1
|
Sun M, LaSala VR, Giuglaris C, Blitzer D, Jackman S, Ustunel S, Rajesh K, Kalfa D. Cardiovascular patches applied in congenital cardiac surgery: Current materials and prospects. Bioeng Transl Med 2025; 10:e10706. [PMID: 39801761 PMCID: PMC11711229 DOI: 10.1002/btm2.10706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 07/17/2024] [Indexed: 01/16/2025] Open
Abstract
Congenital Heart Defects (CHDs) are the most common congenital anomalies, affecting between 4 and 75 per 1000 live births. Cardiovascular patches (CVPs) are frequently used as part of the surgical armamentarium to reconstruct cardiovascular structures to correct CHDs in pediatric patients. This review aims to evaluate the history of cardiovascular patches, currently available options, clinical applications, and important features of these patches. Performance and outcomes of different patch materials are assessed to provide reference points for clinicians. The target audience includes clinicians seeking data on clinical performance as they make choices between different patch products, as well as scientists and engineers working to develop patches or synthesize new patch materials.
Collapse
Affiliation(s)
- Mingze Sun
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | | | - Caroline Giuglaris
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
- UMR 168 Laboratoire Physique des Cellules et CancerInstitut Curie, PSL Research University, Sorbonne Université, CNRSParisFrance
| | - David Blitzer
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Sophia Jackman
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Senay Ustunel
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Kavya Rajesh
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - David Kalfa
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac SurgeryNew‐York Presbyterian—Morgan Stanley Children's Hospital, Columbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
2
|
Adipose-Derived Stem Cells in Reinforced Collagen Gel: A Comparison between Two Approaches to Differentiation towards Smooth Muscle Cells. Int J Mol Sci 2023; 24:ijms24065692. [PMID: 36982766 PMCID: PMC10058441 DOI: 10.3390/ijms24065692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Scaffolds made of degradable polymers, such as collagen, polyesters or polysaccharides, are promising matrices for fabrication of bioartificial vascular grafts or patches. In this study, collagen isolated from porcine skin was processed into a gel, reinforced with collagen particles and with incorporated adipose tissue-derived stem cells (ASCs). The cell-material constructs were then incubated in a DMEM medium with 2% of FS (DMEM_part), with added polyvinylalcohol nanofibers (PVA_part sample), and for ASCs differentiation towards smooth muscle cells (SMCs), the medium was supplemented either with human platelet lysate released from PVA nanofibers (PVA_PL_part) or with TGF-β1 + BMP-4 (TGF + BMP_part). The constructs were further endothelialised with human umbilical vein endothelial cells (ECs). The immunofluorescence staining of alpha-actin and calponin, and von Willebrand factor, was performed. The proteins involved in cell differentiation, the extracellular matrix (ECM) proteins, and ECM remodelling proteins were evaluated by mass spectrometry on day 12 of culture. Mechanical properties of the gels with ASCs were measured via an unconfined compression test on day 5. Gels evinced limited planar shrinkage, but it was higher in endothelialised TGF + BMP_part gel. Both PVA_PL_part samples and TGF + BMP_part samples supported ASC growth and differentiation towards SMCs, but only PVA_PL_part supported homogeneous endothelialisation. Young modulus of elasticity increased in all samples compared to day 0, and PVA_PL_part gel evinced a slightly higher ratio of elastic energy. The results suggest that PVA_PL_part collagen construct has the highest potential to remodel into a functional vascular wall.
Collapse
|
3
|
Vascular Remodeling of Clinically Used Patches and Decellularized Pericardial Matrices Recellularized with Autologous or Allogeneic Cells in a Porcine Carotid Artery Model. Int J Mol Sci 2022; 23:ijms23063310. [PMID: 35328732 PMCID: PMC8954945 DOI: 10.3390/ijms23063310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Cardiovascular surgery is confronted by a lack of suitable materials for patch repair. Acellular animal tissues serve as an abundant source of promising biomaterials. The aim of our study was to explore the bio-integration of decellularized or recellularized pericardial matrices in vivo. Methods: Porcine (allograft) and ovine (heterograft, xenograft) pericardia were decellularized using 1% sodium dodecyl sulfate ((1) Allo-decel and (2) Xeno-decel). We used two cell types for pressure-stimulated recellularization in a bioreactor: autologous adipose tissue-derived stromal cells (ASCs) isolated from subcutaneous fat of pigs ((3) Allo-ASC and (4) Xeno-ASC) and allogeneic Wharton’s jelly mesenchymal stem cells (WJCs) ((5) Allo-WJC and (6) Xeno-WJC). These six experimental patches were implanted in porcine carotid arteries for one month. For comparison, we also implanted six types of control patches, namely, arterial or venous autografts, expanded polytetrafluoroethylene (ePTFE Propaten® Gore®), polyethylene terephthalate (PET Vascutek®), chemically stabilized bovine pericardium (XenoSure®), and detoxified porcine pericardium (BioIntegral® NoReact®). The grafts were evaluated through the use of flowmetry, angiography, and histological examination. Results: All grafts were well-integrated and patent with no signs of thrombosis, stenosis, or aneurysm. A histological analysis revealed that the arterial autograft resembled a native artery. All other control and experimental patches developed neo-adventitial inflammation (NAI) and neo-intimal hyperplasia (NIH), and the endothelial lining was present. NAI and NIH were most prominent on XenoSure® and Xeno-decel and least prominent on NoReact®. In xenografts, the degree of NIH developed in the following order: Xeno-decel > Xeno-ASC > Xeno-WJC. NAI and patch resorption increased in Allo-ASC and Xeno-ASC and decreased in Allo-WJC and Xeno-WJC. Conclusions: In our setting, pre-implant seeding with ASC or WJC had a modest impact on vascular patch remodeling. However, ASC increased the neo-adventitial inflammatory reaction and patch resorption, suggesting accelerated remodeling. WJC mitigated this response, as well as neo-intimal hyperplasia on xenografts, suggesting immunomodulatory properties.
Collapse
|
4
|
Kazemi T, Mohammadpour AA, Matin MM, Mahdavi-Shahri N, Dehghani H, Kazemi Riabi SH. Decellularized bovine aorta as a promising 3D elastin scaffold for vascular tissue engineering applications. Regen Med 2021; 16:1037-1050. [PMID: 34852636 DOI: 10.2217/rme-2021-0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To evaluate the suitability of using aorta elastin scaffold, in combination with human adipose-derived mesenchymal stem cells (hAd-MSCs), as an approach for cardiovascular tissue engineering. Materials & Methods: Human adipose-derived MSCs were seeded on elastin samples of decellularized bovine aorta. The samples were cultured in vitro to investigate the inductive effects of this scaffold on the cells. The results were evaluated using histological, and immunohistochemical methods, as well as MTT assay, DNA content, reverse transcription-PCR and scanning electron microscopy. Results: Histological staining and DNA content confirmed the efficacy of decellularization procedure (82% DNA removal). MTT assay showed the construct's ability to support cell viability and proliferation. Cell differentiation was confirmed by reverse transcription-PCR and positive immunohistochemistry for alfa smooth muscle actin and von Willebrand. Conclusion: The prepared aortic elastin samples act as a potential scaffold, in combination with MSCs, for applications in cardiovascular tissue engineering. Further experiments in animal models are required to confirm this.
