1
|
Seesala VS, Sheikh L, Basu B, Mukherjee S. Mechanical and Bioactive Properties of PMMA Bone Cement: A Review. ACS Biomater Sci Eng 2024; 10:5939-5959. [PMID: 39240690 DOI: 10.1021/acsbiomaterials.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Over the past few decades, poly(methyl methacrylate) (PMMA) based bone cement has been clinically used extensively in orthopedics for arthroplasty and kyphoplasty, due to its biocompatibility and excellent primary fixation to the host bone. In this focused review, we discuss the use of various fillers and secondary chemical moieties to improve the bioactivity and the physicochemical properties. The viscosity of the PMMA blend formulations and working time are crucial to achieving intimate contact with the osseous tissue, which is highly sensitive to organic or inorganic fillers. Hydroxyapatite as a reinforcement resulted in compromised mechanical properties of the modified cement. The possible mechanisms of the additive- or filler-dependent strengthening or weakening of the PMMA blend are critically reviewed. The addition of layered double hydroxides with surface functionalization appears to be a promising approach to enhance the bonding of filler with the PMMA matrix. Such an approach consequently improves the mechanical properties, owing to enhanced dispersion as well as contributions from crack bridging. Finally, the use of emerging alternatives, such as nanoparticles, and the use of natural biomolecules were highlighted to improve bioactivity and antibacterial properties.
Collapse
Affiliation(s)
- Venkata Sundeep Seesala
- Advanced Materials and Characterization Group, Research and Development Division, Tata Steel Ltd, Jamshedpur 831001, India
| | - Lubna Sheikh
- Advanced Materials and Characterization Group, Research and Development Division, Tata Steel Ltd, Jamshedpur 831001, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bengaluru 560012, India
| | - Subrata Mukherjee
- Advanced Materials and Characterization Group, Research and Development Division, Tata Steel Ltd, Jamshedpur 831001, India
| |
Collapse
|
2
|
Sagar N, Chakravarti B, Maurya SS, Nigam A, Malakar P, Kashyap R. Unleashing innovation: 3D-printed biomaterials in bone tissue engineering for repairing femur and tibial defects in animal models - a systematic review and meta-analysis. Front Bioeng Biotechnol 2024; 12:1385365. [PMID: 39386047 PMCID: PMC11462855 DOI: 10.3389/fbioe.2024.1385365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction 3D-printed scaffolds have emerged as an alternative for addressing the current limitations encountered in bone reconstruction. This study aimed to systematically review the feasibility of using 3D bio-printed scaffolds as a material for bone grafting in animal models, focusing on femoral and tibial defects. The primary objective of this study was to evaluate the efficacy, safety, and overall impact of these scaffolds on bone regeneration. Methods Electronic databases were searched using specific search terms from January 2013 to October 2023, and 37 relevant studies were finally included and reviewed. We documented the type of scaffold generated using the 3D printed techniques, detailing its characterization and rheological properties including porosity, compressive strength, shrinkage, elastic modulus, and other relevant factors. Before incorporating them into the meta-analysis, an additional inclusion criterion was applied where the regenerated bone area (BA), bone volume (BV), bone volume per total volume (BV/TV), trabecular thickness (Tb. Th.), trabecular number (Tb. N.), and trabecular separation (Tb. S.) were collected and analyzed statistically. Results 3D bio-printed ceramic-based composite scaffolds exhibited the highest capacity for bone tissue regeneration (BTR) regarding BV/TV of femoral and tibial defects of animal models. The ideal structure of the printed scaffolds displayed optimal results with a total porosity >50% with a pore size ranging between 300- and 400 µM. Moreover, integrating additional features and engineered macro-channels within these scaffolds notably enhanced BTR capacity, especially observed at extended time points. Discussion In conclusion, 3D-printed composite scaffolds have shown promise as an alternative for addressing bone defects.
Collapse
Affiliation(s)
- Nitin Sagar
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Bandana Chakravarti
- Center for Advanced Research (Stem Cell/Cell Culture Lab), King George’s Medical University, Lucknow, India
| | - Shailendra S. Maurya
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Anshul Nigam
- Department of Biotechnology, Kanpur Institute of Technology, Kanpur, India
| | - Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Rajesh Kashyap
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
3
|
Ritschl L, Schilling P, Wittmer A, Serr A, Schmal H, Seidenstuecker M. Dual release of daptomycin and BMP-2 from a composite of β-TCP ceramic and ADA gelatin. BMC Biotechnol 2024; 24:38. [PMID: 38831403 PMCID: PMC11149308 DOI: 10.1186/s12896-024-00863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Antibiotic-containing carrier systems are one option that offers the advantage of releasing active ingredients over a longer period of time. In vitro sustained drug release from a carrier system consisting of microporous β-TCP ceramic and alginate has been reported in previous works. Alginate dialdehyde (ADA) gelatin gel showed both better mechanical properties when loaded into a β-TCP ceramic and higher biodegradability than pure alginate. METHODS Dual release of daptomycin and BMP-2 was measured on days 1, 2, 3, 6, 9, 14, 21, and 28 by HPLC and ELISA. After release, the microbial efficacy of the daptomycin was verified and the biocompatibility of the composite was tested in cell culture. RESULTS Daptomycin and the model compound FITC protein A (n = 30) were released from the composite over 28 days. A Daptomycin release above the minimum inhibitory concentration (MIC) by day 9 and a burst release of 71.7 ± 5.9% were observed in the loaded ceramics. Low concentrations of BMP-2 were released from the loaded ceramics over 28 days.
Collapse
Affiliation(s)
- Lucas Ritschl
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center- Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Pia Schilling
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center- Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Annette Wittmer
- Institute of Microbiology and Hygiene, Faculty of Medicine, Medical Center Albert-Ludwigs-University of Freiburg, Hermann- Herder-Straße 11, 79104, Freiburg, Germany
| | - Annerose Serr
- Institute of Microbiology and Hygiene, Faculty of Medicine, Medical Center Albert-Ludwigs-University of Freiburg, Hermann- Herder-Straße 11, 79104, Freiburg, Germany
| | - Hagen Schmal
- Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Michael Seidenstuecker
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center- Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
- Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| |
Collapse
|
4
|
Strunz F, Gentil-Perret S, Siegrist M, Bohner M, Saulacic N, Hofstetter W. Bisphosphonates do not affect healing of a critical-size defect in estrogen-deficient mice. Bone Rep 2024; 20:101739. [PMID: 38304619 PMCID: PMC10831175 DOI: 10.1016/j.bonr.2024.101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Bisphosphonates (BP) are anti-resorptive drugs that are widely used to prevent bone loss in osteoporosis. Since inhibition of bone resorption will cause a decrease in bone formation through a process called coupling, it is hypothesized that extended treatment protocols may impair bone healing. In this study, β-tri‑calcium-phosphate (βTCP) ceramics were inserted into critical-size long bone defects in estrogen-deficient mice under BP therapy. The study assessed the benefits of coating the ceramics with Bone Morphogenetic Protein-2 (BMP2) and an engineered BMP2 analogue (L51P) that inactivates BMP antagonists on the healing process, implant resorption, and bone formation. Female NMRI mice (11-12 weeks of age) were ovariectomized (OVX) or sham operated. Eight weeks later, after the manifestation of ovariectomy-induced osteoporotic bone changes, BP therapy with Alendronate (ALN) was commenced. After another five weeks, a femoral critical-size defect was generated, rigidly fixed, and βTCP-cylinders loaded with 0.25 μg or 2.5 μg BMP2, 2.5 μg L51P, and 0.25 μg BMP2/2.5 μg L51P, respectively, were inserted. Unloaded βTCP-cylinders were used as controls. Femora were collected six and twelve weeks post-implantation. Histological and micro-computer tomography (MicroCT) evaluation revealed that insertion of cylinders coated with 2.5 μg BMP2 accelerated fracture repair and induced significant bone formation compared to controls (unloaded cylinders or coated with 2.5 μg L51P, 0.25 μg BMP2) already six weeks post-implantation, independent of estrogen-deficiency and BP therapy. The simultaneous administration of BMP2 and L51P (0.25 μg BMP2/2.5 μg L51P) did not promote fracture healing six and twelve weeks post-implantation. Moreover, new bone formation within the critical-size defect was directly linked to the removal of the βTCP-implant in all experimental groups. No evidence was found that long-term therapy with ALN impaired the resorption of the implanted graft. However, osteoclast transcriptome signature was elevated in sham and OVX animals upon treatment with BP, with transcript levels being higher at six weeks than at twelve weeks post-surgery. Furthermore, the transcriptome profile of the developing repair tissue confirmed an accelerated repair process in animals treated with 2.5 μg BMP2 implants. L51P did not increase the bioefficacy of BMP2 in the applied defect model. The present study provides evidence that continuous administration of BP does not inhibit implant resorption and does not alter the kinetics of the healing process of critical-size long bone defects. Furthermore, the BMP2 variant L51P did not enhance the bioefficacy of BMP2 when applied simultaneously to the femoral critical-size defect in sham and OVX mice.
