectively target the disease site and reduce adverse side effects. Targeted delivery of nanoparticles to vascular endothelial cells or the vascular wall provides an effective and more efficient way for early detection and/or treatment of vascular diseases such as atherosclerosis, thrombosis and Cerebrovascular Amyloid Angiopathy (CAA). Clinical applications of biocompatible and biodegradable polymers in areas such as vascular graft, implantable drug delivery, stent devices and tissue engineering scaffolds have advanced the candidature of polymers as potential nano-carriers for vascular-targeted delivery of diagnostic agents and drugs. This review focuses on the basic aspects of the vasculature and its associated diseases and relates them to polymeric nanoparticle-based strategies for targeting therapeutic agents to diseased vascular site.
Collapse
Affiliation(s)
- Edward Agyare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL ; Division of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Karunyna Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
26
|
Abstract
Polysaccharides have been used in various biomedical applications due to availability and biocompatibility. In particular, polysaccharides have gained increasing interest in the development of functional nanomedicines as a component to provide a stealth function, improve interactions with target tissues or enable environment-responsive drug release. This review discusses recent advances in nanomedicine engineering based on polysaccharides with a specific emphasis on the rationale, applications and the remaining challenges.
Collapse
|
27
|
Narang N. Aquasomes: Self-assembled systems for the delivery of bioactive molecules. ASIAN JOURNAL OF PHARMACEUTICS 2012. [DOI: 10.4103/0973-8398.102931] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
28
|
Argyo C, Cauda V, Engelke H, Rädler J, Bein G, Bein T. Heparin-Coated Colloidal Mesoporous Silica Nanoparticles Efficiently Bind to Antithrombin as an Anticoagulant Drug-Delivery System. Chemistry 2011; 18:428-32. [DOI: 10.1002/chem.201102926] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Indexed: 11/10/2022]
|
29
|
Li T, Jing X, Huang Y. Polymer/hemoglobin assemblies: biodegradable oxygen carriers for artificial red blood cells. Macromol Biosci 2011; 11:865-75. [PMID: 21312333 DOI: 10.1002/mabi.201000469] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Indexed: 01/05/2023]
Abstract
In routine clinical procedures, blood transfusion is now suffering from the defects of the blood products, like cross-matching, short storage time and virus infection. Various blood substitutes have been designed by researchers through continual efforts. With recent progress in nanotechnology, new types of artificial red blood cells with cellular structure are available. This article aims to describe some artificial red blood cells which encapsulate or conjugate hemoglobin molecules through various approaches, especially the nanoscale self-assembly technique, to mitigate the adverse effects of free hemoglobin molecules. These types of artificial red blood cell systems, which make use of biodegradable polymers as matrix materials, show advantages over the traditional types.
Collapse
Affiliation(s)
- Taihang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | | | | |
Collapse
|
30
|
|
31
|
Artificial oxygen carrier based on polysaccharides–poly(alkylcyanoacrylates) nanoparticle templates. Biomaterials 2010; 31:6069-74. [DOI: 10.1016/j.biomaterials.2010.04.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/21/2010] [Indexed: 11/17/2022]
|
32
|
Kemp MM, Linhardt RJ. Heparin-based nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2009; 2:77-87. [DOI: 10.1002/wnan.68] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Bajpai AK, Saini R. Designing of macroporous biocompatible cryogels of PVA-haemoglobin and their water sorption study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:2063-2074. [PMID: 19455407 DOI: 10.1007/s10856-009-3777-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 05/05/2009] [Indexed: 05/27/2023]
Abstract
Macroporous polymeric materials are three-dimensional porous architectures having enormous utility in the areas of biomedical, biotechnological and separation sciences. Thus realizing the crucial role of macroporous polymeric materials in tissue engineering and allied fields the present paper discusses synthesis, characterization, and blood compatibility study of macroporous cryogels of PVA and haemoglobin. Biocompatible spongy and porous hydrogels of polyvinyl alcohol-haemoglobin have been synthesized by repeated freezing-thawing method and characterized by Infrared (FTIR), and ESEM techniques. The FTIR analysis of prepared cryogels indicated that haemoglobin was introduced into the cryogel possibly via hydrogen bonds formed amongst hydroxyl groups and amino groups present in PVA and haemoglobin, respectively. The 'cryogels' were evaluated for their water uptake potentials and influence of various factors such as chemical architecture of the spongy hydrogels, pH and temperature of the swelling bath were investigated on the degree of water sorption by the cryogels. The hydrogels were also swollen in salt solutions and various simulated biological fluids. The effect of drying temperature on its water sorption capacity was also studied. The biocompatibility of the prepared cryogels was judged by in vitro methods of blood-clot formation, percent haemolysis and protein (BSA) adsorption.