Collapse
Affiliation(s)
- Tahmineh Kazemi
- Department of Basic Sciences, Faculty of Veterinary Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad A Mohammadpour
- Department of Basic Sciences, Faculty of Veterinary Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics & Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell & Regenerative Medicine Research Group; Iranian Academic Center for Education, Culture & Research (ACECR) Khorasan Razavi Branch, Mashhad, Iran
| | - Nasser Mahdavi-Shahri
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics & Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Science, Ferdowsi University of Mashhad, Mashhad, Iran; Embryonic & Stem Cell Biology & Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed H Kazemi Riabi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Scioli MG, Storti G, Bielli A, Sanchez M, Scimeca M, Gimble JM, Cervelli V, Orlandi A. CD146 expression regulates osteochondrogenic differentiation of human adipose-derived stem cells. J Cell Physiol 2021; 237:589-602. [PMID: 34287857 DOI: 10.1002/jcp.30506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/12/2023]
Abstract
Tissue engineering aims to develop innovative approaches to repair tissue defects. The use of adipose-derived stem cells (ASCs) in tissue regeneration was extensively investigated for osteochondrogenesis. Among the ASC population, ASCs expressing the CD146 were demonstrated to be multipotent and considered as perivascular stem cells, although the functional role of CD146 expression in these cells remains unclear. Herein, we investigated the influence of CD146 expression on osteochondrogenic differentiation of ASCs. Our results showed that, in two-dimensional culture systems, sorted CD146+ ASCs proliferated less and displayed higher adipogenic and chondrogenic potential than CD146- ASCs. The latter demonstrated a higher osteogenic capacity. Besides this, CD146+ ASCs in three-dimensional Matrigel/endothelial growth medium (EGM) cultures showed the highest angiogenic capability. When cultured in three-dimensional collagen scaffolds, CD146+ ASCs showed a spontaneous chondrogenic differentiation, further enhanced by the EGM medium's addition. Finally, CD146- ASCs seeded on hexafluoroisopropanol silk scaffolds displayed a greater spontaneous osteogenetic capacity. Altogether, these findings demonstrated a functional and relevant influence of CD146 expression in ASC properties and osteochondrogenic commitment. Exploiting the combination of specific differentiation properties of ASC subpopulations and appropriate culture systems could represent a promising strategy to improve the efficacy of new regenerative therapies.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Alessandra Bielli
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Sanchez
- Major Equipments and Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Manuel Scimeca
- Anatomic Pathology, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Jeffrey M Gimble
- Department of Pharmacology, Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
6
|
Matsuzaki Y, Wiet MG, Boe BA, Shinoka T. The Real Need for Regenerative Medicine in the Future of Congenital Heart Disease Treatment. Biomedicines 2021; 9:478. [PMID: 33925558 PMCID: PMC8145070 DOI: 10.3390/biomedicines9050478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 11/23/2022] Open
Abstract
Bioabsorbable materials made from polymeric compounds have been used in many fields of regenerative medicine to promote tissue regeneration. These materials replace autologous tissue and, due to their growth potential, make excellent substitutes for cardiovascular applications in the treatment of congenital heart disease. However, there remains a sizable gap between their theoretical advantages and actual clinical application within pediatric cardiovascular surgery. This review will focus on four areas of regenerative medicine in which bioabsorbable materials have the potential to alleviate the burden where current treatment options have been unable to within the field of pediatric cardiovascular surgery. These four areas include tissue-engineered pulmonary valves, tissue-engineered patches, regenerative medicine options for treatment of pulmonary vein stenosis and tissue-engineered vascular grafts. We will discuss the research and development of biocompatible materials reported to date, the evaluation of materials in vitro, and the results of studies that have progressed to clinical trials.
Collapse
Affiliation(s)
- Yuichi Matsuzaki
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, T2294, Columbus, OH 43205, USA; (Y.M.); (M.G.W.)
| | - Matthew G. Wiet
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, T2294, Columbus, OH 43205, USA; (Y.M.); (M.G.W.)
| | - Brian A. Boe
- Department of Cardiology, The Heart Center, Nationwide Children’s Hospital, 700 Children’s Drive, T2294, Columbus, OH 43205, USA;
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, T2294, Columbus, OH 43205, USA; (Y.M.); (M.G.W.)
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children’s Hospital, 700 Children’s Drive, T2294, Columbus, OH 43205, USA
| |
Collapse
|
7
|
Bombaldi de Souza FC, Bombaldi de Souza RF, Drouin B, Popat KC, Mantovani D, Moraes ÂM. Polysaccharide-based tissue-engineered vascular patches. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109973. [PMID: 31499972 DOI: 10.1016/j.msec.2019.109973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/06/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Coronary artery and peripheral vascular diseases are the leading cause of morbidity and mortality worldwide and often require surgical intervention to replace damaged blood vessels, including the use of vascular patches in endarterectomy procedures. Tissue engineering approaches can be used to obtain biocompatible and biodegradable materials directed to this application. In this work, dense or porous scaffolds constituted of chitosan (Ch) complexed with alginate (A) or pectin (P) were fabricated and characterized considering their application as tissue-engineered vascular patches. Scaffolds fabricated with alginate presented higher culture medium uptake capacity (up to 17 g/g) than materials produced with pectin. A degradation study of the patches in the presence of lysozyme showed longer-term stability for Ch-P-based scaffolds. Pectin-containing matrices presented higher elastic modulus (around 280 kPa) and ability to withstand larger deformations. Moreover, these materials demonstrated better performance when tested for hemocompatibility, with lower levels of platelet adhesion and activation. Human smooth muscle cells (HSMC) adhered, spread and proliferated better on matrices produced with pectin, probably as a consequence of cell response to higher stiffness of this material. Thus, the outcomes of this study demonstrate that Ch-P-based scaffolds present superior characteristics for the application as vascular patches. Despite polysaccharides are yet underrated in this field, this work shows that biocompatible tridimensional structures based on these polymers present high potential to be applied for the reconstruction and regeneration of vascular tissues.
Collapse
Affiliation(s)
- Fernanda Carla Bombaldi de Souza
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Renata Francielle Bombaldi de Souza
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Bernard Drouin
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec, QC, Canada
| | - Ketul C Popat
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University (CSU), Fort Collins, CO, USA
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec, QC, Canada
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
8
|
Li N, Rickel AP, Sanyour HJ, Hong Z. Vessel graft fabricated by the on-site differentiation of human mesenchymal stem cells towards vascular cells on vascular extracellular matrix scaffold under mechanical stimulation in a rotary bioreactor. J Mater Chem B 2019; 7:2703-2713. [PMID: 32255003 PMCID: PMC11299192 DOI: 10.1039/c8tb03348j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Although a significant number of studies on vascular tissue engineering have been reported, the current availability of vessel substitutes in the clinic remains limited mainly due to the mismatch of their mechanical properties and biological functions with native vessels. In this study, a novel approach to fabricating a vessel graft for vascular tissue engineering was developed by promoting differentiation of human bone marrow mesenchymal stem cells (MSCs) into endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) on a native vascular extracellular matrix (ECM) scaffold in a rotary bioreactor. The expression levels of CD31 and vWF, and the LDL uptake capacity as well as the angiogenesis capability of the EC-like cells in the dynamic culture system were significantly enhanced compared to the static system. In addition, α-actin and smoothelin expression, and contractility of VSMC-like cells harvested from the dynamic model were much higher than those in a static culture system. The combination of on-site differentiation of stem cells towards vascular cells in the natural vessel ECM scaffold and maturation of the resulting vessel construct in a dynamic cell culture environment provides a promising approach to fabricating a clinically applicable vessel graft with similar mechanical properties and physiological functions to those of native blood vessels.
Collapse
Affiliation(s)
- Na Li
- Department of Biomedical Engineering, University of South Dakota, 4800 N Career Ave, Suite 221, Sioux Falls, SD, USA.
| | | | | | | |
Collapse
|
9
|
Jang S, Collin de l'Hortet A, Soto-Gutierrez A. Induced Pluripotent Stem Cell-Derived Endothelial Cells: Overview, Current Advances, Applications, and Future Directions. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:502-512. [PMID: 30653953 DOI: 10.1016/j.ajpath.2018.12.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 11/12/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Endothelial cells are prevalent in our bodies and serve multiple functions. By lining the vasculature, they provide a barrier to tissues and facilitate the transport of molecules and cells. They also maintain hemostasis and modulate blood flow by reacting to chemokines and releasing signal molecules. Thus, endothelial dysfunction leads to a wide variety of diseases, including atherosclerosis and coronary artery disease. In today's era of stem cell research, induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) have emerged for research and engineering purposes. They are not only tools for studying disease states but are also a crucial part of efforts to engineer vessel and organ grafts. As the techniques in cell culture, microfluidics, and personalized medicine concomitantly improve, the potential for iPSC-ECs is enormous. We review functions of endothelium in our bodies, the development and uses of iPSC-ECs, and the possible avenues to explore in the future.
Collapse
Affiliation(s)
- Sae Jang
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota.
| | | | | |
Collapse
|
10
|
Fitriatul N, Sha'ban M, Azhim A. Evaluation of recellularization on decellularized aorta scaffolds engineered by ultrasonication treatment. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:2072-2075. [PMID: 29060304 DOI: 10.1109/embc.2017.8037261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Aortic scaffolds prepared using sonication decellularization treatment has provided a successful medium for repopulation with vascular smooth muscle cells (VSMCs). The objective of this study is to explore the potential of tissue decellularization using ultrasonication treatment and its recellularization before implantation of the cell-seeded scaffolds into host. Aorta tissue samples are decellularized in 2% SDS with sonication for 10 hours and compared with the native tissues. The 4',6-diamidino-2-phenylindole (DAPI) staining was used to evaluate the decellularization and Hematoxylin-Eosin (H-E) staining was used to compare the VSMCs infiltrations onto the decellularized tissues at day-0 and day-6 after cell-seeding. The results histologically showed complete DNA removal from scaffolds after decellularization and subsequent recellularization resulted in successful VSMCs infiltration. Accordingly, the decellularized tissues treated with 2% SDS in sonication demonstrated successful VSMCs repopulation afterward and is speculated to have less toxicity and able to be effectively implanted into host.
