1
|
Elmowafy M, Shalaby K, Elkomy MH, Alsaidan OA, Gomaa HAM, Abdelgawad MA, Mostafa EM. Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers (Basel) 2023; 15:1123. [PMID: 36904364 PMCID: PMC10007077 DOI: 10.3390/polym15051123] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
In the last few decades, several natural bioactive agents have been widely utilized in the treatment and prevention of many diseases owing to their unique and versatile therapeutic effects, including antioxidant, anti-inflammatory, anticancer, and neuroprotective action. However, their poor aqueous solubility, poor bioavailability, low GIT stability, extensive metabolism as well as short duration of action are the most shortfalls hampering their biomedical/pharmaceutical applications. Different drug delivery platforms have developed in this regard, and a captivating tool of this has been the fabrication of nanocarriers. In particular, polymeric nanoparticles were reported to offer proficient delivery of various natural bioactive agents with good entrapment potential and stability, an efficiently controlled release, improved bioavailability, and fascinating therapeutic efficacy. In addition, surface decoration and polymer functionalization have opened the door to improving the characteristics of polymeric nanoparticles and alleviating the reported toxicity. Herein, a review of the state of knowledge on polymeric nanoparticles loaded with natural bioactive agents is presented. The review focuses on frequently used polymeric materials and their corresponding methods of fabrication, the needs of such systems for natural bioactive agents, polymeric nanoparticles loaded with natural bioactive agents in the literature, and the potential role of polymer functionalization, hybrid systems, and stimuli-responsive systems in overcoming most of the system drawbacks. This exploration may offer a thorough idea of viewing the polymeric nanoparticles as a potential candidate for the delivery of natural bioactive agents as well as the challenges and the combating tools used to overcome any hurdles.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Hesham A. M. Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| |
Collapse
|
2
|
Zhou Y, Feng X, Xu H, Guo J, Yang C, Kong L, Zhang Z. The application of natural product-delivering micro/nano systems in the treatment of inflammatory bowel disease. J Mater Chem B 2023; 11:244-260. [PMID: 36512384 DOI: 10.1039/d2tb01965e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Inflammatory bowel disease (IBD) is a type of recurrent intestinal diseases. Natural product molecules have been gradually developed into an important source of anti-inflammatory drugs for treating IBD owing to their high anti-inflammatory activity, well known safety, structural specificity and therapeutic mechanism diversity. However, most of the natural products are restricted by poor solubility in actual application. How to achieve satisfactory bioavailability during the treatment of IBD is one of the urgent problems to be solved in the current research. Micro/nano drug delivery systems could improve the solubility of drugs with targeted delivery of anti-inflammatory drugs to the colon with responsive release property. Therefore, using micro/nano drug delivery systems, the problems mentioned above involving natural product molecules in the treatment of IBD could be solved. According to the compositions of the intestinal tract and inflammatory characteristics of IBD, the strategies of using micro/nano drug delivery systems for natural products could be summarized in two steps: targeted delivery and responsive release. In this review, the targeted and responsive release strategies of the micro/nano drug delivery systems combined with their anti-inflammatory effects in IBD animal models to illustrate that the proposed strategies could be potential treatments for symptomatic IBD are described.
Collapse
Affiliation(s)
- Yixuan Zhou
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Xingxing Feng
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, P. R. China
| | - Hongbo Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Jing Guo
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, P. R. China. .,Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.,National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| |
Collapse
|
3
|
Wang H, Wu Y, Lin X. Crizotinib loaded polydopamine-polylactide-TPGS nanoparticles in targeted therapy for non-small cell lung cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:26. [PMID: 36459216 DOI: 10.1007/s12032-022-01893-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022]
Abstract
To evaluate the effect and safety of crizotinib loaded polydopamine-polylactide-TPGS nanoparticles (CZT/pD-PT NPs) on non-small cell lung cancer (NSCLC). CZT/pD-PT NPs were synthesized and characterized, and their effects on PC-9 cell viability and apoptosis were determined. In vivo experiment was further performed to evaluate the anti-NSCLC efficacy of CZT/pD-PT NPs. TUNEL assay and Western blot were respectively applied for the determination of cell apoptosis and apoptosis-related protein expression, while liver function-related index expression detection and liver histopathological detection were used to evaluate the hepatotoxicity of CZT/pD-PT NPs. Compared with free CZT, CZT/pD-PT NPs had a sustained-release effect and promoted the cellular uptake of CZT. In addition, CZT/pD-PT NPs significantly inhibited PC-9 cell viability and promoted cell apoptosis both in vitro and in vivo, exhibiting superior cytotoxicity. At the same time, CZT/pD-PT NPs had no significant effect on liver tissue morphology and liver function-related indicators such as ALP, ALT, AST, and DBIL. CZT/pD-PT NPs have excellent anti-NSCLC effect with low hepatotoxicity, which can be served as a novel drug delivery system to improve the efficacy of chemotherapy for NSCLC.
Collapse
Affiliation(s)
- Han Wang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- The Graduate School of Fujian Medical University, Fuzhou, 350001, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, 350001, China
| | - Yilan Wu
- The School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China
| | - Xiaoyan Lin
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- The Graduate School of Fujian Medical University, Fuzhou, 350001, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, 350001, China.
| |
Collapse
|
4
|
Akbarian M, Chen SH. Instability Challenges and Stabilization Strategies of Pharmaceutical Proteins. Pharmaceutics 2022; 14:2533. [PMID: 36432723 PMCID: PMC9699111 DOI: 10.3390/pharmaceutics14112533] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Maintaining the structure of protein and peptide drugs has become one of the most important goals of scientists in recent decades. Cold and thermal denaturation conditions, lyophilization and freeze drying, different pH conditions, concentrations, ionic strength, environmental agitation, the interaction between the surface of liquid and air as well as liquid and solid, and even the architectural structure of storage containers are among the factors that affect the stability of these therapeutic biomacromolecules. The use of genetic engineering, side-directed mutagenesis, fusion strategies, solvent engineering, the addition of various preservatives, surfactants, and additives are some of the solutions to overcome these problems. This article will discuss the types of stress that lead to instabilities of different proteins used in pharmaceutics including regulatory proteins, antibodies, and antibody-drug conjugates, and then all the methods for fighting these stresses will be reviewed. New and existing analytical methods that are used to detect the instabilities, mainly changes in their primary and higher order structures, are briefly summarized.
Collapse
Affiliation(s)
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
5
|
Physical, Chemical, and Biological Properties of Chitosan-Coated Alginate Microparticles Loaded with Porcine Interleukin-1β: A Potential Protein Adjuvant Delivery System. Int J Mol Sci 2022; 23:ijms23179959. [PMID: 36077367 PMCID: PMC9456129 DOI: 10.3390/ijms23179959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
We previously developed chicken interleukin-1β (IL-1β) mutants as single-dose adjuvants that induce protective immunity when co-administered with an avian vaccine. However, livestock such as pigs may require a vaccine adjuvant delivery system that provides long-lasting protection to reduce the need for successive booster doses. Therefore, we developed chitosan-coated alginate microparticles as a carrier for bovine serum albumin (BSA) or porcine IL-1β (pIL-1β) and assessed their physical, chemical, and biological properties. Electrospraying of the BSA-loaded alginate microparticles (BSA/ALG MPs) resulted in an encapsulation efficiency of 50%, and those MPs were then coated with chitosan (BSA/ALG/CHI MPs). Optical and scanning electron microscopy, zeta potential analysis, and Fourier transform infrared spectroscopy were used to characterize these MPs. The BSA encapsulation parameters were applied to ALG/CHI MPs loaded with pIL-1β, which were not cytotoxic to porcine fibroblasts but had enhanced bio-activity over unencapsulated pIL-1β. The chitosan layer of the BSA/ALG/CHI MPs prevented burst release and facilitated sustained release of pIL-1β for at least 28 days. In conclusion, BSA/ALG/CHI MPs prepared as a carrier for pIL-1β may be used as an adjuvant for the formulation of pig vaccines.