Collapse
Affiliation(s)
- A K Bajpai
- Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College, Jabalpur, MP 482 001, India.
| | | |
Collapse
|
34
|
Bruno S, Ronda L, Bettati S, Mozzarelli A. Trapping Hemoglobin in Rigid Matrices: Fine Tuning of Oxygen Binding Properties by Modulation of Encapsulation Protocols. ACTA ACUST UNITED AC 2009; 35:69-79. [PMID: 17364472 DOI: 10.1080/10731190600974541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Encapsulation of hemoglobin in a biocompatible matrix is a potential strategy for obtaining blood substitutes. Such a system would retain most of the immunogenic and functional properties of the physiologically relevant oxygen carrier but would prevent protein extravasation and dimer/dimer dissociation. We applied this approach by entrapping hemoglobin in wet nanoporous silica gel, in the presence and absence of allosteric effectors. Silica gels, although not suitable for intravenous perfusion, are inert and optically transparent, thus allowing a full characterization of the functional and structural properties of encapsulated hemoglobin by spectroscopic techniques. Results indicate that hemoglobin molecules, entrapped using different protocols, exhibit an oxygen affinity that can be modulated between 12 and 140 torr. This tunability could be exploited to meet distinct clinical needs.
Collapse
Affiliation(s)
- Stefano Bruno
- Department of Biochemistry and Molecular Biology, University of Parma, Parma, Italy
| | | | | | | |
Collapse
|
35
|
Zhang X, Liu C, Yuan Y, Shan X, Sheng Y, Xu F. A noninvasive method for measuring the oxygen binding-releasing capacity of hemoglobin-loaded polymeric nanoparticles as oxygen carrier. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1025-1030. [PMID: 19199110 DOI: 10.1007/s10856-008-3676-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Accepted: 12/16/2008] [Indexed: 05/27/2023]
Abstract
Based on the strong penetration capacity of near infrared lights (NIRs) and different absorption of oxyhemoglobin and deoxyhemoglobin in NIRs region, a novel noninvasive method, with the aid of an airproof-equilibrium apparatus, was developed to determine the oxygen binding-releasing capacity, including oxygen dissociation curve (ODC) and P(50), of the hemoglobin-loaded polymeric nanoparticles (HbP) in this study. The measured ODC of the PLA-PEG HbP was very close to that of the native hemoglobin, and the corresponding P(50) (26.1 mmHg) was also near to the native precursor protein (27.3 mmHg), indicative of the validity of the method proposed. To further verify the method proposed, the oxygen binding-releasing capacity of the HbPs prepared by PCL, PCL-PEG, PLA were also investigated with human blood as control. These results indicated that the method developed here enabled accurate and noninvasive determination of the oxygen binding-releasing capacity of the biodegradable polymeric oxygen carriers.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
36
|
Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008; 60:1650-62. [PMID: 18848591 DOI: 10.1016/j.addr.2008.09.001] [Citation(s) in RCA: 1098] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 08/08/2008] [Indexed: 11/28/2022]
Abstract
Natural polysaccharides, due to their outstanding merits, have received more and more attention in the field of drug delivery systems. In particular, polysaccharides seem to be the most promising materials in the preparation of nanometeric carriers. This review relates to the newest developments in the preparation of polysaccharides-based nanoparticles. In this review, four mechanisms are introduced to prepare polysaccharides-based nanoparticles, that is, covalent crosslinking, ionic crosslinking, polyelectrolyte complex, and the self-assembly of hydrophobically modified polysaccharides.