Collapse
|
11
|
Farag A, Hashimi SM, Vaquette C, Bartold PM, Hutmacher DW, Ivanovski S. The effect of decellularized tissue engineered constructs on periodontal regeneration. J Clin Periodontol 2018; 45:586-596. [PMID: 29500836 DOI: 10.1111/jcpe.12886] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2018] [Indexed: 12/19/2022]
Abstract
AIM To evaluate the effect of decellularized tissue engineered constructs on cell differentiation in vitro and periodontal regeneration in vivo. MATERIALS AND METHODS Periodontal ligament cell (PDLC) sheets were loaded on polycaprolactone (PCL) scaffolds and then decellularized. Constructs were assessed for their effect on allogenic PDLC and mesenchymal stem cell (MSC) differentiation in vitro, as evaluated by gene expression of bone and periodontal ligament tissue markers post-seeding. Expression of MSC marker STRO-1 was assessed by immunostaining. Decellularized constructs were evaluated in a rat periodontal defect model to assess their biocompatibility and tissue integration. Microcomputed topography (μCT) and histological assessment were performed to assess the regenerative potential of the constructs at 2 and 4 weeks postoperatively. RESULTS There was upregulation of bone marker gene expression by PDLCs especially on the 14th day. MSCs lacked bone markers expression, but showed increased collagen I marker expression on day 14. STRO-1 expression by the MSCs decreased over the three timepoints when seeded on decellularized sheets. Histological assessment demonstrated the biocompatibility of the decellularized constructs in vivo. More new attachment formation was observed on the decellularized constructs compared to scaffold only controls. CONCLUSION Decellularized tissue engineered constructs are capable of inducing cell differentiation in vitro and have the potential to facilitate periodontal regeneration in vivo.
Collapse
Affiliation(s)
- Amro Farag
- School of Dentistry, The University of Queensland, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Brisbane, QLD, Australia
| | - Saeed M Hashimi
- Department of Basic Science, Biology Unit, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University (University of Dammam), Dammam, Saudi Arabia
| | - Cedryck Vaquette
- Institute of Health and Biomedical Innovation, Brisbane, QLD, Australia
| | - Peter M Bartold
- Colgate Australian Clinical, Dental Research Centre, Dental School, University of Adelaide, Adelaide, SA, Australia
| | | | - Saso Ivanovski
- School of Dentistry, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Lee JS, Choi YS, Cho SW. Decellularized Tissue Matrix for Stem Cell and Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:161-180. [DOI: 10.1007/978-981-13-0445-3_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Pangesty AI, Arahira T, Todo M. Development and characterization of hybrid tubular structure of PLCL porous scaffold with hMSCs/ECs cell sheet. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:165. [PMID: 28914404 DOI: 10.1007/s10856-017-5985-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Tissue engineering offers an alternate approach to providing vascular graft with potential to grow similar with native tissue by seeding autologous cells into biodegradable scaffold. In this study, we developed a combining technique by layering a sheet of cells onto a porous tubular scaffold. The cell sheet prepared from co-culturing human mesenchymal stem cells (hMSCs) and endothelial cells (ECs) were able to infiltrate through porous structure of the tubular poly (lactide-co-caprolactone) (PLCL) scaffold and further proliferated on luminal wall within a week of culture. Moreover, the co-culture cell sheet within the tubular scaffold has demonstrated a faster proliferation rate than the monoculture cell sheet composed of MSCs only. We also found that the co-culture cell sheet expressed a strong angiogenic marker, including vascular endothelial growth factor (VEGF) and its receptor (VEGFR), as compared with the monoculture cell sheet within 2 weeks of culture, indicating that the co-culture system could induce differentiation into endothelial cell lineage. This combined technique would provide cellularization and maturation of vascular construct in relatively short period with a strong expression of angiogenic properties.
Collapse
Affiliation(s)
- Azizah Intan Pangesty
- Department of Molecular and Material Science, Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| | | | - Mitsugu Todo
- Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan.
| |
Collapse
|
14
|
Lee S, Lee K, Kim SH, Jung Y. Enhanced Cartilaginous Tissue Formation with a Cell Aggregate-Fibrin-Polymer Scaffold Complex. Polymers (Basel) 2017; 9:E348. [PMID: 30971025 PMCID: PMC6418534 DOI: 10.3390/polym9080348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 12/23/2022] Open
Abstract
Cell density is one of the factors required in the preparation of engineered cartilage from mesenchymal stem cells (MSCs). Additionally, it is well known for having a significant role in chemical and physical stimulations when stem cells undergo chondrogenic differentiation. Here, we developed an engineered cartilage with a cell aggregate-hydrogel-polymer scaffold complex capable of inducing the effective regeneration of cartilage tissue similar to natural cartilage while retaining a high mechanical strength, flexibility, and morphology. Cell aggregates were generated by the hanging drop method with rabbit bone marrow stromal cells (BMSCs), and poly (lactide-co-caprolactone) (PLCL) scaffolds were fabricated with 78.3 ± 5.3% porosity and a 300⁻500 μm pore size with a gel-pressing method. We prepared the cell aggregate-fibrin-poly (lactide-co-caprolactone) (PLCL) scaffold complex, in which the cell aggregates were evenly dispersed in the fibrin, and they were immobilized onto the surface of the polymer scaffold while filling up the pores. To examine the chondrogenic differentiation of seeded BMSCs and the formation of chondral extracellular matrix onto the complexes, they were cultured in vitro or subcutaneously implanted into nude mice for up to eight weeks. The results of the in vitro and in vivo studies revealed that the accumulation of the chondral extracellular matrices was increased on the cell aggregate-fibrin-PLCL scaffold complexes (CAPs) compared to the single cell-fibrin-PLCL scaffold complexes (SCPs). Additionally, we examined whether the mature and well-developed cartilaginous tissues and lacunae structures typical of mature cartilage were evenly distributed in the CAPs. Consequently, the cell aggregates in the hybrid scaffolds of fibrin gels and elastic PLCL scaffolds can induce themselves to differentiate into chondrocytes, maintain their phenotypes, enhance glycosaminoglycan (GAG) production, and improve the quality of cartilaginous tissue formed in vitro and in vivo.
Collapse
Affiliation(s)
- Soojin Lee
- Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-Gil, Seoungbuk-gu, Seoul 02792, Korea.
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea.
| | - Kangwon Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea.
- Advanced Institutes of Convergence Technology, Gyeonggi-do 16229, Korea.
| | - Soo Hyun Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-Gil, Seoungbuk-gu, Seoul 02792, Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-Gil, Seoungbuk-gu, Seoul 02792, Korea.
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea.
| |
Collapse
|
15
|
Buscemi S, Palumbo V, Maffongelli A, Fazzotta S, Palumbo F, Licciardi M, Fiorica C, Puleio R, Cassata G, Fiorello L, Buscemi G, lo Monte A. Electrospun PHEA-PLA/PCL Scaffold for Vascular Regeneration: A Preliminary in Vivo Evaluation. Transplant Proc 2017; 49:716-721. [DOI: 10.1016/j.transproceed.2017.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Remuzzi A, Figliuzzi M, Bonandrini B, Silvani S, Azzollini N, Nossa R, Benigni A, Remuzzi G. Experimental Evaluation of Kidney Regeneration by Organ Scaffold Recellularization. Sci Rep 2017; 7:43502. [PMID: 28266553 PMCID: PMC5339865 DOI: 10.1038/srep43502] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 01/27/2017] [Indexed: 12/20/2022] Open
Abstract
The rising number of patients needing renal replacement therapy, alongside the significant clinical and economic limitations of current therapies, creates an imperative need for new strategies to treat kidney diseases. Kidney bioengineering through the production of acellular scaffolds and recellularization with stem cells is one potential strategy. While protocols for obtaining organ scaffolds have been developed successfully, scaffold recellularization is more challenging. We evaluated the potential of in vivo and in vitro kidney scaffold recellularization procedures. Our results show that acellular scaffolds implanted in rats cannot be repopulated with host cells, and in vitro recellularization is necessary. However, we obtained very limited and inconsistent cell seeding when using different infusion protocols, regardless of injection site. We also obtained experimental and theoretical data indicating that uniform cell delivery into the kidney scaffolds cannot be obtained using these infusion protocols, due to the permeability of the extracellular matrix of the scaffold. Our results highlight the major physical barriers that limit in vitro recellularization of acellular kidney scaffolds and the obstacles that must be investigated to effectively advance this strategy for regenerative medicine.
