1
|
Kim J, Park J, Choe G, Jeong SI, Kim HS, Lee JY. A Gelatin/Alginate Double Network Hydrogel Nerve Guidance Conduit Fabricated by a Chemical-Free Gamma Radiation for Peripheral Nerve Regeneration. Adv Healthc Mater 2024; 13:e2400142. [PMID: 38566357 DOI: 10.1002/adhm.202400142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Nerve guidance conduits (NGCs) are widely developed using various materials for the functional repair of injured or diseased peripheral nerves. Especially, hydrogels are considered highly suitable for the fabrication of NGCs due to their beneficial tissue-mimicking characteristics (e.g., high water content, softness, and porosity). However, the practical applications of hydrogel-based NGCs are hindered due to their poor mechanical properties and complicated fabrication processes. To bridge this gap, a novel double-network (DN) hydrogel using alginate and gelatin by a two-step crosslinking process involving chemical-free gamma irradiation and ionic crosslinking, is developed. DN hydrogels (1% alginate and 15% gelatin), crosslinked with 30 kGy gamma irradiation and barium ions, exhibit substantially improved mechanical properties, including tensile strength, elastic modulus, and fracture stain, compared to single network (SN) gelatin hydrogels. Additionally, the DN hydrogel NGC exhibits excellent kink resistance, mechanical stability to successive compression, suture retention, and enzymatic degradability. In vivo studies with a sciatic defect rat model indicate substantially improved nerve function recovery with the DN hydrogel NGC compared to SN gelatin and commercial silicone NGCs, as confirm footprint analysis, electromyography, and muscle weight measurement. Histological examination reveals that, in the DN NGC group, the expression of Schwann cell and neuronal markers, myelin sheath, and exon diameter are superior to the other controls. Furthermore, the DN NGC group demonstrates increased muscle fiber formation and reduced fibrotic scarring. These findings suggest that the mechanically robust, degradable, and biocompatible DN hydrogel NGC can serve as a novel platform for peripheral nerve regeneration and other biomedical applications, such as implantable tissue constructs.
Collapse
Affiliation(s)
- Junghyun Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Goeun Choe
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sung-In Jeong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|
2
|
Anti-cancer activity of naringenin loaded smart polymeric nanoparticles in breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
3D printing of inherently nanoporous polymers via polymerization-induced phase separation. Nat Commun 2021; 12:247. [PMID: 33431911 PMCID: PMC7801408 DOI: 10.1038/s41467-020-20498-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/01/2020] [Indexed: 01/22/2023] Open
Abstract
3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer structures with geometrical features at the sub-micrometer scale. Porous structure at the sub-micrometer scale can render macroscopic objects with unique properties, including similarities with biological interfaces, permeability and extremely large surface area, imperative inter alia for adsorption, separation, sensing or biomedical applications. Here, we introduce a method combining advantages of 3D printing via digital light processing and polymerization-induced phase separation, which enables formation of 3D polymer structures of digitally defined macroscopic geometry with controllable inherent porosity at the sub-micrometer scale. We demonstrate the possibility to create 3D polymer structures of highly complex geometries and spatially controlled pore sizes from 10 nm to 1000 µm. Produced hierarchical polymers combining nanoporosity with micrometer-sized pores demonstrate improved adsorption performance due to better pore accessibility and favored cell adhesion and growth for 3D cell culture due to surface porosity. This method extends the scope of applications of 3D printing to hierarchical inherently porous 3D objects combining structural features ranging from 10 nm up to cm, making them available for a wide variety of applications. 3D printing offers flexibility in fabrication of polymer objects but fabrication of large polymer structures with micrometer-sized geometrical features are challenging. Here, the authors introduce a method combining advantages of 3D printing and polymerization-induced phase separation, which enables formation of 3D polymer structures with controllable inherent porosity.
Collapse
|
4
|
Fornasari BE, Carta G, Gambarotta G, Raimondo S. Natural-Based Biomaterials for Peripheral Nerve Injury Repair. Front Bioeng Biotechnol 2020; 8:554257. [PMID: 33178670 PMCID: PMC7596179 DOI: 10.3389/fbioe.2020.554257] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/23/2020] [Indexed: 01/18/2023] Open
Abstract
Peripheral nerve injury treatment is a relevant problem because of nerve lesion high incidence and because of unsatisfactory regeneration after severe injuries, thus resulting in a reduced patient's life quality. To repair severe nerve injuries characterized by substance loss and to improve the regeneration outcome at both motor and sensory level, different strategies have been investigated. Although autograft remains the gold standard technique, a growing number of research articles concerning nerve conduit use has been reported in the last years. Nerve conduits aim to overcome autograft disadvantages, but they must satisfy some requirements to be suitable for nerve repair. A universal ideal conduit does not exist, since conduit properties have to be evaluated case by case; nevertheless, because of their high biocompatibility and biodegradability, natural-based biomaterials have great potentiality to be used to produce nerve guides. Although they share many characteristics with synthetic biomaterials, natural-based biomaterials should also be preferable because of their extraction sources; indeed, these biomaterials are obtained from different renewable sources or food waste, thus reducing environmental impact and enhancing sustainability in comparison to synthetic ones. This review reports the strengths and weaknesses of natural-based biomaterials used for manufacturing peripheral nerve conduits, analyzing the interactions between natural-based biomaterials and biological environment. Particular attention was paid to the description of the preclinical outcome of nerve regeneration in injury repaired with the different natural-based conduits.
Collapse
Affiliation(s)
- Benedetta E. Fornasari
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Giacomo Carta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Abstract
We explore the design and synthesis of hydrogel scaffolds for tissue engineering from the perspective of the underlying polymer chemistry. The key polymers, properties and architectures used, and their effect on tissue growth are discussed.
Collapse
|
6
|
Antiapoptotic Effect of Granulocyte-Colony Stimulating Factor After Peripheral Nerve Trauma. World Neurosurg 2019; 129:e6-e15. [DOI: 10.1016/j.wneu.2019.04.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 11/18/2022]
|
7
|
Houshyar S, Bhattacharyya A, Shanks R. Peripheral Nerve Conduit: Materials and Structures. ACS Chem Neurosci 2019; 10:3349-3365. [PMID: 31273975 DOI: 10.1021/acschemneuro.9b00203] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Peripheral nerve injuries (PNIs) are the most common injury types to affect the nervous system. Restoration of nerve function after PNI is a challenging medical issue. Extended gaps in transected peripheral nerves are only repaired using autologous nerve grafting. This technique, however, in which nerve tissue is harvested from a donor site and grafted onto a recipient site in the same body, has many limitations and disadvantages. Recent studies have revealed artificial nerve conduits as a promising alternative technique to substitute autologous nerves. This Review summarizes different types of artificial nerve grafts used to repair peripheral nerve injuries. These include synthetic and natural polymers with biological factors. Then, desirable properties of nerve guides are discussed based on their functionality and effectiveness. In the final part of this Review, fabrication methods and commercially available nerve guides are described.