Collapse
Affiliation(s)
- Franziska Strunz
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Saskia Gentil-Perret
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Mark Siegrist
- Cardiovascular Diseases Program, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Nikola Saulacic
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Clinic for Cranio-Maxillofacial Surgery, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Willy Hofstetter
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Clinic for Cranio-Maxillofacial Surgery, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Ramanathan M, Shijirbold A, Okui T, Tatsumi H, Kotani T, Shimamura Y, Morioka R, Ayasaka K, Kanno T. In Vivo Evaluation of Bone Regenerative Capacity of the Novel Nanobiomaterial: β-Tricalcium Phosphate Polylactic Acid-co-Glycolide (β-TCP/PLLA/PGA) for Use in Maxillofacial Bone Defects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:91. [PMID: 38202548 PMCID: PMC10780666 DOI: 10.3390/nano14010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
Maxillofacial bone defects are treated by autografting or filling with synthetic materials in various forms and shapes. Electrospun nanobiomaterials are becoming popular due to their easy placement and handling; combining ideal biomaterials extrapolates better outcomes. We used a novel electrospun cotton-like fiber made from two time-tested bioresorbable materials, β-TCP and PLLA/PGA, to check the feasibility of its application to maxillofacial bone defects through an in vivo rat mandibular bone defect model. Novel β-TCP/PLLA/PGA and pure β-TCP blocks were evaluated for new bone regeneration through assessment of bone volume, inner defect diameter reduction, and bone mineral density. Bioactive/osteoconductivity was checked by scoring the levels of Runt-related transcription factor x, Leptin Receptor, Osteocalcin, and Periostin biomarkers. Bone regeneration in both β-TCP/PLLA/PGA and β-TCP was comparable at initial timepoints. Osteogenic cell accumulation was greater in β-TCP/PLLA/PGA than in β-TCP at initial as well as late phases. Periostin expression was more marked in β-TCP/PLLA/PGA. This study demonstrated comparable results between β-TCP/PLLA/PGA and β-TCP in terms of bone regeneration and bioactivity, even with a small material volume of β-TCP/PLLA/PGA and a decreased percentage of β-TCP. Electrospun β-TCP/PLLA/PGA is an ideal nanobiomaterial for inducing bone regeneration through osteoconductivity and bioresorbability in bony defects of the maxillofacial region.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Takahiro Kanno
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, 89-1, Enya-Cho, Izumo 693-8501, Shimane, Japan; (M.R.); (A.S.); (T.O.); (H.T.); (T.K.); (Y.S.); (R.M.); (K.A.)
| |
Collapse
|
6
|
Indra A, Razi R, Jasmayeti R, Fauzan A, Wahyudi D, Handra N, Subardi A, Susanto I, Purnomo MJ. The practical process of manufacturing poly(methyl methacrylate)-based scaffolds having high porosity and high strength. J Mech Behav Biomed Mater 2023; 142:105862. [PMID: 37086523 DOI: 10.1016/j.jmbbm.2023.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
Poly(methyl methacrylate) (PMMA)-based scaffolds have been produced using the granule casting method with grain sizes M80-100 and M100-140. The novelty of this study was the application of the cold-cutting method (CCm) to reduce the PMMA granule size. PMMA granule shape, granule size (mesh), and sintering temperature were the primary variables in manufacturing PMMA scaffolds. CCm was applied to reduce the granule size of commercial PMMA, which was originally solid cylindrical, by lowering the temperature to 3.5 °C, 0 °C, and-8.3 °C. PMMA granules that had been reduced were sieved with mesh sizes M80-100 and M100-140. Green bodies were made by the granule casting method using an aluminum mold measuring 8 × 8 × 8 mm3. The sintering process was carried out at temperatures varying from 115 °C to 140 °C, a heating rate of 5 °C/min, and a holding time of 2 h, the cooling process was carried out in a furnace. The characterization of the PMMA-based scaffolds' properties was carried out by observing the microstructure with SEM, analyzing the distribution of pore sizes with ImageJ software, and testing the porosity, the phase, with XRD, and the compressive strength. The best results from the overall analysis were the M80-100 PMMA scaffold treated at a sintering temperature of 130 °C with compressive strength, porosity, and pore size distribution values of 8.2 MPa, 62.0%, and 121-399 μm, respectively, and the M100-140 one treated at a sintering temperature of 135 °C with compressive strength, porosity, and pore size distribution values of 12.1 MPa, 61.2%, and 140-366 μm, respectively. There were interconnected pores in the PMMA scaffolds, as evidenced by the SEM images. There was no PMMA phase change between before and after the sintering process.
Collapse
Affiliation(s)
- Ade Indra
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia.
| | - Rivaldo Razi
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Riri Jasmayeti
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Alfi Fauzan
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Didi Wahyudi
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Nofriady Handra
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Adi Subardi
- Department of Mechanical Engineering, Institut Teknologi Nasional Yogyakarta, Sleman, 55281, Daerah Istimewa Yogyakarta, Indonesia
| | - Iwan Susanto
- Department of Mechanical Engineering, Politeknik Negeri Jakarta, West Java, 16425, Indonesia
| | - M Jalu Purnomo
- Department of Aeronautics, Institut Teknologi Dirgantara Adisutjipto, Yogyakarta, 55198, Indonesia
| |
Collapse
|
7
|
Indra A, Hamid I, Farenza J, Handra N, Anrinal, Subardi A. Manufacturing hydroxyapatite scaffold from snapper scales with green phenolic granules as the space holder material. J Mech Behav Biomed Mater 2022; 136:105509. [PMID: 36240527 DOI: 10.1016/j.jmbbm.2022.105509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
Hydroxyapatite (HA) scaffold was made using the powder metallurgy with an use of a space holder method with a pore-forming agent from green phenolic (GP) granules. The novelty of this study was the use of GP granules as an agent that does not melt at high temperatures to avoid damaging the tangential contact between the HA powder during the sintering process. HA from snapper scales was added and mixed with polyvinyl alcohol (PVA) and ethanol to form a slurry. The ethanol content was then removed by drying at room temperature. The HA, which contained PVA, was added with GP granules as a pore-forming agent in various amounts to get the desired porosity. The green body was made using a stainless steel mold with the uniaxial pressing process under a pressure of 100 MPa. To make a scaffold sintered body, a sintering process ran at 1200 °C with a holding time of 2 h while maintaining the heating and cooling rates at 5 °C/min. The physical properties of the scaffold sintered body were characterized through linear shrinkage test, pore measurement, porosity test, phase observation by X-ray diffraction (XRD), and microstructure observation by scanning electron microscopy (SEM) and digital microscopy (DM). So were the mechanical ones through a compressive strength test. The results showed that the sintered body had a compressive strength value of 1.6 MPa at a porosity of 60.7% with a pore size of 129-394 μm. The scaffold contained interconnections between pores at a HA:GP ratio of 55:45 wt%, which matched the condition required for cell tissue growth. The conclusion is that GP granules are good enough to be used as a pore-making agent on scaffolds using the space holder method because they do not damage the tangential contact between the HA powder during the sintering process. However, efforts are needed to remove the remaining GP ash on the scaffold.
Collapse
Affiliation(s)
- Ade Indra
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia.
| | - Irfan Hamid
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Jerry Farenza
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Nofriady Handra
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Anrinal
- Faculty of Engineering, Department of Mechanical Engineering, Institut Teknologi Padang, Kp Olo, 25143, Padang, Sumatera Barat, Indonesia
| | - Adi Subardi
- Department of Mechanical Engineering, Institut Teknologi Nasional Yogyakarta, Sleman, 55281, Daerah Istimewa Yogyakarta, Indonesia
| |
Collapse
|
8
|
Suuronen JP, Hesse B, Langer M, Bohner M, Villanova J. Evaluation of imaging setups for quantitative phase contrast nanoCT of mineralized biomaterials. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:843-852. [PMID: 35511016 PMCID: PMC9070718 DOI: 10.1107/s1600577522003137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/23/2022] [Indexed: 05/19/2023]
Abstract
X-ray nano-tomography with phase contrast (nanoCT) using synchrotron radiation is a powerful tool to non-destructively investigate 3D material properties at the nanoscale. In large bone lesions, such as severe bone fractures, bone cancer or other diseases, bone grafts substituting the lost bone might be necessary. Such grafts can be of biological origin or be composed of a synthetic bone substitute. The long-term functioning of artificial bone substitutes depends on many factors. Synchrotron nanoCT imaging has great potential to contribute to further the understanding of integration of implants into bone tissue by imaging the spatial interaction between bone tissue and implant, and by accessing the interface between implant material and bone tissue. With this aim, a methodology for evaluating the image quality is presented for in-line phase contrast nanoCT images of bone scaffold samples. A PMMA-embedded tricalcium phosphate scaffold was used with both a closed and an open porosity structure and bone ingrowths as a representative system of three known materials. Parameters such as spatial resolution and signal-to-noise ratio were extracted and used to explore and quantitatively compare the effects of implementation choices in the imaging setup, such as camera technology and imaging energy, on the resulting image quality. Increasing the X-ray energy from 17.5 keV to 29.6 keV leads to a notable improvement in image quality regardless of the camera technology used, with the two tested camera setups performing at a comparable level when the recorded intensity was kept constant.