Collapse
Affiliation(s)
- Andrea Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori Via Stezzano 87 - 24126 Bergamo, Italy
- Department of Management, Information and Production Engineering, University of Bergamo, Viale Marconi 5 - 24044 Dalmine Bergamo, Italy
| | - Marina Figliuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori Via Stezzano 87 - 24126 Bergamo, Italy
| | - Barbara Bonandrini
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori Via Stezzano 87 - 24126 Bergamo, Italy
| | - Sara Silvani
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori Via Stezzano 87 - 24126 Bergamo, Italy
| | - Nadia Azzollini
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori Via Stezzano 87 - 24126 Bergamo, Italy
| | - Roberta Nossa
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori Via Stezzano 87 - 24126 Bergamo, Italy
| | - Ariela Benigni
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori Via Stezzano 87 - 24126 Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori Via Stezzano 87 - 24126 Bergamo, Italy
- Unit of Nephrology and Dialysis, Azienda Ospedaliera Papa Giovanni XXIII Piazza OMS 1 – 24127 Bergamo, Italy
- Department of Biomedical and Clinical Sciences, University of Milano, Via Festa del Perdono 7 -20122 Milano, Italy
| |
Collapse
|
17
|
Negishi J, Hashimoto Y, Yamashita A, Zhang Y, Kimura T, Kishida A, Funamoto S. Evaluation of small-diameter vascular grafts reconstructed from decellularized aorta sheets. J Biomed Mater Res A 2017; 105:1293-1298. [PMID: 28130834 DOI: 10.1002/jbm.a.36017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/12/2017] [Accepted: 01/23/2017] [Indexed: 12/29/2022]
Abstract
Following small-diameter vascular grafting, blood vessels fail to retain excellent antithrombotic function and therefore require application of antithrombogenic drugs. We have previously reported early attachment of endothelial cells to the luminal surface of high hydrostatic pressure (HHP)-decellularized arteries after transplantation. In addition, the graft retained antithrombotic function by endothelialization and remained open for several weeks. To fabricate tube grafts of optimal size and shape for small-diameter vascular grafting, we evaluated decellularized porcine aorta sheets as a suitable antithrombogenic material. Porcine aortic sheets were decellularized using detergent-based or HHP methods. The HHP-, but not detergent-based-, decellularized aortic sheets were verified to be acellular, and the mechanical properties of the native aortic sheet remained intact. To fabricate vascular grafts, the decellularized aortic sheets were rolled into tubes and secured using fibrin glue bonding. After implantation into a rat carotid artery model, the tubular grafts withstood normal blood pressure, mechanical beating, and pulsatile flow. After 3 weeks, the tubular grafts remained patent and recipient cell infiltration and cell attachment were observed on the luminal surface. These results indicate that HHP-decellularized aortic sheets may be useful as an antithrombogenic material for tubular vascular grafts. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1293-1298, 2017.
Collapse
Affiliation(s)
- Jun Negishi
- Faculty of Textile Science and Technology, Shinshu University, Tokida 3-15-1, Ueda, Nagano, 386-8567, Japan.,Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0023, Japan
| | - Yoshihide Hashimoto
- Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0023, Japan
| | - Akitatsu Yamashita
- Division of Acellular Tissue and Regenerative Medical Materials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yongwei Zhang
- Division of Acellular Tissue and Regenerative Medical Materials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Tsuyoshi Kimura
- Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0023, Japan
| | - Akio Kishida
- Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0023, Japan
| | - Seiichi Funamoto
- Division of Acellular Tissue and Regenerative Medical Materials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
18
|
Hao Z, Song Z, Huang J, Huang K, Panetta A, Gu Z, Wu J. The scaffold microenvironment for stem cell based bone tissue engineering. Biomater Sci 2017; 5:1382-1392. [DOI: 10.1039/c7bm00146k] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone tissue engineering uses the principles and methods of engineering and life sciences to study bone structure, function and growth mechanism for the purposes of repairing, maintaining and improving damaged bone tissue.
Collapse
Affiliation(s)
- Zhichao Hao
- Guanghua School of Stomatology
- Hospital of Stomatology
- Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Stomatology
- Guangzhou 510055
| | - Zhenhua Song
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Jun Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Keqing Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | | | - Zhipeng Gu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| |
Collapse
|
19
|
Best C, Tara S, Wiet M, Reinhardt J, Pepper V, Ball M, Yi T, Shinoka T, Breuer C. Deconstructing the Tissue Engineered Vascular Graft: Evaluating Scaffold Pre-Wetting, Conditioned Media Incubation, and Determining the Optimal Mononuclear Cell Source. ACS Biomater Sci Eng 2016; 3:1972-1979. [PMID: 29226239 DOI: 10.1021/acsbiomaterials.6b00123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stenosis limits widespread use of tissue-engineered vascular grafts (TEVGs), and bone marrow mononuclear cell (BM-MNC) seeding attenuates this complication. Yet seeding is a multistep process, and the singular effects of each component are unknown. We investigated which components of the clinical seeding protocol confer graft patency and sought to identify the optimal MNC source. Scaffolds composed of polyglycolic acid and ε-caprolactone/ι-lactic acid underwent conditioned media (CM) incubation (n = 25) and syngeneic BM-MNC (n = 9) or peripheral blood (PB)-MNC (n = 20) seeding. TEVGs were implanted for 2 weeks in the mouse IVC. CM incubation and PB-MNC seeding did not increase graft patency compared to control scaffolds prewet with PBS (n = 10), while BM-MNC seeding reduced stenosis by suppressing inflammation and smooth muscle cell, myofibroblast, and pericyte proliferation. IL-1β, IL-6, and TNFα were elevated in the seeded BM-MNC supernatant. Further, BM-MNC seeding reduced platelet activation in a dose-dependent manner, possibly contributing to TEVG patency.
Collapse
Affiliation(s)
- Cameron Best
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Shuhei Tara
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States.,Department of Cardiovascular Medicine, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, Japan
| | - Matthew Wiet
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
| | - James Reinhardt
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Victoria Pepper
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States.,Department of Surgery, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Matthew Ball
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Tai Yi
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Toshiharu Shinoka
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Christopher Breuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States.,Department of Surgery, Nationwide Children's Hospital, Columbus, Ohio, United States
| |
Collapse
|
20
|
Wang X, Ma B, Chang J. Preparation of decellularized vascular matrix by co-crosslinking of procyanidins and glutaraldehyde. Biomed Mater Eng 2016; 26:19-30. [PMID: 26484552 DOI: 10.3233/bme-151548] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vascular extracellular matrices (vECMs) have shown potential for small-diameter blood vessel tissue engineering applications. However, problems such as chemical instability and easy calcification are still remained. Chemical crosslinking using crosslinkers such as glutaraldehyde (GA) can improve mechanical properties and proteolysis resistance of vECMs, but leads to calcification and cytotoxicity. Procyanidins (PC) can crosslink ECMs with anti-calcification property and cytocompatibility, but the mechanical properties and chemical stability are unsatisfactory. OBJECTIVE A novel co-crosslinking technique using PC and GA was developed, which combines the advantages of both PC and GA for enhancing mechanical properties and stability of vECMs with reduced calcification and cytotoxicity. METHODS Fresh carotid were decellularized and then crosslinked by PC and subsequent GA for 6 h respectively. The mechanical properties, dynamic release of PC, enzymatic degradation, calcification and cytotoxicity of crosslinked samples were evaluated. RESULTS The co-crosslinked vECMs showed enhanced tensile strength, chemical and biological stability, comparable anti-calcification property as compared to pure PC-crosslinked samples. Cytotoxicity assay showed that the co-crosslinked vECMs were cytocompatible for supporting the adhesion and proliferation of HUVECs. CONCLUSIONS Co-crosslinking with PC and GA might be a useful method for preparation of vECM scaffolds with potential applications in small-diameter blood vessel tissue engineering.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Bing Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| |
Collapse
|
21
|
Pangesty AI, Arahira T, Todo M. Characterization of Tensile Mechanical Behavior of MSCs/PLCL Hybrid Layered Sheet. J Funct Biomater 2016; 7:jfb7020014. [PMID: 27271675 PMCID: PMC4932471 DOI: 10.3390/jfb7020014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 05/19/2016] [Accepted: 05/27/2016] [Indexed: 11/16/2022] Open
Abstract
A layered construct was developed by combining a porous polymer sheet and a cell sheet as a tissue engineered vascular patch. The primary objective of this study is to investigate the influence of mesenchymal stem cells (MSCs) sheet on the tensile mechanical properties of porous poly-(l-lactide-co-ε-caprolactone) (PLCL) sheet. The porous PLCL sheet was fabricated by the solid-liquid phase separation method and the following freeze-drying method. The MSCs sheet, prepared by the temperature-responsive dish, was then layered on the top of the PLCL sheet and cultured for 2 weeks. During the in vitro study, cellular properties such as cell infiltration, spreading and proliferation were evaluated. Tensile test of the layered construct was performed periodically to characterize the tensile mechanical behavior. The tensile properties were then correlated with the cellular properties to understand the effect of MSCs sheet on the variation of the mechanical behavior during the in vitro study. It was found that MSCs from the cell sheet were able to migrate into the PLCL sheet and actively proliferated into the porous structure then formed a new layer of MSCs on the opposite surface of the PLCL sheet. Mechanical evaluation revealed that the PLCL sheet with MSCs showed enhancement of tensile strength and strain energy density at the first week of culture which is characterized as the effect of MSCs proliferation and its infiltration into the porous structure of the PLCL sheet. New technique was presented to develop tissue engineered patch by combining MSCs sheet and porous PLCL sheet, and it is expected that the layered patch may prolong biomechanical stability when implanted in vivo.