Collapse
|
6
|
Yadav P, Yadav AB. Preparation and characterization of BSA as a model protein loaded chitosan nanoparticles for the development of protein-/peptide-based drug delivery system. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00345-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The purpose of this study was to develop protein-/peptide-loaded nanoparticle-based delivery system, which can efficiently deliver therapeutic molecules to the lung via pulmonary delivery. The chitosan nanoparticles were prepared by the ionic gelation method, and bovine serum albumin was used as a model protein. These nanoparticles were characterized for size, zeta potential, encapsulation efficiency, cell cytotoxicity, uptake study, release profile and size distribution and uniformity. The chemical interaction of chitosan and protein was studied by XRD and FTIR. The integrity assessment of encapsulated protein into nanoparticle was studied by native and SDS-PAGE gel electrophoresis.
Results
The size and zeta potential of BSA nanoparticles were 193.53 ± 44.97 to 336.36 ± 94.63 and 12.73 ± 0.41 to 18.33 ± 0.96, respectively, with PDI values of 0.35–0.45. The encapsulation efficiency was in the range of 80.73 ± 6.37% to 92.34 ± 1.72%. The cumulative release of the BSA from the nanoparticles was 72.56 ± 6.67% in 2 weeks. The BSA-loaded nanoparticles showed good uptake and no significant cytotoxicity observed into the A549 cell line. In this study, it was also observed that during nanoparticles’ synthesis protein structure and integrity is not compromised. The nanoparticles showed controlled and sustained release with initial burst release. In TEM images, it was shown that nanoparticles’ distribution is uniform within nanometre range.
Conclusion
From this study, it was concluded that nanoparticles prepared by this method are suitable to deliver protein/peptide into the cells without any degradation of protein during process of nanoparticle fabrication.
Collapse
|
7
|
Phukan K, Devi R, Chowdhury D. Green Synthesis of Gold Nano-bioconjugates from Onion Peel Extract and Evaluation of Their Antioxidant, Anti-inflammatory, and Cytotoxic Studies. ACS OMEGA 2021; 6:17811-17823. [PMID: 34308016 PMCID: PMC8296016 DOI: 10.1021/acsomega.1c00861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/10/2021] [Indexed: 05/04/2023]
Abstract
Plant secondary metabolites such as flavonoids demonstrate high degrees of antioxidant, anti-inflammatory, and anticancer activities. Among flavonoids, quercetin plays an important role in inflammation by downregulating the level of various cytokines. Thereby, in this work, onion (Allium cepa) peel was successfully utilized for the synthesis of gold nano-bioconjugates acting as a natural therapeutic drug. In this process, crude onion peel extract was first divided into different fractionates, namely, ethyl acetate, butanol, methanol, and water, and they were subjected to various preliminary studies of antioxidant activities. The ethyl acetate fractionate shows high antioxidant activities in all the assays. The bioactive components were identified and found to contain a high amount of quercetin as confirmed by liquid chromatography with tandem mass spectrometry and high-performance liquid chromatogrpahy. Three gold nano-bioconjugates were prepared with different concentrations of the ethyl acetate fractionate. Various biochemical anti-inflammatory assays were carried out and compared with the active ethyl acetate fraction of the onion peel drug (OPD). The cytotoxicity of the nano-bioconjugate system and the OPD was checked in the myoblast L6 cell line from skeletal muscle tissues to evaluate the toxicity. All the three nano-bioconjugates A, B, and E demonstrated high percentages of cell viability, viz., 73.07, 72.3, and 69.15%, respectively, at their highest concentration of 200 μg/mL. The OPD also showed 88.56% cell viability with no toxic effects in the myoblast L6 cell line from skeletal muscle tissues. The reactive oxygen species reduction of nano-bioconjugate B showed a marked reduction of 76.77% at a maximum concentration of 200 μg/mL, whereas the OPD showed 68.17%. Hence, through this work, a cheap source of nano-bioconjugates is developed, which can act as a potent antioxidant and anti-inflammatory agent and are more active in comparison to the OPD alone.
Collapse
Affiliation(s)
- Kabyashree Phukan
- Material
Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Rajlakshmi Devi
- Life
Sciences Division, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Devasish Chowdhury
- Material
Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
- . Tel.: +91 361 2912073. Fax: +91 361 2279909
| |
Collapse
|
8
|
Magnetic nanoparticle-decorated graphene oxide-chitosan composite as an efficient nanocarrier for protein delivery. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125913] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
du Toit LC, Choonara YE, Pillay V. An Injectable Nano-Enabled Thermogel to Attain Controlled Delivery of p11 Peptide for the Potential Treatment of Ocular Angiogenic Disorders of the Posterior Segment. Pharmaceutics 2021; 13:pharmaceutics13020176. [PMID: 33525495 PMCID: PMC7910951 DOI: 10.3390/pharmaceutics13020176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022] Open
Abstract
This investigation focused on the design of an injectable nano-enabled thermogel (nano-thermogel) system to attain controlled delivery of p11 anti-angiogenic peptide for proposed effective prevention of neovascularisation and to overcome the drawbacks of the existing treatment approaches for ocular disorders characterised by angiogenesis, which employ multiple intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) antibodies. Synthesis of a polyethylene glycol-polycaprolactone-polyethylene glycol (PEG-PCL-PEG) triblock co-polymer was undertaken, followed by characterisation employing Fourier-transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and differential scanning calorimetry (DSC) to ascertain the chemical stability and integrity of the co-polymer instituted for nano-thermogel formulation. The p11 anti-angiogenic peptide underwent encapsulation within poly(lactic-co-glycolic acid) (PLGA) nanoparticles via a double emulsion solvent evaporation method and was incorporated into the thermogel following characterisation by scanning electron microscopy (SEM), zeta size and zeta-potential analysis. The tube inversion approach and rheological analysis were employed to ascertain the thermo-sensitive sol-gel conversion of the nano-thermogel system. Chromatographic assessment of the in vitro release of the peptide was performed, with stability confirmation via Tris-Tricine PAGE (Polyacrylamide Gel Electrophoresis). In vitro biocompatibility of the nano-thermogel system was investigated employing a retinal cell line (ARP-19). A nanoparticle size range of 100–200 nm and peptide loading efficiency of 67% was achieved. Sol-gel conversion of the nano-thermogel was observed between 32–45 °C. Release of the peptide in vitro was sustained, with maintenance of stability, for 60 days. Biocompatibility assessment highlighted 97–99% cell viability with non-haemolytic ability, which supports the potential applicability of the nano-thermogel system for extended delivery of peptide for ocular disorder treatment.
Collapse
Affiliation(s)
| | - Yahya Essop Choonara
- Correspondence: ; Tel.: +27-11-717-2052; Fax: +27-11-642-4355 or +27-86-553-4733
| | | |
Collapse
|
10
|
Ambalavanan R, John AD, Selvaraj AD. Nano-encapsulated Tinospora cordifolia (Willd.) using poly (D, L-lactide) nanoparticles educe effective control in streptozotocin-induced type 2 diabetic rats. IET Nanobiotechnol 2020; 14:803-808. [PMID: 33399111 PMCID: PMC8676304 DOI: 10.1049/iet-nbt.2020.0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/29/2020] [Accepted: 06/30/2020] [Indexed: 04/05/2024] Open
Abstract
The therapeutics for type 2 diabetes mellitus has emerged in the current century towards nanomedicine incorporated with plant active compounds. In this study, Tinospora cordifolia loaded poly (D, L-lactide) (PLA) nanoparticles (NPs) were evaluated in vivo for their anti-hyperglycemic potency towards streptozotocin-induced type 2 diabetic rats. T. cordifolia loaded PLA NPs were synthesised by the double solvent evaporation method using PLA polymer. The NPs were then characterised and administrated orally for 28 successive days to streptozotocin-induced diabetic rats. The PLA NPs had significant anti-diabetic effects which were equal to the existing anti-diabetic drug glibenclamide. The antidiabetic activity is due to the synergism of compounds present in stem extract of the plant which reduced the side effects and anti-diabetic.