Collapse
Affiliation(s)
- Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Amitava Bhattacharyya
- Nanoscience and Technology, Department of Electronics and Communication, PSG College of Technology, Coimbatore − 641004, India
| | - Robert Shanks
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
8
|
Cizkova D, Murgoci AN, Cubinkova V, Humenik F, Mojzisova Z, Maloveska M, Cizek M, Fournier I, Salzet M. Spinal Cord Injury: Animal Models, Imaging Tools and the Treatment Strategies. Neurochem Res 2019; 45:134-143. [PMID: 31006093 DOI: 10.1007/s11064-019-02800-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) often leads to irreversible neuro-degenerative changes with life-long consequences. While there is still no effective therapy available, the results of past research have led to improved quality of life for patients suffering from partial or permanent paralysis. In this review we focus on the need, importance and the scientific value of experimental animal models simulating SCI in humans. Furthermore, we highlight modern imaging tools determining the location and extent of spinal cord damage and their contribution to early diagnosis and selection of appropriate treatment. Finally, we focus on available cellular and acellular therapies and novel combinatory approaches with exosomes and active biomaterials. Here we discuss the efficacy and limitations of adult mesenchymal stem cells which can be derived from bone marrow, adipose tissue or umbilical cord blood and its Wharton's jelly. Special attention is paid to stem cell-derived exosomes and smart biomaterials due to their special properties as a delivery system for proteins, bioactive molecules or even genetic material.
Collapse
Affiliation(s)
- Dasa Cizkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10, Bratislava, Slovakia. .,Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Kosice, Slovakia. .,Inserm, U-1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université de Lille, 59000, Lille, France.
| | - Adriana-Natalia Murgoci
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10, Bratislava, Slovakia.,Inserm, U-1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université de Lille, 59000, Lille, France
| | - Veronika Cubinkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10, Bratislava, Slovakia
| | - Filip Humenik
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Kosice, Slovakia
| | - Zuzana Mojzisova
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Kosice, Slovakia
| | - Marcela Maloveska
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Kosice, Slovakia
| | - Milan Cizek
- Department of Epizootology and Parasitology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Kosice, Slovakia
| | - Isabelle Fournier
- Inserm, U-1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université de Lille, 59000, Lille, France
| | - Michel Salzet
- Inserm, U-1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université de Lille, 59000, Lille, France
| |
Collapse
|
9
|
Sahar MSU, Barton M, Tansley GD. Bridging larger gaps in peripheral nerves using neural prosthetics and physical therapeutic agents. Neural Regen Res 2019; 14:1109-1115. [PMID: 30804232 PMCID: PMC6425823 DOI: 10.4103/1673-5374.251186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Peripheral nerve injuries are relatively common and can be caused by a variety of traumatic events such as motor vehicle accidents. They can lead to long-term disability, pain, and financial burden, and contribute to poor quality of life. In this review, we systematically analyze the contemporary literature on peripheral nerve gap management using nerve prostheses in conjunction with physical therapeutic agents. The use of nerve prostheses to assist nerve regeneration across large gaps (> 30 mm) has revolutionized neural surgery. The materials used for nerve prostheses have been greatly refined, making them suitable for repairing large nerve gaps. However, research on peripheral nerve gap management using nerve prostheses reports inconsistent functional outcomes, especially when prostheses are integrated with physical therapeutic agents, and thus warrants careful investigation. This review explores the effectiveness of nerve prostheses for bridging large nerve gaps and then addresses their use in combination with physical therapeutic agents.
Collapse
Affiliation(s)
| | - Matthew Barton
- Clem Jones Centre for Neurobiology and Stem Cell Therapies, Griffith University, Gold Coast, Queensland, Australia
| | - Geoffrey Douglas Tansley
- School of Engineering and Built Environment, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
10
|
Sarker M, Naghieh S, McInnes AD, Schreyer DJ, Chen X. Regeneration of peripheral nerves by nerve guidance conduits: Influence of design, biopolymers, cells, growth factors, and physical stimuli. Prog Neurobiol 2018; 171:125-150. [DOI: 10.1016/j.pneurobio.2018.07.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 01/10/2023]
|
11
|
Dumont CM, Munsell MK, Carlson MA, Cummings BJ, Anderson AJ, Shea LD. Spinal Progenitor-Laden Bridges Support Earlier Axon Regeneration Following Spinal Cord Injury. Tissue Eng Part A 2018; 24:1588-1602. [PMID: 30215293 DOI: 10.1089/ten.tea.2018.0053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT Spinal cord injury (SCI) results in loss of tissue innervation below the injury. Spinal progenitors have a greater ability to repair the damage and can be injected into the injury, but their regenerative potential is hampered by their poor survival after transplantation. Biomaterials can create a cell delivery platform and generate a more hospitable microenvironment for the progenitors within the injury. In this work, polymeric bridges are used to deliver embryonic spinal progenitors to the injury, resulting in increased progenitor survival and subsequent regeneration and functional recovery, thus demonstrating the importance of combined therapeutic approaches for SCI.
Collapse
Affiliation(s)
- Courtney M Dumont
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Mary K Munsell
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Mitchell A Carlson
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Brian J Cummings
- 2 Institute for Memory Impairments and Neurological Disorders (iMIND), University of California , Irvine, California.,3 Sue and Bill Gross Stem Cell Research Center, University of California , Irvine, California.,4 Department of Anatomy and Neurobiology and University of California , Irvine, California.,5 Department of Physical Medicine and Rehabilitation, University of California , Irvine, California
| | - Aileen J Anderson
- 2 Institute for Memory Impairments and Neurological Disorders (iMIND), University of California , Irvine, California.,3 Sue and Bill Gross Stem Cell Research Center, University of California , Irvine, California.,4 Department of Anatomy and Neurobiology and University of California , Irvine, California.,5 Department of Physical Medicine and Rehabilitation, University of California , Irvine, California
| | - Lonnie D Shea
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan.,6 Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
12
|
Wang ZZ, Sakiyama-Elbert SE. Matrices, scaffolds & carriers for cell delivery in nerve regeneration. Exp Neurol 2018; 319:112837. [PMID: 30291854 DOI: 10.1016/j.expneurol.2018.09.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/13/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022]
Abstract
Nerve injuries can be life-long debilitating traumas that severely impact patients' quality of life. While many acellular neural scaffolds have been developed to aid the process of nerve regeneration, complete functional recovery is still very difficult to achieve, especially for long-gap peripheral nerve injury and most cases of spinal cord injury. Cell-based therapies have shown many promising results for improving nerve regeneration. With recent advances in neural tissue engineering, the integration of biomaterial scaffolds and cell transplantation are emerging as a more promising approach to enhance nerve regeneration. This review provides an overview of important considerations for designing cell-carrier biomaterial scaffolds. It also discusses current biomaterials used for scaffolds that provide permissive and instructive microenvironments for improved cell transplantation.
