1
|
Shekargoftar M, Ravanbakhsh S, de Oliveira VS, Paternoster C, Chevallier P, Witte F, Sarkissian A, Mantovani D. Effects of Nitrogen and Hydrogen Plasma Treatments on a Mg-2Y-1Zn-1Mn Resorbable Alloy. J Biomed Mater Res B Appl Biomater 2025; 113:e35542. [PMID: 39912579 DOI: 10.1002/jbm.b.35542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/14/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025]
Abstract
Mg alloys have recently been investigated and optimized for the development of biodegradable implants for orthopedic, dental, vascular, and other applications. However, their rapid degradation in a physiological environment remains the main obstacle to their development. In this work, the effects of nitrogen and hydrogen plasma treatments on the surface properties and corrosion behavior of an Mg-2Y-1Zn-1Mn (WZM211) alloy were investigated. Plasma treatment effectively modified the surface of a WZM211 alloy by removing the original oxide layer, followed by the formation of a new surface layer with controlled composition, thickness, and wettability. The water contact angle decreased from 100° to 17° after nitrogen plasma and to 45° after hydrogen plasma treatment. The nitrogen plasma treatment, shortly N-Plasma, resulted in the lowest corrosion rate (CRN = 0.038 ± 0.010 mm/y) if compared with the hydrogen plasma treatment, shortly H-Plasma (CRH = 0.044 ± 0.003 mm/y) and untreated samples (0.233 ± 0.097 mm/y). The results demonstrate the potential of nitrogen and hydrogen plasma treatment for the development of resorbable Mg-based implants.
Collapse
Affiliation(s)
- Masoud Shekargoftar
- Laboratory for Biomaterials and Bioengineering, CRC-I, Dept of Min_Met-Materials Eng., & University Hospital Centre, Regenerative Medicine, Laval University, Quebec City, Quebec, Canada
| | - Samira Ravanbakhsh
- Laboratory for Biomaterials and Bioengineering, CRC-I, Dept of Min_Met-Materials Eng., & University Hospital Centre, Regenerative Medicine, Laval University, Quebec City, Quebec, Canada
| | - Vinicius Sales de Oliveira
- Laboratory for Biomaterials and Bioengineering, CRC-I, Dept of Min_Met-Materials Eng., & University Hospital Centre, Regenerative Medicine, Laval University, Quebec City, Quebec, Canada
| | - Carlo Paternoster
- Laboratory for Biomaterials and Bioengineering, CRC-I, Dept of Min_Met-Materials Eng., & University Hospital Centre, Regenerative Medicine, Laval University, Quebec City, Quebec, Canada
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering, CRC-I, Dept of Min_Met-Materials Eng., & University Hospital Centre, Regenerative Medicine, Laval University, Quebec City, Quebec, Canada
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité Medical University, Berlin, Germany
| | | | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Dept of Min_Met-Materials Eng., & University Hospital Centre, Regenerative Medicine, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
2
|
Fernandes E Oliveira HF, Addison O, Yogui FC, Cruz MAE, Nogueira LFB, Okamoto R, Souza ACG, Ramos AP, Verri FR. Strontium-containing mineralized phospholipid coatings improve osseointegration in osteoporotic rats. J Biomed Mater Res A 2025; 113:e37782. [PMID: 39360796 DOI: 10.1002/jbm.a.37782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/25/2024] [Accepted: 07/23/2024] [Indexed: 12/26/2024]
Abstract
Surface treatments play an important role in enhancing the osseointegration of Titanium (Ti) and its alloys. This study introduces a method employing biomimetic hydroxyapatite (Hap) deposition guided by molecularly organized phospholipids, affixed to the metal implant surface. Using the Langmuir-Blodgett technique, phospholipids were deposited onto Ti-screws by using CaCl2 or CaCl2/SrCl2 aqueous solution in the subphase of a Langmuir trough in the target proportion (i.e. 10 and 90 mol% of Sr2+ in relation of Ca2+) followed by immersion in phosphate buffer and in supersaturated simulated body fluid. Coating composition and morphology were evaluated using infrared spectroscopy and scanning electron microscopy, respectively, while contact angle measurements assessed coating wettability and surface energy. Randomized screws were then implanted into the tibias of healthy and osteoporotic female rats (G1: Control-Machined, G2: Hap, G3: HapSr10, G4: HapSr90). Osseointegration, assessed 60 days post-implantation, included reverse torque, fluorochrome area, bone tissue-screw contact area, and linear extent of bone-screw contact. Results, grouped by surface treatment (Machined, Hap, HapSr10, HapSr90), revealed that the deposition of Hap, HapSr10, and HapSr90 resulted in thin and rough coatings composed of hydroxyapatite (Hap) on the screw surface with nanoscale pores. The coatings resulted in increased wettability and surface energy of Ti surfaces. The minerals are chemically similar to natural bone apatite as revealed by FTIR analysis. In vivo analyses indicated higher torque values for strontium-containing surfaces in the osteoporotic group (p = 0.02) and, in the control group superior torque for screw removal on the Hap surface (p = 0.023). Hydroxyapatite-treated surfaces enhance morphology, composition, and reactivity, promoting screw osseointegration in healthy and osteoporotic female rats. The incorporation of strontium into the mineral phase has been proposed to not only stimulate osteoblast activity but also reduce osteoclastic resorption, which may explain the improved outcomes observed here in experimental osteoporotic conditions.
Collapse
Affiliation(s)
- Hiskell Francine Fernandes E Oliveira
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Owen Addison
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Fernanda C Yogui
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Marcos Antonio Eufrásio Cruz
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Lucas Fabricio Bahia Nogueira
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Roberta Okamoto
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Ana Carla Gonçales Souza
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Ana Paula Ramos
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Fellippo Ramos Verri
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| |
Collapse
|
3
|
Lu H, Li Z, Zhu L, Xu P, Wang H, Li Y, Zhao W. Fabrication and Temporal Dependency Osteogenic Regulation of Dual-Scale Hierarchical Microstructures on Medical Metal Surface. Adv Healthc Mater 2024; 13:e2402369. [PMID: 39175381 DOI: 10.1002/adhm.202402369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/09/2024] [Indexed: 08/24/2024]
Abstract
The structural characteristics at the interface of bone implants can guide biological regulation. In this study, a dual-scale hierarchical microstructure is proposed and customized using hybrid machining to achieve temporal dependency osteogenic regulation. It is observed that osteoblasts induced by dual-scale hierarchical structure exhibit adequate protrusion development and rapid cell attachment through the modulation of mechanical forces in the cell growth environment, and further promot the upregulation of the cell membrane receptor PDGFR-α, which is related to cell proliferation. Afterward, transcriptomic analysis reveals that during the differentiation stage, the DSH structure regulates cellular signaling cascades primarily through integrin adhesion mechanisms and then accelerates osteogenic differentiation by activating the TGF-β pathway and cAMP signaling pathway. Furthermore, the calcium nodules are preferentially deposited within the lower honeycomb-like channels, thereby endowing the proposed dual-scale hierarchical structure with the potential to induce oriented deposition and improve the long-term stability of the implant.
Collapse
Affiliation(s)
- Hao Lu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Zhijun Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Lida Zhu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Peihua Xu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Hai Wang
- Shenyang Lebuy Vacuum Tech. Co., Ltd, Shenyang, Liaoning, China
| | - Yonghao Li
- Shenyang Lebuy Vacuum Tech. Co., Ltd, Shenyang, Liaoning, China
| | - Weidong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Wei X, Lei L, Luo L, Zhou Y, Zheng Z, Chen W. Advances in osteoimmunomodulation of biomaterials after intrabone implantation: focus on surface hydrophilicity. J Mater Chem B 2024; 12:11089-11104. [PMID: 39387541 DOI: 10.1039/d4tb01907e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Biomaterials intended for intrabone implantation are extensively utilized in orthopedic and dental applications. Their surface properties, particularly hydrophilicity, significantly influence the biological interactions surrounding the implant, ultimately determining the implant's in vivo fate. Recently, the role of osteoimmunomodulation in these implantable biomaterials has been recognized for its importance in regulating biomaterial-mediated osteogenesis. Consequently, it is imperative to elucidate the correlation between hydrophilicity and the immune response for the development of osteoimmunomodulatory implants. Herein, this review highlights recent advances in osteoimmunomodulation of biomaterials after intrabone implantation from a novel perspective-surface hydrophilicity, and summarizes the series of immune reactions and subsequent bone remodeling that occur in response to hydrophilic implants, focusing on protein adsorption, the behaviors of major immune cells, and osteoimmunomodulation-enhanced angiogenesis and osteogenesis. Hydrophilic biomaterials have the capacity to alter the surrounding immune microenvironment and accelerate the process of material-tissue bonding, thereby facilitating the successful integration of biomaterials with tissue. Collectively, the authors hope that this article provides strategies for modulating hydrophilicity to achieve osteoimmunomodulatory performance and further promotes the development of novel implantable biomaterials for orthopedic and dental applications.
Collapse
Affiliation(s)
- Xinpeng Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Linshan Lei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ling Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Ying Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
5
|
Yuan P, Chen M, Lu X, Yang H, Wang L, Bai T, Zhou W, Liu T, Yu S. Application of advanced surface modification techniques in titanium-based implants: latest strategies for enhanced antibacterial properties and osseointegration. J Mater Chem B 2024; 12:10516-10549. [PMID: 39311411 DOI: 10.1039/d4tb01714e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Titanium-based implants, renowned for their excellent mechanical properties, corrosion resistance, and biocompatibility, have found widespread application as premier implant materials in the medical field. However, as bioinert materials, they often face challenges such as implant failure caused by bacterial infections and inadequate osseointegration post-implantation. Thus, to address these issues, researchers have developed various surface modification techniques to enhance the surface properties and bioactivity of titanium-based implants. This review aims to outline several key surface modification methods for titanium-based implants, including acid etching, sol-gel method, chemical vapor deposition, electrochemical techniques, layer-by-layer self-assembly, and chemical grafting. It briefly summarizes the advantages, limitations, and potential applications of these technologies, presenting readers with a comprehensive perspective on the latest advances and trends in the surface modification of titanium-based implants.
Collapse
Affiliation(s)
- Pingyun Yuan
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Mi Chen
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Xiaotong Lu
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Hui Yang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Lan Wang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Tian Bai
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Wenhao Zhou
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Tao Liu
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Sen Yu
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| |
Collapse
|
6
|
Guo Q, Liu Z, Yang Z, Jiang Y, Sun Y, Xu J, Zhao W, Wang W, Wang W, Ren Q, Shu C. Development, challenges and future trends on the fabrication of micro-textured surfaces using milling technology. JOURNAL OF MANUFACTURING PROCESSES 2024; 126:285-331. [DOI: 10.1016/j.jmapro.2024.07.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Dadashi Ouranj Z, Hosseini S, Alipour A, Homaeigohar S, Azari S, Ghazizadeh L, Shokrgozar M, Thomas S, Irian S, Shahsavarani H. The potent osteo-inductive capacity of bioinspired brown seaweed-derived carbohydrate nanofibrous three-dimensional scaffolds. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:515-534. [PMID: 39219680 PMCID: PMC11358581 DOI: 10.1007/s42995-024-00241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to investigate the osteo-inductive capacity of a fucoidan polysaccharide network derived from brown algae on human adipose-derived stem cells (HA-MSCs) for bone regeneration. The physiochemical properties of the scaffold including surface morphology, surface chemistry, hydrophilicity, mechanical stiffness, and porosity were thoroughly characterized. Both in vitro and in vivo measurements implied a superior cell viability, proliferation, adhesion, and osteo-inductive performance of obtained scaffolds compared to using specific osteogenic induction medium with increased irregular growth of calcium crystallites, which mimic the structure of natural bones. That scaffold was highly biocompatible and suitable for cell cultures. Various examinations, such as quantification of mineralization, alkaline phosphatase, gene expression, and immunocytochemical staining of pre-osteocyte and bone markers confirmed that HAD-MSCs differentiate into osteoblasts, even without an osteogenic induction medium. This study provides evidence for the positive relationship and synergistic effects between the physical properties of the decellularized seaweed scaffold and the chemical composition of fucoidan in promoting the osteogenic differentiation of HA-MSCs. Altogether, the natural matrices derived from brown seaweed offers a sustainable, cost-effective, non-toxic bioinspired scaffold and holds promise for future clinical applications in orthopedics.