Collapse
Affiliation(s)
- Jussi-Petteri Suuronen
- Xploraytion, Bismarckstrasse 10-12, 10625 Berlin, Germany
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Bernhard Hesse
- Xploraytion, Bismarckstrasse 10-12, 10625 Berlin, Germany
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Max Langer
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France
- University of Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Marc Bohner
- RMS Foundation, Bischmattstrasse 12, 2544 Bettlach, Switzerland
| | - Julie Villanova
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| |
Collapse
|
9
|
Kim Y, Lee EJ, Kotula AP, Takagi S, Chow L, Alimperti S. Engineering 3D Printed Scaffolds with Tunable Hydroxyapatite. J Funct Biomater 2022; 13:34. [PMID: 35466216 PMCID: PMC9036238 DOI: 10.3390/jfb13020034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Orthopedic and craniofacial surgical procedures require the reconstruction of bone defects caused by trauma, diseases, and tumor resection. Successful bone restoration entails the development and use of bone grafts with structural, functional, and biological features similar to native tissues. Herein, we developed three-dimensional (3D) printed fine-tuned hydroxyapatite (HA) biomimetic bone structures, which can be applied as grafts, by using calcium phosphate cement (CPC) bioink, which is composed of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA), and a liquid [Polyvinyl butyral (PVB) dissolved in ethanol (EtOH)]. The ink was ejected through a high-resolution syringe nozzle (210 µm) at room temperature into three different concentrations (0.01, 0.1, and 0.5) mol/L of the aqueous sodium phosphate dibasic (Na2HPO4) bath that serves as a hardening accelerator for HA formation. Raman spectrometer, X-ray diffraction (XRD), and scanning electron microscopy (SEM) demonstrated the real-time HA formation in (0.01, 0.1, and 0.5) mol/L Na2HPO4 baths. Under those conditions, HA was formed at different amounts, which tuned the scaffolds' mechanical properties, porosity, and osteoclast activity. Overall, this method may pave the way to engineer 3D bone scaffolds with controlled HA composition and pre-defined properties, which will enhance graft-host integration in various anatomic locations.
Collapse
Affiliation(s)
- Yoontae Kim
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA; (Y.K.); (E.-J.L.); (S.T.); (L.C.)
| | - Eun-Jin Lee
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA; (Y.K.); (E.-J.L.); (S.T.); (L.C.)
| | - Anthony P. Kotula
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| | - Shozo Takagi
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA; (Y.K.); (E.-J.L.); (S.T.); (L.C.)
| | - Laurence Chow
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA; (Y.K.); (E.-J.L.); (S.T.); (L.C.)
| | - Stella Alimperti
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA; (Y.K.); (E.-J.L.); (S.T.); (L.C.)
| |
Collapse
|
10
|
Fang Z, Chen J, Pan J, Liu G, Zhao C. The Development Tendency of 3D-Printed Bioceramic Scaffolds for Applications Ranging From Bone Tissue Regeneration to Bone Tumor Therapy. Front Bioeng Biotechnol 2021; 9:754266. [PMID: 34988065 PMCID: PMC8721665 DOI: 10.3389/fbioe.2021.754266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 12/31/2022] Open
Abstract
Three-dimensional (3D) printing concept has been successfully employed in regenerative medicine to achieve individualized therapy due to its benefit of a rapid, accurate, and predictable production process. Traditional biocomposites scaffolds (SCF) are primarily utilised for bone tissue engineering; nevertheless, over the last few years, there has already been a dramatic shift in the applications of bioceramic (BCR) SCF. As a direct consequence, this study focused on the structural, degeneration, permeation, and physiological activity of 3D-printed BCR (3DP-B) SCF with various conformations and work systems (macros, micros, and nanos ranges), as well as their impacts on the mechanical, degeneration, porosity, and physiological activities. In addition, 3DP-B SCF are highlighted in this study for potential uses applied from bone tissue engineering (BTE) to bone tumor treatment. The study focused on significant advances in practical 3DP-B SCF that can be utilized for tumor treatment as well as bone tissue regeneration (BTR). Given the difficulties in treating bone tumors, these operational BCR SCF offer a lot of promise in mending bone defects caused by surgery and killing any remaining tumor cells to accomplish bone tumor treatment. Furthermore, a quick assessment of future developments in this subject was presented. The study not only summarizes recent advances in BCR engineering, but it also proposes a new therapeutic strategy focused on the extension of conventional ceramics' multifunction to a particular diagnosis.
Collapse
Affiliation(s)
- Zhixiang Fang
- Department of Orthopedics, The Second Hospital of Shaoxing, Shaoxing, China
| | - Jihang Chen
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jiangxia Pan
- Nursing Department, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Guoqiang Liu
- Department of Orthopedics, The Second Hospital of Shaoxing, Shaoxing, China
| | - Chen Zhao
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
11
|
Kamboj N, Ressler A, Hussainova I. Bioactive Ceramic Scaffolds for Bone Tissue Engineering by Powder Bed Selective Laser Processing: A Review. MATERIALS 2021; 14:ma14185338. [PMID: 34576562 PMCID: PMC8469313 DOI: 10.3390/ma14185338] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/12/2021] [Indexed: 02/07/2023]
Abstract
The implementation of a powder bed selective laser processing (PBSLP) technique for bioactive ceramics, including selective laser sintering and melting (SLM/SLS), a laser powder bed fusion (L-PBF) approach is far more challenging when compared to its metallic and polymeric counterparts for the fabrication of biomedical materials. Direct PBSLP can offer binder-free fabrication of bioactive scaffolds without involving postprocessing techniques. This review explicitly focuses on the PBSLP technique for bioactive ceramics and encompasses a detailed overview of the PBSLP process and the general requirements and properties of the bioactive scaffolds for bone tissue growth. The bioactive ceramics enclosing calcium phosphate (CaP) and calcium silicates (CS) and their respective composite scaffolds processed through PBSLP are also extensively discussed. This review paper also categorizes the bone regeneration strategies of the bioactive scaffolds processed through PBSLP with the various modes of functionalization through the incorporation of drugs, stem cells, and growth factors to ameliorate critical-sized bone defects based on the fracture site length for personalized medicine.
Collapse
Affiliation(s)
- Nikhil Kamboj
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia;
| | - Antonia Ressler
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, p.p.177, HR-10001 Zagreb, Croatia;
| | - Irina Hussainova
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia;
- Correspondence:
| |
Collapse
|
12
|
Kocyło E, Franchin G, Colombo P, Chmielarz A, Potoczek M. Hydroxyapatite-coated ZrO2 scaffolds with a fluorapatite intermediate layer produced by direct ink writing. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2020.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Bédard P, Gauvin S, Ferland K, Caneparo C, Pellerin È, Chabaud S, Bolduc S. Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing. Bioengineering (Basel) 2020; 7:E115. [PMID: 32957528 PMCID: PMC7552665 DOI: 10.3390/bioengineering7030115] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Animal testing has long been used in science to study complex biological phenomena that cannot be investigated using two-dimensional cell cultures in plastic dishes. With time, it appeared that more differences could exist between animal models and even more when translated to human patients. Innovative models became essential to develop more accurate knowledge. Tissue engineering provides some of those models, but it mostly relies on the use of prefabricated scaffolds on which cells are seeded. The self-assembly protocol has recently produced organ-specific human-derived three-dimensional models without the need for exogenous material. This strategy will help to achieve the 3R principles.
Collapse
Affiliation(s)
- Patrick Bédard
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Sara Gauvin
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Karel Ferland
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Ève Pellerin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
14
|
Bohner M, Santoni BLG, Döbelin N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater 2020; 113:23-41. [PMID: 32565369 DOI: 10.1016/j.actbio.2020.06.022] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
Abstract
β-tricalcium phosphate (β-TCP) is one the most used and potent synthetic bone graft substitute. It is not only osteoconductive, but also osteoinductive. These properties, combined with its cell-mediated resorption, allow full bone defects regeneration. Its clinical outcome is sometimes considered to be "unpredictable", possibly due to a poor understanding of β-TCP physico-chemical properties: β-TCP crystallographic structure is not fully uncovered; recent results suggest that sintered β-TCP is coated with a Ca-rich alkaline phase; β-TCP apatite-forming ability and osteoinductivity may be enhanced by a hydrothermal treatment; β-TCP grain size and porosity are strongly modified by the presence of minute amounts of β-calcium pyrophosphate or hydroxyapatite impurities. The aim of the present article is to provide a critical, but still rather comprehensive review of the current state of knowledge on β-TCP, with a strong focus on its synthesis and physico-chemical properties, and their link to the in vivo response. STATEMENT OF SIGNIFICANCE: The present review documents the richness, breadth, and interest of the research devoted to β-tricalcium phosphate (β-TCP). β-TCP is synthetic, osteoconductive, osteoinductive, and its resorption is cell-mediated, thus making it one of the most potent bone graft substitutes. This comprehensive review reveals that there are a number of aspects, such as surface chemistry, crystallography, or stoichiometry deviations, that are still poorly understood. As such, β-TCP is still an exciting scientific playground despite a 50 year long history and > 200 yearly publications.