Collapse
Affiliation(s)
- Ze Zhong Wang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Biomedical Engineering, University of Austin at Texas, Austin, TX, USA
| | | |
Collapse
|
13
|
Pixley SK, Hopkins TM, Little KJ, Hom DB. Evaluation of peripheral nerve regeneration through biomaterial conduits via micro-CT imaging. Laryngoscope Investig Otolaryngol 2016; 1:185-190. [PMID: 28894816 PMCID: PMC5510275 DOI: 10.1002/lio2.41] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Hollow nerve conduits made of natural or synthetic biomaterials are used clinically to aid regeneration of peripheral nerves damaged by trauma or disease. To support healing, conduit lumen patency must be maintained until recovery occurs. New methods to study conduit structural integrity would provide an important means to optimize conduits in preclinical studies. We explored a novel combined technique to examine structural integrity of two types of nerve conduits after in vivo healing. STUDY DESIGN Micro-CT imaging with iodine contrast was combined with histological analysis to examine two different nerve conduits after in vivo nerve reconstruction in rats. MATERIALS AND METHODS Sciatic nerve gaps in adult Lewis rats were reconstructed with poly(caprolactone) (PCL, 1.6 cm gap, 14-week survival) or silicone (1 cm gap, 6-week survival) conduits (N = 12 total). Conduits with regenerating tissues were imaged by micro-CT with iodine contrast and compared to the histology (hematoxylin and eosin, immunostaining for axons) of regenerated tissues after iodine removal. RESULTS PCL nerve conduits showed extensive breakage throughout their length, but all showed successful nerve growth through the conduits. The silicone conduits remained intact, although significant constriction was uniquely detected by micro-CT, with 1 of 6 animals showing incomplete tissue regeneration. CONCLUSIONS Micro-CT with iodine contrast offers a unique and valuable means to determine 3D structural integrity of nerve conduits and nerve healing following reconstruction. Furthermore, this paper shows that even if conduit compression and degradation occur, nerve regeneration can still take place.
Collapse
Affiliation(s)
- Sarah K Pixley
- Department of Molecular and Cellular Physiology (S.K.P., T.M.H.) Cincinnati Children's Hospital Medical Center Cincinnati Ohio U.S.A
| | - Tracy M Hopkins
- Department of Molecular and Cellular Physiology (S.K.P., T.M.H.) Cincinnati Children's Hospital Medical Center Cincinnati Ohio U.S.A
| | - Kevin J Little
- Pediatric Hand and Upper Extremity Center (K.J.L.), Cincinnati Children's Hospital Medical Center Cincinnati Ohio U.S.A
| | - David B Hom
- Department of Otolaryngology-Head and Neck Surgery (D.B.H.) University of Cincinnati School of Medicine Cincinnati Ohio U.S.A
| |
Collapse
|
14
|
Dumont CM, Margul DJ, Shea LD. Tissue Engineering Approaches to Modulate the Inflammatory Milieu following Spinal Cord Injury. Cells Tissues Organs 2016; 202:52-66. [PMID: 27701152 PMCID: PMC5067186 DOI: 10.1159/000446646] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2016] [Indexed: 12/11/2022] Open
Abstract
Tissue engineering strategies have shown promise in promoting healing and regeneration after spinal cord injury (SCI); however, these strategies are limited by inflammation and the immune response. Infiltration of cells of the innate and adaptive immune responses and the inflammation that follows cause secondary damage adjacent to the injury, increased scarring, and a potently inhibitory environment for the regeneration of damaged neurons. While the inflammation that ensues is typically associated with limited regeneration, the immune response is a crucial element in the closing of the blood-brain barrier, minimizing the spread of injury, and initiating healing. This review summarizes the strategies that have been developed to modulate the immune response towards an anti-inflammatory environment that is permissive to the regeneration of neurons, glia, and parenchyma. We focus on the use of biomaterials, biologically active molecules, gene therapy, nanoparticles, and stem cells to modulate the immune response, and illustrate concepts for future therapies. Current clinical treatments for SCI are limited to systemic hypothermia or methylprednisolone, which both act by systemically mitigating the effects of immune response but have marginal efficacy. Herein, we discuss emerging research strategies to further enhance these clinical treatments by directly targeting specific aspects of the immune response.
Collapse
Affiliation(s)
- Courtney. M. Dumont
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Daniel J. Margul
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lonnie. D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
15
|
Mechanical properties of a bioabsorbable nerve guide tube for long nerve defects. ACTA ACUST UNITED AC 2015; 34:186-92. [DOI: 10.1016/j.main.2015.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/24/2015] [Accepted: 05/27/2015] [Indexed: 11/21/2022]
|
16
|
Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration. Stem Cells Int 2015; 2015:948040. [PMID: 26124844 PMCID: PMC4466497 DOI: 10.1155/2015/948040] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/14/2014] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury (SCI) is a central nervous system- (CNS-) related disorder for which there is yet no successful treatment. Within the past several years, cell-based therapies have been explored for SCI repair, including the use of pluripotent human stem cells, and a number of adult-derived stem and mature cells such as mesenchymal stem cells, olfactory ensheathing cells, and Schwann cells. Although promising, cell transplantation is often overturned by the poor cell survival in the treatment of spinal cord injuries. Alternatively, the therapeutic role of different cells has been used in tissue engineering approaches by engrafting cells with biomaterials. The latter have the advantages of physically mimicking the CNS tissue, while promoting a more permissive environment for cell survival, growth, and differentiation. The roles of both cell- and biomaterial-based therapies as single therapeutic approaches for SCI repair will be discussed in this review. Moreover, as the multifactorial inhibitory environment of a SCI suggests that combinatorial approaches would be more effective, the importance of using biomaterials as cell carriers will be herein highlighted, as well as the recent advances and achievements of these promising tools for neural tissue regeneration.