Collapse
Affiliation(s)
- Zonghua Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | | | | | | | | |
Collapse
|
37
|
Nicolas J, Couvreur P. Synthesis of poly(alkyl cyanoacrylate)‐based colloidal nanomedicines. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2008; 1:111-127. [DOI: 10.1002/wnan.15] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julien Nicolas
- Laboratoire de Physico‐Chimie, Pharmacotechnie et Biopharmacie, UMR CNRS 8612, Univ Paris‐Sud, 92296 Châtenay Malabry, France
| | - Patrick Couvreur
- Laboratoire de Physico‐Chimie, Pharmacotechnie et Biopharmacie, UMR CNRS 8612, Univ Paris‐Sud, 92296 Châtenay Malabry, France
| |
Collapse
|
38
|
Zhang X, Liu C, Yuan Y, Shan X, Sheng Y, Xu F. Reduction and suppression of methemoglobin loaded in the polymeric nanoparticles intended for blood substitutes. J Biomed Mater Res B Appl Biomater 2008; 87:354-63. [DOI: 10.1002/jbm.b.31110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Nicolas J, Bensaid F, Desmaële D, Grogna M, Detrembleur C, Andrieux K, Couvreur P. Synthesis of Highly Functionalized Poly(alkyl cyanoacrylate) Nanoparticles by Means of Click Chemistry. Macromolecules 2008. [DOI: 10.1021/ma8013349] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julien Nicolas
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Univ. Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, Laboratoire Biocis, Univ. Paris-Sud, UMR CNRS 8076, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, 4000 Liège, Belgium
| | - Fethi Bensaid
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Univ. Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, Laboratoire Biocis, Univ. Paris-Sud, UMR CNRS 8076, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, 4000 Liège, Belgium
| | - Didier Desmaële
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Univ. Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, Laboratoire Biocis, Univ. Paris-Sud, UMR CNRS 8076, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, 4000 Liège, Belgium
| | - Mathurin Grogna
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Univ. Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, Laboratoire Biocis, Univ. Paris-Sud, UMR CNRS 8076, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, 4000 Liège, Belgium
| | - Christophe Detrembleur
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Univ. Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, Laboratoire Biocis, Univ. Paris-Sud, UMR CNRS 8076, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, 4000 Liège, Belgium
| | - Karine Andrieux
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Univ. Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, Laboratoire Biocis, Univ. Paris-Sud, UMR CNRS 8076, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, 4000 Liège, Belgium
| | - Patrick Couvreur
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Univ. Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, Laboratoire Biocis, Univ. Paris-Sud, UMR CNRS 8076, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, 4000 Liège, Belgium
| |
Collapse
|
40
|
Piras AM, Dessy A, Chiellini F, Chiellini E, Farina C, Ramelli M, Della Valle E. Polymeric nanoparticles for hemoglobin-based oxygen carriers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1454-61. [DOI: 10.1016/j.bbapap.2008.03.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/19/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
|
41
|
Baudin-Creuza V, Chauvierre C, Domingues E, Kiger L, Leclerc L, Vasseur C, Célier C, Marden MC. Octamers and nanoparticles as hemoglobin based blood substitutes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1448-53. [DOI: 10.1016/j.bbapap.2008.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/06/2008] [Accepted: 02/14/2008] [Indexed: 10/22/2022]
|
42
|
Ronda L, Bruno S, Abbruzzetti S, Viappiani C, Bettati S. Ligand reactivity and allosteric regulation of hemoglobin-based oxygen carriers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1365-77. [DOI: 10.1016/j.bbapap.2008.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/21/2008] [Accepted: 04/24/2008] [Indexed: 01/05/2023]
|
43
|
Chiellini F, Piras AM, Errico C, Chiellini E. Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications. Nanomedicine (Lond) 2008; 3:367-93. [DOI: 10.2217/17435889.3.3.367] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review provides an outline of the polymeric micro/nanostructured advanced systems that are suited for the controlled and targeted administration of, specifically, nonconventional drugs. The contribution of new trends in drug-delivery technology is focused on two major parts, dealing with brief surveys of: the biodegradable/bioerodible polymeric systems used in the formulation of micro/nanoparticles and techniques used in the preparation of micro/nanoparticles for their biomedical application in cancer treatment specifically, in inflammation pathologies, as oxygen carriers (blood substitutes) and in tissue-engineering practice. A small discussion of the future perspectives of the described systems is also given.