Collapse
Affiliation(s)
- Ragavee Ambalavanan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Arul Daniel John
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Asha Devi Selvaraj
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
11
|
Liu S, Jiang X, Tian X, Wang Z, Xing Z, Chen J, Zhang J, Wang C, Dong L. A method to measure the denatured proteins in the corona of nanoparticles based on the specific adsorption of Hsp90ab1. NANOSCALE 2020; 12:15857-15868. [PMID: 32696774 DOI: 10.1039/d0nr02297g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The protein corona influences and determines the biological function of nanoparticles (NPs) in vivo. Analysis and understanding of the activities of proteins in coronas are crucial for nanobiology and nanomedicine research. Misfolded proteins in the corona of NPs theoretically exist, and a protein denaturation-related cellular response might occur in this process as well as in related diseases. The exact evaluation of protein denaturation in the corona is valuable to assess the bioactivities of NPs. Here, we found that the level of adsorbed heat shock protein 90 kDa α class B member 1 (Hsp90ab1) by the denatured protein in iron-cobalt-nickel alloy NPs (FeCoNi NPs) and iron oxide NPs (Fe3O4 NPs) was correlated with circular dichroism (CD) analysis and 1-anilinonaphthalene-8-sulfonate (ANS) analysis. The content of Hsp90ab1 in the corona could be easily analysed by western blotting (WB). Further analysis suggested that the method could precisely show the time-dependent protein denaturation on Fe3O4 NPs, as well as the influence of the size and the surface modification. More importantly, this method could be applied to other proteins, like lysozyme, other than albumin. Based on the results and the correlation analysis, incubation and detection of Hsp90ab1 in the NP-corona complex can be used as a new and feasible method to evaluate protein denaturation induced by NPs.
Collapse
Affiliation(s)
- Shang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences & Medical School, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Harada A, Tsutsuki H, Zhang T, Lee R, Yahiro K, Sawa T, Niidome T. Preparation of Biodegradable PLGA-Nanoparticles Used for pH-Sensitive Intracellular Delivery of an Anti-inflammatory Bacterial Toxin to Macrophages. Chem Pharm Bull (Tokyo) 2020; 68:363-368. [PMID: 32238653 DOI: 10.1248/cpb.c19-00917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Poly(D,L-lactide-co-glycolic) acid (PLGA) is a synthetic copolymer that has been used to design micro/nanoparticles as a carrier for macromolecules, such as protein and nucleic acids, that can be internalized by the endocytosis pathway. However, it is difficult to control the intracellular delivery to target organelles. Here we report an intracellular delivery system of nanoparticles modified with bacterial cytotoxins to the endoplasmic reticulum (ER) and anti-inflammatory activity of the nanoparticles. Subtilase cytotoxin (SubAB) is a bacterial toxin in certain enterohemorrhagic Escherichia coli (EHEC) strains that cleaves the host ER chaperone BiP and suppresses nuclear factor-kappaB (NF-κB) activation and nitric oxide (NO) generation in macrophages at sub-lethal concentration. PLGA-nanoparticles were modified with oligo histidine-tagged (6 × His-tagged) recombinant SubAB (SubAB-PLGA) through a pH-sensitive linkage, and their translocation to the ER in macrophage cell line J774.1 cells, effects on inducible NO synthase (iNOS), and levels of tumor necrosis factor (TNF)-α cytokine induced by lipopolysaccharide (LPS) were examined. Compared with free SubAB, SubAB-PLGA was significantly effective in BiP cleavage and the induction of the ER stress marker C/EBP homologous protein (CHOP) in J774.1 cells. Furthermore, SubAB-PLGA attenuated LPS-stimulated induction of iNOS and TNF-α. Our findings provide useful information for protein delivery to macrophages and may encourage therapeutic applications of nanoparticles to the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ayaka Harada
- Faculty of Advanced Science and Technology, Kumamoto University
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University
| | - Tianli Zhang
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University
| | - Ruda Lee
- International Research Organization for Advanced Science and Technology, Kumamoto University
| | - Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University
| |
Collapse
|
13
|
Mooranian A, Zamani N, Luna G, Al-Sallami H, Mikov M, Goločorbin-Kon S, Stojanovic G, Arfuso F, Kovacevic B, Al-Salami H. Bile acid-polymer-probucol microparticles: protective effect on pancreatic β-cells and decrease in type 1 diabetes development in a murine model. Pharm Dev Technol 2019; 24:1272-1277. [PMID: 31557068 DOI: 10.1080/10837450.2019.1665069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Studies in our laboratory have shown potential applications of the anti-atherosclerotic drug probucol (PB) in diabetes due to anti-inflammatory and β-cell protective effects. The anti-inflammatory effects were optimized by incorporation of the anti-inflammatory bile acid, ursodeoxycholic acid (UDCA). This study aimed to test PB absorption, tissue accumulation profiles, effects on inflammation and type 1 diabetes prevention when combined with UDCA. Balb/c mice were divided into three equal groups and gavaged daily PB powder, PB microcapsules or PB-UDCA microcapsules for one week, at a constant dose. Mice were injected with a single dose of intraperitoneal/subcutaneous alloxan to induce type-1 diabetes and once diabetes was confirmed, treatments were continued for 3 days. Mice were euthanized and blood and tissues collected for analysis of PB and cytokine levels. The PB-UDCA group showed the highest PB concentrations in blood, gut, liver, spleen, brain, and white adipose tissues, with no significant increase in pancreas, heart, skeletal muscles, kidneys, urine or feces. Interferon gamma in plasma was significantly reduced by PB-UDCA suggesting potent anti-inflammatory effects. Blood glucose levels remained similar after treatments, while survival was highest among the PB-UDCA group. Our findings suggest that PB-UDCA resulted in best PB blood and tissue absorption and reduced inflammation.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - Nassim Zamani
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - Giuseppe Luna
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | | | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad , Novi Sad , Serbia
| | | | - Goran Stojanovic
- Faculty of Technical Sciences, University of Novi Sad , Novi Sad , Serbia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - Bozica Kovacevic
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| |
Collapse
|
14
|
Khan Z, Al-Thabaiti SA. Biogenic silver nanoparticles: Green synthesis, encapsulation, thermal stability and antimicrobial activities. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Competing, complementary and co-existing paradigms in techno-scientific literature: A case study of Nanotechnology for engineering. Scientometrics 2019. [DOI: 10.1007/s11192-019-03013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Devi S, Ragavee A. Nanoencapsulation of Tinospora cordifolia (Willd.) using poly (D, L-lactide) nanoparticles: Yield optimization by response surface methodology and in silico modeling with insulin receptor tyrosine kinase. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_678_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
Development of copolymeric nanoparticles of hypocrellin B: Enhanced phototoxic effect and ocular distribution. Eur J Pharm Sci 2018; 116:26-36. [PMID: 29055734 DOI: 10.1016/j.ejps.2017.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/12/2017] [Accepted: 10/14/2017] [Indexed: 12/18/2022]
Abstract
In the present work, we have developed a photosensitizer hypocrellin B (HB) and nano silver loaded PLGA-TPGS nanoparticles with improved singlet oxygen production for enhanced photodynamic effect for the efficient treatment of age related macular degeneration. Random copolymer (PLGA-TPGS) synthesized by ring opening and bulk polymerization was characterized by IR, 1H NMR and TGA analysis. HBS-CP-NPs prepared by nanoprecipitation techniques were spherical shaped 89.6-753.6nm size particles with negative zeta potential. The average encapsulation efficiency was 84.06±11.43% and HB release from the HBS-CP-NPs was found to be biphasic with a slow release of 1.41% in the first 8h and 48.91% during 3days as measured by RP-HPLC. DSC thermograms indicate that HB was dispersed as amorphous form in HBS-CP-NPs. The ROS generation level of HBS-CP-NPs was significantly higher than that of HB/HB-CP-NPs. The production of 1O2 of HBS-CP-NPs has been assessed using EPR spectrometer. The 1O2 generating efficiency follows the order of nano silver>HB-CP-NPs>HBS-CP-NPs>pure HB drug solution. The superior phototoxic effect of HBS-CP-NPs (85.5% at 50μM) was attained at 2h irradiation in A549 cells. Significant anti angiogenic effect of HBS-CP-NPs was observed in treated CAM embryos. Following intravenous injection of HBS-CP-NPs to rabbits, the maximum amount of HB was found in retina (3h), iris (9h), aqueous humour (9h) and vitreous humour (9h).