Collapse
|
17
|
Kang D, Sun F, Choi YJ, Zou F, Cho W, Choi B, Koh K, Lee J, Han IH. Enhancement of primary neuronal cell proliferation using printing‐transferred carbon nanotube sheets. J Biomed Mater Res A 2014; 103:1746-54. [DOI: 10.1002/jbm.a.35294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/10/2014] [Accepted: 07/23/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Dong‐Wan Kang
- Department of Neurosurgery, Medical Research InstitutePusan National University Hospital and School of MedicineBusan602‐739 Republic of Korea
| | - Fangfang Sun
- Department of Nano Fusion Engineering, and Cogno‐Mechatronics EngineeringPusan National UniversityBusan609‐735 Republic of Korea
- Department of Biomedical Engineering, College of Life Information Science and Instrument EngineeringHangzhou Dianzi UniversityHangzhou310018 China
| | - Yoon Ji Choi
- Department of Neurosurgery, Medical Research InstitutePusan National University Hospital and School of MedicineBusan602‐739 Republic of Korea
| | - Fengming Zou
- Department of Nano Fusion Engineering, and Cogno‐Mechatronics EngineeringPusan National UniversityBusan609‐735 Republic of Korea
| | - Won‐Ho Cho
- Department of Neurosurgery, Medical Research InstitutePusan National University Hospital and School of MedicineBusan602‐739 Republic of Korea
| | - Byung‐Kwan Choi
- Department of Neurosurgery, Medical Research InstitutePusan National University Hospital and School of MedicineBusan602‐739 Republic of Korea
| | - Kwangnak Koh
- Department of Nano Fusion Engineering, and Cogno‐Mechatronics EngineeringPusan National UniversityBusan609‐735 Republic of Korea
| | - Jaebeom Lee
- Department of Nano Fusion Engineering, and Cogno‐Mechatronics EngineeringPusan National UniversityBusan609‐735 Republic of Korea
| | - In Ho Han
- Department of Neurosurgery, Medical Research InstitutePusan National University Hospital and School of MedicineBusan602‐739 Republic of Korea
| |
Collapse
|
18
|
Abstract
Autologous nerve grafts are the current criterion standard for repair of peripheral nerve injuries when the transected nerve ends are not amenable to primary end-to-end tensionless neurorrhaphy. However, donor-site morbidities such as neuroma formation and permanent loss of function have led to tremendous interest in developing an alternative to this technique. Artificial nerve conduits have therefore emerged as an alternative to autologous nerve grafting for the repair of short peripheral nerve defects of less than 30 mm; however, they do not yet surpass autologous nerve grafts clinically. A thorough understanding of the complex biological reactions that take place during peripheral nerve regeneration will allow researchers to develop a nerve conduit with physical and biological properties similar to those of an autologous nerve graft that supports regeneration over long nerve gaps and in large-diameter nerves. In this article, the authors assess the currently available nerve conduits, summarize research in the field of developing these conduits, and establish areas within this field in which further research would prove most beneficial.
Collapse
|
19
|
Kurland NE, Dey T, Wang C, Kundu SC, Yadavalli VK. Silk protein lithography as a route to fabricate sericin microarchitectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:4431-4437. [PMID: 24737390 DOI: 10.1002/adma.201400777] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/21/2014] [Indexed: 06/03/2023]
Abstract
Photolithographic fabrication via a "silk sericin photoresist" is used to form precise protein microstructures directly and rapidly on a variety of substrates. High-resolution and fidelity architectures in two and three dimensions with line widths down to 1 μm are formed. Photo-crosslinked protein structures provide structural iridescence and guide cell adhesion with precise spatial control.
Collapse
Affiliation(s)
- Nicholas E Kurland
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA, USA, 23284
| | | | | | | | | |
Collapse
|
20
|
Droumaguet BL, Lacombe R, Ly HB, Carbonnier B, Grande D. Novel Polymeric Materials with Double Porosity: Synthesis and Characterization. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/masy.201300117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Benjamin Le Droumaguet
- Institut de Chimie et des Matériaux Paris-Est; CNRS - Université Paris-Est Créteil Val-de-Marne; 2, rue Henri Dunant 94320 Thiais France
| | - Romain Lacombe
- Institut de Chimie et des Matériaux Paris-Est; CNRS - Université Paris-Est Créteil Val-de-Marne; 2, rue Henri Dunant 94320 Thiais France
| | - Haï-Bang Ly
- Institut de Chimie et des Matériaux Paris-Est; CNRS - Université Paris-Est Créteil Val-de-Marne; 2, rue Henri Dunant 94320 Thiais France
| | - Benjamin Carbonnier
- Institut de Chimie et des Matériaux Paris-Est; CNRS - Université Paris-Est Créteil Val-de-Marne; 2, rue Henri Dunant 94320 Thiais France
| | - Daniel Grande
- Institut de Chimie et des Matériaux Paris-Est; CNRS - Université Paris-Est Créteil Val-de-Marne; 2, rue Henri Dunant 94320 Thiais France
| |
Collapse
|
21
|
Hinüber C, Chwalek K, Pan-Montojo FJ, Nitschke M, Vogel R, Brünig H, Heinrich G, Werner C. Hierarchically structured nerve guidance channels based on poly-3-hydroxybutyrate enhance oriented axonal outgrowth. Acta Biomater 2014; 10:2086-95. [PMID: 24406197 DOI: 10.1016/j.actbio.2013.12.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/07/2013] [Accepted: 12/26/2013] [Indexed: 01/19/2023]
Abstract
Traumatic peripheral nerve lesions can cause local anesthesia, paralysis and loss of autonomic control. Reconstruction using engineered nerve guidance conduits (NGCs) is rarely successful due to the sub-optimal characteristics of the conduits. To address the demands of clinical practice, we developed a hierarchically structured NGC from slowly resorbing poly(3-hydroxybutyric acid) (P3HB). The NGC consists of a permeable single-lumen tube and melt-spun fibrillar lumen fillers. Permeable tubes were constructed from P3HB/poly(ɛ-caprolactone) (PCL) blends or poly(3-hydroxybutyric acid-co-4-hydroxybutyric acid) (P(3HB-co-4HB)). Polyvinylpyrrolidone was used as a porogen in solvent-free thermoplastic processing, followed by selective polymer leaching. All tested material compositions showed hydrolytic degradation after 16weeks in phosphate buffered saline, whereas P3HB/PCL tubes maintained mechanical strength compared to (P(3HB-co-4HB)). The porous scaffolds allowed diffusion of large molecules (∼70kDa). In vitro studies demonstrated that mouse fibroblasts survived and proliferated inside closed porous tubes. An in vitro model of axonal regeneration using dorsal root ganglia and sympathetic cervical ganglia demonstrated that the NGCs successfully supported neuron survival and neurite outgrowth. The introduction of fibrillar lumen fillers promoted oriented neurite growth and coating with extracellular matrix proteins further increased ganglia attachment and cell migration. In this study we show that P3HB-based NGCs scaffolds have potential in long gap peripheral nerve repair strategies.