Collapse
Affiliation(s)
- Azizah Intan Pangesty
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan.
| | | | - Mitsugu Todo
- Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580, Japan.
| |
Collapse
|
22
|
Ostdiek AM, Ivey JR, Grant DA, Gopaldas J, Grant SA. An in vivo study of a gold nanocomposite biomaterial for vascular repair. Biomaterials 2015; 65:175-83. [PMID: 26164402 PMCID: PMC4507082 DOI: 10.1016/j.biomaterials.2015.06.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 01/05/2023]
Abstract
Currently vascular repairs are treated using synthetic or biologic patches, however these patches have an array of complications, including calcification, rupture, re-stenosis, and intimal hyperplasia. An active patch material composed of decellularized tissue conjugated to gold nanoparticles (AuNPs) was developed and the long term biocompatibility and cellular integration was investigated. Porcine abdominal aortic tissue was decellularized and conjugated with 100 nm gold nanoparticles (AuNP). These patches were placed over a longitudinal arteriotomy of the thoracic aorta in six pigs. The animals were monitored for six months. Gross, histological, and immunohistochemical analyses of the patches were performed after euthanasia. Grossly there was minimal scar tissue with the patches still visible on the outer surface of the vessel. The inner lumen was smooth with a seamless transition from patch to native tissue. Histology demonstrated infiltration of host cells into the patch material. The immunohistochemical results demonstrated an endothelial cell layer forming over the patch within the vessel. Smooth muscle cells were repopulating the biomaterial in all animals. These results demonstrated that the AuNP biomaterial patch integrated well with the host tissue and did not failed over the six month implantation time.
Collapse
Affiliation(s)
- A M Ostdiek
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| | - J R Ivey
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - D A Grant
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| | - J Gopaldas
- Prairie Cardiovascular, Springfield, IL 62701, USA.
| | - S A Grant
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
23
|
Zhao D, Sun Y, Wei X, Liang H, Zhao L, Dong X, Chen H, Chen W, Yang J, Wang X, Gao F, Yi W. cIAP1 attenuates shear stress-induced hBMSC apoptosis for tissue-engineered blood vessels through the inhibition of the mitochondrial apoptosis pathway. Life Sci 2015; 137:81-8. [DOI: 10.1016/j.lfs.2015.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 01/21/2023]
|
24
|
Ostdiek AM, Ivey JR, Hansen SA, Gopaldas R, Grant SA. Feasibility of a nanomaterial-tissue patch for vascular and cardiac reconstruction. J Biomed Mater Res B Appl Biomater 2015; 104:449-57. [DOI: 10.1002/jbm.b.33410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/21/2015] [Accepted: 03/04/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Allison M. Ostdiek
- Department of Veterinary Pathobiology; University of Missouri; Columbia Missouri
| | - Jan R. Ivey
- Department of Biomedical Sciences; University of Missouri; Columbia Missouri
| | - Sarah A. Hansen
- Department of Veterinary Pathobiology; University of Missouri; Columbia Missouri
| | | | - Sheila A. Grant
- Department of Bioengineering; University of Missouri; Columbia Missouri
| |
Collapse
|
25
|
Chen B, He J, Yang H, Zhang Q, Zhang L, Zhang X, Xie E, Liu C, Zhang R, Wang Y, Huang L, Hao D. Repair of spinal cord injury by implantation of bFGF-incorporated HEMA-MOETACL hydrogel in rats. Sci Rep 2015; 5:9017. [PMID: 25761585 PMCID: PMC7365325 DOI: 10.1038/srep09017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/29/2015] [Indexed: 12/21/2022] Open
Abstract
There is no effective strategy for the treatment of spinal cord injury (SCI). An appropriate combination of hydrogel materials and neurotrophic factor therapy is currently thought to be a promising approach. In this study, we performed experiments to evaluate the synergic effect of implanting hydroxyl ethyl methacrylate [2-(methacryloyloxy)ethyl] trimethylammonium chloride (HEMA-MOETACL) hydrogel incorporated with basic fibroblast growth factor (bFGF) into the site of surgically induced SCI. Prior to implantation, the combined hydrogel was surrounded by an acellular vascular matrix. Sprague-Dawley rats underwent complete spinal cord transection at the T-9 level, followed by implantation of bFGF/HEMA-MOETACL 5 days after transection surgery. Our results showed that the bFGF/HEMA-MOETACL transplant provided a scaffold for the ingrowth of regenerating tissue eight weeks after implantation. Furthermore, this newly designed implant promoted both nerve tissue regeneration and functional recovery following SCI. These results indicate that HEMA-MOETACL hydrogel is a promising scaffold for intrathecal, localized and sustained delivery of bFGF to the injured spinal cord and provide evidence for the possibility that this approach may have clinical applications in the treatment of SCI.
Collapse
Affiliation(s)
- Bo Chen
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Jianyu He
- Department of Pharmacology, Xi'an Jiaotong University College of Medicine, Xi'an, 710061, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Qian Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Lingling Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Xian Zhang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, China
| | - En Xie
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Cuicui Liu
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Rui Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Yi Wang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Linhong Huang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| |
Collapse
|
26
|
Pontailler M, Illangakoon E, Williams GR, Marijon C, Bellamy V, Balvay D, Autret G, Vanneaux V, Larghero J, Planat-Benard V, Perier MC, Bruneval P, Menasché P, Kalfa D. Polymer-Based Reconstruction of the Inferior Vena Cava in Rat: Stem Cells or RGD Peptide? Tissue Eng Part A 2015; 21:1552-64. [PMID: 25611092 DOI: 10.1089/ten.tea.2014.0254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
As part of a program targeted at developing a resorbable valved tube for replacement of the right ventricular outflow tract, we compared three biopolymers (polyurethane [PU], polyhydroxyalkanoate (the poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxyvalerate) [PHBVV]), and polydioxanone [PDO]) and two biofunctionalization techniques (using adipose-derived stem cells [ADSCs] or the arginine-glycine-aspartate [RGD] peptide) in a rat model of partial inferior vena cava (IVC) replacement. Fifty-three Wistar rats first underwent partial replacement of the IVC with an acellular electrospun PDO, PU, or PHBVV patch, and 31 nude rats subsequently underwent the same procedure using a PDO patch biofunctionalized either by ADSC or RGD. Results were assessed both in vitro (proliferation and survival of ADSC seeded onto the different materials) and in vivo by magnetic resonance imaging (MRI), histology, immunohistochemistry [against markers of vascular cells (von Willebrand factor [vWF], smooth muscle actin [SMA]), and macrophages ([ED1 and ED2] immunostaining)], and enzyme-linked immunosorbent assay (ELISA; for the expression of various cytokines and inducible NO synthase). PDO showed the best in vitro properties. Six weeks after implantation, MRI did not detect significant luminal changes in any group. All biopolymers were evenly lined by vWF-positive cells, but only PDO and PHBVV showed a continuous layer of SMA-positive cells at 3 months. PU patches resulted in a marked granulomatous inflammatory reaction. The ADSC and RGD biofunctionalization yielded similar outcomes. These data confirm the good biocompatibility of PDO and support the concept that appropriately peptide-functionalized polymers may be successfully substituted for cell-loaded materials.
Collapse
Affiliation(s)
- Margaux Pontailler
- 1 INSERM U970, PARCC & Laboratoire de Recherches Biochirurgicales, Hôpital Européen Georges Pompidou , Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Relation between the tissue structure and protein permeability of decellularized porcine aorta. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:465-71. [DOI: 10.1016/j.msec.2014.06.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/07/2014] [Accepted: 06/30/2014] [Indexed: 01/16/2023]
|
28
|
Lang N, Merkel E, Fuchs F, Schumann D, Klemm D, Kramer F, Mayer-Wagner S, Schroeder C, Freudenthal F, Netz H, Kozlik-Feldmann R, Sigler M. Bacterial nanocellulose as a new patch material for closure of ventricular septal defects in a pig model. Eur J Cardiothorac Surg 2014; 47:1013-21. [PMID: 25064053 DOI: 10.1093/ejcts/ezu292] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/19/2014] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Current materials for closure of cardiac defects such as ventricular septal defects (VSDs) are associated with compliance mismatch and a chronic inflammatory response. Bacterial nanocellulose (BNC) is a non-degradable biomaterial with promising properties such as high mechanical strength, favourable elasticity and a negligible inflammatory reaction. The aim of this study was the evaluation of a BNC patch for VSD closure and the investigation of its in vivo biocompatibility in a chronic pig model. METHODS Young's modulus and tensile strength of BNC patches were determined before and after blood exposure. Muscular VSDs were created and closed with a BNC patch on the beating heart in an in vivo pig model. Hearts were explanted after 7, 30 or 90 days. Macropathology, histology and immunohistochemistry were performed. RESULTS Young's modulus and tensile strength of the BNC patch decreased after blood contact from 6.3 ± 1.9 to 3.86 ± 2.2 MPa (P < 0.01) and 0.33 ± 0.06 to 0.26 ± 0.06 MPa (P < 0.01), respectively, indicating the development of higher elasticity. Muscular VSDs were closed with a BNC patch without residual shunting. After 90 days, a mild chronic inflammatory reaction was present. Moreover, there was reduced tissue overgrowth in comparison with polyester. Proceeding cellular organization characterized by fibromuscular cells, production of extracellular matrix, neoangiogenesis and complete neoendothelialization were found. There were no signs of thrombogenicity. CONCLUSIONS BNC patches can close VSDs with good mid-term results and its biocompatibility can be considered as satisfactory. Its elasticity increases in the presence of blood, which might be advantageous. Therefore, it has potential to be used as an alternative patch material in congenital heart disease.