Collapse
|
18
|
Yun X, Li X, Jin Y, Sun W, Dong T. Fast Crystallization and Toughening of Poly(L-lactic acid) by Incorporating with Poly(ethylene glycol) as a Middle Block Chain. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x18020141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Batista P, Castro PM, Madureira AR, Sarmento B, Pintado M. Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides 2018; 101:112-123. [PMID: 29329977 DOI: 10.1016/j.peptides.2018.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Bioactive proteins and peptides have been used with either prophylactic or therapeutic purposes, presenting inherent advantages as high specificity and biocompatibility. Nanocarriers play an important role in the stabilization of proteins and peptides, offering enhanced buccal permeation and protection while crossing the gastrointestinal tract. Moreover, preparation of nanoparticles as oral delivery systems for proteins/peptides may include tailored formulation along with functionalization aiming bioavailability enhancement of carried proteins or peptides. Oral delivery systems, namely buccal delivery systems, represent an interesting alternative route to parenteric delivery systems to carry proteins and peptides, resulting in higher comfort of administration and, therefore, compliance to treatment. This paper outlines an extensive overview of the existing publications on proteins/peptides oral nanocarriers delivery systems, with special focus on buccal route. Manufacturing aspects of most commonly used nanoparticles for oral delivery (e.g. polymeric nanoparticles using synthetic or natural polymers and lipid nanoparticles) advantages and limitations and potential applications of nanoparticles as proteins/peptides delivery systems will also be thoroughly addressed.
Collapse
Affiliation(s)
- Patrícia Batista
- CBQF, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Pedro M Castro
- CBQF, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra-PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Ana Raquel Madureira
- CBQF, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra-PRD, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Manuela Pintado
- CBQF, Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal.
| |
Collapse
|
20
|
Huckaby JT, Lai SK. PEGylation for enhancing nanoparticle diffusion in mucus. Adv Drug Deliv Rev 2018; 124:125-139. [PMID: 28882703 DOI: 10.1016/j.addr.2017.08.010] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
The viscoelastic mucus secretions coating exposed organs such as the lung airways and the female reproductive tract can trap and quickly eliminate not only foreign pathogens and ultrafine particles but also particle-based drug delivery systems, thus limiting sustained and targeted drug delivery at mucosal surfaces. To improve particle distribution across the mucosa and enhance delivery to the underlying epithelium, many investigators have sought to develop nanoparticles capable of readily traversing mucus. The first synthetic nanoparticles shown capable of rapidly penetrating physiological mucus secretions utilized a dense coating of polyethylene glycol (PEG) covalently grafted onto the surface of preformed polymeric nanoparticles. In the decade since, PEG has become the gold standard in engineering mucus-penetrating drug carriers for sustained and targeted drug delivery to the lungs, gastrointestinal tract, eyes, and female reproductive tract. This review summarizes the history of the development of various PEG-based mucus-penetrating particles, and highlights the key physicochemical properties of PEG coatings and PEGylation strategies to achieve muco-inert PEG coatings on nanoparticle drug carriers for improved drug and gene delivery at mucosal surfaces.
Collapse
|
21
|
Saneja A, Kumar R, Singh A, Dhar Dubey R, Mintoo MJ, Singh G, Mondhe DM, Panda AK, Gupta PN. Development and evaluation of long-circulating nanoparticles loaded with betulinic acid for improved anti-tumor efficacy. Int J Pharm 2017; 531:153-166. [PMID: 28823888 DOI: 10.1016/j.ijpharm.2017.08.076] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/09/2017] [Accepted: 08/12/2017] [Indexed: 02/06/2023]
Abstract
The clinical application of betulinic acid (BA), a natural pentacyclic triterpenoid with promising antitumor activity, is hampered due to its extremely poor water solubility and relatively short half-life in the systemic circulation. In order to address these issues, herein, we developed betulinic acid loaded polylactide-co-glycolide- monomethoxy polyethylene glycol nanoparticles (PLGA-mPEG NPs). The PLGA-mPEG co-polymer was synthesized and characterized using NMR and FT-IR. BA loaded PLGA-mPEG NPs were prepared by an emulsion solvent evaporation method. The developed nanoparticles had a desirable particle size (∼147nm) and exhibited uniform spherical shape under transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The PLGA-mPEG NPs were able to decrease the uptake by macrophages (i.e. J774A.1 and Raw 264.7 cells) as compared to PLGA nanoparticles. In vitro cytotoxicity in MCF7 and PANC-1 cells demonstrated enhanced cytotoxicity of BA loaded PLGA-mPEG NPs as compared to free BA. The cellular uptake study in both the cell lines demonstrated time dependent uptake behavior. The enhanced cytotoxicity of BA NPs was also supported by increased cellular apoptosis, mitochondrial membrane potential loss, generation of high reactive oxygen species (ROS) and cell cycle arrest. Further, intravenous pharmacokinetics study revealed that BA loaded PLGA-mPEG NPs could prolong the circulation of BA and remarkably enhance half-life by ∼7.21 folds. Consequently, in vivo studies in Ehrlich tumor (solid) model following intravenous administration demonstrated superior antitumor efficacy of BA NPs as compared to native BA. Moreover, BA NPs treated Ehrlich tumor mice demonstrated no biochemical, hematological and histological toxicities. These findings collectively indicated that the BA loaded PLGA-mPEG NPs might serve as a promising nanocarrier for improved therapeutic efficacy of betulinic acid.
Collapse
Affiliation(s)
- Ankit Saneja
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Robin Kumar
- Product Development Cell-II, National Institute of Immunology, New Delhi, India
| | - Amarinder Singh
- PK-PD-Toxicoloy Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Mubashir J Mintoo
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Gurdarshan Singh
- PK-PD-Toxicoloy Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Dilip M Mondhe
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India.
| | - Amulya K Panda
- Product Development Cell-II, National Institute of Immunology, New Delhi, India.
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India.
| |
Collapse
|
22
|
Lee BK, Yun Y, Park K. PLA micro- and nano-particles. Adv Drug Deliv Rev 2016; 107:176-191. [PMID: 27262925 DOI: 10.1016/j.addr.2016.05.020] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/15/2016] [Accepted: 05/24/2016] [Indexed: 01/05/2023]
Abstract
Poly(d,l-lactic acid) (PLA) has been widely used for various biomedical applications for its biodegradable, biocompatible, and nontoxic properties. Various methods, such as emulsion, salting out, and precipitation, have been used to make better PLA micro- and nano-particle formulations. They are widely used as controlled drug delivery systems of therapeutic molecules, including proteins, genes, vaccines, and anticancer drugs. Even though PLA-based particles have challenges to overcome, such as low drug loading capacity, low encapsulation efficiency, and terminal sterilization, continuous innovations in particulate formulations will lead to development of clinically useful formulations.
Collapse
|
23
|
Guliani A, Kumari A, Kumar D, Yadav SK. Development of nanoformulation of picroliv isolated from Picrorrhiza kurroa. IET Nanobiotechnol 2016; 10:114-9. [PMID: 27256889 DOI: 10.1049/iet-nbt.2015.0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Picroliv, a mixture of picroside I and kutkoside isolated from rhizome of Picrorrhiza kurroa has been reported for many pharmaceutical properties such as hepatoprotective, anticholestatic, antioxidant and immune-modulating activity. However, picroliv possessed lesser efficacy due to its poor aqueous solubility and lesser bioavailability. To find solution, picroliv was loaded into biodegradable poly lactic acid nanoparticles (PLA NPs) using solvent evaporation method. The picroliv-loaded PLA NPs were characterised by UV-vis spectroscopy, atomic force microscopy, transmission electron microscopy, Fourier transform infrared and Zeta sizer. The size of picroliv-loaded PLA NPs was 182 ± 20 nm. Zeta potential of picroliv-loaded PLA NPs was -23.5 mV, indicated their good stability. In vitro picroliv release from picroliv-loaded PLA NPs showed an initial burst release followed by slow and sustained release. The efficacy of picroliv-loaded PLA NPs was assessed against KB cell lines. Blank PLA NPs showed no cytotoxicity on KB cells. The picroliv-loaded PLA NPs showed more cytotoxic activity on KB cells as compared to the pure drug. Hence, the developed picroliv nanoformulation would find potential application in pharma-sector.