Collapse
Affiliation(s)
- Zahra Dadashi Ouranj
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911 Iran
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Atefeh Alipour
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN UK
| | - Shahram Azari
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Leila Ghazizadeh
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Mohammadali Shokrgozar
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 13169-43551 Iran
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala India
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911 Iran
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 19839-69411 Iran
- Iranian Biological Resource Center, Academic Center for Education, Culture and Research (ACECR), Tehran, 1533734716 Iran
| |
Collapse
|
8
|
Matsuura T, Komatsu K, Cheng J, Park G, Ogawa T. Beyond microroughness: novel approaches to navigate osteoblast activity on implant surfaces. Int J Implant Dent 2024; 10:35. [PMID: 38967690 PMCID: PMC11226592 DOI: 10.1186/s40729-024-00554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
Considering the biological activity of osteoblasts is crucial when devising new approaches to enhance the osseointegration of implant surfaces, as their behavior profoundly influences clinical outcomes. An established inverse correlation exists between osteoblast proliferation and their functional differentiation, which constrains the rapid generation of a significant amount of bone. Examining the surface morphology of implants reveals that roughened titanium surfaces facilitate rapid but thin bone formation, whereas smooth, machined surfaces promote greater volumes of bone formation albeit at a slower pace. Consequently, osteoblasts differentiate faster on roughened surfaces but at the expense of proliferation speed. Moreover, the attachment and initial spreading behavior of osteoblasts are notably compromised on microrough surfaces. This review delves into our current understanding and recent advances in nanonodular texturing, meso-scale texturing, and UV photofunctionalization as potential strategies to address the "biological dilemma" of osteoblast kinetics, aiming to improve the quality and quantity of osseointegration. We discuss how these topographical and physicochemical strategies effectively mitigate and even overcome the dichotomy of osteoblast behavior and the biological challenges posed by microrough surfaces. Indeed, surfaces modified with these strategies exhibit enhanced recruitment, attachment, spread, and proliferation of osteoblasts compared to smooth surfaces, while maintaining or amplifying the inherent advantage of cell differentiation. These technology platforms suggest promising avenues for the development of future implants.
Collapse
Affiliation(s)
- Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - James Cheng
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| | - Gunwoo Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA.
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA.
| |
Collapse
|
9
|
Komatsu K, Matsuura T, Cheng J, Kido D, Park W, Ogawa T. Nanofeatured surfaces in dental implants: contemporary insights and impending challenges. Int J Implant Dent 2024; 10:34. [PMID: 38963524 PMCID: PMC11224214 DOI: 10.1186/s40729-024-00550-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Dental implant therapy, established as standard-of-care nearly three decades ago with the advent of microrough titanium surfaces, revolutionized clinical outcomes through enhanced osseointegration. However, despite this pivotal advancement, challenges persist, including prolonged healing times, restricted clinical indications, plateauing success rates, and a notable incidence of peri-implantitis. This review explores the biological merits and constraints of microrough surfaces and evaluates the current landscape of nanofeatured dental implant surfaces, aiming to illuminate strategies for addressing existing impediments in implant therapy. Currently available nanofeatured dental implants incorporated nano-structures onto their predecessor microrough surfaces. While nanofeature integration into microrough surfaces demonstrates potential for enhancing early-stage osseointegration, it falls short of surpassing its predecessors in terms of osseointegration capacity. This discrepancy may be attributed, in part, to the inherent "dichotomy kinetics" of osteoblasts, wherein increased surface roughness by nanofeatures enhances osteoblast differentiation but concomitantly impedes cell attachment and proliferation. We also showcase a controllable, hybrid micro-nano titanium model surface and contrast it with commercially-available nanofeatured surfaces. Unlike the commercial nanofeatured surfaces, the controllable micro-nano hybrid surface exhibits superior potential for enhancing both cell differentiation and proliferation. Hence, present nanofeatured dental implants represent an evolutionary step from conventional microrough implants, yet they presently lack transformative capacity to surmount existing limitations. Further research and development endeavors are imperative to devise optimized surfaces rooted in fundamental science, thereby propelling technological progress in the field.
Collapse
Affiliation(s)
- Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - James Cheng
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
- Section of Periodontics, UCLA School of Dentistry, Los Angeles, USA
| | - Daisuke Kido
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Wonhee Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Department of Dentistry, College of Medicine, Hanyang University, Seoul, Korea
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA.
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA.
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA.
| |
Collapse
|
10
|
Rajpurohit K, Dodwad V, Kharat A, Belludi S, Pharne P, Marium S. Influence of surface texture on osteogenic differentiation of dental pulp stem cells: An in vitro study. J Indian Soc Periodontol 2024; 28:478-483. [PMID: 40018713 PMCID: PMC11864341 DOI: 10.4103/jisp.jisp_307_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 03/01/2025] Open
Abstract
Background In comparison with perfectly machined surface implants, surface topographic modifications like roughness accelerate the osteogenesis of dental pulpal stem cells (DPSC). This greatly enhances bone-implant contact and osteogenic potential of the stem cells. Hence, the aim of the current study was to evaluate and compare the differentiation and proliferation potential of stem cells obtained from dental pulp on sand-blasted and acid etched implant discs surfaces. Materials and Methods Stem cells from dental pulp were extracted from the premolar region of oral cavity. Titanium discs that measured one centimeter in diameter and three millimetres in thickness were used as investigation surfaces. Titanium surface disc were acid etched and sandblasted. Investigation had three group: acid etched (Group A), sandblasted (Group B), and standard control group, i.e., cells treated with osteogenic induction media only (Group C). In Group C, mesenchymal stem cells (MSCs) were treated with osteogenic induction medium without any titanium disc and these cells were used as standard controls. To identify which modified implant surface had greater potential for proliferation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed using the explant culture. MTT assay assessed the viability of the cells as a function of its redox potential. This was followed by recognition of the stem cells for CD90, CD73, and CD 105 markers using flow cytometry with RUNX2 antibody on days 7 and 21 of incubation. The isolated cells were stained using 1% alizarin red stain to identify the number of stem cells per square centimeter area under the light microscope. Results The osteogenic differentiation of both the materials was compared with standard control (MSCs treated with osteogenic differentiation media only). The osteoblastic cells on the acid-etched and sand-blasted implant surface disc had an almost identical capacity for proliferation till the MTT assay but according to the results of the alizarin red staining there was a slightly higher proliferation potential on acid etched surfaces compared to the sand blasted surfaces. Therefore, acid etched surfaces showed higher potential of osteogenic differentiation of DPSCs compared with sand-blasted surfaces. Conclusion In comparison with perfectly machined surface implants, topographic surface modifications such as roughness can accelerate the osteogenesis of DPSC in vitro.
Collapse
Affiliation(s)
- Komal Rajpurohit
- Department of Periodontology, Bharati Vidyapeeth (Deemed to be University) Dental college and Hospital, Pimpri, Pune, Maharashtra, India
| | - Vidya Dodwad
- Department of Periodontology, Bharati Vidyapeeth (Deemed to be University) Dental college and Hospital, Pimpri, Pune, Maharashtra, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Spoorthi Belludi
- Department of Periodontology, K.L.E Society of Dental Sciences, Rajiv Gandhi University of Health Sciences, Bengaluru, Karnataka, India
| | - Pooja Pharne
- Department of Periodontology, Bharati Vidyapeeth (Deemed to be University) Dental college and Hospital, Pimpri, Pune, Maharashtra, India
| | - Sarah Marium
- Department of Periodontology, Bharati Vidyapeeth (Deemed to be University) Dental college and Hospital, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
11
|
Park G, Matsuura T, Komatsu K, Ogawa T. Optimizing implant osseointegration, soft tissue responses, and bacterial inhibition: A comprehensive narrative review on the multifaceted approach of the UV photofunctionalization of titanium. J Prosthodont Res 2024:JPR_D_24_00086. [PMID: 38853001 DOI: 10.2186/jpr.jpr_d_24_00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Titanium implants have revolutionized restorative and reconstructive therapy, yet achieving optimal osseointegration and ensuring long-term implant success remain persistent challenges. In this review, we explore a cutting-edge approach to enhancing implant properties: ultraviolet (UV) photofunctionalization. By harnessing UV energy, photofunctionalization rejuvenates aging implants, leveraging and often surpassing the intrinsic potential of titanium materials. The primary aim of this narrative review is to offer an updated perspective on the advancements made in the field, providing a comprehensive overview of recent findings and exploring the relationship between UV-induced physicochemical alterations and cellular responses. There is now compelling evidence of significant transformations in titanium surface chemistry induced by photofunctionalization, transitioning from hydrocarbon-rich to carbon pellicle-free surfaces, generating superhydrophilic surfaces, and modulating the electrostatic properties. These changes are closely associated with improved cellular attachment, spreading, proliferation, differentiation, and, ultimately, osseointegration. Additionally, we discuss clinical studies demonstrating the efficacy of UV photofunctionalization in accelerating and enhancing the osseointegration of dental implants. Furthermore, we delve into recent advancements, including the development of one-minute vacuum UV (VUV) photofunctionalization, which addresses the limitations of conventional UV methods as well as the newly discovered functions of photofunctionalization in modulating soft tissue and bacterial interfaces. By elucidating the intricate relationship between surface science and biology, this body of research lays the groundwork for innovative strategies aimed at enhancing the clinical performance of titanium implants, marking a new era in implantology.
Collapse
Affiliation(s)
- Gunwoo Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| |
Collapse
|
12
|
Honda S, Fujibayashi S, Shimizu T, Yamaguchi S, Okuzu Y, Takaoka Y, Masuda S, Takemoto M, Kawai T, Otsuki B, Goto K, Matsuda S. Strontium-loaded 3D intramedullary nail titanium implant for critical-sized femoral defect in rabbits. J Biomed Mater Res B Appl Biomater 2024; 112:e35393. [PMID: 38385959 DOI: 10.1002/jbm.b.35393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
The treatment of critical-sized bone defects has long been a major problem for surgeons. In this study, an intramedullary nail shaped three-dimensional (3D)-printed porous titanium implant that is capable of releasing strontium ions was developed through a simple and cost-effective surface modification technique. The feasibility of this implant as a stand-alone solution was evaluated using a rabbit's segmental diaphyseal as a defect model. The strontium-loaded implant exhibited a favorable environment for cell adhesion, and mechanical properties that were commensurate with those of a rabbit's cortical bone. Radiographic, biomechanical, and histological analyses revealed a significantly higher amount of bone ingrowth and superior bone-bonding strength in the strontium-loaded implant when compared to an untreated porous titanium implant. Furthermore, one-year histological observations revealed that the strontium-loaded implant preserved the native-like diaphyseal bone structure without failure. These findings suggest that strontium-releasing 3D-printed titanium implants have the clinical potential to induce the early and efficient repair of critical-sized, load-bearing bone defects.