Collapse
|
15
|
Chen Y, Liu Z, Jiang T, Zou X, Lei L, Yan W, Yang J, Li B. Strontium‐substituted biphasic calcium phosphate microspheres promoted degradation performance and enhanced bone regeneration. J Biomed Mater Res A 2019; 108:895-905. [DOI: 10.1002/jbm.a.36867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Chen
- Department of Prosthodontics Peking University School and Hospital of Stomatology; National Clinical Research Center for Oral Diseases; National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Zhongning Liu
- Department of Prosthodontics Peking University School and Hospital of Stomatology; National Clinical Research Center for Oral Diseases; National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Ting Jiang
- Department of Prosthodontics Peking University School and Hospital of Stomatology; National Clinical Research Center for Oral Diseases; National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Xinyu Zou
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices Chongqing University of Science and Technology Chongqing China
| | - Lei Lei
- Department of Prosthodontics Peking University School and Hospital of Stomatology; National Clinical Research Center for Oral Diseases; National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Wenjuan Yan
- First Clinical Division School and Hospital of Stomatology Peking University Beijing China
| | - Jingwen Yang
- Department of Prosthodontics Peking University School and Hospital of Stomatology; National Clinical Research Center for Oral Diseases; National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices Chongqing University of Science and Technology Chongqing China
| |
Collapse
|
16
|
Putri TS, Hayashi K, Ishikawa K. Bone regeneration using β-tricalcium phosphate (β-TCP) block with interconnected pores made by setting reaction of β-TCP granules. J Biomed Mater Res A 2019; 108:625-632. [PMID: 31742920 DOI: 10.1002/jbm.a.36842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 02/02/2023]
Abstract
We fabricated an interconnected dual porous β-tricalcium phosphate (β-TCP) block via a setting reaction of β-TCP granules. This β-TCP block was unique because it exhibits a fully interconnected macroporous structure with micropores in the walls surrounding macropores and a roughened surface. The porosity and diametral tensile strength of the resulting product were 58.1 ± 1.7% and 1.4 ± 0.2 MPa, respectively. Rabbit distal femur bone defects were reconstructed using the porous β-TCP block and the efficacy of the porous β-TCP block as an artificial bone substitute was evaluated histomorphometrically. For a dense β-TCP control, 4 weeks following implantation, only 0.2 ± 0.1% of the β-TCP was resorbed, and the amount of newly formed bone was limited (0.1 ± 0.1%), whereas when the defect was reconstructed with porous β-TCP, 9.2 ± 3.1% was resorbed, and the amount of new bone was 18.9 ± 5.5%. This represents an approximately 50-fold enhancement in resorption and a 200-fold increase in bone formation for our porous β-TCP block. Therefore, interconnected dual porous β-TCP made via β-TCP granule setting has good potential as an artificial bone substitute.
Collapse
Affiliation(s)
- Tansza S Putri
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Thin Degradable Coatings for Optimization of Osteointegration Associated with Simultaneous Infection Prophylaxis. MATERIALS 2019; 12:ma12213495. [PMID: 31731410 PMCID: PMC6862457 DOI: 10.3390/ma12213495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022]
Abstract
One of the most common causes of implant failure is aseptic prosthesis loosening. Another frequent complication after prosthesis implant is the microbial colonization of the prosthesis surface, which often leads to a replacement of the prosthesis. One approach to reduce these complications is the application of bioactive substances to implant surfaces. Both an antibiotic prophylaxis and a faster osteointegration can be obtained by incorporation of bactericidal active metals in degradable calcium phosphate (CaP) coatings. In this study, thin degradable calcium phosphate ceramic coatings doped with silver (Ag), copper (Cu), and bismuth (Bi) on a titanium substrate were prepared with the aid of the high-velocity suspension flame spraying (HVSFS) coating process. To characterize the samples surface roughness, brightfield microscopy of the coatings, X-ray diffraction (XRD)-analysis for definition of the phase composition of the layers, Raman spectroscopy for determination of the phase composition of the contained metals, element-mapping for Cu-content verification, release kinetics for detection of metal ions and ceramic components of the coatings were carried out. The aim of this study was to evaluate in vitro biocompatibility and antimicrobial activity of the coatings. For biocompatibility testing, growth experiments were performed using the cell culture line MG-63. Cell viability was investigated by Giemsa staining and live/dead assay. The WST-1 kit was used to quantify cell proliferation and vitality in vitro and the lactate dehydrogenase (LDH) kit to quantify cytotoxicity. The formation of hydroxyapatite crystals in simulated body fluid was investigated to predict bioactivity in vivo. The Safe Airborne Antibacterial Assay with Staphylococcus aureus (S. aureus) was used for antimicrobial testing. The results showed good biocompatibility of all the metal doped CaP coatings, furthermore Cu and Ag doped layers showed significant antibacterial effects against S. aureus.
Collapse
|
18
|
Melnik S, Werth N, Boeuf S, Hahn EM, Gotterbarm T, Anton M, Richter W. Impact of c-MYC expression on proliferation, differentiation, and risk of neoplastic transformation of human mesenchymal stromal cells. Stem Cell Res Ther 2019; 10:73. [PMID: 30836996 PMCID: PMC6402108 DOI: 10.1186/s13287-019-1187-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells isolated from bone marrow (MSC) represent an attractive source of adult stem cells for regenerative medicine. However, thorough research is required into their clinical application safety issues concerning a risk of potential neoplastic degeneration in a process of MSC propagation in cell culture for therapeutic applications. Expansion protocols could preselect MSC with elevated levels of growth-promoting transcription factors with oncogenic potential, such as c-MYC. We addressed the question whether c-MYC expression affects the growth and differentiation potential of human MSC upon extensive passaging in cell culture and assessed a risk of tumorigenic transformation caused by MSC overexpressing c-MYC in vivo. METHODS MSC were subjected to retroviral transduction to induce expression of c-MYC, or GFP, as a control. Cells were expanded, and effects of c-MYC overexpression on osteogenesis, adipogenesis, and chondrogenesis were monitored. Ectopic bone formation properties were tested in SCID mice. A potential risk of tumorigenesis imposed by MSC with c-MYC overexpression was evaluated. RESULTS C-MYC levels accumulated during ex vivo passaging, and overexpression enabled the transformed MSC to significantly overgrow competing control cells in culture. C-MYC-MSC acquired enhanced biological functions of c-MYC: its increased DNA-binding activity, elevated expression of the c-MYC-binding partner MAX, and induction of antagonists P19ARF/P16INK4A. Overexpression of c-MYC stimulated MSC proliferation and reduced osteogenic, adipogenic, and chondrogenic differentiation. Surprisingly, c-MYC overexpression also caused an increased COL10A1/COL2A1 expression ratio upon chondrogenesis, suggesting a role in hypertrophic degeneration. However, the in vivo ectopic bone formation ability of c-MYC-transduced MSC remained comparable to control GFP-MSC. There was no indication of tumor growth in any tissue after transplantation of c-MYC-MSC in mice. CONCLUSIONS C-MYC expression promoted high proliferation rates of MSC, attenuated but not abrogated their differentiation capacity, and did not immediately lead to tumor formation in the tested in vivo mouse model. However, upregulation of MYC antagonists P19ARF/P16INK4A promoting apoptosis and senescence, as well as an observed shift towards a hypertrophic collagen phenotype and cartilage degeneration, point to lack of safety for clinical application of MSC that were manipulated to overexpress c-MYC for their better expansion.
Collapse
Affiliation(s)
- Svitlana Melnik
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Nadine Werth
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Stephane Boeuf
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Eva-Maria Hahn
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Tobias Gotterbarm
- Department of Orthopedics, Kepler University Hospital, Linz, Austria
| | - Martina Anton
- Institutes of Molecular Immunology and Experimental Oncology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Wiltrud Richter
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| |
Collapse
|
19
|
Wubneh A, Tsekoura EK, Ayranci C, Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater 2018; 80:1-30. [PMID: 30248515 DOI: 10.1016/j.actbio.2018.09.031] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair has been on the rise. This quest, accompanied by the advent of functionally tailored, biocompatible, and biodegradable materials, has garnered an enormous research interest in bone TE. As a result, different materials and fabrication methods have been investigated towards this end, leading to a deeper understanding of the geometrical, mechanical and biological requirements associated with bone scaffolds. As our understanding of the scaffold requirements expands, so do the capability requirements of the fabrication processes. The goal of this review is to provide a broad examination of existing scaffold fabrication processes and highlight future trends in their development. To appreciate the clinical requirements of bone scaffolds, a brief review of the biological process by which bone regenerates itself is presented first. This is followed by a summary and comparisons of commonly used implant techniques to highlight the advantages of TE-based approaches over traditional grafting methods. A detailed discussion on the clinical and mechanical requirements of bone scaffolds then follows. The remainder of the manuscript is dedicated to current scaffold fabrication methods, their unique capabilities and perceived shortcomings. The range of biomaterials employed in each fabrication method is summarized. Selected traditional and non-traditional fabrication methods are discussed with a highlight on their future potential from the authors' perspective. This study is motivated by the rapidly growing demand for effective scaffold fabrication processes capable of economically producing constructs with intricate and precisely controlled internal and external architectures. STATEMENT OF SIGNIFICANCE: The manuscript summarizes the current state of fabrication technologies and materials used for creating scaffolds in bone tissue engineering applications. A comprehensive analysis of different fabrication methods (traditional and free-form) were summarized in this review paper, with emphasis on recent developments in the field. The fabrication techniques suitable for creating scaffolds for tissue engineering was particularly targeted and their use in bone tissue engineering were articulated. Along with the fabrication techniques, we emphasized the choice of materials in these processes. Considering the limitations of each process, we highlighted the materials and the material properties critical in that particular process and provided a brief rational for the choice of the materials. The functional performance for bone tissue engineering are summarized for different fabrication processes and the choice of biomaterials. Finally, we provide a perspective on the future of the field, highlighting the knowledge gaps and promising avenues in pursuit of effective scaffolds for bone tissue engineering. This extensive review of the field will provide research community with a reference source for current approaches to scaffold preparation. We hope to encourage the researchers to generate next generation biomaterials to be used in these fabrication processes. By providing both advantages and disadvantage of each fabrication method in detail, new fabrication techniques might be devised that will overcome the limitations of the current approaches. These studies should facilitate the efforts of researchers interested in generating ideal scaffolds, and should have applications beyond the repair of bone tissue.