Collapse
Affiliation(s)
- Nora Lang
- Department of Pediatric Cardiology and Intensive Care Medicine, Ludwig-Maximilians-University, Munich, Germany Department of Congenital Heart Defects and Pediatric Cardiology, Heart Center, University of Freiburg, Freiburg, Germany
| | - Elena Merkel
- Department of Pediatric Cardiology and Intensive Care Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Franziska Fuchs
- Department of Pediatric Cardiology and Intensive Care Medicine, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | - Susanne Mayer-Wagner
- Department of Orthopedic Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Schroeder
- Department of Orthopedic Surgery, Ludwig-Maximilians-University, Munich, Germany
| | | | - Heinrich Netz
- Department of Pediatric Cardiology and Intensive Care Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Rainer Kozlik-Feldmann
- Department of Pediatric Cardiology and Intensive Care Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Matthias Sigler
- Department of Pediatric Cardiology and Intensive Care Medicine, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
29
|
Bioengineered vascular scaffolds: the state of the art. Int J Artif Organs 2014; 37:503-12. [PMID: 25044387 DOI: 10.5301/ijao.5000343] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2014] [Indexed: 11/20/2022]
Abstract
To date, there is increasing clinical need for vascular substitutes due to accidents, malformations, and ischemic diseases. Over the years, many approaches have been developed to solve this problem, starting from autologous native vessels to artificial vascular grafts; unfortunately, none of these have provided the perfect vascular substitute. All have been burdened by various complications, including infection, thrombogenicity, calcification, foreign body reaction, lack of growth potential, late stenosis and occlusion from intimal hyperplasia, and pseudoaneurysm formation. In the last few years, vascular tissue engineering has emerged as one of the most promising approaches for producing mechanically competent vascular substitutes. Nanotechnologies have contributed their part, allowing extraordinarily biostable and biocompatible materials to be developed. Specifically, the use of electrospinning to manufacture conduits able to guarantee a stable flow of biological fluids and guide the formation of a new vessel has revolutionized the concept of the vascular substitute. The electrospinning technique allows extracellular matrix (ECM) to be mimicked with high fidelity, reproducing its porosity and complexity, and providing an environment suitable for cell growth. In the future, a better knowledge of ECM and the manufacture of new materials will allow us to "create" functional biological vessels - the base required to develop organ substitutes and eventually solve the problem of organ failure.
Collapse
|
30
|
Lee JS, Lee K, Moon SH, Chung HM, Lee JH, Um SH, Kim DI, Cho SW. Mussel-inspired cell-adhesion peptide modification for enhanced endothelialization of decellularized blood vessels. Macromol Biosci 2014; 14:1181-9. [PMID: 24831738 DOI: 10.1002/mabi.201400052] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/05/2014] [Indexed: 11/11/2022]
Abstract
Enhanced endothelialization of tissue-engineered blood vessels is essential for vascular regeneration and function of engineered vessels. In this study, mussel-inspired surface chemistry of polydopamine (pDA) coatings are applied to functionalize decellularized vein matrix (DVM) with extracellular matrix-derived cell adhesion peptides (RGD and YIGSR). DVMs engineered with pDA-peptides enhance focal adhesion, metabolic activity, and endothelial differentiation of human endothelial progenitor cells (EPCs) derived from cord blood and embryonic stem cells compared with EPCs on non-coated or pDA-coated DVMs. These results indicate that pDA-peptide functionalization may contribute to enhanced, rapid endothelialization of DVM surfaces by promoting adhesion, proliferation, and differentiation of circulating EPCs. Ultimately, this approach may be useful for improving in vivo patency and function of decellularized matrix-based blood vessels.
Collapse
Affiliation(s)
- Jung Seung Lee
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Glynn JJ, Hinds MT. Endothelial outgrowth cells: function and performance in vascular grafts. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:294-303. [PMID: 24004404 DOI: 10.1089/ten.teb.2013.0285] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The clinical need for vascular grafts continues to grow. Tissue engineering strategies have been employed to develop vascular grafts for patients lacking sufficient autologous vessels for grafting. Restoring a functional endothelium on the graft lumen has been shown to greatly improve the long-term patency of small-diameter grafts. However, obtaining an autologous source of endothelial cells for in vitro endothelialization is invasive and often not a viable option. Endothelial outgrowth cells (EOCs), derived from circulating progenitor cells in peripheral blood, provide an alternative cell source for engineering an autologous endothelium. This review aims at highlighting the role of EOCs in the regulation of processes that are central to vascular graft performance. To characterize EOC performance in vascular grafts, this review identifies the characteristics of EOCs, defines functional performance criteria for EOCs in vascular grafts, and summarizes the existing work in developing vascular grafts with EOCs.
Collapse
Affiliation(s)
- Jeremy J Glynn
- Department of Biomedical Engineering, Oregon Health & Science University , Portland, Oregon
| | | |
Collapse
|
32
|
Ventrelli L, Fujie T, Del Turco S, Basta G, Mazzolai B, Mattoli V. Influence of nanoparticle-embedded polymeric surfaces on cellular adhesion, proliferation, and differentiation. J Biomed Mater Res A 2013; 102:2652-61. [PMID: 23982984 DOI: 10.1002/jbm.a.34935] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 01/01/2023]
Abstract
The development of functional substrates to direct cellular organization is important for biomedical applications such as regenerative medicine and biorobotics. In this study, we prepared freestanding polymeric ultrathin films (nanofilms) consisting of poly(lactic acid) (PLA) and magnetic nanoparticles (MNPs), and evaluated the effects of their surface properties on the organization of cardiac-like rat myoblasts (H9c2). We changed surface properties of the PLA nanofilms (i.e., roughness and wettability) as a function of MNPs concentration. We found that the incorporation of MNPs into the nanofilms enhanced both proliferation and adhesion of H9c2 cells. Through the morphological assessment of the differentiated H9c2 cells, we also found that the presence of MNPs significantly increased the fusion index and the surface area of myotubes. In conclusion, the embedding of MNPs is a simple method to tailor the physicochemical properties of the polymeric nanofilms, yet it is an effective approach to enhance the cellular morphogenesis in the field of cardiac tissue engineering for regenerative medicine and biorobotics applications.
Collapse
Affiliation(s)
- Letizia Ventrelli
- Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio, 34, 56025, Pontedera (PI), Italy; The BioRobotics Institute, Scuola Superiore Sant'Anna, Polo Sant'Anna Valdera, Viale Rinaldo Piaggio, 34, 56025, Pontedera (PI), Italy
| | | | | | | | | | | |
Collapse
|
33
|
Li Q, Huang C, Xu Z, Liu G, Liu Y, Xiao Z, Nie C, Zheng B, Yang D. The fetal porcine aorta and mesenteric acellular matrix as small-caliber tissue engineering vessels and microvasculature scaffold. Aesthetic Plast Surg 2013; 37:822-32. [PMID: 23817746 DOI: 10.1007/s00266-013-0173-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 05/31/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND The extracellular matrix (ECM) is characterized by not only well-preserved scaffolds of organs and vascularized tissues, but also by extremely low immunogenicity during allo- or xeno-implantation. This study aimed to establish a model of a composite microvasculature network scaffold with a small-caliber-dominant vascular pedicle by decellularizing fetal porcine aorta and the conterminous mesentery. METHODS The aorta and the conterminous mesenteric vascular system originating from the inferior mesenteric artery were harvested from fetal pigs at late gestation. All of the cellular components were removed by sequential treatment with Triton X-100 and sodium dodecyl sulfate. After the degree of decellularization was assessed, the fetal porcine aorta and mesenteric acellular matrix (FPAMAM) were transplanted into dogs. RESULTS Gross and histologic examination demonstrated the removal of cellular constituents with preservation of ECM architecture, including macrochannels and microchannels. The residual DNA content in the FPAMAM was less than 2 %. The aorta and microchannels were perfused well, and the fetal porcine aorta had good patency for more than 3 months. CONCLUSIONS The integrity of the FPAMAM provided a scaffold for the reconstruction of a rich vascular network with numerous segmentally radiating branches. Decellularized fetal porcine vascular tissue might be a potential alternative for xenogeneic transplantation based on its optimized properties and low immunogenicity. LEVEL OF EVIDENCE II This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Qingchun Li
- Division of Plastic Surgery, The 2nd Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ahmad Z, Wardale J, Brooks R, Henson F, Noorani A, Rushton N. Exploring the application of stem cells in tendon repair and regeneration. Arthroscopy 2012; 28:1018-29. [PMID: 22381688 DOI: 10.1016/j.arthro.2011.12.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 11/23/2011] [Accepted: 12/02/2011] [Indexed: 02/08/2023]
Abstract
PURPOSE To conduct a systematic review of the current evidence for the effects of stem cells on tendon healing in preclinical studies and human studies. METHODS A systematic search of the PubMed, CINAHL (Cumulative Index to Nursing and Allied Health Literature), Cochrane, and Embase databases was performed for stem cells and tendons with their associated terminology. Data validity was assessed, and data were collected on the outcomes of trials. RESULTS A total of 27 preclinical studies and 5 clinical studies met the inclusion criteria. Preclinical studies have shown that stem cells are able to survive and differentiate into tendon cells when placed into a new tendon environment, leading to regeneration and biomechanical benefit to the tendon. Studies have been reported showing that stem cell therapy can be enhanced by molecular signaling adjunct, mechanical stimulation of cells, and the use of augmentation delivery devices. Studies have also shown alternatives to the standard method of bone marrow-derived mesenchymal stem cell therapy. Of the 5 human studies, only 1 was a randomized controlled trial, which showed that skin-derived tendon cells had a greater clinical benefit than autologous plasma. One cohort study showed the benefit of stem cells in rotator cuff tears and another in lateral epicondylitis. Two of the human studies showed how stem cells were successfully extracted from the humerus and, when tagged with insulin, became tendon cells. CONCLUSIONS The current evidence shows that stem cells can have a positive effect on tendon healing. This is most likely because stem cells have regeneration potential, producing tissue that is similar to the preinjury state, but the results can be variable. The use of adjuncts such as molecular signaling, mechanical stimulation, and augmentation devices can potentially enhance stem cell therapy. Initial clinical trials are promising, with adjuncts for stem cell therapy in development.