Collapse
Affiliation(s)
- Federica Chiellini
- Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications - UdR INSTM - Department of Chemistry & Industrial Chemistry, University of Pisa, Via Vecchia Livornese,1291, 56010, S. Piero a Grado (Pisa), Italy
| | - Anna Maria Piras
- Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications - UdR INSTM - Department of Chemistry & Industrial Chemistry, University of Pisa, Via Vecchia Livornese,1291, 56010, S. Piero a Grado (Pisa), Italy
| | - Cesare Errico
- Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications - UdR INSTM - Department of Chemistry & Industrial Chemistry, University of Pisa, Via Vecchia Livornese,1291, 56010, S. Piero a Grado (Pisa), Italy
| | - Emo Chiellini
- Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications - UdR INSTM - Department of Chemistry & Industrial Chemistry, University of Pisa, Via Vecchia Livornese,1291, 56010, S. Piero a Grado (Pisa), Italy
| |
Collapse
|
44
|
Zhang X, Liu C, Yuan Y, Zhang S, Shan X, Sheng Y, Xu F. Key parameters affecting the initial leaky effect of hemoglobin-loaded nanoparticles as blood substitutes. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:2463-2470. [PMID: 18219559 DOI: 10.1007/s10856-007-3358-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 12/28/2007] [Indexed: 05/25/2023]
Abstract
In order to realize long-term carrying/delivering oxygen and minimize the adverse effects of free hemoglobin (Hb) in vivo, Hb is desired to be confined in Hb-loaded nanoparticles (HbP), a novel blood substitute with potential clinical applications, and thus functions as the native red blood cells (RBCs). However, the initial burst release of Hb ("leaky effect") greatly underscores the significance of this work. The study described here wants to disclose the key preparative parameters, including polymer, excipients in the inner aqueous phase and solvent profile, affecting the Hb release behavior (the initial 24 h) from HbP fabricated by commonly used solvent diffusion/evaporation double emulsion technique. The results demonstrate that PEGlytated polymers, regardless of two- or tri-block copolymers show slower release compared with the corresponding non-PEGlytated ones. The higher polymer concentration yields lower initial release. PEG200, added as excipient facilitates Hb burst effect to about 38.4%, almost 17% increase compared to the control ( approximately 21%), whereas, PVA and Poloxamer188, due to amphiphilic nature, can effectively attenuate this leakage to about 13.0 and 5.1%, respectively. The diffusion/extraction rate from oil phase and the subsequent evaporation rate from the aqueous continuous phase of solvents impose different influences on Hb release. To reduce the burst effect, the initial diffusion/extraction rate should be slow, whereas, the concomitant evaporation rate should be as fast as possible. The results obtained here will be guidance's for the future tailored design of more desirable polymersome nanoparticle blood substitutes.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Vauthier C, Labarre D, Ponchel G. Design aspects of poly(alkylcyanoacrylate) nanoparticles for drug delivery. J Drug Target 2008; 15:641-63. [PMID: 18041633 DOI: 10.1080/10611860701603372] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Poly(alkylcyanoacrylate) (PACA) nanoparticles were first developed 25 years ago taking advantage of the in vivo degradation potential of the polymer and of its good acceptance by living tissues. Since then, various PACA nanoparticles were designed including nanospheres, oil-containing and water-containing nanocapsules. This made possible the in vivo delivery of many types of drugs including those presenting serious challenging delivery problems. PACA nanoparticles were proven to improve treatments of severe diseases like cancer, infections and metabolic disease. For instance, they can transport drugs across barriers allowing delivery of therapeutic doses in difficult tissues to reach including in the brain or in multidrug resistant cells. This review gives an update on the more recent developments and achievements on design aspects of PACA nanoparticles as delivery systems for various drugs to be administered in vivo by different routes of administration.
Collapse
|
46
|
Chauvierre C, Leclerc L, Labarre D, Appel M, Marden MC, Couvreur P, Vauthier C. Enhancing the tolerance of poly(isobutylcyanoacrylate) nanoparticles with a modular surface design. Int J Pharm 2007; 338:327-32. [PMID: 17324536 DOI: 10.1016/j.ijpharm.2007.01.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 01/10/2007] [Accepted: 01/13/2007] [Indexed: 10/23/2022]
Abstract
Polymer nanoparticles are designed as nanovehicles to carry drugs in the body in a controlled manner increasing the concentration of the biologically active substance in the diseased organs and cells. The safety and biocompatibility of these nanosystems are those of the many properties that nanoparticles must meet to be used in vivo. Here we show that the cytotoxicity profile of poly(isobutylcyanoacrylate) (PIBCA) nanoparticles is affected by the way the nanosystems were produced and by the design of their surface. It was found that the tolerance of PIBCA nanoparticles by cells could be improved up to 100-fold by coating their surface with polysaccharides and haemoglobin.