Collapse
|
20
|
Ma H, Feng C, Chang J, Wu C. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater 2018; 79:37-59. [PMID: 30165201 DOI: 10.1016/j.actbio.2018.08.026] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 02/02/2023]
Abstract
Toward the aim of personalized treatment, three-dimensional (3D) printing technology has been widely used in bone tissue engineering owing to its advantage of a fast, precise, and controllable fabrication process. Conventional bioceramic scaffolds are mainly used for bone tissue engineering; however, there has been a significant change in the application of bioceramic scaffolds during the past several years. Therefore, this review focuses on 3D-printed bioceramic scaffolds with different compositions and hierarchical structures (macro, micro, and nano scales), and their effects on the mechanical, degradation, permeability, and biological properties. Further, this review highlights 3D-printed bioceramic scaffolds for applications extending from bone tissue regeneration to bone tumor therapy. This review emphasizes recent developments in functional 3D-printed bioceramic scaffolds with the ability to be used for both tumor therapy and bone tissue regeneration. Considering the challenges in bone tumor therapy, these functional bioceramic scaffolds have a great potential in repairing bone defects induced by surgery and kill the possibly residual tumor cells to achieve bone tumor therapy. Finally, a brief perspective regarding future directions in this field was also provided. The review not only gives a summary of the research developments in bioceramic science but also offers a new therapy strategy by extending multifunctions of traditional biomaterials toward a specific disease. STATEMENT OF SIGNIFICANCE This review outlines the development tendency of 3D-printed bioceramic scaffolds for applications ranging from bone tissue regeneration to bone tumor therapy. Conventional bioceramic scaffolds are mainly used for bone tissue engineering; however, there has been a significant change in the application of bioceramic scaffolds during the past several years. Therefore, this review focuses on 3D-printed bioceramic scaffolds with different compositions and hierarchical structures (macro, micro, and nano scales), and their effects on the mechanical, degradation, permeability, and biological properties. Further, this review highlights 3D-printed bioceramic scaffolds for applications extending from bone tissue regeneration to bone tumor therapy. This review emphasizes recent developments in the functional 3D-printed bioceramic scaffolds with the ability to be used for both bone tumor therapy and bone tissue regeneration.
Collapse
Affiliation(s)
- Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100043, People's Republic of China
| | - Chun Feng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100043, People's Republic of China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China.
| |
Collapse
|
21
|
Ishikawa K, Arifta TI, Hayashi K, Tsuru K. Fabrication and evaluation of interconnected porous carbonate apatite from alpha tricalcium phosphate spheres. J Biomed Mater Res B Appl Biomater 2018; 107:269-277. [DOI: 10.1002/jbm.b.34117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science; Kyushu University, 3-1-1 Maidashi; Higashi-ku Fukuoka 812-8582 Japan
| | - Tya Indah Arifta
- Department of Biomaterials, Faculty of Dental Science; Kyushu University, 3-1-1 Maidashi; Higashi-ku Fukuoka 812-8582 Japan
| | - Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science; Kyushu University, 3-1-1 Maidashi; Higashi-ku Fukuoka 812-8582 Japan
| | - Kanji Tsuru
- Department of Biomaterials, Faculty of Dental Science; Kyushu University, 3-1-1 Maidashi; Higashi-ku Fukuoka 812-8582 Japan
| |
Collapse
|
22
|
Touri M, Moztarzadeh F, Osman NAA, Dehghan MM, Mozafari M. Breathable tissue engineering scaffolds: An efficient design-optimization by additive manufacturing. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.matpr.2018.05.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Li J, Yang L, Guo X, Cui W, Yang S, Wang J, Qu Y, Shao Z, Xu S. Osteogenesis effects of strontium-substituted hydroxyapatite coatings on true bone ceramic surfaces in vitro and in vivo. Biomed Mater 2017; 13:015018. [PMID: 28862155 DOI: 10.1088/1748-605x/aa89af] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To develop bioactive bone graft materials that can induce rapid bone regeneration, a novel biomaterial was synthesized by coating true bone ceramic (TBC) substrates with strontium-substituted nano-hydroxyapatites (SrHA) (Sr concentrations of 0%, 10%, 40%, 100%) through a sol-gel dip-coating approach. All coated TBC scaffolds retained the inherent natural trabecular structure, porosity, compressive strength and simultaneously possessed a micro/nanotopography SrHA layer on the substrate surface. The dimension of the deposited crystal increased and the density of the deposited apatite particles became sparse with increasing Sr content, but a unique HA crystalline phase was observed under all conditions. The modified TBC scaffolds significantly enhanced the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 osteoblasts in vitro. Particularly, the Sr10-TBC group (10 mol% Sr2+ in apatite coating) revealed the highest osteogenic efficacy over the other groups. Three-dimensional CT imaging and histological evaluations on a bilateral critical-sized rabbit radial defect model for 12 weeks showed significant bone formation in the Sr10-TBC implants. The new bone area ratios of the Sr10-TBC group were significantly higher than that of the TBC group. Additionally, Sr10-TBC implants showed faster degradability compared with raw TBC implants during the 12 weeks of implantation. The results indicate that TBC modification with 10% SrHA coating stimulated osteogenesis and could be a promising biomaterial for future bone defect regeneration.
Collapse
Affiliation(s)
- Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Babaie E, Bhaduri SB. Fabrication Aspects of Porous Biomaterials in Orthopedic Applications: A Review. ACS Biomater Sci Eng 2017; 4:1-39. [DOI: 10.1021/acsbiomaterials.7b00615] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elham Babaie
- Department
of Bioengineering, Bioscience Research Collaborative, Rice University, Houston, Texas 77030, United States
| | - Sarit B. Bhaduri
- Department
of Mechanical and Industrial Engineering and Division of Dentistry, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
25
|
|
26
|
Sweedy A, Bohner M, Baroud G. Multimodal analysis of in vivo resorbable CaP bone substitutes by combining histology, SEM, and microcomputed tomography data. J Biomed Mater Res B Appl Biomater 2017; 106:1567-1577. [PMID: 28766903 DOI: 10.1002/jbm.b.33962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/24/2017] [Accepted: 07/08/2017] [Indexed: 01/21/2023]
Abstract
This study introduced and demonstrated a new method to investigate the repair process of bone defects using micro- and macroporous beta-tricalcium phosphate (β-TCP) substitutes. Specifically, the new method combined and aligned histology, SEM, and preimplantation microcomputed tomography (mCT) data to accurately characterize tissue phases found in biopsies, and thus better understand the bone repair process. The results included (a) the exact fraction of ceramic remnants (CR); (b) the fraction of ceramic resorbed and substituted by bone (CSB); and (c) the fraction of ceramic resorbed and not substituted by bone (CNSB). The new method allowed in particular the detection and quantification of mineralized tissues within the 1-10 µm micropores of the ceramic ("micro-bone"). The utility of the new method was demonstrated by applying it on biopsies of two β-tricalcium phosphate bone substitute groups with two differing macropore sizes implanted in an ovine model for 6 weeks. The total bone deposition and ceramic resorption of the two substitute groups, having macropore sizes of 510 and 1220 μm, were 25.1 ± 8.1% and 67.5 ± 3.2%, and 24.4 ± 4.1% and 61.4 ± 6.5% for the group having the larger pore size. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1567-1577, 2018.
Collapse
Affiliation(s)
- Ahmed Sweedy
- Biomechanics Laboratory, Département de génie mécanique, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Marc Bohner
- RMS Foundation, CH-2544, Bettlach, Switzerland
| | - Gamal Baroud
- Biomechanics Laboratory, Département de génie mécanique, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| |
Collapse
|
27
|
Sweedy A, Bohner M, van Lenthe GH, Baroud G. A novel method for segmenting and aligning the pre- and post-implantation scaffolds of resorbable calcium-phosphate bone substitutes. Acta Biomater 2017; 54:441-453. [PMID: 28263862 DOI: 10.1016/j.actbio.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 02/19/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
Abstract
Micro-computed tomography (microCT) is commonly used to characterize the three-dimensional structure of bone graft scaffolds before and after implantation in order to assess changes occurring during implantation. The accurate processing of the microCT datasets of explanted β-tricalcium phosphate (β-TCP) scaffolds poses significant challenges because of (a) the overlap in the grey values distribution of ceramic remnants, bone, and soft tissue, and of (b) the resorption of the bone substitute during the implantation. To address those challenges, this article introduces and rigorously validates a new processing technique to accurately distinguish these three phases found in the explanted β-TCP scaffolds. Specifically, the microCT datasets obtained before and after implantation of β-TCP scaffolds were aligned in 3D, and the characteristic grey value distributions of the three phases were extracted, thus allowing for (i) the accurate differentiation between these three phases (ceramic remnants, bone, soft tissue), and additionally for (ii) the localization of the defect site in the post-implantation microCT dataset. Using the similarity matrix, a 94±1% agreement was found between algorithmic results and the visual assessment of 556,800 pixels. Moreover, the comparison of the segmentation results of the same microCT and histology section further confirmed the validity of the present segmentation algorithm. This new technique could lead to a more common use of microCT in analyzing the complex 3D processes and to a better understanding of the biological processes occurring after the implantation of ceramic bone graft substitutes. STATEMENT OF SIGNIFICANCE Calcium-phosphate scaffolds are being increasingly used to repair critical bone defects. Methods for the accurate characterization of the repair process are still lacking. The present study introduced and validated a novel image-processing technique, using micro-computed tomography (mCT) datasets, to investigate material phases present in biopsies. Specifically, the new method combined mCT datasets from the scaffold before and after implantation to access the characteristic data of the ceramic for more accurate analysis of bone biopsies, and as such to better understand the interactions of the scaffold design and the bone repair process.