Collapse
Affiliation(s)
- Zafar Ahmad
- Orthopaedic Research Unit, Addenbrooke's Hospital, Cambridge, England.
| | | | | | | | | | | |
Collapse
|
35
|
Williams C, Xie AW, Emani S, Yamato M, Okano T, Emani SM, Wong JY. A Comparison of Human Smooth Muscle and Mesenchymal Stem Cells as Potential Cell Sources for Tissue-Engineered Vascular Patches. Tissue Eng Part A 2012; 18:986-98. [DOI: 10.1089/ten.tea.2011.0172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Corin Williams
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Angela W. Xie
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Sirisha Emani
- Department of Cardiovascular Surgery, Children's Hospital Boston, Boston, Massachusetts
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Sitaram M. Emani
- Department of Cardiovascular Surgery, Children's Hospital Boston, Boston, Massachusetts
| | - Joyce Y. Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
36
|
Marfe G, Massaro-Giordano M, Ranalli M, Cozzoli E, Di Stefano C, Malafoglia V, Polettini M, Gambacurta A. Blood derived stem cells: an ameliorative therapy in veterinary ophthalmology. J Cell Physiol 2012; 227:1250-6. [PMID: 21792938 DOI: 10.1002/jcp.22953] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stem cell technology has evoked considerable excitement among people interested in the welfare of animals, as it has suggested the potential availability of new tools for several pathologies, including eye disease, which in many cases is considered incurable. One such example is ulcerative keratitis, which is very frequent in horses. Because some of these corneal ulcers can be very severe, progress rapidly and, therefore, can be a possible cause of vision loss, it is important to diagnose them at an early stage and administer an appropriate treatment, which can be medical, surgical, or a combination of both. The therapeutic strategy should eradicate the infection in order to reduce or stop destruction of the cornea. In addition, it should support the corneal structures and control the uveal reaction, and the pain associated with it, in order to minimize scarring. In this study, we address how stem cells derived from peripheral blood can be used also in ophthalmological pathologies. Our results demonstrate that this treatment protocol improved eye disease in four horse cases, including corneal ulcers and one case of retinal detachment. In all cases, we detected a decrease in the intense inflammatory reaction as well as the restoration of the epithelial surface of the central cornea.
Collapse
Affiliation(s)
- Gabriella Marfe
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Krawiec JT, Vorp DA. Adult stem cell-based tissue engineered blood vessels: A review. Biomaterials 2012; 33:3388-400. [DOI: 10.1016/j.biomaterials.2012.01.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/05/2012] [Indexed: 12/20/2022]
|
38
|
Marfe G, Rotta G, De Martino L, Tafani M, Fiorito F, Di Stefano C, Polettini M, Ranalli M, Russo MA, Gambacurta A. A new clinical approach: use of blood-derived stem cells (BDSCs) for superficial digital flexor tendon injuries in horses. Life Sci 2012; 90:825-30. [PMID: 22480518 DOI: 10.1016/j.lfs.2012.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 03/03/2012] [Accepted: 03/08/2012] [Indexed: 11/29/2022]
Abstract
AIMS In this study, we present an innovative therapy using stem cells that were obtained from the peripheral blood of racehorses affected by uninduced superficial digital flexor tendon (SDFT) injuries. MAIN METHODS Blood-derived stem cells (BDSCs) were generated from the blood samples of three horses in the presence of macrophage colony-stimulating factor (M-CSF). The racehorses received a single autologous BDSC treatment, which resulted in the successful repair of the tendons injuries. KEY FINDINGS The results demonstrated that the BDSCs injection into the damaged tendon stimulated the regeneration of normal tissue. Furthermore, a relationship may exist between the speed and the quality of new tissue formation and the welfare and management of the treated animals. SIGNIFICANCE This study demonstrates that stem cell technology offers new tools for tissue repair that in many cases is considered incurable, and provides additional evidence that BDScs injections increase the speed and quality of the regeneration process in different animal tissues.
Collapse
Affiliation(s)
- G Marfe
- Department of Experimental Medicine and Sciences, University of Roma Tor Vergata, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Revitalization of Biostatic Tissue Allografts: New Perspectives in Tissue Transplantology. Transplant Proc 2011; 43:3137-41. [DOI: 10.1016/j.transproceed.2011.08.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Nakayama Y, Yamaoka S, Yamanami M, Fujiwara M, Uechi M, Takamizawa K, Ishibashi-Ueda H, Nakamichi M, Uchida K, Watanabe T, Kanda K, Yaku H. Water-soluble argatroban for antithrombogenic surface coating of tissue-engineered cardiovascular tissues. J Biomed Mater Res B Appl Biomater 2011; 99:420-30. [DOI: 10.1002/jbm.b.31914] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 04/18/2011] [Accepted: 06/02/2011] [Indexed: 11/07/2022]
|
41
|
Tian L, George SC. Biomaterials to prevascularize engineered tissues. J Cardiovasc Transl Res 2011; 4:685-98. [PMID: 21892744 DOI: 10.1007/s12265-011-9301-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/20/2011] [Indexed: 11/30/2022]
Abstract
Tissue engineering promises to restore tissue and organ function following injury or failure by creating functional and transplantable artificial tissues. The development of artificial tissues with dimensions that exceed the diffusion limit (1-2 mm) will require nutrients and oxygen to be delivered via perfusion (or convection) rather than diffusion alone. One strategy of perfusion is to prevascularize tissues; that is, a network of blood vessels is created within the tissue construct prior to implantation, which has the potential to significantly shorten the time of functional vascular perfusion from the host. The prevascularized network of vessels requires an extracellular matrix or scaffold for 3D support, which can be either natural or synthetic. This review surveys the commonly used biomaterials for prevascularizing 3D tissue engineering constructs.
Collapse
Affiliation(s)
- Lei Tian
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, USA
| | | |
Collapse
|
42
|
Zhao Y, Zhang Z, Wang J, Yin P, Wang Y, Yin Z, Zhou J, Xu G, Liu Y, Deng Z, Zhen M, Cui W, Liu Z. Preparation of decellularized and crosslinked artery patch for vascular tissue-engineering application. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1407-1417. [PMID: 21528356 DOI: 10.1007/s10856-011-4326-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 04/04/2011] [Indexed: 05/30/2023]
Abstract
There is an urgent clinical need of tissue-engineering (TE) vascular grafts, so this study was for developing a fast and simple way of producing TE vascular scaffold. The TE vascular scaffold was prepared with pepsin, DNase and RNase enzymatic decellularization and crosslinked with 0.1, 1, 5% glutaraldehyde (GA), respectively. The samples were underwent analyses of burst pressure; suture strength; cytotoxicity; enzymatic degradation in vitro; degradation in vivo; rehydration; biocompatibilities detected with hematoxylin and eosin (H&E), scan electron microscope, immunohistochemistry both in vivo and in vitro; macrophage infiltration and calcification using Von Kossa staining. After being decellularized the scaffold had a complete removal of cellular components, an intact collagen structure. The burst pressure and suture strength were similar to native artery. 0.1% GA crosslinked scaffold showed less cytotoxicity than 1 and 5% GA groups (P < 0.05) and was resistance to enzymatic degradation in vitro. Once being implanted, 0.1% GA group was resistant to degradation and formed endothelium, smooth muscle and adventitia with few macrophages infiltration. However, there appeared calcification in implants compared with that in native artery. This study demonstrated that DVPs producing methods by enzymatic decellularizing and crosslinking with 0.1% GA could be used for clinical TE vascular graft manufacture.