Collapse
Affiliation(s)
- Anika Guliani
- Acedemy of Scientific and Innovative Research, New Delhi, India
| | - Avnesh Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, HP, India
| | - Dharmesh Kumar
- Food Nutraceuticals and Quality Control Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, HP, India
| | | |
Collapse
|
24
|
Fernández K, Aburto J, von Plessing C, Rockel M, Aspé E. Factorial design optimization and characterization of poly-lactic acid (PLA) nanoparticle formation for the delivery of grape extracts. Food Chem 2016; 207:75-85. [DOI: 10.1016/j.foodchem.2016.03.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 12/19/2022]
|
25
|
Khare V, Singh A, Mahajan G, Alam N, Kour S, Gupta M, Kumar A, Singh G, Singh SK, Saxena AK, Mondhe DM, Gupta PN. Long-circulatory nanoparticles for gemcitabine delivery: Development and investigation of pharmacokinetics and in-vivo anticancer efficacy. Eur J Pharm Sci 2016; 92:183-93. [DOI: 10.1016/j.ejps.2016.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/14/2016] [Accepted: 07/08/2016] [Indexed: 02/06/2023]
|
26
|
dos Santos PP, Flôres SH, de Oliveira Rios A, Chisté RC. Biodegradable polymers as wall materials to the synthesis of bioactive compound nanocapsules. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Song X, Yang F, Li L, Zhu A. Size-controlled/Surface-Functionalized Polystyrene Nanospheres with Good Biocompatibility and High Encapsulation Efficiency of Cyclosporin AviaMiniemulsion Polymerization in One Step. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Abdellatif AAH, Zayed G, El-Bakry A, Zaky A, Saleem IY, Tawfeek HM. Novel gold nanoparticles coated with somatostatin as a potential delivery system for targeting somatostatin receptors. Drug Dev Ind Pharm 2016; 42:1782-91. [PMID: 27032509 DOI: 10.3109/03639045.2016.1173052] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Targeting of G-protein coupled receptors (GPCRs) like somatostatin-14 (SST-14) could have a potential interest in delivery of anti-cancer agents to tumor cells. Attachment of SST to different nano-carriers e.g. polymeric nanoparticles is limited due to the difficulty of interaction between SST itself and those nano-carriers. Furthermore, the instability problems associated with the final formulation. Attaching of SST to gold nanoparticles (AuNPs) using the positive and negative charge of SST and citrate-AuNPs could be considered a new technique to get stable non-aggregated AuNPs coated with SST. Different analyses techniques have been performed to proof the principle of coating between AuNPs and SST. Furthermore, cellular uptake studies on HCC-1806, HELA and U-87 cell lines has been investigated to show the ability of AuNPs coated SST to enter the cells via SST receptors. Dynamic light scattering (DLS) indicated a successful coating of SST on the MUA-AuNPs surface. Furthermore, all the performed analysis including DLS, SDS-PAGE and UV-VIS absorption spectra indicated a successful coating of AuNPs with SST. Cellular uptake studies on HCC-1806, HELA and U-87 cell lines showed that the number of AuNPs-SST per cell is signiflcantly higher compared to citrate-AuNPs when quantified using inductively coupled plasma spectroscopy. Moreover, the binding of AuNPs-SST to cells can be suppressed by addition of antagonist, indicating that the binding of AuNPs-SST to cells is due to receptor-specific binding. In conclusion, AuNPs could be attached to SST via adsorption to get stable AuNPs coated SST. This new formulation has a potential to target SST receptors localized in many normal and tumor cells.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Assiut , Egypt
| | - Gamal Zayed
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Assiut , Egypt
| | - Asmaa El-Bakry
- b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo , Egypt
| | - Alaa Zaky
- b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo , Egypt
| | - Imran Y Saleem
- c School of Pharmacy and Biomolecular Science , Liverpool John Moores University , Liverpool , UK
| | - Hesham M Tawfeek
- d Department of Industrial Pharmacy, Faculty of Pharmacy , Assiut University , Assiut , Egypt
| |
Collapse
|
29
|
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016. [DOI: '10.1016/j.addr.2015.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
30
|
PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016; 99:28-51. [PMID: 26456916 DOI: 10.1016/j.addr.2015.09.012] [Citation(s) in RCA: 2432] [Impact Index Per Article: 304.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/21/2015] [Accepted: 09/26/2015] [Indexed: 12/12/2022]
Abstract
Coating the surface of nanoparticles with polyethylene glycol (PEG), or "PEGylation", is a commonly used approach for improving the efficiency of drug and gene delivery to target cells and tissues. Building from the success of PEGylating proteins to improve systemic circulation time and decrease immunogenicity, the impact of PEG coatings on the fate of systemically administered nanoparticle formulations has, and continues to be, widely studied. PEG coatings on nanoparticles shield the surface from aggregation, opsonization, and phagocytosis, prolonging systemic circulation time. Here, we briefly describe the history of the development of PEGylated nanoparticle formulations for systemic administration, including how factors such as PEG molecular weight, PEG surface density, nanoparticle core properties, and repeated administration impact circulation time. A less frequently discussed topic, we then describe how PEG coatings on nanoparticles have also been utilized for overcoming various biological barriers to efficient drug and gene delivery associated with other modes of administration, ranging from gastrointestinal to ocular. Finally, we describe both methods for PEGylating nanoparticles and methods for characterizing PEG surface density, a key factor in the effectiveness of the PEG surface coating for improving drug and gene delivery.
Collapse
|
31
|
Lee GH, Lee SJ, Jeong SW, Kim HC, Park GY, Lee SG, Choi JH. Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles. Colloids Surf B Biointerfaces 2016; 143:511-517. [PMID: 27038916 DOI: 10.1016/j.colsurfb.2016.03.060] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
Utilizing the biological activities of compounds by encapsulating natural components in stable nanoparticles is an important strategy for a variety of biomedical and healthcare applications. In this study, quercetin-loaded silica nanoparticles were synthesized using an oil-in-water microemulsion method, which is a suitable system for producing functional nanoparticles of controlled size and shape. The resulting quercetin-loaded silica nanoparticles were spherical, highly monodispersed, and stable in an aqueous system. Superoxide radical scavenging effects were found for the quercetin-loaded silica nanoparticles as well as free quercetin. The quercetin-loaded silica nanoparticles showed cell viability comparable to that of the controls. The amounts of proinflammatory cytokines produced by macrophages, such as interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha, were reduced significantly for the quercetin-loaded silica nanoparticles. These results suggest that the antioxidative and antiinflammatory activities of quercetin are maintained after encapsulation in silica. Silica nanoparticles can be used for the effective and stable incorporation of biologically active natural components into composite biomaterials.
Collapse
Affiliation(s)
- Ga Hyun Lee
- Division of Nano & Bio Technology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea; Department of Advanced Organic Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung June Lee
- Division of Nano & Bio Technology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Sang Won Jeong
- Division of Nano & Bio Technology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Hyun-Chul Kim
- Division of Nano & Bio Technology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Ga Young Park
- Department of Bio-fibers and materials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Se Geun Lee
- Division of Nano & Bio Technology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea.
| | - Jin Hyun Choi
- Department of Advanced Organic Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Bio-fibers and materials Science, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
32
|
Patel SP, Vaishya R, Patel A, Agrahari V, Pal D, Mitra AK. Optimization of novel pentablock copolymer based composite formulation for sustained delivery of peptide/protein in the treatment of ocular diseases. J Microencapsul 2016; 33:103-13. [PMID: 26964498 DOI: 10.3109/02652048.2015.1134685] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This manuscript is focussed on the development of pentablock (PB) copolymer based sustained release formulation for the treatment of posterior segment ocular diseases. We have successfully synthesised biodegradable and biocompatible PB copolymers for the preparation of nanoparticles (NPs) and thermosensitive gel. Achieving high drug loading with hydrophilic biotherapeutics (peptides/proteins) is a challenging task. Moreover, small intravitreal injection volume (≤100 μL) requires high loading to develop a long term (six months) sustained release formulation. We have successfully investigated various formulation parameters to achieve maximum peptide/protein (octreotide, insulin, lysozyme, IgG-Fab, IgG, and catalase) loading in PB NPs. Improvement in drug loading can facilitate delivery of larger doses of therapeutic proteins via limited injection volume. A composite formulation comprised of NPs in gel system exhibited sustained release (without burst effect) of peptides and proteins, may serve as a platform technology for the treatment of posterior segment ocular diseases.