Collapse
|
28
|
Tan XP, Tan YJ, Chow CSL, Tor SB, Yeong WY. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1328-1343. [PMID: 28482501 DOI: 10.1016/j.msec.2017.02.094] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/21/2017] [Indexed: 01/15/2023]
Abstract
Metallic cellular scaffold is one of the best choices for orthopaedic implants as a replacement of human body parts, which could improve life quality and increase longevity for the people needed. Unlike conventional methods of making cellular scaffolds, three-dimensional (3D) printing or additive manufacturing opens up new possibilities to fabricate those customisable intricate designs with highly interconnected pores. In the past decade, metallic powder-bed based 3D printing methods emerged and the techniques are becoming increasingly mature recently, where selective laser melting (SLM) and selective electron beam melting (SEBM) are the two representatives. Due to the advantages of good dimensional accuracy, high build resolution, clean build environment, saving materials, high customisability, etc., SLM and SEBM show huge potential in direct customisable manufacturing of metallic cellular scaffolds for orthopaedic implants. Ti-6Al-4V to date is still considered to be the optimal materials for producing orthopaedic implants due to its best combination of biocompatibility, corrosion resistance and mechanical properties. This paper presents a state-of-the-art overview mainly on manufacturing, topological design, mechanical properties and biocompatibility of cellular Ti-6Al-4V scaffolds via SLM and SEBM methods. Current manufacturing limitations, topological shortcomings, uncertainty of biocompatible test were sufficiently discussed herein. Future perspectives and recommendations were given at the end.
Collapse
Affiliation(s)
- X P Tan
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Y J Tan
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - C S L Chow
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - S B Tor
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - W Y Yeong
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
29
|
Li G, Wang L, Pan W, Yang F, Jiang W, Wu X, Kong X, Dai K, Hao Y. In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects. Sci Rep 2016; 6:34072. [PMID: 27667204 PMCID: PMC5036184 DOI: 10.1038/srep34072] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/07/2016] [Indexed: 01/12/2023] Open
Abstract
Metallic implants with a low effective modulus can provide early load-bearing and reduce stress shielding, which is favorable for increasing in vivo life-span. In this research, porous Ti6Al4V scaffolds with three pore sizes (300~400, 400~500, and 500~700 μm) were manufactured by Electron Beam Melting, with an elastic modulus range of 3.7 to 1.7 GPa. Cytocompatibility in vitro and osseointegration ability in vivo of scaffolds were assessed. hBMSCs numbers increased on all porous scaffolds over time. The group with intended pore sizes of 300 to 400 μm was significantly higher than that of the other two porous scaffolds at days 5 and 7. This group also had higher ALP activity at day 7 in osteogenic differentiation experiment. The scaffold with pore size of 300 to 400 μm was implanted into a 30-mm segmental defect of goat metatarsus. In vivo evaluations indicated that the depth of bone ingrowth increased over time and no implant dislocation occurred during the experiment. Based on its better cytocompatibility and favorable bone ingrowth, the present data showed the capability of the additive manufactured porous Ti6Al4V scaffold with an intended pore size of 300 to 400 μm for large segmental bone defects.
Collapse
Affiliation(s)
- Guoyuan Li
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Lei Wang
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Wei Pan
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Fei Yang
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Wenbo Jiang
- Research and Development Center of Medical Implant Engineering Technology, Engineering Research Center of Digital Medical and Clinical Translation Ministry of Education, 1954 Huashan Road, Shanghai 200011, People's Republic of China
| | - Xianbo Wu
- Research and Development Department, Thytec Shanghai Co.,Ltd, 320 Xingda Road, Shanghai 201100, People's Republic of China
| | - Xiangdong Kong
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Kerong Dai
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China.,Research and Development Center of Medical Implant Engineering Technology, Engineering Research Center of Digital Medical and Clinical Translation Ministry of Education, 1954 Huashan Road, Shanghai 200011, People's Republic of China
| | - Yongqiang Hao
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China.,Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| |
Collapse
|
30
|
Brückner T, Schamel M, Kübler AC, Groll J, Gbureck U. Novel bone wax based on poly(ethylene glycol)-calcium phosphate cement mixtures. Acta Biomater 2016; 33:252-63. [PMID: 26805427 DOI: 10.1016/j.actbio.2016.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 11/24/2022]
Abstract
Classic bone wax is associated with drawbacks such as the risk of infection, inflammation and hindered osteogenesis. Here, we developed a novel self-setting bone wax on the basis of hydrophilic poly(ethylene glycol) (PEG) and hydroxyapatite (HA) forming calcium phosphate cement (CPC), to overcome the problems that are linked to the use of conventional beeswax systems. Amounts of up to 10 wt.% of pregelatinized starch were additionally supplemented as hemostatic agent. After exposure to a humid environment, the PEG phase dissolved and was exchanged by penetrating water that interacted with the HA precursor (tetracalcium phosphate (TTCP)/monetite) to form highly porous, nanocrystalline HA via a dissolution/precipitation reaction. Simultaneously, pregelatinized starch could gel and supply the bone wax with liquid sealing features. The novel bone wax formulation was found to be cohesive, malleable and after hardening under aqueous conditions, it had a mechanical performance (∼2.5 MPa compressive strength) that is comparable to that of cancellous bone. It withstood systolic blood pressure conditions for several days and showed antibacterial properties for almost one week, even though 60% of the incorporated drug vancomycin hydrochloride was already released after 8h of deposition by diffusion controlled processes. STATEMENT OF SIGNIFICANCE The study investigated the development of alternative bone waxes on the basis of a hydroxyapatite (HA) forming calcium phosphate cement (CPC) system. Conventional bone waxes are composed of non-biodegradable beeswax/vaseline mixtures that are often linked to infection, inflammation and hindered osteogenesis. We combined the usage of bioresorbable polymers, the supplementation with hemostatic agents and the incorporation of a mineral component to overcome those drawbacks. Self-setting CPC precursors (tetracalcium phosphate (TTCP), monetite) were embedded in a resorbable matrix of poly(ethylene glycol) (PEG) and supplemented with pregelatinized starch. This formulation was found to be malleable and cohesive underwater. While immersion in an aqueous environment, CPC precursors formed highly porous, nanocrystalline HA via dissolution/precipitation reaction as water penetrated the novel wax formulation and PEG molecules simultaneously dissolved. The bone wax further withstood blood pressure conditions. After hardening, mechanical performance was comparable to that of cancellous bone and we also successfully provided the bone wax with antibacterial properties. In our opinion, the described bone wax formulation outmatches conventional bone waxes, as it circumvents the detriments being associated with the term "bone wax". Our wax has a novel composition and would broaden the application of CPC and besides, the general interest in bone waxes will increase, as they were long considered as a "first-line treatment" to avoid.
Collapse
|
31
|
Vollmer N, King KB, Ayers R. Biologic Potential of Calcium Phosphate Biopowders Produced via Decomposition Combustion Synthesis. CERAMICS INTERNATIONAL 2015; 41:7735-7744. [PMID: 26034341 PMCID: PMC4448779 DOI: 10.1016/j.ceramint.2015.02.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The aim of this research was to evaluate the biologic potential of calcium phosphate (CaP) biopowders produced with a novel reaction synthesis system. Decomposition combustion synthesis (DCS) is a modified combustion synthesis method capable of producing CaP powders for use in bone tissue engineering applications. During DCS, the stoichiometric ratio of reactant salt to fuel was adjusted to alter product chemistry and morphology. In vitro testing methods were utilized to determine the effects of controlling product composition on cytotoxicity, proliferation, biocompatibility and biomineralization. In vitro, human fetal osteoblasts (ATCC, CRL-11372) cultured with CaP powder displayed a flattened morphology, and uniformly encompassed the CaP particulates. Matrix vesicles containing calcium and phosphorous budded from the osteoblast cells. CaP powders produced via DCS are a source of biologically active, synthetic, bone graft substitute materials.
Collapse
Affiliation(s)
- N Vollmer
- George S. Ansell Department of Metallurgy and Materials Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado, 80401, USA
| | - K B King
- University of Colorado School of Medicine, Department of Orthopaedics, Aurora, Colorado, 80045, USA
| | - R Ayers
- University of Colorado School of Medicine, Department of Orthopaedics, Aurora, Colorado, 80045, USA
| |
Collapse
|
32
|
Shirazi SFS, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HSC, Adib Kadri N, Osman NAA. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2015; 16:033502. [PMID: 27877783 PMCID: PMC5099820 DOI: 10.1088/1468-6996/16/3/033502] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 05/02/2023]
Abstract
Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.
Collapse
Affiliation(s)
- Seyed Farid Seyed Shirazi
- Department of Mechanical Engineering and Advanced Material Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Samira Gharehkhani
- Department of Mechanical Engineering and Advanced Material Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mehdi Mehrali
- Department of Mechanical Engineering and Advanced Material Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hooman Yarmand
- Department of Mechanical Engineering and Advanced Material Research Center, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Nahrizul Adib Kadri
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noor Azuan Abu Osman
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Abstract
Apatite-wollastonite glass ceramics (AW) in bone regeneration and replacement applications have been seen as a favourable alternative to allografts and autografts. A-W has good biocompatibility, bioactivity, chemical stability and mechanical properties. In this study AW was used to fabricate 3D parts for bone applications by an indirect three dimensional printing (3DP) technique. Various powder blends of AW and maltodextrine (MD) were processed using the Z Corp 3D printing process, with two different liquid binder systems. The green parts were post-processed through using a heat treatment to burn off the binder and sinter the powder particles. Consistent results were obtained for all tested specimens in terms of density, porosity and shrinkage. The highest strength after sintering was 35.6 MPa.