Collapse
Affiliation(s)
- Yilin Zhao
- Department of Vascular Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pandis L, Zavan B, Bassetto F, Ferroni L, Iacobellis L, Abatangelo G, Lepidi S, Cortivo R, Vindigni V. Hyaluronic acid biodegradable material for reconstruction of vascular wall: a preliminary study in rats. Microsurgery 2011; 31:138-45. [PMID: 21268111 DOI: 10.1002/micr.20856] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 10/14/2010] [Indexed: 11/09/2022]
Abstract
The objective of this preliminary study was to develop a reabsorbable vascular patch that did not require in vitro cell or biochemical preconditioning for vascular wall repair. Patches were composed only of hyaluronic acid (HA). Twenty male Wistar rats weighing 250-350 g were used. The abdominal aorta was exposed and isolated. A rectangular breach (1 mm × 5 mm) was made on vessel wall and arterial defect was repaired with HA made patch. Performance was assessed at 1, 2, 4, 8, and 16 weeks after surgery by histology and immunohistochemistry. Extracellular matrix components were evaluated by molecular biological methods. After 16 weeks, the biomaterial was almost completely degraded and replaced by a neoartery wall composed of endothelial cells, smooth muscle cells, collagen, and elastin fibers organized in layers. In conclusion, HA patches provide a provisional three-dimensional support to interact with cells for the control of their function, guiding the spatially and temporally multicellular processes of artery regeneration.
Collapse
Affiliation(s)
- Laura Pandis
- Clinic of Plastic and Reconstructive Surgery, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mirensky TL, Hibino N, Sawh-Martinez RF, Yi T, Villalona G, Shinoka T, Breuer CK. Tissue-engineered vascular grafts: does cell seeding matter? J Pediatr Surg 2010; 45:1299-305. [PMID: 20620335 PMCID: PMC2971535 DOI: 10.1016/j.jpedsurg.2010.02.102] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Use of tissue-engineered vascular grafts (TEVGs) in the repair of congenital heart defects provides growth and remodeling potential. Little is known about the mechanisms involved in neovessel formation. We sought to define the role of seeded monocytes derived from bone marrow mononuclear cells (BM-MNCs) on neovessel formation. METHODS Small diameter biodegradable tubular scaffolds were constructed. Scaffolds were seeded with the entire population of BM-MNC (n = 15), BM-MNC excluding monocytes (n = 15), or only monocytes (n = 15) and implanted as infrarenal inferior vena cava (IVC) interposition grafts into severe combined immunodeficiency/bg mice. Grafts were evaluated at 1 week, 10 weeks, or 6 months via ultrasonography and microcomputed tomography, as well as by histologic and immunohistochemical techniques. RESULTS All grafts remained patent without stenosis or aneurysm formation. Neovessels contained a luminal endothelial lining surrounded by concentric smooth muscle cell layer and collagen similar to that seen in the native mouse IVC. Graft diameters differed significantly between those scaffolds seeded with only monocytes (1.022 +/- 0.155 mm) and those seeded without monocytes (0.771 +/- 0.121 mm; P = .021) at 6 months. CONCLUSIONS Monocytes may play a role in maintaining graft patency. Incorporation of such findings into the development of second-generation TEVGs will promote graft patency and success.
Collapse
Affiliation(s)
- Tamar L. Mirensky
- Yale-New Haven Hospital, New Haven, CT 06510, USA,Yale University School of Medicine, New Haven, CT 06510, USA,Corresponding author. 71 Harbour Close, New Haven, CT 06519, USA. Tel.: +1 203 927 4247; fax: +1 203 785 3820, (T.L. Mirensky)
| | | | | | - Tai Yi
- Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Toshiharu Shinoka
- Yale-New Haven Hospital, New Haven, CT 06510, USA,Yale University School of Medicine, New Haven, CT 06510, USA
| | - Christopher K. Breuer
- Yale-New Haven Hospital, New Haven, CT 06510, USA,Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
45
|
A polydioxanone electrospun valved patch to replace the right ventricular outflow tract in a growing lamb model. Biomaterials 2010; 31:4056-63. [DOI: 10.1016/j.biomaterials.2010.01.135] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 01/27/2010] [Indexed: 11/24/2022]
|
46
|
IMAMURA T, ISHIZUKA O, YAMAMOTO T, GOTOH M, NISHIZAWA O. Bone Marrow-Derived Cells Implanted into Freeze-Injured Urinary Bladders Reconstruct Functional Smooth Muscle Layers. Low Urin Tract Symptoms 2010; 2:1-10. [DOI: 10.1111/j.1757-5672.2010.00066.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Crovace A, Lacitignola L, Rossi G, Francioso E. Histological and immunohistochemical evaluation of autologous cultured bone marrow mesenchymal stem cells and bone marrow mononucleated cells in collagenase-induced tendinitis of equine superficial digital flexor tendon. Vet Med Int 2010; 2010:250978. [PMID: 20445779 PMCID: PMC2859019 DOI: 10.4061/2010/250978] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 01/09/2010] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to compare treatment with cultured bone marrow stromal cells (cBMSCs), bone marrow Mononucleated Cells (BMMNCs), and placebo to repair collagenase-induced tendinitis in horses. In six adult Standardbred horses, 4000 IU of collagenase were injected in the superficial digital flexor tendon (SDFT). Three weeks after collagenase treatment, an average of either 5.5 x 10(6) cBMSCs or 1.2 x 10(8) BMMNCs, fibrin glue, and saline solution was injected intralesionally in random order. In cBMSC- and BMMNCS-treated tendons, a high expression of cartilage oligomeric matrix protein (COMP) and type I collagen, but low levels of type III collagen were revealed by immunohistochemistry, with a normal longitudinally oriented fiber pattern. Placebo-treated tendons expressed very low quantities of COMP and type I collagen but large numbers of randomly oriented type III collagen fibers. Both cBMSC and BMMNCS grafts resulted in a qualitatively similar heling improvement of tendon extracellular matrix, in terms of the type I/III collagen ratio, fiber orientation, and COMP expression.
Collapse
Affiliation(s)
- Antonio Crovace
- Dipartimento dell'Emergenza e dei Trapianti di Organi (D.E.T.O.), Sezione di Chirurgia Veterinaria, Facoltà di Medicina Veterinaria, Università degli Studi di Bari, s.p. per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | | | | | | |
Collapse
|
48
|
Tronci G, Neffe AT, Pierce BF, Lendlein A. An entropy–elastic gelatin-based hydrogel system. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm00883d] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Zhao Y, Zhang S, Zhou J, Wang J, Zhen M, Liu Y, Chen J, Qi Z. The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells. Biomaterials 2009; 31:296-307. [PMID: 19819544 DOI: 10.1016/j.biomaterials.2009.09.049] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 09/13/2009] [Indexed: 01/05/2023]
Abstract
Alternatives to using native arteries in vascular surgery are urgently needed. Vessels made from synthetic polymers have shortcomings such as thrombosis, rejection, intimal hyperplasia, calcification, infection, chronic inflammation and no growth potential. Tissue-engineered blood vessels (TEBV) may overcome these problems. We developed a tissue-engineered artery using autologous bone marrow derived mesenchymal stem cells (MSCs) and a decellularized arterial scaffold. Vascular smooth muscle cell (SMCs)-like cells and endothelial cell (ECs)-like cells were differentiated from MSCs in vitro. We constructed TEBV by seeding these autologous cells onto decellularized ovine carotid arteries and interposed into the carotid arteries in an ovine host models. The scaffold retained the main structural components of a blood vessel, such as collagen and elastin. The TEBVs were patent, anti-thrombogenic, and mechanically stable for 5 months in vivo, whereas non-seeded grafts occluded within 2 weeks. Histological, immunohistochemical, and electron microscopic analyses of the TEBVs demonstrated the existence of endothelium, smooth muscle and the presence of collagen and elastin both at 2 and 5 months, respectively. MSCs labeled with a fluorescent dye prior to implantation were detected in the harvested TE artery 2 months after implantation, indicating that the MSCs survived and contributed to the vascular tissue regeneration. Therefore, TEBVs can be assembled from autologous MSCs and decellularized bioscaffold.
Collapse
Affiliation(s)
- Yilin Zhao
- Department of Vascular Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lim SH, Mao HQ. Electrospun scaffolds for stem cell engineering. Adv Drug Deliv Rev 2009; 61:1084-96. [PMID: 19647024 DOI: 10.1016/j.addr.2009.07.011] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 07/16/2009] [Indexed: 11/24/2022]
Abstract
Stem cells interact with and respond to a myriad of signals emanating from their extracellular microenvironment. The ability to harness the regenerative potential of stem cells via a synthetic matrix has promising implications for regenerative medicine. Electrospun fibrous scaffolds can be prepared with high degree of control over their structure creating highly porous meshes of ultrafine fibers that resemble the extracellular matrix topography, and are amenable to various functional modifications targeted towards enhancing stem cell survival and proliferation, directing specific stem cell fates, or promoting tissue organization. The feasibility of using such a scaffold platform to present integrated topographical and biochemical signals that are essential to stem cell manipulation has been demonstrated. Future application of this versatile scaffold platform to human embryonic and induced pluripotent stem cells for functional tissue repair and regeneration will further expand its potential for regenerative therapies.
Collapse
|