Collapse
Affiliation(s)
- Sulabh P Patel
- a Division of Pharmaceutical Sciences, School of Pharmacy , University of Missouri-Kansas City , Kansas City , MO , USA
| | - Ravi Vaishya
- a Division of Pharmaceutical Sciences, School of Pharmacy , University of Missouri-Kansas City , Kansas City , MO , USA
| | - Ashaben Patel
- a Division of Pharmaceutical Sciences, School of Pharmacy , University of Missouri-Kansas City , Kansas City , MO , USA
| | - Vibhuti Agrahari
- a Division of Pharmaceutical Sciences, School of Pharmacy , University of Missouri-Kansas City , Kansas City , MO , USA
| | - Dhananjay Pal
- a Division of Pharmaceutical Sciences, School of Pharmacy , University of Missouri-Kansas City , Kansas City , MO , USA
| | - Ashim K Mitra
- a Division of Pharmaceutical Sciences, School of Pharmacy , University of Missouri-Kansas City , Kansas City , MO , USA
| |
Collapse
|
33
|
Agrahari V, Agrahari V, Hung WT, Christenson LK, Mitra AK. Composite Nanoformulation Therapeutics for Long-Term Ocular Delivery of Macromolecules. Mol Pharm 2016; 13:2912-22. [PMID: 26828415 DOI: 10.1021/acs.molpharmaceut.5b00828] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purpose of this investigation is to design and synthesize novel pentablock (PB) copolymer (PB-1: PCL-PLA-PEG-PLA-PCL) based nanoformulations suspended in a thermosensitive gelling copolymer (PB-2: mPEG-PCL-PLA-PCL-PEGm) termed as composite nanoformulation. The composite nanoformulation was prepared to provide a sustained delivery of macromolecules over a longer duration with negligible burst release effect. The delivery system was designed to be utilized for the treatment of posterior segment ocular diseases such as age-related (wet) macular degeneration, diabetic retinopathy, and diabetic macular edema. The novel PB copolymers were characterized for their functional groups by Fourier transform infrared spectroscopy, molecular weight and purity by (1)H NMR spectroscopy, and gel permeation chromatography. X-ray diffraction analysis was used to determine the crystallinity of copolymers. The size distribution of PB-1 nanoparticles (NPs) prepared using emulsification-solvent evaporation method was found to be ∼150 nm analyzed by nanoparticle tracking analysis. The % encapsulation efficiency and % drug loading were found to be 66.64% w/w ± 1.75 and 18.17% w/w ± 0.39, respectively, (n = 3). Different weight percentages (15 and 20 wt %) of the PB-2 copolymer have been utilized for in vitro release studies of IgG-Fab from composite nanoformulation. A negligible burst release with continuous near zero-order release has been observed from the composite nanoformulation analyzed up to 80 days. In vitro cell viability and biocompatibility studies performed on ocular (human corneal epithelial and retinal pigment epithelium) and mouse macrophage (RAW 264.7) cell lines showed that the synthesized PB copolymer based composite nanoformulations were safe for clinical applications. On the basis of the results observed, it is concluded that PB copolymer based composite nanoformulations can serve as a platform for ocular delivery of therapeutic proteins. In addition, the composite nanoformulation may provide minimal side effects associated with frequent intravitreal injections.
Collapse
Affiliation(s)
- Vibhuti Agrahari
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| | - Vivek Agrahari
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| | - Wei-Ting Hung
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Lane K Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Ashim K Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| |
Collapse
|
34
|
He C, Zhang Z, Yang Q, Chang Q, Shao Z, Gong B, Shen YM, Liu B, Zhu Z. Reductive triblock copolymer micelles with a dynamic covalent linkage deliver antimiR-21 for gastric cancer therapy. Polym Chem 2016. [DOI: 10.1039/c6py00651e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Triblock copolymer micelles with a double disulphide linkage in the backbone directed by H-bonding association were synthesized and evaluated as an antimiRNA delivery carrier.
Collapse
Affiliation(s)
- Changyu He
- Shanghai Key Laboratory of Gastric Neoplasms
- Department of Surgery
- Shanghai Institute of Digestive Surgery
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
| | - Zhen Zhang
- Shanghai Center for Systems Biomedicine
- Key Laboratory of Systems Biomedicine
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Qinglai Yang
- Shanghai Center for Systems Biomedicine
- Key Laboratory of Systems Biomedicine
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Qing Chang
- Shanghai Key Laboratory of Gastric Neoplasms
- Department of Surgery
- Shanghai Institute of Digestive Surgery
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
| | - Zhifeng Shao
- Bio-ID Center
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Bing Gong
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
- Department of Chemistry
| | - Yu-Mei Shen
- Shanghai Center for Systems Biomedicine
- Key Laboratory of Systems Biomedicine
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms
- Department of Surgery
- Shanghai Institute of Digestive Surgery
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms
- Department of Surgery
- Shanghai Institute of Digestive Surgery
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
35
|
Beer V, Koynov K, Steffen W, Landfester K, Musyanovych A. Polylactide-Based Nanoparticles with Tailor-Made Functionalization. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Veronika Beer
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Werner Steffen
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | | | | |
Collapse
|
36
|
Patel SP, Vaishya R, Pal D, Mitra AK. Novel pentablock copolymer-based nanoparticulate systems for sustained protein delivery. AAPS PharmSciTech 2015; 16:327-43. [PMID: 25319053 DOI: 10.1208/s12249-014-0196-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 08/07/2014] [Indexed: 12/28/2022] Open
Abstract
The design, synthesis, and application of novel biodegradable and biocompatible pentablock (PB) copolymers, i.e., polyglycolic acid-polycaprolactone-polyethylene glycol-polycaprolactone-polyglycolic acid (PGA-PCL-PEG-PCL-PGA) and polylactic acid-polycaprolactone-polyethylene glycol-polycaprolactone-polylactic acid (PLA-PCL-PEG-PCL-PLA) for sustained protein delivery, are reported. The PB copolymers can be engineered to generate sustained delivery of protein therapeutics to the posterior segment of the eye. PB copolymers with different block arrangements and molecular weights were synthesized by ring-opening polymerization and characterized by proton nuclear magnetic resonance ((1)H-NMR), gel permeation chromatography (GPC), and X-ray diffraction (XRD) spectroscopy. Immunoglobulin G (IgG) was selected as a model protein due to its structural similarity to bevacizumab. The influence of polymer molecular weight, composition, and isomerism on formulation parameters such as entrapment efficiency, drug loading, and in vitro release profile was delineated. Crystallinity and molecular weight of copolymers exhibited a substantial effect on formulation parameters. A secondary structure of released IgG was confirmed by circular dichroism (CD) spectroscopy. In vitro cytotoxicity, cell viability, and biocompatibility studies performed on human retinal pigment epithelial cells (ARPE-19) and/or macrophage cell line (RAW 264.7) demonstrated PB copolymers to be excellent biomaterials. Novel PB polymers may be the answer to the unmet need of a sustained release protein formulation.
Collapse
|
37
|
Pandey SK, Ghosh S, Maiti P, Haldar C. Therapeutic efficacy and toxicity of tamoxifen loaded PLA nanoparticles for breast cancer. Int J Biol Macromol 2014; 72:309-19. [PMID: 25151954 DOI: 10.1016/j.ijbiomac.2014.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/04/2014] [Accepted: 08/14/2014] [Indexed: 11/15/2022]
Abstract
This study was carried out to assess the therapeutic efficacy and toxicity of tamoxifen (Tmx) loaded poly(d,l-lactic acid) (PLA) nanoparticles (Tmx-NPs) for breast cancer. An in vivo study was conducted to determine the effect of Tmx-NPs on DMBA induced mammary tumor in female Wistar rat. The experimental results showed that the mean diameter of Tmx-NPs was 224 ± 3 nm with 68 ± 2% (w/w) of entrapment efficiency. In in vivo study, the tumor size in rat was significantly reduced (P < 0.001) by treating Tmx-NPs as compared to pure Tmx and untreated group (control DMBA). Tmx-NPs showed the marked reduction in hepatotoxicity and renal toxicity when compared to pure Tmx as evidenced by histopathological examination of liver and kidney tissues as well as estimation of AST, ALT levels, and creatinine, urea, blood urea nitrogen levels. Oxidative stress and lipid peroxidation was estimated in spleen, liver and kidney and was found significantly high in pure Tmx treated group as compared to Tmx-NPs and control group. Immunological parameters like blastogenic response of splenocytes, TLC, DLC were studied and found significantly high in pure Tmx treated group but the variations were nonsignificant in Tmx-NPs group as compared to control. Thus, Tmx-NPs have significant therapeutic efficacy with reduced side effects.