Collapse
Affiliation(s)
- Shintaro Honda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shunsuke Fujibayashi
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayoshi Shimizu
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Seiji Yamaguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Yaichiro Okuzu
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yusuke Takaoka
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Soichiro Masuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mitsuru Takemoto
- Department of Orthopaedic Surgery, Kyoto City Hospital, Kyoto, Japan
| | - Toshiyuki Kawai
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Bungo Otsuki
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Goto
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Mostofi M, Mostofi F, Hosseini S, Alipour A, Nourany M, Hamidian R, Vahidi S, Farokhi M, Shokrgozar MA, Homaeigohar S, Wang PY, Shahsavarani H. Efficient three-dimensional (3D) human bone differentiation on quercetin-functionalized isotropic nano-architecture chitinous patterns of cockroach wings. Int J Biol Macromol 2024; 258:129155. [PMID: 38171440 DOI: 10.1016/j.ijbiomac.2023.129155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Developing cost-effective, biocompatible scaffolds with nano-structured surface that truthfully replicate the physico-(bio)chemical and structural properties of bone tissue's extracellular matrix (ECM) is still challenging. In this regard, surface functionalization of natural scaffolds to enhance capability of mimicking 3D niches of the bone tissue has been suggested as a solution. In the current study, we aimed to investigate the potential of chitin-based cockroach wings (CW) as a natural scaffold for bone tissue engineering. To raise the osteogenic differentiation capacity of such a scaffold, a quercetin coating was also applied (hereafter this scaffold is referred as QCW). Moreover, the QCW scaffold exhibited effective antibacterial properties against gram-positive S. aureus bacteria. With respect to bone regeneration, the QCW scaffold optimally induced the differentiation of adipose-derived human mesenchymal stem cells (AD-hMSCs) into osteoblasts, as validated by mineralization assays, alkaline phosphatase (ALP) activity measurements, expression of pre-osteocyte marker genes, and immunocytochemical staining. Confirmation of the potent biocompatibility and physicochemical characteristics of the QCW scaffold through a series of in vitro and in vivo analysis revealed that surface modification had significant effect on multi-purpose features of obtained scaffold. Altogether, surface modification of QCW made it as an affordable bioinspired scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Marzieh Mostofi
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Mostofi
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Alipour
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Nourany
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran; Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Reza Hamidian
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran; Department of Cell and Molecular Biology, Faculty of Life science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Samira Vahidi
- Department of Cell and Molecular Biology, Faculty of Life science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mehdi Farokhi
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Ali Shokrgozar
- Laboratory of Regenerative Medicine and Biomedical Innovations, National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | | | - Peng Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life science and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
14
|
Jo WL, Lim YW, Kwon SY, Bahk JH, Kim J, Shin T, Kim Y. Non-thermal atmospheric pressure plasma treatment increases hydrophilicity and promotes cell growth on titanium alloys in vitro. Sci Rep 2023; 13:14792. [PMID: 37684351 PMCID: PMC10491806 DOI: 10.1038/s41598-023-41905-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Most medical implants are made of titanium. When titanium is exposed to air for a long time, hydrocarbons are deposited and the surface becomes hydrophobic. Cell attachment is important for bone ingrowth to occur on the implant surface, and hydrophilicity can enhance this. We examined whether non-thermal atmospheric pressure plasma treatment could increase the hydrophilicity of the titanium surface. Samples coated with four widely used coating types [grit blasting, micro arc oxidation (MAO), titanium plasma spray (TPS), and direct metal fabrication (DMF)] were treated with plasma. Each of the four surface-treated samples was divided into groups with and without plasma treatment. We analysed wettability by surface analysis and evaluation of contact angles, cell proliferation, and adhesion using scanning electron microscopy (SEM), confocal laser scanning microscopy, absorbance tests, and alkaline phosphatase (ALP) activity assay; four different Ti6Al4V surface types were compared. After plasma treatment, the contact angle was reduced on all surfaces, and the carbon content was reduced on all surfaces based on X-ray photoelectron spectroscopy (XPS) surface analysis. Under confocal laser scanning, the cell layer was thicker on the plasma-treated samples, especially in groups TPS and DMF. Cell proliferation was 41.8%, 17.7%, 54.9%, and 83.8% greater for the plasma- than non-plasma-treated grit blasting, MAO, TPS, and DMF samples, respectively. Hydrophilicity increased significantly under plasma treatment, and biological responsivity was also improved.
Collapse
Affiliation(s)
- Woo-Lam Jo
- Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 222, Banpo-daero, Seocho-gu, Korea
| | - Young-Wook Lim
- Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 222, Banpo-daero, Seocho-gu, Korea.
| | - Soon-Yong Kwon
- Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 222, Banpo-daero, Seocho-gu, Korea
| | - Ji-Hoon Bahk
- Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 222, Banpo-daero, Seocho-gu, Korea
| | - Jungsung Kim
- Central R&D Center, Corentec Co., Ltd., 33-2, Banpo-daero 20-gil, Seocho-gu, Seoul, Korea
| | - Taejin Shin
- Central R&D Center, Corentec Co., Ltd., 33-2, Banpo-daero 20-gil, Seocho-gu, Seoul, Korea
| | - YongHwa Kim
- Central R&D Center, Corentec Co., Ltd., 33-2, Banpo-daero 20-gil, Seocho-gu, Seoul, Korea
| |
Collapse
|
15
|
García-Arnáez I, Romero-Gavilán F, Cerqueira A, Azkargorta M, Elortza F, Suay J, Goñi I, Gurruchaga M. Proteomics as a tool to study the osteoimmunomodulatory role of metallic ions in a sol-gel coating. J Mater Chem B 2023; 11:8194-8205. [PMID: 37552201 DOI: 10.1039/d3tb01204b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The success of bone implants depends on the osteoimmunomodulatory (OIM) activity of the biomaterials in the interactions with the periimplantary tissues. Many in vitro tests have been conducted to evaluate the osteoimmunology effects of biomaterials. However, results of these tests have often been inconclusive. This study examines the properties of newly developed sol-gel coatings doped with two metal ions associated with bone regeneration, Ca and Zn. The study uses both proteomic methods and traditional in vitro assays. The results demonstrate that proteomics is an effective tool to scrutinize the OIM properties of the materials. Moreover, sol-gel coatings offer excellent base materials to evaluate the effects of metal ions on these properties. The obtained data highlight the highly tunable nature of sol-gel materials; studying the materials with different doping levels supplies valuable information on the interactions between the immune and bone-forming processes.
Collapse
Affiliation(s)
- Iñaki García-Arnáez
- Departament of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, Po Manuel de Lardizábal, 3, 20018 San Sebastián, Spain.
| | - Francisco Romero-Gavilán
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Andreia Cerqueira
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Julio Suay
- Department of Industrial Systems Engineering and Design, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Isabel Goñi
- Departament of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, Po Manuel de Lardizábal, 3, 20018 San Sebastián, Spain.
| | - Mariló Gurruchaga
- Departament of Polymers and Advanced Materials: Physics, Chemistry and Technology, Universidad del País Vasco, Po Manuel de Lardizábal, 3, 20018 San Sebastián, Spain.
| |
Collapse
|
16
|
Zhang B, Leng J, Ouyang Z, Yang Z, Zhang Q, Li Q, Li D, Zhao H. Superhydrophilic and topography-regulatable surface grafting on PEEK to improve cellular affinity. BIOMATERIALS ADVANCES 2023; 146:213310. [PMID: 36716597 DOI: 10.1016/j.bioadv.2023.213310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Polyetheretherketone (PEEK) has been widely used in the preparation of orthopedic implants due to its biological inertness and similar mechanical modulus to natural bone. However, the affinity between biological tissue (bone and soft tissue) and PEEK surface is weak, leading to low osseointegration and an increased risk of inflammation. The situation could be improved by modifying PEEK surface. Surfaces with good hydrophilicity and proper microtopography would promote cellular adhesion and proliferation. This work presented a two-step surface modification method to achieve the effect. Polyacrylic acid (PAA) chains were grafted on PEEK surface by UV irradiation. Then, ethylenediamine (EDA) was added to introduce amino groups and promote the cross-linking of PAA chains. Furthermore, a mathematical model was built to describe and regulate the surface topography growth process semi-quantitatively. The model fits experimental data quite well (adjusted R2 = 0.779). Results showed that the modified PEEK surface obtained superhydrophilicity. It significantly improved the adhesion and proliferation of BMSCs and MFBs by activating the FAK pathway and Rho family GTPase. The cellular affinity performed better when the surface topography was in network structure with holes in about 25 μm depth and 20-50 μm diameter. Good hydrophilicity seems necessary for the FAK pathway activation, but simply improving surface hydrophilicity might not be enough for cellular affinity improvement. Surface topography at micron scale should be a more important cue. This simple surface modification method could be contributed to further study of cell-microtopography interaction and have potential applications in clinical PEEK orthopedic implants.
Collapse
Affiliation(s)
- Bowen Zhang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054 Xi'an, Shaanxi, China; National Medical Products Administration (NMPA), Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054 Xi'an, Shaanxi, China
| | - Junqing Leng
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054 Xi'an, Shaanxi, China; National Medical Products Administration (NMPA), Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054 Xi'an, Shaanxi, China
| | - Zhicong Ouyang
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Department of Spine Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 510665 Guangzhou, China
| | - Zijian Yang
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Department of Spine Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 510665 Guangzhou, China
| | - Qing Zhang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054 Xi'an, Shaanxi, China; Center for Medical Device Evaluation, National Medical Products Administration (NMPA), 100081 Beijing, China
| | - Qingchu Li
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Department of Spine Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 510665 Guangzhou, China
| | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054 Xi'an, Shaanxi, China; National Medical Products Administration (NMPA), Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054 Xi'an, Shaanxi, China.
| | - Huiyu Zhao
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Department of Spine Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 510665 Guangzhou, China.
| |
Collapse
|
17
|
Li S, Jin Y, Bai S, Yang J. Electrostatic Analysis of Bioactivity of Ti-6Al-4V Hydrophilic Surface with Laser Textured Micro-Square Convexes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7942. [PMID: 36431426 PMCID: PMC9696582 DOI: 10.3390/ma15227942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
At solid-liquid interfaces, charged particles within the electric double layer (EDL) are acted on by the electrostatic force, which may affect cell absorption and surface wettability. In this study, a model of the electrostatic force and surface tension of textured surfaces was presented. Then, the growth and adhesion of Murine osteoblasts (MC3T3-E1) cells on laser-ablated micro-square-textured Ti-6Al-4V surfaces were studied to demonstrate the use of a laser-processed texture to effectively improve bioactivity. Three different micro-square-textured hydrophilic surfaces, presenting lower contact angles of 19°, 22.5°, and 31.75° compared with that of a smooth surface (56.5°), were fabricated using a fiber-optic laser. Cellular morphology and initial cell attachment were analyzed by field emission scanning electron microscopy (SEM) and fluorescence microscopy, respectively. The results show that the electrostatic force not only made the textured surface more hydrophilic but also made the cells tend to adhere to the edges and corners of the protruding convexes. Cell morphology analysis also showed that cells would prefer to grow at the edges and corners of each micro-square convex protrusion. The laser-treated surfaces were more conducive to rapid cell growth and adhesion, and cells were preferentially attached on the hydrophilic-textured surfaces. Electrostatic force may be an important factor in effectively improving the bioactivity of Ti-6Al-4V surfaces, and the presence of more surface grooves would be more conducive to improving the bioactivity of cells.