Collapse
Affiliation(s)
- Cédric Chauvierre
- INSERM U779, Hôpital de Bicêtre, Secteur Broca, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Tom RT, Samal AK, Sreeprasad TS, Pradeep T. Hemoprotein bioconjugates of gold and silver nanoparticles and gold nanorods: structure-function correlations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:1320-5. [PMID: 17241053 DOI: 10.1021/la061150b] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Bioconjugates of the hemoproteins, myoglobin, and hemoglobin have been synthesized by their adsorption on spherical gold and silver nanoparticles and gold nanorods. The adsorption of hemoproteins on the nanoparticle surface was confirmed by their molecular ion signatures in matrix assisted laser desorption ionization mass spectrometry and specific Raman features of the prosthetic heme b units. High-resolution transmission electron microscopy (HRTEM) and UV-visible spectroscopy showed that the particles retain their morphology and show aggregation only in the case of silver. The binding of azide ion to the Fe(III) center of the prosthetic heme b moiety caused a red shift of the Soret band, both in the case of the bioconjugates and in free hemoproteins. This was further confirmed by the characteristic signature at 2050 cm-1 in the Fourier-transform infrared spectra, which corresponds to the asymmetric stretching of the Fe(III) bound azide. The retention of the chemical behavior of the prosthetic heme group after adsorption on the nanoparticle is interesting due to its implications in nanoparticle supported enzyme catalysis. The absence of morphology changes after the reaction of bioconjugates with azide ion observed in HRTEM studies implies the stability of nanoparticles under the reaction conditions. All these studies indicate the retention of protein structure after adsorption on the nanoparticle surface.
Collapse
Affiliation(s)
- Renjis T Tom
- DST Unit on Nanoscience, Department of Chemistry and Sophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai-600 036, India
| | | | | | | |
Collapse
|
48
|
Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res 2006; 23:1417-50. [PMID: 16779701 DOI: 10.1007/s11095-006-0284-8] [Citation(s) in RCA: 520] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 03/01/2006] [Indexed: 01/19/2023]
Abstract
The purpose of this expert review is to discuss the impact of nanotechnology in the treatment of the major health threats including cancer, infections, metabolic diseases, autoimmune diseases, and inflammations. Indeed, during the past 30 years, the explosive growth of nanotechnology has burst into challenging innovations in pharmacology, the main input being the ability to perform temporal and spatial site-specific delivery. This has led to some marketed compounds through the last decade. Although the introduction of nanotechnology obviously permitted to step over numerous milestones toward the development of the "magic bullet" proposed a century ago by the immunologist Paul Ehrlich, there are, however, unresolved delivery problems to be still addressed. These scientific and technological locks are discussed along this review together with an analysis of the current situation concerning the industrial development.
Collapse
Affiliation(s)
- Patrick Couvreur
- Laboratoire de Physico-chimie, Pharmacotechnie et Biopharmacie, UMR CNRS 8612, Université de Paris Sud, 5 Rue J.B. Clément, 92 296, Chatenay-Malabry Cedex, France
| | | |
Collapse
|
49
|
Chung YI, Tae G, Hong Yuk S. A facile method to prepare heparin-functionalized nanoparticles for controlled release of growth factors. Biomaterials 2006; 27:2621-6. [PMID: 16360204 DOI: 10.1016/j.biomaterials.2005.11.043] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 11/28/2005] [Indexed: 11/15/2022]
Abstract
A new, facile method to prepare the heparin-functionalized PLGA nanoparticle (HEP-PLGA NP) for the controlled release of growth factors is developed. This system is composed of PLGA as a hydrophobic core, Pluronic F-127 as a hydrophilic surface layer, and heparin as the functional moiety. HEP-PLGA NPs were prepared by a solvent-diffusion method without chemical modification of the components. The entrapment of heparin molecules was confirmed by a negatively increased zeta potential value and the specific binding affinity to antithrombin III. The average diameter and the surface charge of the nanoparticles were ranged from 139+/-2 to 188+/-4 nm and from -26.0+/-1.1 to -44.1+/-1.3 mV by increasing the amount of heparin during the nanoparticle preparation. Accordingly, the amount of heparin on the nanoparticle increased from 0% to 4.7%. As a model in vitro release experiment, lysozyme was loaded into HEP-PLGA NPs, and a sustained release profile over 2 weeks was obtained with maintaining its bioactivity. The release of rhVEGF, one of the heparin-binding growth factors, showed a more sustained and prolonged profile than that of lysozyme over one month.
Collapse
Affiliation(s)
- Yong-Il Chung
- Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712, Korea
| | | | | |
Collapse
|
50
|
Angelova A, Angelov B, Papahadjopoulos-Sternberg B, Ollivon M, Bourgaux C. Structural organization of proteocubosome carriers involving medium- and large-size proteins. J Drug Deliv Sci Technol 2005. [DOI: 10.1016/s1773-2247(05)50013-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|