Collapse
Affiliation(s)
- C Hinüber
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; Technische Universität Dresden, Institute of Material Science, Helmholtzstrasse 7, 01069 Dresden, Germany.
| | - K Chwalek
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - F J Pan-Montojo
- Technische Universität Dresden, Institute of Anatomy/University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307 Dresden, Germany
| | - M Nitschke
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - R Vogel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - H Brünig
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - G Heinrich
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; Technische Universität Dresden, Institute of Material Science, Helmholtzstrasse 7, 01069 Dresden, Germany
| | - C Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; Technische Universität Dresden, Center for Regenerative Therapies Dresden, Tatzberg 47, 01187 Dresden, Germany
| |
Collapse
|
22
|
Kuffler DP. An assessment of current techniques for inducing axon regeneration and neurological recovery following peripheral nerve trauma. Prog Neurobiol 2014; 116:1-12. [DOI: 10.1016/j.pneurobio.2013.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 12/11/2013] [Accepted: 12/17/2013] [Indexed: 12/20/2022]
|
23
|
de Vos P, Lazarjani HA, Poncelet D, Faas MM. Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev 2014; 67-68:15-34. [PMID: 24270009 DOI: 10.1016/j.addr.2013.11.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/26/2013] [Accepted: 11/13/2013] [Indexed: 02/07/2023]
Abstract
In the past two decades, many polymers have been proposed for producing immunoprotective capsules. Examples include the natural polymers alginate, agarose, chitosan, cellulose, collagen, and xanthan and synthetic polymers poly(ethylene glycol), polyvinyl alcohol, polyurethane, poly(ether-sulfone), polypropylene, sodium polystyrene sulfate, and polyacrylate poly(acrylonitrile-sodium methallylsulfonate). The biocompatibility of these polymers is discussed in terms of tissue responses in both the host and matrix to accommodate the functional survival of the cells. Cells should grow and function in the polymer network as adequately as in their natural environment. This is critical when therapeutic cells from scarce cadaveric donors are considered, such as pancreatic islets. Additionally, the cell mass in capsules is discussed from the perspective of emerging new insights into the release of so-called danger-associated molecular pattern molecules by clumps of necrotic therapeutic cells. We conclude that despite two decades of intensive research, drawing conclusions about which polymer is most adequate for clinical application is still difficult. This is because of the lack of documentation on critical information, such as the composition of the polymer, the presence or absence of confounding factors that induce immune responses, toxicity to enveloped cells, and the permeability of the polymer network. Only alginate has been studied extensively and currently qualifies for application. This review also discusses critical issues that are not directly related to polymers and are not discussed in the other reviews in this issue, such as the functional performance of encapsulated cells in vivo. Physiological endocrine responses may indeed not be expected because of the many barriers that the metabolites encounter when traveling from the blood stream to the enveloped cells and back to circulation. However, despite these diffusion barriers, many studies have shown optimal regulation, allowing us to conclude that encapsulated grafts do not always follow nature's course but are still a possible solution for many endocrine disorders for which the minute-to-minute regulation of metabolites is mandatory.
Collapse
|
24
|
Le Droumaguet B, Lacombe R, Ly HB, Guerrouache M, Carbonnier B, Grande D. Engineering functional doubly porous PHEMA-based materials. POLYMER 2014. [DOI: 10.1016/j.polymer.2013.08.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Stoyanova II, van Wezel RJA, Rutten WLC. In vivo testing of a 3D bifurcating microchannel scaffold inducing separation of regenerating axon bundles in peripheral nerves. J Neural Eng 2013; 10:066018. [PMID: 24280623 DOI: 10.1088/1741-2560/10/6/066018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Artificial nerve guidance channels enhance the regenerative effectiveness in an injured peripheral nerve but the existing design so far has been limited to basic straight tubes simply guiding the growth to bridge the gap. Hence, one of the goals in development of more effective neuroprostheses is to create bidirectional highly selective neuro-electronic interface between a prosthetic device and the severed nerve. A step towards improving selectivity for both recording and stimulation have been made with some recent in vitro studies which showed that three-dimensional (3D) bifurcating microchannels can separate neurites growing on a planar surface and bring them into contact with individual electrodes. Since the growing axons in vivo have the innate tendency to group in bundles surrounded by connective tissue, one of the big challenges in neuro-prosthetic interface design is how to overcome it. Therefore, we performed experiments with 3D bifurcating guidance scaffolds implanted in the sciatic nerve of rats to test if this new channel architecture could trigger separation pattern of ingrowth also in vivo. Our results showed that this new method enabled the re-growth of neurites into channels with gradually diminished width (80, 40 and 20 µm) and facilitated the separation of the axonal bundles with 91% success. It seems that the 3D bifurcating scaffold might contribute towards conveying detailed neural control and sensory feedback to users of prosthetic devices, and thus could improve the quality of their daily life.
Collapse
Affiliation(s)
- Irina I Stoyanova
- Neurotechnology Group, Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Sciences, Institute for Biomedical Engineering and Technical Medicine MIRA, University of Twente, Enschede, The Netherlands
| | | | | |
Collapse
|
26
|
El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob Cardiol Sci Pract 2013; 2013:316-42. [PMID: 24689032 PMCID: PMC3963751 DOI: 10.5339/gcsp.2013.38] [Citation(s) in RCA: 413] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/11/2013] [Indexed: 12/18/2022] Open
Abstract
Designing of biologically active scaffolds with optimal characteristics is one of the key factors for successful tissue engineering. Recently, hydrogels have received a considerable interest as leading candidates for engineered tissue scaffolds due to their unique compositional and structural similarities to the natural extracellular matrix, in addition to their desirable framework for cellular proliferation and survival. More recently, the ability to control the shape, porosity, surface morphology, and size of hydrogel scaffolds has created new opportunities to overcome various challenges in tissue engineering such as vascularization, tissue architecture and simultaneous seeding of multiple cells. This review provides an overview of the different types of hydrogels, the approaches that can be used to fabricate hydrogel matrices with specific features and the recent applications of hydrogels in tissue engineering. Special attention was given to the various design considerations for an efficient hydrogel scaffold in tissue engineering. Also, the challenges associated with the use of hydrogel scaffolds were described.