Collapse
Affiliation(s)
- Si Li
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yangyang Jin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shaoxian Bai
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jing Yang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
18
|
Shao H, Ma M, Wang Q, Yan T, Zhao B, Guo S, Tong S. Advances in the superhydrophilicity-modified titanium surfaces with antibacterial and pro-osteogenesis properties: A review. Front Bioeng Biotechnol 2022; 10:1000401. [PMID: 36147527 PMCID: PMC9485881 DOI: 10.3389/fbioe.2022.1000401] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, the rate of implant failure has been increasing. Microbial infection was the primary cause, and the main stages included bacterial adhesion, biofilm formation, and severe inhibition of implant osseointegration. Various biomaterials and their preparation methods have emerged to produce specific implants with antimicrobial or bactericidal properties to reduce implant infection caused by bacterial adhesion and effectively promote bone and implant integration. In this study, we reviewed the research progress of bone integration promotion and antibacterial action of superhydrophilic surfaces based on titanium alloys. First, the adverse reactions caused by bacterial adhesion to the implant surface, including infection and bone integration deficiency, are briefly introduced. Several commonly used antibacterial methods of titanium alloys are introduced. Secondly, we discuss the antibacterial properties of superhydrophilic surfaces based on ultraviolet photo-functionalization and plasma treatment, in contrast to the antibacterial principle of superhydrophobic surface morphology. Thirdly, the osteogenic effects of superhydrophilic surfaces are described, according to the processes of osseointegration: osteogenic immunity, angiogenesis, and osteogenic related cells. Finally, we discuss the challenges and prospects for the development of this superhydrophilic surface in clinical applications, as well as the prominent strategies and directions for future research.
Collapse
Affiliation(s)
- Hanyu Shao
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| | - Mingchen Ma
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Tingting Yan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Baohong Zhao
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| | - Shuang Tong
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Effects of Different Titanium Surface Treatments on Adhesion, Proliferation and Differentiation of Bone Cells: An In Vitro Study. J Funct Biomater 2022; 13:jfb13030143. [PMID: 36135578 PMCID: PMC9503392 DOI: 10.3390/jfb13030143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to evaluate the impacts of different sandblasting procedures in acid etching of Ti6Al4V surfaces on osteoblast cell behavior, regarding various physicochemical and topographical parameters. Furthermore, differences in osteoblast cell behavior between cpTi and Ti6Al4V SA surfaces were evaluated. Sandblasting and subsequent acid etching of cpTi and Ti6Al4V discs was performed with Al2O3 grains of different sizes and with varying blasting pressures. The micro- and nano-roughness of the experimental SA surfaces were analyzed via confocal, atomic force and scanning electron microscopy. Surface free energy and friction coefficients were determined. hFOB 1.19 cells were seeded to evaluate adhesion, proliferation and osteoblastic differentiation for up to 12 d via crystal violet assays, MTT assays, ALP activity assays and Alizarin Red staining assays. Differences in blasting procedures had significant impacts on surface macro- and micro-topography. The crystal violet assay revealed a significant inverse relationship between blasting grain size and hFOB cell growth after 7 days. This trend was also visible in the Alizarin Red assays staining after 12 d: there was significantly higher biomineralization visible in the group that was sandblasted with smaller grains (F180) when compared to standard-grain-size groups (F70). SA samples treated with reduced blasting pressure exhibited lower hFOB adhesion and growth capabilities at initial (2 h) and later time points for up to 7 days, when compared to the standard SA surface, even though micro-roughness and other relevant surface parameters were similar. Overall, etched-only surfaces consistently exhibited equivalent or higher adhesion, proliferation and differentiation capabilities when compared to all other sandblasted and etched surfaces. No differences were found between cpTi and Ti6Al4V SA surfaces. Subtle modifications in the blasting protocol for Ti6Al4V SA surfaces significantly affect the proliferative and differentiation behavior of human osteoblasts. Surface roughness parameters are not sufficient to predict osteoblast behavior on etched Ti6Al4V surfaces.
Collapse
|
20
|
Durdan MM, Azaria RD, Weivoda MM. Novel insights into the coupling of osteoclasts and resorption to bone formation. Semin Cell Dev Biol 2022; 123:4-13. [PMID: 34756783 PMCID: PMC8840962 DOI: 10.1016/j.semcdb.2021.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
Bone remodeling consists of resorption by osteoclasts (OCs) and formation by osteoblasts (OBs). Precise coordination of these activities is required for the resorbed bone to be replaced with an equal amount of new bone in order to maintain skeletal mass throughout the lifespan. This coordination of remodeling processes is referred to as the "coupling" of resorption to bone formation. In this review, we discuss the essential role for OCs in coupling resorption to bone formation, mechanisms for this coupling, and how coupling becomes less efficient or disrupted in conditions of bone loss. Lastly, we provide perspectives on targeting coupling to treat human bone disease.
Collapse
Affiliation(s)
- Margaret M. Durdan
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ruth D. Azaria
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Megan M. Weivoda
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA,Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Li Y, Chen R, Wang F, Cai X, Wang Y. Antimicrobial peptide GL13K immobilized onto SLA-treated titanium by silanization: antibacterial effect against methicillin-resistant Staphylococcus aureus (MRSA). RSC Adv 2022; 12:6918-6929. [PMID: 35424597 PMCID: PMC8981691 DOI: 10.1039/d1ra04974g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/22/2022] [Indexed: 02/03/2023] Open
Abstract
Infection is the main reason for implant failure, and the incidence of drug-resistant bacterial infection has increased in recent years. Further, methicillin-resistant Staphylococcus aureus (MRSA)-related implant infection has become a serious worldwide threat. New strategies, other than antibiotics, to tackle drug-resistance, are of high clinical significance. Antimicrobial peptides show clear superiority over conventional antibiotics in inhibiting drug-resistant bacteria. In the present study, we combined the antimicrobial peptide, GL13K, with sandblasting and acid-etching (SLA)-treated titanium using a silane coupling agent. Field emission scanning electron microscopy images showed the morphology of the coating. Attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy results confirmed loading of GL13K, and the hydrophilicity of the SLA-GL13K coating was evaluated by water contact angle analysis. The releasing study of samples showed that the coating has a sustained releasing profile. SLA-GL13K coating exhibited strong contact- and release-killing abilities against MRSA, E. coli, and S. aureus. Meanwhile, Cell Counting Kit 8 analysis and examination of cell morphology demonstrated that the SLA-GL13K coating had good cytocompatibility at antibacterial concentrations. Overall, all these results suggest that SLA-GL13K coating can be successfully fabricated using silanization, and is a promising candidate for controlling MRSA-induced implant-related infection.
Collapse
Affiliation(s)
- Yusang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University Wuhan China
| | - Ruiying Chen
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Department of Implant Dentistry Shanghai China
| | - Fushi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University Wuhan China
- Hospital of Stomatology Wuhan University, Department of Cariology and Endodontics Wuhan China
| | - Xinjie Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University Wuhan China
- Hospital of Stomatology Wuhan University, Department of Prosthodontics Wuhan China
| | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University Wuhan China
- Hospital of Stomatology Wuhan University, Department of Prosthodontics Wuhan China
| |
Collapse
|
22
|
Sun K, Fu R, Liu X, Xu L, Wang G, Chen S, Zhai Q, Pauly S. Osteogenesis and angiogenesis of a bulk metallic glass for biomedical implants. Bioact Mater 2022; 8:253-266. [PMID: 34541400 PMCID: PMC8424448 DOI: 10.1016/j.bioactmat.2021.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Implantation is an essential issue in orthopedic surgery. Bulk metallic glasses (BMGs), as a kind of novel materials, attract lots of attentions in biological field owing to their comprehensive excellent properties. Here, we show that a Zr61Ti2Cu25Al12 (at. %) BMG (Zr-based BMG) displays the best cytocompatibility, pronounced positive effects on cellular migration, and tube formation from in-vitro tests as compared to those of commercial-pure titanium and poly-ether-ether-ketone. The in-vivo micro-CT and histological evaluation demonstrate the Zr-based BMG can significantly promote a bone formation. Immunofluorescence tests and digital reconstructed radiographs manifest a stimulated effect on early blood vessel formation from the Zr-based BMG. Accordingly, the intimate connection and coupling effect between angiogenesis and osteogenesis must be effective during bone regeneration after implanting Zr-based BMG. Dynamic gait analysis in rats after implanting Zr-based BMG demonstrates a tendency to decrease the pain level during recovery, simultaneously, without abnormal ionic accumulation and inflammatory reactions. Considering suitable mechanical properties, we provide a realistic candidate of the Zr61Ti2Cu25Al12 BMG for biomedical applications.
Collapse
Affiliation(s)
- K. Sun
- Institute of Materials, Shanghai University, Shanghai, 200444, China
| | - R. Fu
- Department of Neurology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - X.W. Liu
- Sports Medicine Department of Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - L.M. Xu
- Institute of Materials, Shanghai University, Shanghai, 200444, China
| | - G. Wang
- Institute of Materials, Shanghai University, Shanghai, 200444, China
| | - S.Y. Chen
- Sports Medicine Department of Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Q.J. Zhai
- Institute of Materials, Shanghai University, Shanghai, 200444, China
| | - S. Pauly
- University of Applied Sciences Aschaffenburg, Würzburger Straße 45, D-63743, Aschaffenburg, Germany
| |
Collapse
|
23
|
Jeyapalina S, Hillas E, Beck JP, Agarwal J, Shea J. Fluorapatite and fluorohydroxyapatite apatite surfaces drive adipose-derived stem cells to an osteogenic lineage. J Mech Behav Biomed Mater 2022; 125:104950. [PMID: 34740011 PMCID: PMC11822887 DOI: 10.1016/j.jmbbm.2021.104950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Hydroxyapatite (HA) scaffolds are common replacement materials used in the clinical management of critical-sized bone defects. This study was undertaken to examine the potential benefits of fluoridated derivatives of hydroxyapatite, fluorapatite (FA), and fluorohydroxyapatite (FHA) as bone scaffolds in conjunction with adipose-derived stem cells (ADSCs). If FHA and FA surfaces could drive the differentiation of stem cells to an osteogenic phenotype, the combination of these ceramic scaffolds with ADSCs could produce materials with mechanical strength and remodeling potential comparable to autologous bone. This study was designed to investigate the ability of the apatite surfaces HA, FA, and FHA produced at different sintering temperatures to drive ADSCs toward osteogenic lineages. METHODS HA, FHA, and FA surfaces sintered at 1150 °C and 1250 °C were seeded with ADSCs and evaluated for cell growth and gene and protein expression of osteogenic markers at 2 and 10 days post-seeding. RESULTS In vitro, ADSC cells were viable on all surfaces; however, differentiation of these cells into osteoblastic lineage only observed in apatite surfaces. ADSCs seeded on FA and FHA expressed genes and proteins related to osteogenic differentiation markers to a greater extent by Day 2 when compared to HA and cell culture controls. By day 10, HA, FA, and FHA all expressed more bone differentiation markers compared to cell culture controls. CONCLUSION FA and FHA apatite scaffolds may promote the differentiation of ADSCs at an earlier time point than HA surfaces. Combining apatite scaffolds with ADSCs has the potential to improve bone regeneration following bone injury.