Collapse
|
34
|
Munro NH, McGrath KM. Advances in techniques and technologies for bone implants. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2015. [DOI: 10.1680/bbn.14.00015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
35
|
Wüst S, Müller R, Hofmann S. 3D Bioprinting of complex channels-Effects of material, orientation, geometry, and cell embedding. J Biomed Mater Res A 2014; 103:2558-70. [PMID: 25524726 DOI: 10.1002/jbm.a.35393] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/19/2014] [Accepted: 12/11/2014] [Indexed: 01/29/2023]
Abstract
Creating filled or hollow channels within 3D tissues has become increasingly important in tissue engineering. Channels can serve as vasculature enhancing medium perfusion or as conduits for nerve regeneration. The 3D biofabrication seems to be a promising method to generate these structures within 3D constructs layer-by-layer. In this study, geometry and interface of bioprinted channels were investigated with micro-computed tomography and fluorescent imaging. In filament printing, size and shape of printed channels are influenced by their orientation, which was analyzed by printing horizontally and vertically aligned channels, and by the ink, which was evaluated by comparing channels printed with an alginate-gelatin hydrogel or with an emulsion. The influence of geometry and cell-embedding in the hydrogel on feature size and shape was investigated by printing more complex channels. The generation of hollow channels, induced through leaching of a support phase, was monitored over time. Horizontally aligned channels provided 16× smaller cross-sectional areas than channels in vertical orientation. The smallest feature size of hydrogel filaments was twice as large compared to emulsion filaments. Feature size and shape depended on the geometry but did not alter when living cells were embedded. With that knowledge, channels can be consciously tailored to the particular needs.
Collapse
Affiliation(s)
- Silke Wüst
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, 8093, Switzerland
| | - Ralph Müller
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, 8093, Switzerland
| | - Sandra Hofmann
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, 8093, Switzerland.,Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands.,Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| |
Collapse
|
36
|
Ke D, Dernell W, Bandyopadhyay A, Bose S. Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: Mechanical properties and in vivo osteogenesis in a rabbit femur model. J Biomed Mater Res B Appl Biomater 2014; 103:1549-59. [PMID: 25504889 DOI: 10.1002/jbm.b.33321] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/25/2014] [Accepted: 10/18/2014] [Indexed: 01/17/2023]
Abstract
Tricalcium phosphate (TCP) is a bioceramic that is widely used in orthopedic and dental applications. TCP structures show excellent biocompatibility as well as biodegradability. In this study, porous β-TCP scaffolds were prepared by thermal decomposition of naphthalene. Scaffolds with 57.64% ± 3.54% density and a maximum pore size around 100 μm were fabricated via removing 30% naphthalene at 1150°C. The compressive strength for these scaffolds was 32.85 ± 1.41 MPa. Furthermore, by mixing 1 wt % SrO and 0.5 wt % SiO2 , pore interconnectivity improved, but the compressive strength decreased to 22.40 ± 2.70 MPa. However, after addition of polycaprolactone coating layers, the compressive strength of doped scaffolds increased to 29.57 ± 3.77 MPa. Porous scaffolds were implanted in rabbit femur defects to evaluate their biological property. The addition of dopants triggered osteoinduction by enhancing osteoid formation, osteocalcin expression, and bone regeneration, especially at the interface of the scaffold and host bone. This study showed processing flexibility to make interconnected porous scaffolds with different pore size and volume fraction porosity, while maintaining high compressive mechanical strength and excellent bioactivity. Results show that SrO/SiO2 -doped porous TCP scaffolds have excellent potential to be used in bone tissue engineering applications.
Collapse
Affiliation(s)
- Dongxu Ke
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164-2920
| | - William Dernell
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164-2920
| | - Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164-2920
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164-2920
| |
Collapse
|
37
|
Guha A, Nayar S. Low-Temperature Biomimetic Synthesis of β-Tricalcium Phosphate by Altering pH. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/15533174.2011.652272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Avijit Guha
- a Biomaterials Lab , National Metallurgical Laboratory , Jamshedpur , India
| | - Suprabha Nayar
- a Biomaterials Lab , National Metallurgical Laboratory , Jamshedpur , India
| |
Collapse
|
38
|
Abstract
3D printing technology has recently gained substantial interest for potential applications in tissue engineering due to the ability of making a three-dimensional object of virtually any shape from a digital model. 3D-printed biopolymers, which combine the 3D printing technology and biopolymers, have shown great potential in tissue engineering applications and are receiving significant attention, which has resulted in the development of numerous research programs regarding the material systems which are available for 3D printing. This review focuses on recent advances in the development of biopolymer materials, including natural biopolymer-based materials and synthetic biopolymer-based materials prepared using 3D printing technology, and some future challenges and applications of this technology are discussed.
Collapse
|
39
|
Lindner M, Bergmann C, Telle R, Fischer H. Calcium phosphate scaffolds mimicking the gradient architecture of native long bones. J Biomed Mater Res A 2013; 102:3677-84. [DOI: 10.1002/jbm.a.35038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/25/2013] [Accepted: 11/18/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Markus Lindner
- Dental Materials and Biomaterials Research; RWTH Aachen University Hospital; Germany
| | - Christian Bergmann
- Dental Materials and Biomaterials Research; RWTH Aachen University Hospital; Germany
| | - Rainer Telle
- Institute for Mineral Engineering; RWTH Aachen University; Germany
| | - Horst Fischer
- Dental Materials and Biomaterials Research; RWTH Aachen University Hospital; Germany
| |
Collapse
|
40
|
Vorndran E, Geffers M, Ewald A, Lemm M, Nies B, Gbureck U. Ready-to-use injectable calcium phosphate bone cement paste as drug carrier. Acta Biomater 2013; 9:9558-67. [PMID: 23954526 DOI: 10.1016/j.actbio.2013.08.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/31/2013] [Accepted: 08/06/2013] [Indexed: 01/31/2023]
Abstract
Current developments in calcium phosphate cement (CPC) technology concern the use of ready-to-use injectable cement pastes by dispersing the cement powder in a water-miscible solvent, such that, after injection into the physiological environment, setting of cements occurs by diffusion of water into the cement paste. It has also been demonstrated recently that the combination of a water-immiscible carrier liquid combined with suitable surfactants facilitates a discontinuous liquid exchange in CPC, enabling the cement setting reaction to take place. This paper reports on the use of these novel cement paste formulations as a controlled release system of antibiotics (gentamicin, vancomycin). Cement pastes were applied either as a one-component material, in which the solid drugs were physically dispersed, or as a two-component system, where the drugs were dissolved in an aqueous phase that was homogeneously mixed with the cement paste using a static mixing device during injection. Drug release profiles of both antibiotics from pre-mixed one- and two-component cements were characterized by an initial burst release of ∼7-28%, followed by a typical square root of time release kinetic for vancomycin. Gentamicin release rates also decreased during the first days of the release study, but after ∼1 week, the release rates were more or less constant over a period of several weeks. This anomalous release kinetic was attributed to participation of the sulfate counter ion in the cement setting reaction altering the drug solubility. The drug-loaded cement pastes showed high antimicrobial potency against Staphylococcus aureus in an agar diffusion test regime, while other cement properties such as mechanical performance or phase composition after setting were only marginally affected.
Collapse
|
41
|
Butscher A, Bohner M, Doebelin N, Hofmann S, Müller R. New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes. Acta Biomater 2013; 9:9149-58. [PMID: 23891808 DOI: 10.1016/j.actbio.2013.07.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/19/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
Abstract
Powder-based three-dimensional printing (3DP) is a versatile method that allows creating synthetic calcium phosphate (CaP) scaffolds of complex shapes and structures. However, one major drawback is the difficulty of removing all remnants of loose powder from the printed scaffolds, the so-called depowdering step. In this study, a new design approach was proposed to solve this problem. Specifically, the design of the printed scaffolds consisted of a cage with windows large enough to enable depowdering while still trapping loose fillers placed inside the cage. To demonstrate the potential of this new approach, two filler geometries were used: sandglass and cheese segment. The distance between the fillers was varied and they were either glued to the cage or free to move after successful depowdering. Depowdering efficiency was quantified by microstructural morphometry. The results showed that the use of mobile fillers significantly improved depowdering. Based on this study, large 3DP scaffolds can be realized, which might be a step towards a broader clinical use of 3D printed CaP scaffolds.
Collapse
|
42
|
Fielding G, Bose S. SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater 2013; 9:9137-48. [PMID: 23871941 DOI: 10.1016/j.actbio.2013.07.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 07/08/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
Calcium phosphate (CaP) scaffolds with three-dimensionally-interconnected pores play an important role in mechanical interlocking and biological fixation in bone implant applications. CaPs alone, however, are only osteoconductive (able to guide bone growth). Much attention has been given to the incorporation of biologics and pharmacologics to add osteoinductive (able to cause new bone growth) properties to CaP materials. Because biologics and pharmacologics are generally delicate compounds and also subject to increased regulatory scrutiny, there is a need to investigate alternative methods to introduce osteoinductivity to CaP materials. In this study silica (SiO2) and zinc oxide (ZnO) have been incorporated into three-dimensional printed β-tricalcium phosphate (β-TCP) scaffolds to investigate their potential to trigger osteoinduction in vivo. Silicon and zinc are trace elements that are common in bone and have also been shown to have many beneficial properties, from increased bone regeneration to angiogenesis. Implants were placed in bicortical femur defects introduced to a murine model for up to 16 weeks. The addition of dopants into TCP increased the capacity for new early bone formation by modulating collagen I production and osteocalcin production. Neovascularization was found to be up to three times more than the pure TCP control group. The findings from this study indicate that the combination of SiO2 and ZnO dopants in TCP may be a viable alternative to introducing osteoinductive properties to CaPs.