Collapse
Affiliation(s)
- Ibrahim M El-Sherbiny
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, 12588 Giza, Egypt
| | - Magdi H Yacoub
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
27
|
Zavan B, Abatangelo G, Mazzoleni F, Bassetto F, Cortivo R, Vindigni V. New 3D hyaluronan-based scaffold forin vitroreconstruction of the rat sciatic nerve. Neurol Res 2013; 30:190-6. [DOI: 10.1179/174313208x281082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Biomaterials for spinal cord repair. Neurosci Bull 2013; 29:445-59. [PMID: 23864367 DOI: 10.1007/s12264-013-1362-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/14/2013] [Indexed: 01/11/2023] Open
Abstract
Spinal cord injury (SCI) results in permanent loss of function leading to often devastating personal, economic and social problems. A contributing factor to the permanence of SCI is that damaged axons do not regenerate, which prevents the re-establishment of axonal circuits involved in function. Many groups are working to develop treatments that address the lack of axon regeneration after SCI. The emergence of biomaterials for regeneration and increased collaboration between engineers, basic and translational scientists, and clinicians hold promise for the development of effective therapies for SCI. A plethora of biomaterials is available and has been tested in various models of SCI. Considering the clinical relevance of contusion injuries, we primarily focus on polymers that meet the specific criteria for addressing this type of injury. Biomaterials may provide structural support and/or serve as a delivery vehicle for factors to arrest growth inhibition and promote axonal growth. Designing materials to address the specific needs of the damaged central nervous system is crucial and possible with current technology. Here, we review the most prominent materials, their optimal characteristics, and their potential roles in repairing and regenerating damaged axons following SCi.
Collapse
|
29
|
Göktürk I, Karakoç V, Onur MA, Denizli A. Characterization and cellular interaction of fluorescent-labeled PHEMA nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 41:78-84. [DOI: 10.3109/21691401.2012.742099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
30
|
Das D, Das R, Ghosh P, Dhara S, Panda AB, Pal S. Dextrin cross linked with poly(HEMA): a novel hydrogel for colon specific delivery of ornidazole. RSC Adv 2013. [DOI: 10.1039/c3ra44716b] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
31
|
Hanawa T. Research and development of metals for medical devices based on clinical needs. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064102. [PMID: 27877526 PMCID: PMC5099759 DOI: 10.1088/1468-6996/13/6/064102] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 12/13/2012] [Accepted: 10/18/2012] [Indexed: 05/27/2023]
Abstract
The current research and development of metallic materials used for medicine and dentistry is reviewed. First, the general properties required of metals used in medical devices are summarized, followed by the needs for the development of α + β type Ti alloys with large elongation and β type Ti alloys with a low Young's modulus. In addition, nickel-free Ni-Ti alloys and austenitic stainless steels are described. As new topics, we review metals that are bioabsorbable and compatible with magnetic resonance imaging. Surface treatment and modification techniques to improve biofunctions and biocompatibility are categorized, and the related problems are presented at the end of this review. The metal surface may be biofunctionalized by various techniques, such as dry and wet processes. These techniques make it possible to apply metals to scaffolds in tissue engineering.
Collapse
|
32
|
HUANG YICHENG, HUANG YIYOU. TISSUE ENGINEERING FOR NERVE REPAIR. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s101623720600018x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nerve regeneration is a complex biological phenomenon. Once the nervous system is impaired, its recovery is difficult and malfunctions in other parts of the body may occur because mature neurons don't undergo cell division. To increase the prospects of axonal regeneration and functional recovery, researches have focused on designing “nerve guidance channels” or “nerve conduits”. For developing tissue engineered nerve conduits, four components come to mind, including a scaffold for axonal proliferation, supporting cells such as Schwann cells, growth factors, and extracelluar matrix. This article reviews the nervous system physiology, the factors that are critical for nerve repair, and the advanced technologies that are explored to fabricate nerve conduits. Furthermore, we also introduce a new method we developed to create longitudinally oriented channels within biodegradable polymers, Chitosan and PLGA, using a combined lyophilizing and wire-heating process. This innovative method using Ni-Cr wires as mandrels to create nerve guidance channels. The process is easy, straightforward, highly reproducible, and could easily be tailored to other polymer and solvent systems. These scaffolds could be useful for guided regeneration after transection injury in either the peripheral nerve or spinal cord.
Collapse
Affiliation(s)
- YI-CHENG HUANG
- Institute of Biomedical Engineering, College of Medicine and Engineering, National Taiwan University, Taipei, Taiwan
| | - YI-YOU HUANG
- Institute of Biomedical Engineering, College of Medicine and Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
33
|
Gupta R, Bajpai AK. Magnetically Guided Release of Ciprofloxacin from Superparamagnetic Polymer Nanocomposites. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:893-918. [DOI: 10.1163/092050610x496387] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Rashmi Gupta
- a Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College, Jabalpur (M.P.)–482001, India
| | - A. K. Bajpai
- b Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College, Jabalpur (M.P.)–482001, India.
| |
Collapse
|
34
|
Sedaghati T, Yang SY, Mosahebi A, Alavijeh MS, Seifalian AM. Nerve regeneration with aid of nanotechnology and cellular engineering. Biotechnol Appl Biochem 2012; 58:288-300. [PMID: 21995532 DOI: 10.1002/bab.51] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Repairing nerve defects with large gaps remains one of the most operative challenges for surgeons. Incomplete recovery from peripheral nerve injuries can produce a diversity of negative outcomes, including numbness, impairment of sensory or motor function, possibility of developing chronic pain, and devastating permanent disability. In the last few years, numerous microsurgical techniques, such as coaptation, nerve autograft, and different biological or polymeric nerve conduits, have been developed to reconstruct a long segment of damaged peripheral nerve. A few of these techniques are promising and have become popular among surgeons. Advancements in the field of tissue engineering have led to development of synthetic nerve conduits as an alternative for the nerve autograft technique, which is the current practice to bridge nerve defects with gaps larger than 30 mm. However, to date, despite significant progress in this field, no material has been found to be an ideal alternative to the nerve autograft. This article briefly reviews major up-to-date published studies using different materials as an alternative to the nerve autograft to bridge peripheral nerve gaps in an attempt to assess their ability to support and enhance nerve regeneration and their prospective drawbacks, and also highlights the promising hope for nerve regeneration with the next generation of nerve conduits, which has been significantly enhanced with the tissue engineering approach, especially with the aid of nanotechnology in development of the three-dimensional scaffold. The goal is to determine potential alternatives for nerve regeneration and repair that are simply and directly applicable in clinical conditions.