Collapse
Affiliation(s)
- Sujee Jeyapalina
- Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA; Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Elaine Hillas
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - James Peter Beck
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA; Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Jayant Agarwal
- Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA; Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Jill Shea
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA; Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
24
|
De Santis S, Rossi E, Sebastiani M, Sennato S, Bemporad E, Orsini M. A Nanoindentation Approach for Time-Dependent Evaluation of Surface Free Energy in Micro- and Nano-Structured Titanium. MATERIALS 2021; 15:ma15010287. [PMID: 35009432 PMCID: PMC8746133 DOI: 10.3390/ma15010287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023]
Abstract
Surface free energy (SFE) of titanium surfaces plays a significant role in tissue engineering, as it affects the effectiveness and long-term stability of both active coatings and functionalization and the establishment of strong bonds to the newly growing bone. A new contact–mechanics methodology based on high-resolution non-destructive elastic contacting nanoindentation is applied here to study SFE of micro- and nano-structured titanium surfaces, right after their preparation and as a function of exposure to air. The effectiveness of different surface treatments in enhancing SFE is assessed. A time-dependent decay of SFE within a few hours is observed, with kinetics related to the sample preparation. The fast, non-destructive method adopted allowed for SFE measurements in very hydrophilic conditions, establishing a reliable comparison between surfaces with different properties.
Collapse
Affiliation(s)
- Serena De Santis
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy;
- Correspondence:
| | - Edoardo Rossi
- Engineering Department, Università Degli Studi Roma Tre, Via Della Vasca Navale 79, 00146 Rome, Italy; (E.R.); (M.S.); (E.B.)
| | - Marco Sebastiani
- Engineering Department, Università Degli Studi Roma Tre, Via Della Vasca Navale 79, 00146 Rome, Italy; (E.R.); (M.S.); (E.B.)
| | - Simona Sennato
- CNR-ISC Sede Sapienza, Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Edoardo Bemporad
- Engineering Department, Università Degli Studi Roma Tre, Via Della Vasca Navale 79, 00146 Rome, Italy; (E.R.); (M.S.); (E.B.)
| | - Monica Orsini
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy;
| |
Collapse
|
25
|
Tian Y, Zheng H, Zheng G, Hu P, Li Y, Lin Y, Gao Q, Yao X, Gao R, Li C, Wu X, Sui L. Hierarchical microgroove/nanopore topography regulated cell adhesion to enhance osseointegration around intraosseous implants in vivo. Biomater Sci 2021; 10:560-580. [PMID: 34907409 DOI: 10.1039/d1bm01657a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Implant surface topography plays a crucial role in achieving successful implantation. Simple and controllable surface topographical modifications are considered a promising method to accelerate bone osseointegration for biomedical applications. Moreover, comprehension of the mechanism between surface topography and cell osteogenic differentiation is vital for the manipulation of these processes to promote bone tissue regeneration. In this study, we investigated the effects of implant surfaces with various sized hierarchical microgroove/nanopore topographies on cell adhesion, osteogenesis, and their underlying mechanism both in vitro and in vivo. Our findings reveal that a titanium surface with an appropriately sized microgroove/nanopore topography (SLM-1MAH) exhibits the more satisfactory adhesive and osteogenic efficiency than the clinically used sand-blasted, large-grit, and acid-etched (SLA) surface. The underlying molecular mechanism lies in the activation of the integrin α2-PI3K-Akt signaling pathway, where the SLM-1MAH surface increased the protein expressions of integrin α2 (Itga2), phosphatidylinositol 3-kinase (PI3K), and phosphorylated serine/threonine kinase Akt (p-Akt) to enhance osteogenesis and osseointegration. Furthermore, the SLM-1MAH surface also displays better osseointegration efficiency with stronger bonding strength than that on the SLA surface. This work provides a novel strategy for implant surface topography design to improve bone-implant osseointegration.
Collapse
Affiliation(s)
- Yujuan Tian
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, 300070, China. .,Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China.
| | - Huimin Zheng
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, 300070, China. .,Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China.
| | - Guoying Zheng
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, 300070, China.
| | - Penghui Hu
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, 300070, China.
| | - Ying Li
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, 300070, China.
| | - Yi Lin
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, 300070, China.
| | - Qian Gao
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, 300070, China. .,Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China.
| | - Xiaoyu Yao
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, 300070, China.
| | - Rui Gao
- International Education College, Tianjin University of Traditional Chinese Medicine, Tianjin, 300070, China
| | - Changyi Li
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, 300070, China.
| | - Xudong Wu
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China.
| | - Lei Sui
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, 300070, China.
| |
Collapse
|
26
|
Lei Z, Zhang H, Zhang E, You J, Ma X, Bai X. Antibacterial activities and cell responses of Ti-Ag alloys with a hybrid micro- to nanostructured surface. J Biomater Appl 2021; 34:1368-1380. [PMID: 32264765 DOI: 10.1177/0885328220905103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Zeming Lei
- Hand Surgery Ward, Central Hospital Attached to Shenyang Medical College, Shenyang, China.,Department of Orthopedics and Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, China
| | - Hangzhou Zhang
- Department of Orthopedics and Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Erlin Zhang
- Key Laboratory for Anisotropy and Texture of Materials (ATM), Education Ministry of China, School of Material Science and Engineering, Northeastern University, Shenyang, China
| | - Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, China
| | - Xiaoxue Ma
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xizhuang Bai
- Department of Orthopedics and Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Duan J, Wang J, Di Y, Yang Y, Yang Y. Bio-corrosion behavior, antibacterial property and interaction with osteoblast of laser in-situfabricated Ti-Si-Cu coatings on Ti-6Al-4V alloy. Biomed Mater 2021; 16. [PMID: 34416742 DOI: 10.1088/1748-605x/ac1f9d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/20/2021] [Indexed: 11/12/2022]
Abstract
Ti-Si-xCu coatings (TS-xC,x= 5, 10 and 15 wt.%) with advanced bio-corrosion resistance, excellent antibacterial property and biocompatibility were laser cladded on Ti-6Al-4V (TAV) substrate which is widely used as endosseous implants. The bio-corrosion resistance of the TAV substrate was improved due to the presence of Ti5Si3and TiCu phases in the coatings. The addition of Cu in the precursor contributes to the improvement of the antibacterial property of TAV substrate. Meanwhile, induced normal cytoskeleton, well-developed focal adhesion contacts, significant higher cell attachment and proliferation rate were observed for the TS-xC coated samples due to the formation of micro-textured morphology and presence of new phases. The bio-corrosion resistance and antibacterial property depend on Cu content addition in the TS-xC precursor. The results provide a way to fabricate such multiple functional biocoating that would improve the bio-corrosion resistance, antibacterial performance and biocompatibility of TAV.
Collapse
Affiliation(s)
- Jingzhu Duan
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Juncai Wang
- Department of Ophthalmology, Dashiqiao Luhe Hospital, Dashiqiao 115100, People's Republic of China
| | - Yu Di
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Yuling Yang
- School of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yang Yang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
28
|
Berger MB, Bosh KB, Jacobs TW, Cohen DJ, Schwartz Z, Boyan BD. Growth factors produced by bone marrow stromal cells on nanoroughened titanium-aluminum-vanadium surfaces program distal MSCs into osteoblasts via BMP2 signaling. J Orthop Res 2021; 39:1908-1920. [PMID: 33002223 PMCID: PMC8012402 DOI: 10.1002/jor.24869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 02/04/2023]
Abstract
Statement of Clinical Significance: There remains the need to develop materials and surfaces that can increase the rate of implant osseointegration. Though osteoanabolic agents, like bone morphogenetic protein (BMP), can provide signaling for osteogenesis, the appropriate design of implants can also produce an innate cellular response that may reduce or eliminate the need to use additional agents to stimulate bone formation. Studies show that titanium implant surfaces that mimic the physical properties of osteoclast resorption pits regulate cellular responses of bone marrow stromal cells (MSCs) by altering cell morphology, transcriptomes, and local factor production to increase their differentiation into osteoblasts without osteogenic media supplements required for differentiation of MSCs on tissue culture polystyrene (TCPS). The goal of this study was to determine how cells in contact with biomimetic implant surfaces regulate the microenvironment around these surfaces in vitro. Two different approaches were used. First, unidirectional signaling was assessed by treating human MSCs grown on TCPS with conditioned media from MSC cultures grown on Ti6Al4V biomimetic surfaces. In the second set of studies, bidirectional signaling was assessed by coculturing MSCs grown on mesh inserts that were placed into culture wells in which MSCs were grown on the biomimetic Ti6Al4V substrates. The results show that biomimetic Ti6Al4V surface properties induce MSCs to produce factors within 7 days of culture that stimulate MSCs not in contact with the surface to exhibit an osteoblast phenotype via endogenous BMP2 acting in a paracrine signaling manner.
Collapse
Affiliation(s)
- Michael B. Berger
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Kyla B. Bosh
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Thomas W. Jacobs
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - D. Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA;,Department of Periodontology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Barbara D. Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA;,Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
29
|
Effect of surface roughness and temperature on stainless steel - Whey protein interfacial interactions under pasteurisation conditions. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Electrochemical, Tribological and Biocompatible Performance of Electron Beam Modified and Coated Ti6Al4V Alloy. Int J Mol Sci 2021; 22:ijms22126369. [PMID: 34198700 PMCID: PMC8232333 DOI: 10.3390/ijms22126369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
Vacuum cathodic arc TiN coatings with overlaying TiO2 film were deposited on polished and surface roughened by electron beam modification (EBM) Ti6Al4V alloy. The substrate microtopography consisted of long grooves formed by the liner scan of the electron beam with appropriate frequencies (500 (AR500) and 850 (AR850) Hz). EBM transformed the α + β Ti6Al4V mixed structure into a single α'-martensite phase. Тhe gradient TiN/TiO2 films deposited on mechanically polished (AR) and EBM (AR500 and AR850) alloys share the same surface chemistry and composition (almost stoichiometric TiN, anatase and rutile in different ratios) but exhibit different topographies (Sa equal to approximately 0.62, 1.73, and 1.08 μm, respectively) over areas of 50 × 50 μm. Although the nanohardness of the coatings on AR500 and AR850 alloy (approximately 10.45 and 9.02 GPa, respectively) was lower than that measured on the film deposited on AR alloy (about 13.05 GPa), the hybrid surface treatment offered improvement in critical adhesive loads, coefficient of friction, and wear-resistance of the surface. In phosphate buffer saline, all coated samples showed low corrosion potentials and passivation current densities, confirming their good corrosion protection. The coated EBM samples cultured with human osteoblast-like MG63 cells demonstrated increased cell attachment, viability, and bone mineralization activity especially for the AR500-coated alloy, compared to uncoated polished alloy. The results underline the synergetic effect between the sub-micron structure and composition of TiN/TiO2 coating and microarchitecture obtained by EBM.