Collapse
Affiliation(s)
- Sanjeev K Pandey
- Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Somenath Ghosh
- Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221 005, India
| | - Chandana Haldar
- Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
38
|
Tailor-made pentablock copolymer based formulation for sustained ocular delivery of protein therapeutics. JOURNAL OF DRUG DELIVERY 2014; 2014:401747. [PMID: 25045540 PMCID: PMC4090486 DOI: 10.1155/2014/401747] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/25/2014] [Accepted: 04/30/2014] [Indexed: 01/14/2023]
Abstract
The objective of this research article is to report the synthesis and evaluation of novel pentablock copolymers for controlled delivery of macromolecules in the treatment of posterior segment diseases. Novel biodegradable PB copolymers were synthesized by sequential ring-opening polymerization. Various ratios and molecular weights of each block (polyglycolic acid, polyethylene glycol, polylactic acid, and polycaprolactone) were selected for synthesis and to optimize release profile of FITC-BSA, IgG, and bevacizumab from nanoparticles (NPs) and thermosensitive gel. NPs were characterized for particle size, polydispersity, entrapment efficiency, and drug loading. In vitro release study of proteins from NPs alone and composite formulation (NPs suspended in thermosensitive gel) was performed. Composite formulations demonstrated no or negligible burst release with continuous near zero-order release in contrast to NPs alone. Hydrodynamic diameter of protein therapeutics and hydrophobicity of PB copolymer exhibited significant effect on entrapment efficiency and in vitro release profile. CD spectroscopy confirmed retention of structural conformation of released protein. Biological activity of released bevacizumab was confirmed by in vitro cell proliferation and cell migration assays. It can be concluded that novel PB polymers can serve a platform for sustained delivery of therapeutic proteins.
Collapse
|
39
|
Wang Y, Guo M, Lu Y, Ding LY, Ron WT, Liu YQ, Song FF, Yu SQ. Alpha-tocopheryl polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles for reversal of multidrug resistance in vitro. NANOTECHNOLOGY 2012; 23:495103. [PMID: 23149859 DOI: 10.1088/0957-4484/23/49/495103] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Multidrug resistance (MDR) is one of the factors in the failure of anticancer chemotherapy. In order to enhance the anticancer effect of P-glycoprotein (P-gp) substrates, inhibition of the P-gp efflux pump on MDR cells is a good tactic. We designed novel multifunctional drug-loaded alpha-tocopheryl polyethylene glycol succinate (TPGS)/poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TPGS/PLGA/SN-38 NPs; SN-38 is 7-ethyl-10-hydroxy-camptothecin), with TPGS-emulsified PLGA NPs as the carrier and modulator of the P-gp efflux pump and SN-38 as the model drug. TPGS/PLGA/SN-38 NPs were prepared using a modified solvent extraction/evaporation method. Physicochemical characterizations of TPGS/PLGA/SN-38 NPs were in conformity with the principle of nano-drug delivery systems (nDDSs), including a diameter of about 200 nm, excellent spherical particles with a smooth surface, narrow size distribution, appropriate surface charge, and successful drug-loading into the NPs. The cytotoxicity of TPGS/PLGA/SN-38 NPs to MDR cells was increased by 3.56 times compared with that of free SN-38. Based on an intracellular accumulation study relative to the time-dependent uptake and efflux inhibition, we suggest novel mechanisms of MDR reversal of TPGS/PLGA NPs. Firstly, TPGS/PLGA/SN-38 NPs improved the uptake of the loaded drug by clathrin-mediated endocytosis in the form of unbroken NPs. Simultaneously, intracellular NPs escaped the recognition of P-gp by MDR cells. After SN-38 was released from TPGS/PLGA/SN-38 NPs in MDR cells, TPGS or/and PLGA may modulate the efflux microenvironment of the P-gp pump, such as mitochondria and the P-gp domain with an ATP-binding site. Finally, the controlled-release drug entered the nucleus of the MDR cell to induce cytotoxicity. The present study showed that TPGS-emulsified PLGA NPs could be functional carriers in nDDS for anticancer drugs that are also P-gp substrates. More importantly, to enhance the therapeutic effect of P-gp substrates, this work might provide a new insight into the design of pharmacologically inactive excipients that can serve as P-gp modulators instead of drugs that are P-gp inhibitors.
Collapse
Affiliation(s)
- Ying Wang
- Jiangsu Key Laboratory for Supramolecular Medicinal Materials and Applications, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mi Y, Zhao J, Feng SS. Vitamin E TPGS prodrug micelles for hydrophilic drug delivery with neuroprotective effects. Int J Pharm 2012; 438:98-106. [DOI: 10.1016/j.ijpharm.2012.08.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 07/25/2012] [Accepted: 08/21/2012] [Indexed: 10/27/2022]
|
41
|
Rayaprolu BM, Strom JG. Design and evaluation of D-α tocopheryl polyethylene glycol 1000 succinate emulsified poly-ϵ-caprolactone nanoparticles for protein/peptide drug delivery. Drug Dev Ind Pharm 2012; 39:1046-52. [DOI: 10.3109/03639045.2012.699069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Effects of gelucire content on stability, macrophage interaction and blood circulation of nanoparticles engineered from nanoemulsions. Colloids Surf B Biointerfaces 2012; 94:259-65. [DOI: 10.1016/j.colsurfb.2012.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/01/2012] [Accepted: 02/01/2012] [Indexed: 11/19/2022]
|
43
|
Zhang Z, Tan S, Feng SS. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials 2012; 33:4889-906. [DOI: 10.1016/j.biomaterials.2012.03.046] [Citation(s) in RCA: 437] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/13/2012] [Indexed: 11/16/2022]
|
44
|
Tian Y, Mao S. Amphiphilic polymeric micelles as the nanocarrier for peroral delivery of poorly soluble anticancer drugs. Expert Opin Drug Deliv 2012; 9:687-700. [PMID: 22519507 DOI: 10.1517/17425247.2012.681299] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Many amphiphilic copolymers have recently been synthesized as novel promising micellar carriers for the delivery of poorly water-soluble anticancer drugs. Studies on the formulation and oral delivery of such micelles have demonstrated their efficacy in enhancing drug uptake and absorption, and exhibit prolonged circulation time in vitro and in vivo. AREAS COVERED In this review, literature on hydrophobic modifications of several hydrophilic polymers, including polyethylene glycol, chitosan, hyaluronic acid, pluronic and tocopheryl polyethylene glycol succinate, is summarized. Parameters influencing the properties of polymeric micelles for oral chemotherapy are discussed and strategies to overcome main barriers for polymeric micelles peroral absorption are proposed. EXPERT OPINION During the design of polymeric micelles for peroral chemotherapy, selecting or synthesizing copolymers with good compatibility with the drug is an effective strategy to increase drug loading and encapsulation efficiency. Stability of the micelles can be improved in different ways. It is recommended to take permeability, mucoadhesion, sustained release, and P-glycoprotein inhibition into consideration during copolymer preparation or to consider adding some excipients in the formulation. Furthermore, both the copolymer structure and drug loading methods should be controlled in order to get micelles with appropriate particle size for better absorption.