Collapse
Affiliation(s)
- Tina Sedaghati
- UCL Centre for Nanotechnology and Regenerative Medicine, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | | | | | | | | |
Collapse
|
35
|
Huang W, Begum R, Barber T, Ibba V, Tee N, Hussain M, Arastoo M, Yang Q, Robson L, Lesage S, Gheysens T, Skaer NJ, Knight D, Priestley J. Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats. Biomaterials 2012; 33:59-71. [DOI: 10.1016/j.biomaterials.2011.09.030] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/13/2011] [Indexed: 01/03/2023]
|
36
|
Hanawa T. A comprehensive review of techniques for biofunctionalization of titanium. J Periodontal Implant Sci 2011; 41:263-72. [PMID: 22324003 PMCID: PMC3259234 DOI: 10.5051/jpis.2011.41.6.263] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/10/2011] [Indexed: 11/08/2022] Open
Abstract
A number of surface modification techniques using immobilization of biofunctional molecules of Titanium (Ti) for dental implants as well as surface properties of Ti and Ti alloys have been developed. The method using passive surface oxide film on titanium takes advantage of the fact that the surface film on Ti consists mainly of amorphous or low-crystalline and non-stoichiometric TiO(2). In another method, the reconstruction of passive films, calcium phosphate naturally forms on Ti and its alloys, which is characteristic of Ti. A third method uses the surface active hydroxyl group. The oxide surface immediately reacts with water molecules and hydroxyl groups are formed. The hydroxyl groups dissociate in aqueous solutions and show acidic and basic properties. Several additional methods are also possible, including surface modification techniques, immobilization of poly(ethylene glycol), and immobilization of biomolecules such as bone morphogenetic protein, peptide, collagen, hydrogel, and gelatin.
Collapse
Affiliation(s)
- Takao Hanawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
37
|
Bell JHA, Haycock JW. Next generation nerve guides: materials, fabrication, growth factors, and cell delivery. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:116-28. [PMID: 22010760 DOI: 10.1089/ten.teb.2011.0498] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nerve guides are increasingly being used surgically to repair acute peripheral nerve injuries. This is not only due to an increase in the number of commercially available devices, but also clinical acceptance. However, regeneration distance is typically limited to 20-25 mm, in part due to the basic tubular design. A number of experimental studies have shown improvements in nerve regeneration distance when conduits incorporate coatings, internal scaffolds, topographical cues, or the delivery of support cells. Current studies on designing nerve guides for maximizing nerve regeneration focus both on cell-containing and cell-free devices, the latter being clinically attractive as "off the shelf" products. Arguably better results are obtained when conduits are used in conjunction with support cells (e.g., Schwann cells or stem cells) that can improve regeneration distance and speed of repair, and provide informative experimental data on how Schwann and neuronal cells respond in regenerating injured nerves. In this review we discuss the range of current nerve guides commercially available and appraise experimental studies in the context of the future design of nerve guides for clinical use.
Collapse
Affiliation(s)
- Juliet H A Bell
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
38
|
Kubinová Š, Horák D, Hejčl A, Plichta Z, Kotek J, Syková E. Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair. J Biomed Mater Res A 2011; 99:618-29. [DOI: 10.1002/jbm.a.33221] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 07/21/2011] [Indexed: 11/12/2022]
|
39
|
Zhu Y, Wang A, Patel S, Kurpinski K, Diao E, Bao X, Kwong G, Young WL, Li S. Engineering bi-layer nanofibrous conduits for peripheral nerve regeneration. Tissue Eng Part C Methods 2011; 17:705-15. [PMID: 21501089 DOI: 10.1089/ten.tec.2010.0565] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trauma injuries often cause peripheral nerve damage and disability. A goal in neural tissue engineering is to develop synthetic nerve conduits for peripheral nerve regeneration having therapeutic efficacy comparable to that of autografts. Nanofibrous conduits with aligned nanofibers have been shown to promote nerve regeneration, but current fabrication methods rely on rolling a fibrous sheet into the shape of a conduit, which results in a graft with inconsistent size and a discontinuous joint or seam. In addition, the long-term effects of nanofibrous nerve conduits, in comparison with autografts, are still unknown. Here we developed a novel one-step electrospinning process and, for the first time, fabricated a seamless bi-layer nanofibrous nerve conduit: the luminal layer having longitudinally aligned nanofibers to promote nerve regeneration, and the outer layer having randomly organized nanofibers for mechanical support. Long-term in vivo studies demonstrated that bi-layer aligned nanofibrous nerve conduits were superior to random nanofibrous conduits and had comparable therapeutic effects to autografts for nerve regeneration. In summary, we showed that the engineered nanostructure had a significant impact on neural tissue regeneration in situ. The results from this study will also lead to the scalable fabrication of engineered nanofibrous nerve conduits with designed nanostructure. This technology platform can be combined with drug delivery and cell therapies for tissue engineering.
Collapse
Affiliation(s)
- Yiqian Zhu
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720-1762, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang J, Li X. Enhancing protein resistance of hydrogels based on poly(2-hydroxyethyl methacrylate) and poly(2-methacryloyloxyethyl phosphorylcholine) with interpenetrating network structure. J Appl Polym Sci 2011. [DOI: 10.1002/app.33960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Mey J, Brook G, Hodde D, Kriebel A. Electrospun Fibers as Substrates for Peripheral Nerve Regeneration. BIOMEDICAL APPLICATIONS OF POLYMERIC NANOFIBERS 2011. [DOI: 10.1007/12_2011_122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Poly(amidoamine) Hydrogels as Scaffolds for Cell Culturing and Conduits for Peripheral Nerve Regeneration. INT J POLYM SCI 2011. [DOI: 10.1155/2011/161749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Biodegradable and biocompatible poly(amidoamine)-(PAA-) based hydrogels have been considered for different tissue engineering applications. First-generation AGMA1 hydrogels, amphoteric but prevailing cationic hydrogels containing carboxylic and guanidine groups as side substituents, show satisfactory results in terms of adhesion and proliferation properties towards different cell lines. Unfortunately, these hydrogels are very swellable materials, breakable on handling, and have been found inadequate for other applications. To overcome this problem, second-generation AGMA1 hydrogels have been prepared adopting a new synthetic method. These new hydrogels exhibit good biological propertiesin vitrowith satisfactory mechanical characteristics. They are obtained in different forms and shapes and successfully testedin vivofor the regeneration of peripheral nerves. This paper reports on our recent efforts in the use of first-and second-generation PAA hydrogels as substrates for cell culturing and tubular scaffold for peripheral nerve regeneration.
Collapse
|
43
|
Gumera C, Rauck B, Wang Y. Materials for central nervous system regeneration: bioactive cues. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm04335d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Ellis-Behnke RG, Schneider GE. Peptide amphiphiles and porous biodegradable scaffolds for tissue regeneration in the brain and spinal cord. Methods Mol Biol 2011; 726:259-81. [PMID: 21424455 DOI: 10.1007/978-1-61779-052-2_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many promising strategies have been developed for controlling the release of drugs from scaffolds, yet there are still challenges that need to be addressed in order for these scaffolds to serve as successful treatments. The RADA4 self-assembling peptide spontaneously forms nanofibers, creating a scaffold-like tissue-bridging structure that provides a three-dimensional environment for the migration of living cells. We have found that RADA4: (1) facilitates the regeneration of axons in the brain of young and adult hamsters, leading to functional return of behavior and (2) demonstrates robust migration of host cells and growth of blood vessels and axons, leading to the repair of injured spinal cords in rats.