Collapse
|
31
|
Gao Q, Hou Y, Li Z, Hu J, Huo D, Zheng H, Zhang J, Yao X, Gao R, Wu X, Sui L. mTORC2 regulates hierarchical micro/nano topography-induced osteogenic differentiation via promoting cell adhesion and cytoskeletal polymerization. J Cell Mol Med 2021; 25:6695-6708. [PMID: 34114337 PMCID: PMC8278073 DOI: 10.1111/jcmm.16672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/16/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Surface topography acts as an irreplaceable role in the long‐term success of intraosseous implants. In this study, we prepared the hierarchical micro/nano topography using selective laser melting combined with alkali heat treatment (SLM‐AHT) and explored the underlying mechanism of SLM‐AHT surface‐elicited osteogenesis. Our results show that cells cultured on SLM‐AHT surface possess the largest number of mature FAs and exhibit a cytoskeleton reorganization compared with control groups. SLM‐AHT surface could also significantly upregulate the expression of the cell adhesion‐related molecule p‐FAK, the osteogenic differentiation‐related molecules RUNX2 and OCN as well as the mTORC2 signalling pathway key molecule Rictor. Notably, after the knocked‐down of Rictor, there were no longer significant differences in the gene expression levels of the cell adhesion‐related molecules and osteogenic differentiation‐related molecules among the three titanium surfaces, and the cells on SLM‐AHT surface failed to trigger cytoskeleton reorganization. In conclusion, the results suggest that mTORC2 can regulate the hierarchical micro/nano topography‐mediated osteogenesis via cell adhesion and cytoskeletal reorganization.
Collapse
Affiliation(s)
- Qian Gao
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yuying Hou
- Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Zhe Li
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Jinyang Hu
- Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Huo
- Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Huimin Zheng
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Junjiang Zhang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Xiaoyu Yao
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Rui Gao
- International Education College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xudong Wu
- Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lei Sui
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| |
Collapse
|
32
|
Lee J, Lee JB, Yun J, Rhyu IC, Lee YM, Lee SM, Lee MK, Kim B, Kim P, Koo KT. The impact of surface treatment in 3-dimensional printed implants for early osseointegration: a comparison study of three different surfaces. Sci Rep 2021; 11:10453. [PMID: 34001989 PMCID: PMC8129142 DOI: 10.1038/s41598-021-89961-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
3D printing technology has been gradually applied to various areas. In the present study, 3D-printed implants were fabricated with direct metal laser sintering technique for a dental single root with titanium. The 3D implants were allocated into following groups: not treated (3D-None), sandblasted with a large grit and acid-etched (3D-SLA), and target-ion-induced plasma-sputtered surface (3D-TIPS). Two holes were drilled in each tibia of rabbit, and the three groups of implants were randomly placed with a mallet. Rabbits were sacrificed at two, four, and twelve weeks after the surgery. Histologic and histomorphometric analyses were performed for the evaluation of mineralized bone-to-implant contact (mBIC), osteoid-to-implant contact (OIC), total bone-to-implant contact (tBIC), mineralized bone area fraction occupancy (mBAFO), osteoid area fraction occupancy (OAFO), and total bone area fraction occupancy (tBAFO) in the inner and outer areas of lattice structure. At two weeks, 3D-TIPS showed significantly higher inner and outer tBIC and inner tBAFO compared with other groups. At four weeks, 3D-TIPS showed significantly higher outer OIC than 3D-SLA, but there were no significant differences in other variables. At twelve weeks, there were no significant differences. The surface treatment with TIPS in 3D-printed implants could enhance the osseointegration process in the rabbit tibia model, meaning that earlier osseointegration could be achieved.
Collapse
Affiliation(s)
- Jungwon Lee
- One-Stop Specialty Center, Seoul National University Dental Hospital, Seoul, Republic of Korea.,Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jun-Beom Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Junseob Yun
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - In-Chul Rhyu
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Yong-Moo Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Sung-Mi Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea.,Biomedical Implant Convergence Research Center, Advanced Institutes of Convergence Technology, Suwon, Korea
| | - Min-Kyu Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Byoungkook Kim
- 3D Printer R&D Team, Dentium Co., Ltd., Suwon, Republic of Korea
| | - Pangyu Kim
- 3D Printer R&D Team, Dentium Co., Ltd., Suwon, Republic of Korea
| | - Ki-Tae Koo
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
33
|
PDLCs and EPCs Co-Cultured on Ta Discs: A Golden Fleece for "Compromised" Osseointegration. Int J Mol Sci 2021; 22:ijms22094486. [PMID: 33925774 PMCID: PMC8123461 DOI: 10.3390/ijms22094486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/04/2022] Open
Abstract
Material research in tissue engineering forms a vital link between basic cell research and animal research. Periodontal ligament cells (PDLCs, P) from the tooth have an osteogenic effect, whereas endothelial progenitor cells (EPCs, E) assist in neovascularization. In the present study, the interaction of PDLCs and EPCs with Tantalum (Ta, I) discs, either alone (IP or IE group) or in 1:1 (IPE) ratio was explored. Additionally, surface analysis of Ta discs with respect to different types and cycles of sterilization and disinfection procedures was evaluated. It was observed that Ta discs could be used for a maximum of three times, after which the changes in properties of Ta discs were detrimental to cell growth, irrespective of the type of the protocol. Cell-Disc’s analysis revealed that cell proliferation in the IE group at day 6 and day 10 was significantly higher (p < 0.05) than other groups. A cell viability assay revealed increased live cells in the IPE group than in the IP or IE group. Similarly, adhesion and penetration of cells in the IPE group were not only higher, but also had an increased thickness of cellular extensions. RT-PCR analysis revealed that on day 8, both osteogenic (ALP, RUNX-2, and BSP) and angiogenic genes (VEGFR-2, CD31) increased significantly in the IPE group as compared to the IP or IE groups (p < 0.05). In conclusion, Ta discs promoted cellular proliferation and increased osteogenic and angiogenic activity by augmenting RUNX-2 and VEGFR-2 activity.
Collapse
|
34
|
Nobles KP, Janorkar AV, Williamson RS. Surface modifications to enhance osseointegration-Resulting material properties and biological responses. J Biomed Mater Res B Appl Biomater 2021; 109:1909-1923. [PMID: 33871951 DOI: 10.1002/jbm.b.34835] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 12/18/2022]
Abstract
As life expectancy and the age of the general population increases so does the need for improved implants. A major contributor to the failure of implants is poor osseointegration, which is typically described as the direct connection between bone and implant. This leads to unnecessary complications and an increased burden on the patient population. Modification of the implant surfaces through novel techniques, such as varying topography and/or applying coatings, has become a popular method to enhance the osseointegration capability of implants. Recent research has shown that particular surface features influence how bone cells interact with a material; however, it is unknown which exact features achieve optimal bone integration. In this review, current methods of modifying surfaces will be highlighted, and the resulting surface characteristics and biological responses are discussed. Review of the current strategies of surface modifications found that many coating types are more advantageous when used in combination; however, finding a surface modification that utilizes the mutual beneficial effects of important surface characteristics while still maintaining commercial viability is where future challenges exist.
Collapse
Affiliation(s)
- Kadie P Nobles
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Amol V Janorkar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Randall S Williamson
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
35
|
Sun X, Cheng F, He W. Silicification of Amine-Epoxide Cationic Microgels: An In Vitro Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4331-4339. [PMID: 33787281 DOI: 10.1021/acs.langmuir.1c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, the applicability of an unconventional, non-vinylic type of amine-epoxide microgels (MGs) to promote silica deposition from tetraethyl orthosilicate (TEOS) was investigated. Simply mixing MGs with TEOS in water at 25 °C resulted in the formation of hybrid silica-MG particles (sMGs) as a function of silicification time. The sMGs were cationic with thermal-sensitive swelling capability. Extending silicification time to 24 h was shown to increase silica content to 43%. Besides, the sMGs became structurally more rigid to resist drying-induced deformation and exhibited a rugged surface texture. Mechanistically, the aminated nature of the MGs was proved beneficial for the success of their silicification, fulfilling dual functions of the catalyst for TEOS hydrolysis and template for silica deposition. Through electrostatic adsorption, the sMGs provided a facile yet robust option for surface modifications toward bone-related applications. Surface-induced mineralization in simulated biological fluids was observed with sMG-immobilized surfaces, where the presence of hydroxyapatite was characterized in the deposited apatite. In vitro MC3T3-E1 pre-osteoblast cell studies showed that cell adhesion, morphology, and proliferation could be influenced by both sMG types and their adsorption density. Of particular interest is the finding of cells exhibiting elongated and greatly polarized morphology on the surface with high adsorption density of sMGs of 43% silica. It was postulated that the rugged appearance of such sMGs could have presented a hierarchically structured surface toward cells, an interesting aspect to be further exploited for the engineering of cell-surface interactions.
Collapse
Affiliation(s)
- Xiaoning Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Wei He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| |
Collapse
|
36
|
Ge J, Wang F, Xu Z, Shen X, Gao C, Wang D, Hu G, Gu J, Tang T, Wei J. Influences of niobium pentoxide on roughness, hydrophilicity, surface energy and protein absorption, and cellular responses to PEEK based composites for orthopedic applications. J Mater Chem B 2021; 8:2618-2626. [PMID: 32129420 DOI: 10.1039/c9tb02456e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To improve the bio-performances of polyetheretherketone (PEEK) for orthopedic applications, submicro-particles of niobium pentoxide (Nb2O5) were synthesized using a sol-gel method, and PEEK/Nb2O5 composites (PNC) with a Nb2O5 content of 25v% (PNC25) and 50v% (PNC50) were fabricated by utilizing a process of pressing-sintering. The results showed that the Nb2O5 particles were not only dispersed in the composites but also exposed on the surface of the composites, which formed submicro-structural surfaces. In addition, the hydrophilicity, surface energy, surface roughness and absorption of proteins of the composites were improved with increasing Nb2O5 content. Moreover, the release of Nb ions with the highest concentration of 5.01 × 10-6 mol L-1 from the composite into the medium displayed no adverse effects on cell proliferation and morphology, indicating no cytotoxicity. Furthermore, compared with PEEK, the composites, especially PNC50, obviously stimulated adhesion and proliferation as well as osteogenic differentiation of bone mesenchymal stem cells of rats. The results suggested that the incorporation of Nb2O5 submicro-particles into PEEK produced novel bioactive composites with improved surface properties, which played important roles in regulating cell behaviors. In conclusion, the composites, especially PNC50 with good cytocompatibility and promotion of cellular responses, exhibited great potential as implantable materials for bone repair.