Collapse
Affiliation(s)
- Ye Tian
- Shenyang Pharmaceutical University, School of Pharmacy, Shenyang, China
| | | |
Collapse
|
45
|
Ni X, Xing H, Yang Q, Wang J, Su B, Bao Z, Yang Y, Ren Q. Selective Liquid–Liquid Extraction of Natural Phenolic Compounds Using Amino Acid Ionic Liquids: A Case of α-Tocopherol and Methyl Linoleate Separation. Ind Eng Chem Res 2012. [DOI: 10.1021/ie201682h] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaolei Ni
- Key Laboratory
of Biomass Chemical Engineering of Ministry
of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Huabin Xing
- Key Laboratory
of Biomass Chemical Engineering of Ministry
of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Qiwei Yang
- Key Laboratory
of Biomass Chemical Engineering of Ministry
of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jun Wang
- Key Laboratory
of Biomass Chemical Engineering of Ministry
of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Baogen Su
- Key Laboratory
of Biomass Chemical Engineering of Ministry
of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zongbi Bao
- Key Laboratory
of Biomass Chemical Engineering of Ministry
of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yiwen Yang
- Key Laboratory
of Biomass Chemical Engineering of Ministry
of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Qilong Ren
- Key Laboratory
of Biomass Chemical Engineering of Ministry
of Education, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Tong R, Cheng J. Drug-Initiated, Controlled Ring-Opening Polymerization for the Synthesis of Polymer-Drug Conjugates. Macromolecules 2012; 45:2225-2232. [PMID: 23357880 PMCID: PMC3555138 DOI: 10.1021/ma202581d] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Paclitaxel, a polyol chemotherapeutic agent, was covalently conjugated through its 2'-OH to polylactide with 100% regioselectivity via controlled polymerization of lactide mediated by paclitaxel/(BDI-II)ZnN(TMS)(2) (BDI-II = 2-((2,6-diisopropylphenyl)amino)-4-((2,6-diisopropylphenyl)imino)-2-pentene). The steric bulk of the substituents on the N-aryl groups of the BDI ligand drastically affected the regiochemistry of coordination of the metal catalysts to paclitaxel and the subsequent ring-opening polymerization of lactide. The drug-initiated, controlled polymerization of lactide was extended, again with 100% regioselectivity, to docetaxel, a chemotherapeutic agent that is even more structurally complex than paclitaxel. Regioselective incorporation of paclitaxel (or docetaxel) to other biopolymers (i.e., poly(δ-valerolactone), poly(trimethylene carbonate), and poly(ε-caprolactone)), was also achieved through drug/(BDI-II)ZnN(TMS)(2)-mediated controlled polymerization. These drug-polylactide conjugates with precisely controlled structures are expected to be excellent building blocks for drug delivery, coating, and controlled-release applications.
Collapse
Affiliation(s)
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
| |
Collapse
|
47
|
Yang XZ, Dou S, Sun TM, Mao CQ, Wang HX, Wang J. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J Control Release 2011; 156:203-11. [PMID: 21839126 DOI: 10.1016/j.jconrel.2011.07.035] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/30/2011] [Accepted: 07/26/2011] [Indexed: 01/19/2023]
Abstract
Delivery of small interfering RNA (siRNA) has been one of the major hurdles for the application of RNA interference in therapeutics. Here, we describe a cationic lipid assisted polymeric nanoparticle system with stealthy property for efficient siRNA encapsulation and delivery, which was fabricated with poly(ethylene glycol)-b-poly(d,l-lactide), siRNA and a cationic lipid, using a double emulsion-solvent evaporation technique. By incorporation of the cationic lipid, the encapsulation efficiency of siRNA into the nanoparticles could be above 90% and the siRNA loading weight ratio was up to 4.47%, while the diameter of the nanoparticles was around 170 to 200nm. The siRNA retained its integrity within the nanoparticles, which were effectively internalized by cancer cells and escaped from the endosome, resulting in significant gene knockdown. This effect was demonstrated by significant down-regulation of luciferase expression in HepG2-luciferase cells which stably express luciferase, and suppression of polo-like kinase 1 (Plk1) expression in HepG2 cells, following delivery of specific siRNAs by the nanoparticles. Furthermore, the nanoparticles carrying siRNA targeting the Plk1 gene were found to induce remarkable apoptosis in both HepG2 and MDA-MB-435s cancer cells. Systemic delivery of specific siRNA by nanoparticles significantly inhibited luciferase expression in an orthotopic murine liver cancer model and suppressed tumor growth in a MDA-MB-435s murine xenograft model, suggesting its therapeutic promise in disease treatment.
Collapse
Affiliation(s)
- Xian-Zhu Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | | | | | | | | | | |
Collapse
|
48
|
FENG SS. NANOMEDICINE: NANOPARTICLES OF BIODEGRADABLE POLYMERS FOR CANCER DIAGNOSIS AND TREATMENT. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s0219607708000378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nanomedicine is to apply and further develop nanotechnology to solve problems in medicine, i.e. to diagnose, treat and prevent diseases at the cellular and molecular level. This article demonstrates through a full spectrum of proof-of-concept research, from nanoparticle preparation and characterization, in vitro drug release and cytotoxicity, to in vivo pharmacokinetics and xenograft model, how nanoparticles of biodegradable polymers could provide an ideal solution for the problems encountered in the current regimen of chemotherapy. A system of vitamin E TPGS coated poly(lactic-co-glycolic acid) (PLGA) nanoparticles is used as an example for paclitaxel formulation as a model drug. In vitro HT-29 cancer cell viability experiment demonstrated that the paclitaxel formulated in the nanoparticles could be 5.64 times more effective than Taxol® after 24 hr of treatment. In vivo pharmacokinetics showed that the drug formulated in the nanoparticles could achieve 3.9 times higher therapeutic effects judged by area-under-the curve (AUC). One shot can realize sustainable chemotherapy of 168 hr compared with 22 hr for Taxol® at a single 10 mg/kg dose. Xenograft tumor model further confirmed the advantages of the nanoparticle formulation versus Taxol®.
Collapse
Affiliation(s)
- S. S. FENG
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 02-11, 4 Engineering Drive 4, Singapore 117576, Singapore
- Division of Bioengineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117576, Singapore
- NUS Nanoscience & Nanotechnology Initiative, 2 Engineering Drive 3, Singapore 117576, Singapore
| |
Collapse
|
49
|
Kong LY, Su BG, Bao ZB, Xing HB, Yang YW, Ren QL. Direct quantification of mono- and di-D-α-tocopherol polyethylene glycol 1000 succinate by high performance liquid chromatography. J Chromatogr A 2011; 1218:8664-71. [PMID: 22035696 DOI: 10.1016/j.chroma.2011.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/25/2011] [Accepted: 10/07/2011] [Indexed: 11/24/2022]
Abstract
A simple and direct reversed-phase high performance liquid chromatography (RP-HPLC) method with UV detection was developed and validated for the determination of mono- and di-D-α-tocopherol polyethylene glycol 1000 succinate (TPGS 1000) in TPGS mixture. Before the HPLC analysis, mono- and di-TPGS 1000 were separated by simulated moving bed (SMB) chromatography system and characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The mass spectrometric results confirmed that the molar mass distribution of TPGS prepared in our laboratory was very close to that of the product of Eastman Chemical Company with similar n¯ (average polymerization degree), M(n)¯ (number-average molecular weight) and M(w)¯ (weight-average molecular weight). The HPLC analysis was carried out on a C30 analytical column with mobile phases comprised of acetonitrile (A) and isopropanol (B) in gradient conditions. Validation of the analytical method was done on the following parameters: system suitability, linearity, limits of detection and quantification, accuracy and precision, method robustness and solution stability. The linearity of the calibration curves for mono- and di-TPGS 1000 from both sources was found to be good (r(2)>0.9996). The recovery values were from 94.6% to 103.3% for mono-TPGS, and 93.5% to 103.3% for di-TPGS. This method could be successfully used in the direct quantification of mono- and di-TPGS in TPGS 1000 mixture using TPGS standards with similar molecular mass distributions although derived from different sources.
Collapse
Affiliation(s)
- L Y Kong
- Department of Chemical and Biological Engineering, Institute of Pharmaceutical Engineering, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
50
|
Controllable preparation and formation mechanism of BSA microparticles using supercritical assisted atomization with an enhanced mixer. J Supercrit Fluids 2011. [DOI: 10.1016/j.supflu.2010.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|