Collapse
Affiliation(s)
- Rutledge G Ellis-Behnke
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | |
Collapse
|
45
|
Obata M, Shimizu M, Ohta T, Matsushige A, Iwai K, Hirohara S, Tanihara M. Synthesis, characterization and cellular internalization of poly(2-hydroxyethyl methacrylate) bearing α-d-mannopyranose. Polym Chem 2011. [DOI: 10.1039/c0py00326c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Deumens R, Bozkurt A, Meek MF, Marcus MAE, Joosten EAJ, Weis J, Brook GA. Repairing injured peripheral nerves: Bridging the gap. Prog Neurobiol 2010; 92:245-76. [PMID: 20950667 DOI: 10.1016/j.pneurobio.2010.10.002] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 09/30/2010] [Accepted: 10/05/2010] [Indexed: 02/06/2023]
Abstract
Peripheral nerve injuries that induce gaps larger than 1-2 cm require bridging strategies for repair. Autologous nerve grafts are still the gold standard for such interventions, although alternative treatments, as well as treatments to improve the therapeutic efficacy of autologous nerve grafting are generating increasing interest. Investigations are still mostly experimental, although some clinical studies have been undertaken. In this review, we aim to describe the developments in bridging technology which aim to replace the autograft. A multi-disciplinary approach is of utmost importance to develop and optimise treatments of the most challenging peripheral nerve injuries.
Collapse
Affiliation(s)
- Ronald Deumens
- Department of Anesthesiology, Maastricht University Medical Center, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
47
|
Koh HS, Yong T, Teo WE, Chan CK, Puhaindran ME, Tan TC, Lim A, Lim BH, Ramakrishna S. In vivo study of novel nanofibrous intra-luminal guidance channels to promote nerve regeneration. J Neural Eng 2010; 7:046003. [PMID: 20551511 DOI: 10.1088/1741-2560/7/4/046003] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A novel nanofibrous construct for promoting peripheral nerve repair was fabricated and tested in a rat sciatic nerve defect model. The conduit is made out of bilayered nanofibrous membranes with the nanofibers longitudinally aligned in the lumen and randomly oriented on the outer surface. The intra-luminal guidance channel is made out of aligned nanofibrous yarns. In addition, biomolecules such as laminin and nerve growth factor were incorporated in the nanofibrous nerve construct to determine their efficacy in in vivo nerve regeneration. Muscle reinnervation, withdrawal reflex latency, histological, axon density and electrophysiology tests were carried out to compare the efficacy of nanofibrous constructs with an autograft. Our study showed mixed results when comparing the artificial constructs with an autograft. In some cases, the nanofibrous conduit with aligned nanofibrous yarn as an intra-luminal guidance channel performs better than the autograft in muscle reinnervation and withdrawal reflex latency tests. However, the axon density count is highest in the autograft at mid-graft. Functional recovery was improved with the use of the nerve construct which suggested that this nerve implant has the potential for clinical usage in reconstructing peripheral nerve defects.
Collapse
Affiliation(s)
- H S Koh
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Straley KS, Foo CWP, Heilshorn SC. Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotrauma 2010; 27:1-19. [PMID: 19698073 DOI: 10.1089/neu.2009.0948] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The highly debilitating nature of spinal cord injuries has provided much inspiration for the design of novel biomaterials that can stimulate cellular regeneration and functional recovery. Many experts agree that the greatest hope for treatment of spinal cord injuries will involve a combinatorial approach that integrates biomaterial scaffolds, cell transplantation, and molecule delivery. This manuscript presents a comprehensive review of biomaterial-scaffold design strategies currently being applied to the development of nerve guidance channels and hydrogels that more effectively stimulate spinal cord tissue regeneration. To enhance the regenerative capacity of these two scaffold types, researchers are focusing on optimizing the mechanical properties, cell-adhesivity, biodegradability, electrical activity, and topography of synthetic and natural materials, and are developing mechanisms to use these scaffolds to deliver cells and biomolecules. Developing scaffolds that address several of these key design parameters will lead to more successful therapies for the regeneration of spinal cord tissue.
Collapse
Affiliation(s)
- Karin S Straley
- Chemical Engineering Department, Stanford University, Stanford, California 4305-4045, USA
| | | | | |
Collapse
|
49
|
Scanga VI, Goraltchouk A, Nussaiba N, Shoichet MS, Morshead CM. Biomaterials for neural-tissue engineering — Chitosan supports the survival, migration, and differentiation of adult-derived neural stem and progenitor cells. CAN J CHEM 2010. [DOI: 10.1139/v09-171] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neural precursor cells (NPCs or stem and progenitor cells) are promising in transplantation strategies to treat an injury to the central nervous system, such as a spinal cord injury (SCI), because of their ability to differentiate into neurons and glia. Transplantation studies to date have met with limited success for a number of reasons, including poor cell survival. One way to encourage cell survival in injured tissue is to provide the cells with a scaffold to enhance their survival, their integration, and potentially their differentiation into appropriate cell types. Towards this end, four amine-functionalized hydrogels were screened in vitro for adult murine NPC viability, migration, and differentiation: chitosan, poly(oligoethylene oxide dimethacrylate-co-2-amino ethyl methacrylate), blends of poly(oligoethylene oxide dimethacrylate-co-2-amino ethyl methacrylate), and poly(vinyl alcohol), and poly(glycerol dimethacrylate-co-2-amino ethyl methacrylate). The greatest cell viability was found on chitosan at all times examined, Chitosan had the greatest surface amine content and the lowest equilibrium water content, which likely contributed to the greater NPC viability observed over three weeks in culture. Only chitosan supported survival of multipotent stem cells and the differentiation of the progenitors into neurons, astrocytes, and oligodendrocytes. Plating intact NPC colonies revealed greater cell migration on chitosan relative to the other hydrogels. Importantly, long term cultures on chitosan showed no significant difference in total cell counts over time, suggesting no net cell growth. Together, these findings reveal chitosan as a promising material for the delivery of adult NPC cell-based therapies.
Collapse
Affiliation(s)
- Vanessa I. Scanga
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alex Goraltchouk
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nasser Nussaiba
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Molly S. Shoichet
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Cindi M. Morshead
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
50
|
Affiliation(s)
- Molly S. Shoichet
- Department of Chemical Engineering and Applied Chemistry, Department of Chemistry, Institute of Biomaterials and Biomedical Engineering, Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Room 514, Toronto, ON M5S3E1, Canada
| |
Collapse
|