Collapse
Affiliation(s)
- Junpeng Ge
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Fan Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhiyan Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Xuening Shen
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Chao Gao
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Dongliang Wang
- Department of Orthopedic Surgery, Xin-Hua Hospital, Shanghai Jiao-Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China.
| | - Gangfeng Hu
- The First People's Hospital of Xiaoshan District, 199 Shixinnan Road, Hangzhou 311200, Zhejiang, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200011, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
37
|
Berger MB, Bosh KB, Cohen DJ, Boyan BD, Schwartz Z. Benchtop plasma treatment of titanium surfaces enhances cell response. Dent Mater 2021; 37:690-700. [PMID: 33589272 PMCID: PMC7981249 DOI: 10.1016/j.dental.2021.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Modifications to implant surface properties, including topography, chemistry, and wettability, alter immune response, osteoblast differentiation of bone marrow stromal cells (MSCs), and implant integration in vivo. Dielectric barrier discharge (DBD) plasma treatment has been used to sterilize surfaces and remove adsorbed carbon, improving wettability. However, unless it is used immediately prior to placement, ambient atmospheric hydrocarbons rapidly adhere to the surface, thereby reducing its hydrophilicity. Moreover, this method is not practical in many clinical settings. The aim of this study was to evaluate the effectiveness of an on-site benchtop modification technique for implants at time of placement, consisting of a DBD plasma that is used to sterilize implants that are pre-packaged in a vacuum. Effects of the plasma-treatment on implant surface properties and cellular response of MSCs and osteoblasts were assessed in vitro. METHODS Titanium-aluminum-vanadium implant surfaces were grit-blasted (GB) or grit-blasted and acid-etched (AE), and packaged under vacuum. AE surfaces were also plasma-treated using the benchtop device (GB + AE) and then removed from the vacuum. GB surface morphology was altered with AE but AE microroughness was not changed with the plasma-treatment. Plasma-treatment increased the surface wettability, but did not alter surface atomic concentrations of titanium, oxygen, or carbon. RESULTS MSCs and osteoblast-like cells (MG63 s) produced increased concentrations of osteocalcin, osteopontin, and osteoprotegerin after plasma-treatment of AE surfaces compared to non-plasma-treated AE surfaces; production of IL6 was reduced and IL10 was. Aging GB + AE surfaces for 7 days after plasma-treatment but still in the vacuum environment reduced the effectiveness of plasma on cellular response. SIGNIFICANCE Overall, these data suggest that application of benchtop plasma at the time of implant placement can alter the surface free energy of an implant surface without modifying surface chemical composition and enhance the differentiation and activity of MSCs and osteoblasts that are in contact with these implant surfaces.
Collapse
Affiliation(s)
- Michael B Berger
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| | - Kyla B Bosh
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| | - D Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA; Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Periodontology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
38
|
Kheilnezhad B, Hadjizadeh A. A review: progress in preventing tissue adhesions from a biomaterial perspective. Biomater Sci 2021; 9:2850-2873. [PMID: 33710194 DOI: 10.1039/d0bm02023k] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Postoperative adhesions (POA) are one of the main problems suffered by patients and are a common complaint. It is considered to be closely associated with the healing mechanism of damaged tissues. Tissue adhesions accompany other symptoms such as inflammation, pain, and even dyskinesia under certain conditions, compromising the patients' quality of life. On the other hand, common treatments involve high costs, re-surgery or long-term hospital stays. Therefore, alternative approaches need to be formulated so that aforementioned problems can be resolved. To this end, a review of recent advances in this context is imperative. In this review, we have highlighted the mechanism of adhesion formation, advances in common therapeutic approaches, and prospective treatments in preventing tissue adhesions. Based on the literature, it can be determined that the disadvantages of available commercial products in the treatment of tissue adhesion have led researchers to utilize alternative methods for designing anti-adhesive products with different structures such as electrospun fibrous mats, hydrogels, and nanospheres. These studies are on the fast track in producing optimal anti-adhesion materials. We hope that this article can attract attention by showing various mechanisms and solutions involved in adhesion problems and inspire the further development of anti-adhesion biomaterials.
Collapse
Affiliation(s)
| | - Afra Hadjizadeh
- Department of Biomedical Engineering, Amirkabir University, Tehran, Iran.
| |
Collapse
|
39
|
Siqueira R, Ferreira JA, Rizzante FAP, Moura GF, Mendonça DBS, de Magalhães D, Cimões R, Mendonça G. Hydrophilic titanium surface modulates early stages of osseointegration in osteoporosis. J Periodontal Res 2020; 56:351-362. [PMID: 33368275 DOI: 10.1111/jre.12827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/16/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Using a mouse osteoporotic model, this study aimed to determine the influence of hydrophilic titanium surfaces on gene expression and bone formation during the osseointegration process. BACKGROUND Based on the previous evidence, it is plausible to assume that osteoporotic bone has a different potential of bone healing. Therefore, implant surface modification study that aims at enhancing bone formation to further improve short- and long-term clinical outcomes in osteoporosis is necessary. MATERIAL AND METHODS Fifty female, 3-month-old mice were included in this study. Osteoporosis was induced by ovariectomy (OVX, test group) in 25 mice. The further 25 mice had ovaries exposed but not removed (SHAM, control group). Seven weeks following the ovariectomy procedures, one customized implant (0.7 × 8 mm) of each surface was placed in each femur for both groups. Implants had either a hydrophobic surface (SAE) or a hydrophilic treatment surface (SAE-HD). Calcium (Ca) and phosphorus (P) content was measured by energy-dispersive X-ray spectroscopy (EDS) after 7 days. The femurs were analyzed for bone-to-implant contact (BIC) and bone volume fraction (BV) by nano-computed tomography (nano-CT) after 14 and 28 days. Same specimens were further submitted to histological analysis. Additionally, after 3 and 7 days, implants were removed and cells were collected around the implant to access gene expression profile of key osteogenic (Runx2, Alp, Sp7, Bsp, Sost, Ocn) and inflammatory genes (IL-1β, IL-10, Tnf-α, and Nos2) by qRT-PCR assay. Statistical analysis was performed by ANOVA and paired t test with significance at P < .05. RESULTS The amount of Ca and P deposited on the surface due to the mineralization process was higher for SAE-HD compared to SAE on the intra-group analysis. Nano-CT and histology revealed more BV and BIC for SAE-HD in SHAM and OVX groups compared to SAE. Analysis in OVX group showed that most genes (ie, ALP, Runx2) involved in the bone morphogenetic protein (BMP) signaling were significantly activated in the hydrophilic treatment. CONCLUSION Both surfaces were able to modulate bone responses toward osteoblast differentiation. SAE-HD presented a faster response in terms of bone formation and osteogenic gene expression compared to SAE. Hydrophilic surface in situations of osteoporosis seems to provide additional benefits in the early stages of osseointegration.
Collapse
Affiliation(s)
- Rafael Siqueira
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Afonso Ferreira
- Department of Periodontology and Implant Dentistry, School of Dentistry, Federal University of Uberlandia, Uberlândia, Brazil.,Department of Biological and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Fábio Antônio Piola Rizzante
- Department of Comprehensive Care, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Guilherme Faria Moura
- Department of Periodontology and Implant Dentistry, School of Dentistry, Federal University of Uberlandia, Uberlândia, Brazil.,Department of Biological and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | | | - Denildo de Magalhães
- Department of Periodontology and Implant Dentistry, School of Dentistry, Federal University of Uberlandia, Uberlândia, Brazil
| | - Renata Cimões
- Department of Prosthesis and Maxillofacial Surgery, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Gustavo Mendonça
- Department of Biological and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
40
|
Laser-assisted production of HAp-coated zirconia structured surfaces for biomedical applications. J Mech Behav Biomed Mater 2020; 112:104049. [DOI: 10.1016/j.jmbbm.2020.104049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022]
|
41
|
Abstract
Niobium (Nb), Titanium (Ti), and Zirconium (Zr) have attracted much attention as implant materials due to it's excellent mechanical properties and biocompatibility. However, little attention has been paid to high Nb-containing biomedical alloys. Here, the 50 wt.%Nb-XTi-Zr ternary alloy(x = 20wt.%, 30 wt.%, 40 wt.%) with relative density over 90% was prepared by powder metallurgy method. The massive α(Zr) distributed along the grain boundaries and lamellar β(Zr) appeared in the grains of β(Nb) in the 50 wt.%Nb-20wt.%Ti-Zr alloy. The acicular α phase is mainly distributed in the β-grain of 50 wt.%Nb-30wt.%Ti-Zr alloy. And α(Ti)-colonies in the β-grains and continuous α(Ti)GB at β-grain boundary can be observed in the 50 wt.%Nb-40wt.%Ti-Zr alloy. Comparing with Nb-20wt.%Ti-Zr alloy and 50 wt.%Nb-40wt.%Ti-Zr alloy, the 50 wt.%Nb-30wt.%Ti-Zr alloy showed lower Vickers hardness and elastic modulus. Furthermore, the as-sintered 50 wt.%Nb-XTi-Zr alloy promoted the cell proliferation and cell adhesion of MG-63 cells on the surface of alloys. In conclusion, the 50 wt.%Nb-XTi-Zr alloy combines excellent mechanical and biological properties, and the 50 wt.%Nb-30wt.%Ti-Zr alloy with lower elastic modulus (close to the bone) is a more promising candidate for bone implant material.
Collapse
Affiliation(s)
- Taomei Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| | - Pinghua Ou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| | - Jianming Ruan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| | - Hailin Yang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, PR China
| |
Collapse
|
42
|
Determining the relative importance of titania nanotubes characteristics on bone implant surface performance: A quality by design study with a fuzzy approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:110995. [DOI: 10.1016/j.msec.2020.110995] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/04/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
|
43
|
Mongardini C, Zeza B, Pelagalli P, Blasone R, Scilla M, Berardini M. Radiographic bone level around particular laser-treated dental implants: 1 to 6 years multicenter retrospective study. Int J Implant Dent 2020; 6:29. [PMID: 32719900 PMCID: PMC7385050 DOI: 10.1186/s40729-020-00230-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/25/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of the present retrospective study was to evaluate clinical and radiological outcomes, in terms of implant survival rate, marginal bone loss, and peri-implantitis incidence, of a titanium implants with an innovative laser-treated surface. Materials and methods A total of 502 dental implants were inserted in four dental practices (Udine, Arezzo, Frascati, Roma) between 2008 and 2013. All inserted implants had laser-modified surface characterized by a series of 20-μm-diameter holes (7–10 μm deep) every 10 μm (Synthegra®, Geass srl, Italy). The minimum follow-up period was set at 1 year after the final restoration. Radiographs were taken after implant insertion (T0), at time of loading (T1), and during the follow-up period (last recall, T2). Marginal bone loss and peri-implant disease incidence were recorded. Results A total of 502 implants with a maximum follow-up period of 6 years were monitored. The mean differential between T0 and T2 was 0.05 ± 1.08 mm at the mesial aspect and 0.08 ± 1.11 mm at the distal with a mean follow-up period of 35.76 ± 18.05 months. After being in function for 1 to 6 years, implants reported varying behavior: 8.8% of sites did not show any radiographic changes and 38.5% of sites showed bone resorption. The bone appeared to have been growing coronally in 50.7% of the sites measured. Conclusion Implants showed a maintenance of marginal bone levels over time, and in many cases, it seems that laser-modified implant surface could promote a bone growth. The low peri-implant disease incidence recorded could be attributed to the laser titanium surface features that seem to prevent bacterial colonization. Future randomized and controlled studies are needed to confirm the results of the present multi-centrical retrospective analysis.