Collapse
|
43
|
Thimm BW, Wechsler O, Bohner M, Müller R, Hofmann S. In vitro ceramic scaffold mineralization: comparison between histological and micro-computed tomographical analysis. Ann Biomed Eng 2013; 41:2666-75. [PMID: 23918079 DOI: 10.1007/s10439-013-0877-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/24/2013] [Indexed: 11/30/2022]
Abstract
The porous structure of beta-tricalcium phosphate (β-TCP) scaffolds was assessed by conventional histomorphometry and micro-computed tomography (micro-CT) to evaluate the substitutability of time-consuming histomorphometry by rapid micro-CT. Extracellular matrix mineralization on human mesenchymal stem cell seeded β-TCP scaffolds was scanned by means of micro-CT after 6 weeks in cultivation and evaluated morphometrically. For the histomorphometric analysis, undecalcified sections were prepared in the mediosagittal plane of the cylindrical tissue-engineered constructs. The sections were scanned at a nominal resolution of 8 μm and stained with von Kossa and Toluidine Blue. Pores were analyzed with both methods for morphometrical parameters such as horizontal/vertical diameter and pore/mineralized tissue area. Results showed highly significant correlations between histomorphometry and micro-CT for pore horizontal length (r = 0.95), pore vertical length (r = 0.96), pore area (r = 0.97), and mineralized tissue area (r = 0.82). Mean percentage differences between histomorphometry and micro-CT measurements ranged from 1.4% (pore vertical diameter) to 14.0% (area of mineralized tissue). With its high image precision, micro-CT qualifies as an additional tool for endpoint evaluation measurements of mineralized tissue development within tissue-engineered constructs also in ceramic scaffolds.
Collapse
Affiliation(s)
- Benjamin W Thimm
- Institute for Biomechanics, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Sanzana ES, Navarro M, Ginebra MP, Planell JA, Ojeda AC, Montecinos HA. Role of porosity and pore architecture in thein vivobone regeneration capacity of biodegradable glass scaffolds. J Biomed Mater Res A 2013; 102:1767-73. [DOI: 10.1002/jbm.a.34845] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 06/11/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Edgardo S. Sanzana
- Department of Surgery, Faculty of Medicine, Surgical Research Centre; University of Concepcion; 4070386 Concepcion Chile
| | - Melba Navarro
- Institute for Bioengineering of Catalonia (IBEC); 08028 Barcelona Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Spain
| | - Maria-Pau Ginebra
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Spain
- Department of Materials Science and Metallurgical Engineering, Biomaterials, Biomechanics and Tissue Engineering Group; Technical University of Catalonia; 08028 Barcelona Spain
| | - Josep A. Planell
- Institute for Bioengineering of Catalonia (IBEC); 08028 Barcelona Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Spain
- Department of Materials Science and Metallurgical Engineering, Biomaterials, Biomechanics and Tissue Engineering Group; Technical University of Catalonia; 08028 Barcelona Spain
| | - Alvaro C. Ojeda
- Department of Surgery, Faculty of Medicine, Surgical Research Centre; University of Concepcion; 4070386 Concepcion Chile
| | - Hernan A. Montecinos
- Department of Cellular Biology, Faculty of Biological Sciences; University of Concepcion; 4070386 Concepcion Chile
| |
Collapse
|
45
|
Houmard M, Fu Q, Genet M, Saiz E, Tomsia AP. On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds. J Biomed Mater Res B Appl Biomater 2013; 101:1233-42. [PMID: 23650043 DOI: 10.1002/jbm.b.32935] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/04/2013] [Accepted: 02/18/2013] [Indexed: 11/09/2022]
Abstract
Hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) composite scaffolds have shown great potential for bone-tissue engineering applications. In this work, ceramic scaffold with different HA/β-TCP compositions (pure HA, 60HA/40β-TCP, and 20HA/80β-TCP) were fabricated by a robotic-assisted deposition (robocasting) technique using water-based hydrogel inks. A systematic study was conducted to investigate the porosity, mechanical property, and degradation of the scaffolds. Our results indicate that, at a similar volume porosity, the mechanical strength of the sintered scaffolds increased with the decreasing rod diameter. The compressive strength of the fabricated scaffolds (porosity ≈ 25-80 vol %) varied between ∼3 and ∼50 MPa, a value equal or higher than that of human cancellous bone (2-12 MPa). Although there was a slight increase of Ca and P ions in water after 5 month, no noticeable degradation of the scaffolds in SBF or water was observed. Our findings from this work indicate that composite calcium phosphate scaffolds with customer-designed chemistry and architecture may be fabricated by a robotic-assisted deposition method.
Collapse
Affiliation(s)
- Manuel Houmard
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Department of Materials Engineering and Civil Construction, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | | | | | | | | |
Collapse
|
46
|
Intraoperative biologische Augmentation am Knochen und der subchondralen Zone. ARTHROSKOPIE 2013. [DOI: 10.1007/s00142-012-0738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Shih TC, Teng NC, Wang PD, Lin CT, Yang JC, Fong SW, Lin HK, Chang WJ. In vivo evaluation of resorbable bone graft substitutes in beagles: histological properties. J Biomed Mater Res A 2013; 101:2405-11. [PMID: 23526767 DOI: 10.1002/jbm.a.34540] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/30/2012] [Accepted: 11/19/2012] [Indexed: 11/07/2022]
Abstract
Calcium phosphate cement (CPC) is a promising material for use in minimally invasive surgery for bone defect repairs due to its bone-like apatitic final setting product, biocompatibility, bioactivity, self-setting characteristics, low setting temperature, adequate stiffness, and easy shaping into complicated geometrics. However, even though CPC is stable in vivo, the resorption rate of this bone cement is very slow and its long setting time poses difficulties for clinical use. Calcium sulfate dehydrate (CSD) has been used as a filler material and/or as a replacement for cancellous bone grafts due to its biocompatibility. However, it is resorbed too quickly to be optimal for bone regeneration. This study examines the invivo response of a hydroxyapatite (HA), [apatitic phase (AP)]/calcium sulfate (CSD) composite using different ratios in the mandibular premolar sockets of beagles. The HA (AP)/CSD composite materials were prepared in the ratios of 30/70, 50/50, and 70/30 and then implanted into the mandibular premolar sockets for terms of 5 and 10 weeks. The control socket was left empty. The study shows better new bone morphology and more new bone area in the histological and the histomorphometric study of the HA (AP)/CSD in the 50/50 ratio.
Collapse
Affiliation(s)
- Tsai-Chin Shih
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Draenert M, Draenert A, Draenert K. Osseointegration of hydroxyapatite and remodeling-resorption of tricalciumphosphate ceramics. Microsc Res Tech 2013; 76:370-80. [DOI: 10.1002/jemt.22176] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/30/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Miriam Draenert
- Clinic for Restorative Dentistry and Periodontology; Ludwig-Maximilian University; Munich; Germany
| | | | | |
Collapse
|
49
|
Li X, Wang L, Fan Y, Feng Q, Cui FZ, Watari F. Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res A 2013; 101:2424-35. [PMID: 23377988 DOI: 10.1002/jbm.a.34539] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/25/2012] [Accepted: 11/26/2012] [Indexed: 12/20/2022]
Abstract
It has been demonstrated that nanostructured materials, compared with conventional materials, may promote greater amounts of specific protein interactions, thereby more efficiently stimulating new bone formation. It has also been indicated that, when features or ingredients of scaffolds are nanoscaled, a variety of interactions can be stimulated at the cellular level. Some of those interactions induce favorable cellular functions while others may leads to toxicity. This review presents the mechanism of interactions between nanoscaled materials and cells and focuses on the current research status of nanostructured scaffolds for bone tissue engineering. Firstly, the main requirements for bone tissue engineering scaffolds were discussed. Then, the mechanism by which nanoscaled materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed.
Collapse
Affiliation(s)
- Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | | | | | | | | | | |
Collapse
|
50
|
Butscher A, Bohner M, Doebelin N, Galea L, Loeffel O, Müller R. Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering. Acta Biomater 2013; 9:5369-78. [PMID: 23069318 DOI: 10.1016/j.actbio.2012.10.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/26/2012] [Accepted: 10/05/2012] [Indexed: 01/08/2023]
Abstract
Powder based three-dimensional printing (3DP) allows great versatility in material and geometry. These characteristics make 3DP an interesting method for the production of tissue engineering scaffolds. However, 3DP has major limitations, such as limited resolution and accuracy, hence preventing the widespread application of this method within scaffold engineering [corrected].In order to reduce these limitations deeper understanding of the complex interactions between powder, binder and roller during 3DP is needed. In the past a lot of effort has been invested to optimize the powder properties for 3DP for a certain layer thickness. Using a powder optimized for an 88 μm layer thickness, this study systematically quantifies the surface roughness and geometrical accuracy in printed specimens and assesses their variation upon changes of different critical parameters such as the moisture application time (0, 5, 10 and 20s), layer thickness (44 and 88 μm) and the number of specimens printed per batch (6 and 12). A best surface roughness value of 25 μm was measured with a moisture application time (using a custom made moisture application device mounted on a linear stage carrying the print head) of 5s and a layer thickness of 44 μm. Geometrical accuracy was generally higher for the 88 μm thick layer, due to a less critical powder bed stability. Moisture application enabled 3DP of a 44 μm thick layer and improved the accuracy even for a powder initially optimized for 88 μm. Moreover, recycling of the humidified powder was not only possible but, in terms of reactivity, even beneficial. In conclusion, moisture-based 3DP is a promising approach for high resolution 3DP of scaffolds.
Collapse
Affiliation(s)
- A Butscher
- RMS Foundation, Bischmattstrasse 12, CH-2544 Bettlach, Switzerland.
| | | | | | | | | | | |
Collapse
|