Collapse
Affiliation(s)
- C Mongardini
- Department of Maxillo-Facial and Odontostomatologic Sciences, University "La Sapienza" of Rome, Rome, Italy
| | - B Zeza
- Department of Dentistry, Section of Periodontology, Albanian University, Tirana, Albania
| | | | | | | | | |
Collapse
|
44
|
Cirera A, Sevilla P, Manzanares MC, Franch J, Galindo-Moreno P, Gil J. Osseointegration around dental implants biofunctionalized with TGFβ-1 inhibitor peptides: an in vivo study in beagle dogs. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:62. [PMID: 32696084 DOI: 10.1007/s10856-020-06397-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to evaluate the effect of biofunctionalization with two TGF-β1 inhibitor peptides, P17 and P144, on osseointegration of CP-Ti dental implants. A total of 36 implants (VEGA, Klockner®) with 3.5 × 8 mm internal connection were used in this study, divided in three groups: (1) control group (n = 12), (2) implants which surfaces were biofunctionalized with P17 peptide inhibitor (n = 12), (3) implants with surfaces biofunctionalized by P144 peptide (n = 12). Three implants, one from each group, were inserted in both hemimandibles of 6 beagle dogs, 2 months after tooth extraction. Two animals were sacrificed at 2, 4 and 8 weeks post implant insertion, respectively. The samples were analyzed by Backscattering Scanning Electron Microscopy (BS-SEM) and histological analysis. Histomorphometric analysis of bone to implant contact (BIC), peri-implant bone fraction (BF) and interthread bone (IB) were carried out. Bone formation around implants measured by quantitative analysis, BS-SEM, was significantly higher in the P17-biofunctionalized implants, 4 and 8 weeks after the implantation. Histomorphometric analysis of BIC, BF and IB showed higher values in the P17-biofunctionalized group at initial stages of healing (2 weeks) and early osseointegration both at 4 and 8 weeks. For P144 biofunctionalized implants, the histomorphometric values obtained are also higher than control group. Accordingly, better results in the experimental groups were proven both by the quantitative and the qualitative analysis. Surface biofunctionalization with TGF-β1 inhibitor peptides, P17 and P144, resulted in better quantitative and qualitative parameters relative to implant osseointegration.
Collapse
Affiliation(s)
- Andrea Cirera
- Oral Surgery and Implant Dentistry Department, School of Dentistry, University of Granada, Campus Universitario La Cartuja s/n, Barcelona, Spain
| | - Pablo Sevilla
- Escola Universitària Salesiana de Sarrià - EUSS Autonomous University of Barcelona, Barcelona, Spain.
| | - M Cristina Manzanares
- Human Anatomy and Embryology Unit, DPyTEx, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Jordi Franch
- Surgery Department, Veterinary School, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Pablo Galindo-Moreno
- Oral Surgery and Implant Dentistry Department, School of Dentistry, University of Granada, Barcelona, Spain
| | - Javier Gil
- Universitat Internacional de Catalunya, Facultat de Medicina i Ciències de la Salut, Barcelona, Spain
| |
Collapse
|
45
|
Crystal structure of zirconia affects osteoblast behavior. Dent Mater 2020; 36:905-913. [DOI: 10.1016/j.dental.2020.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/27/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
|
46
|
Zheng Y, Zheng Y, Jia L, Zhang Y, Lin Y. Integrated analysis of lncRNA-mRNA networks associated with an SLA titanium surface reveals the potential role of HIF1A-AS1 in bone remodeling. RSC Adv 2020; 10:20972-20990. [PMID: 35517763 PMCID: PMC9054372 DOI: 10.1039/d0ra01242d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Microstructured titanium surface implants, such as typical sandblasted and acid-etched (SLA) titanium implants, are widely used to promote bone apposition in prosthetic treatment by dental implants following tooth loss. Although there are multiple factors associated with the superior osseointegration of an SLA titanium surface, the molecular mechanisms of long noncoding RNAs (lncRNAs) are still unclear. In this study, we characterized smooth (SMO) and SLA surfaces, and compared the osteoinduction of these surfaces using human bone marrow-derived mesenchymal stem cells (hBMSCs) in vitro and implants in a rat model in vivo. Then, we used microarrays and bioinformatics analysis to investigate the differential expression profiles of mRNAs and lncRNAs on SMO and SLA titanium surfaces. An lncRNA–mRNA network was constructed, which showed an interaction between lncRNA HIF1A antisense RNA 1 (HIF1A-AS1) and vascular endothelial growth factor. We further found that knockdown of HIF1A-AS1 significantly decreased osteogenic differentiation of hBMSCs. This study screened SLA-induced lncRNAs using a systemic strategy and showed that lncRNA HIF1A-AS1 plays a role in promotion of new bone formation in the peri-implant area, providing a novel insight for future surface modifications of implants. Long non-coding RNA HIF1A-AS1 plays a role in SLA titanium surface-induced osteogenic differentiation of hBMSCs by regulating p38 MAPK.![]()
Collapse
Affiliation(s)
- Yan Zheng
- Department of Oral Implantology, Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 China +86-10-62173402 +86-10-62179977 ext. 5344
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology Beijing 100081 China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology Beijing 100081 China.,Central Laboratory, Peking University School and Hospital of Stomatology Beijing 100081 China
| | - Yu Zhang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 China +86-10-62173402 +86-10-62179977 ext. 5344
| | - Ye Lin
- Department of Oral Implantology, Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 China +86-10-62173402 +86-10-62179977 ext. 5344
| |
Collapse
|
47
|
Cimino M, Parreira P, Bidarra SJ, Gonçalves RM, Barrias CC, Martins MCL. Effect of surface chemistry on hMSC growth under xeno-free conditions. Colloids Surf B Biointerfaces 2020; 189:110836. [DOI: 10.1016/j.colsurfb.2020.110836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 01/05/2023]
|
48
|
Maminskas J, Pilipavicius J, Staisiunas E, Baranovas G, Alksne M, Daugela P, Juodzbalys G. Novel Yttria-Stabilized Zirconium Oxide and Lithium Disilicate Coatings on Titanium Alloy Substrate for Implant Abutments and Biomedical Application. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2070. [PMID: 32365921 PMCID: PMC7254192 DOI: 10.3390/ma13092070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/30/2022]
Abstract
This study aimed to create novel bioceramic coatings on a titanium alloy and evaluate their surface properties in comparison with conventional prosthetic materials. The highly polished titanium alloy Ti6Al4V (Ti) was used as a substrate for yttria-stabilized zirconium oxide (3YSZ) and lithium disilicate (LS2) coatings. They were generated using sol-gel strategies. In comparison, highly polished surfaces of Ti, yttria-stabilized zirconium oxide (ZrO2), polyether ether ketone (PEEK) composite, and poly(methyl methacrylate) (PMMA) were utilized. Novel coatings were characterized by an X-ray diffractometer (XRD) and scanning electron microscope (SEM). The roughness by atomic force microscope (AFM), water contact angle (WCA), and surface free energy (SFE) were determined. Additionally, biocompatibility and human gingival fibroblast (HGF) adhesion processes (using a confocal laser scanning microscope (CLSM)) were observed. The deposition of 3YSZ and LS2 coatings changed the physicochemical properties of the Ti. Both coatings were biocompatible, while Ti-3YSZ demonstrated the most significant cell area of 2630 μm2 (p ≤ 0.05) and the significantly highest, 66.75 ± 4.91, focal adhesions (FAs) per cell after 24 h (p ≤ 0.05). By contrast, PEEK and PMMA demonstrated the highest roughness and WCA and the lowest results for cellular response. Thus, Ti-3YSZ and Ti-LS2 surfaces might be promising for biomedical applications.
Collapse
Affiliation(s)
- Julius Maminskas
- Department of Prosthodontics, Lithuanian University of Health Sciences, 50106 Kaunas, Lithuania
| | - Jurgis Pilipavicius
- Department of Chemical Engineering and Technology, Center for Physical Sciences and Technology (FTMC), 02300 Vilnius, Lithuania;
- Faculty of Chemistry and Geosciences, Vilnius University, 10257 Vilnius, Lithuania; (E.S.); (G.B.)
| | - Edvinas Staisiunas
- Faculty of Chemistry and Geosciences, Vilnius University, 10257 Vilnius, Lithuania; (E.S.); (G.B.)
| | - Gytis Baranovas
- Faculty of Chemistry and Geosciences, Vilnius University, 10257 Vilnius, Lithuania; (E.S.); (G.B.)
| | - Milda Alksne
- Institute of Biochemistry, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania;
| | - Povilas Daugela
- Department of Maxillofacial Surgery, Lithuanian University of Health Sciences, 50140 Kaunas, Lithuania; (P.D.); (G.J.)
| | - Gintaras Juodzbalys
- Department of Maxillofacial Surgery, Lithuanian University of Health Sciences, 50140 Kaunas, Lithuania; (P.D.); (G.J.)
| |
Collapse
|
49
|
Rafiee K, Naffakh-Moosavy H, Tamjid E. The effect of laser frequency on roughness, microstructure, cell viability and attachment of Ti6Al4V alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110637. [PMID: 32228969 DOI: 10.1016/j.msec.2020.110637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022]
Abstract
Titanium alloys are commonly used in orthopedic devices due to their good corrosion resistance, high specific strength and excellent biological response. The direct contact between the implant surface and the host tissue results in notable effect of surface properties such as surface topography on the biological responses. The aim of this study is to investigate the effect of frequency of pulsed Nd-YAG laser on Ti6Al4V alloy surface topography and its influence on the improvement of biocompatibility while other laser parameters kept constant. The range of applied frequency values were selected from 1 to 20 Hz. The range of surface roughness was found between 452 nm and 3.37 μm. The untreated sample and also samples with the highest and the lowest average surface roughness parameter were subjected to the further analyses. Characterization of the samples was performed with surface roughness tester, Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). The high rate of melt and solidification during the laser treatment led to the martensite formation and consequently an increase about 12-25% in hardness. Furthermore, in vitro study was carried out using MG-63 osteoblast like cells. The analyses of cell viability for 3 culture times, cell morphology and cell spreading area revealed that sample with the highest average surface roughness parameter is more biocompatible. 10 Hz frequency was found as the optimum parameter which led to the highest surface roughness and thus the biocompatibility enhancement. In conclusion, the pulsed Nd-YAG laser with an optimum value of applied frequency can be utilized as an effective technique to improve the biological characteristics.
Collapse
Affiliation(s)
- Kimia Rafiee
- Department of Materials Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-143, Iran
| | - Homam Naffakh-Moosavy
- Department of Materials Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-143, Iran.
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Tarbiat Modares University, Tehran, P.O. Box 14115-175, Iran
| |
Collapse
|
50
|
Abushahba F, Tuukkanen J, Aalto‐Setälä L, Miinalainen I, Hupa L, Närhi TO. Effect of bioactive glass air‐abrasion on the wettability and osteoblast proliferation on sandblasted and acid‐etched titanium surfaces. Eur J Oral Sci 2020; 128:160-169. [DOI: 10.1111/eos.12683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/17/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Faleh Abushahba
- Department of Prosthetic Dentistry and Stomatognathic Physiology Institute of Dentistry University of Turku Turku Finland
| | - Juha Tuukkanen
- Research Unit for Cancer and Translational Medicine University of Oulu Oulu Finland
| | - Laura Aalto‐Setälä
- Johan Gadolin Process Chemistry Centre Åbo Akademi University Turku Finland
| | | | - Leena Hupa
- Johan Gadolin Process Chemistry Centre Åbo Akademi University Turku Finland
| | - Timo O. Närhi
- Department of Prosthetic Dentistry and Stomatognathic Physiology Institute of Dentistry University of Turku Turku Finland
| |
Collapse
|