1
|
Khodaei A, Johari N, Jahanmard F, Cecotto L, Khosravimelal S, Madaah Hosseini HR, Bagheri R, Samadikuchaksaraei A, Amin Yavari S. Particulate 3D Hydrogels of Silk Fibroin-Pluronic to Deliver Curcumin for Infection-Free Wound Healing. Biomimetics (Basel) 2024; 9:483. [PMID: 39194462 DOI: 10.3390/biomimetics9080483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Skin is the largest protective tissue of the body and is at risk of damage. Hence, the design and development of wound dressing materials is key for tissue repair and regeneration. Although silk fibroin is a known biopolymer in tissue engineering, its degradation rate is not correlated with wound closure rate. To address this disadvantage, we mimicked the hierarchical structure of skin and also provided antibacterial properties; a hydrogel with globular structure consisting of silk fibroin, pluronic F127, and curcumin was developed. In this regard, the effect of pluronic and curcumin on the structural and mechanical properties of the hydrogel was studied. The results showed that curcumin affected the particle size, crystallinity, and ultimate elongation of the hydrogels. In vitro assays confirmed that the hydrogel containing curcumin is not cytotoxic while the diffused curcumin and pluronic provided a considerable bactericidal property against Methicillin-resistant Staphylococcus aureus. Interestingly, presence of pluronic caused more than a 99% reduction in planktonic and adherent bacteria in the curcumin-free hydrogel groups. Moreover, curcumin improved this number further and inhibited bacteria adhesion to prevent biofilm formation. Overall, the developed hydrogel showed the potential to be used for skin tissue regeneration.
Collapse
Affiliation(s)
- Azin Khodaei
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Narges Johari
- Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran
| | - Fatemeh Jahanmard
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Leonardo Cecotto
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sadjad Khosravimelal
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Hamid Reza Madaah Hosseini
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Reza Bagheri
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Regenerative Medicine Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
2
|
Sharun K, Banu SA, Mamachan M, Subash A, Karikalan M, Vinodhkumar OR, Manjusha KM, Kumar R, Telang AG, Dhama K, Pawde AM, Maiti SK, Amarpal. Pluronic F127 composite hydrogel for the repair of contraction suppressed full-thickness skin wounds in a rabbit model. Curr Res Transl Med 2024; 72:103458. [PMID: 38943898 DOI: 10.1016/j.retram.2024.103458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
Hydrogels are commonly used as carriers for cell delivery due to their similarities to the extracellular matrix. A contraction-suppressed full-thickness wound model was used to evaluate the therapeutic potential of Pluronic F127 (PF127) hydrogel loaded with adipose-derived stromal vascular fraction (AdSVF), mesenchymal stem cells (AdMSC), and conditioned media (AdMSC-CM) for the repair of wounds in a rabbit model. The experimental study was conducted on forty-eight healthy adult New Zealand white rabbits randomly divided into eight groups with six animals each and treated with AdSVF, AdMSC, and AdMSC-CM as an injectable or topical preparation. The healing potential of different adipose-derived cell-based and cell-free therapeutics was evaluated based on percentage wound healing, period of epithelialization, epidermal thickness, scar evaluation, histopathology analysis, histochemical evaluation, immunohistochemistry (collagen type I), and hydroxyproline assay by comparing with the positive and negative control. Collagen density analysis using different staining methods, immunohistochemistry, and hydroxyproline assay consistently showed that delivering AdMSC and AdMSC-CM in PF127 hydrogel enhanced epithelialization, collagen production, and organization, contributing to improved tissue strength and quality. Even though allogeneic AdSVF was found to promote wound healing in rabbits, it has a lower potential than AdMSC and AdMSC-CM. The wound healing potential of AdMSC and AdMSC-CM was enhanced when loaded in PF127 hydrogel and applied topically. Even though wounds treated with AdMSC outperformed AdMSC-CM, a significant difference in the healing quality was not observed in most instances, indicating almost similar therapeutic potential. The findings indicate that the wound healing potential of AdMSC and AdMSC-CM was enhanced when loaded in PF127 hydrogel and applied topically. These treatments promoted collagen production, tissue organization, and epidermal regeneration, ultimately improving overall healing outcomes.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India; Graduate Institute of Medicine, Yuan Ze University, Taoyuan 32003, Taiwan.
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Merlin Mamachan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Athira Subash
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Mathesh Karikalan
- Centre for Wildlife Conservation, Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Obli Rajendran Vinodhkumar
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - K M Manjusha
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rohit Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - A G Telang
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan 32003, Taiwan
| | - A M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
3
|
Wu H, Sheng J, Wang Z, Zu Z, Xiang K, Qi J, Wang Z, Lu G, Zhang L. Tannic acid-poloxamer self-assembled nanoparticles for advanced atherosclerosis therapy by regulation of macrophage polarization. J Mater Chem B 2024; 12:4708-4716. [PMID: 38654609 DOI: 10.1039/d3tb01157g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Atherosclerosis (AS) is a significant contributor to cardiovascular events. Advanced AS is particularly concerning, as it leads to the formation of high-risk vulnerable plaques. Current treatments for AS focus on antithrombotic and lipid-lowering interventions, which are effective in treating early-stage AS. Recent studies have shown that macrophage polarization plays a crucial role in the development of AS. This study presents a new biomedical application of natural tannic acid as an anti-inflammatory nanoplatform for advanced AS. Tannic acid-poloxamer nanoparticles (TPNP) are fabricated through self-assembly of tannic acid (TA) and poloxamer. TPNP has the potential to provide effective treatment for advanced AS. According to in vitro studies, TPNP has been found to suppress the inflammatory response in lipopolysaccharide-stimulated macrophages by scavenging reactive oxygen species (ROS), downregulating the expression levels of inflammatory cytokines (such as interleukin-10 and tumor necrosis factor-α) and regulating polarization of macrophages. In vivo studies further reveal that TPNP can retard the development of advanced atherosclerotic plaques by reducing ROS production and promoting M2 macrophage polarization in the aorta of ApoE-/- mice. Overall, these findings suggest that TPNP could be used to develop natural multifunctional nanoplatforms for molecular therapy of AS and other inflammation-related diseases.
Collapse
Affiliation(s)
- Haoguang Wu
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China.
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Shunde, Foshan, Guangdong 528308, China
| | - Jie Sheng
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China.
| | - Zhiyue Wang
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China.
| | - Ziyue Zu
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China.
| | - Kaiyan Xiang
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China.
| | - Jianchen Qi
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China.
| | - Zhicheng Wang
- Department of Cardiology, Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guangming Lu
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China.
| | - Longjiang Zhang
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China.
| |
Collapse
|
4
|
Cheng MH, Chang CW, Wang J, Bupphathong S, Huang W, Lin CH. 3D-Bioprinted GelMA Scaffold with ASCs and HUVECs for Engineering Vascularized Adipose Tissue. ACS APPLIED BIO MATERIALS 2024; 7:406-415. [PMID: 38148527 DOI: 10.1021/acsabm.3c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The purpose of tissue engineering is to reconstruct parts of injured tissues and to resolve the shortage of organ donations. However, the main concern is the limited size of engineered tissue due to insufficient oxygen and nutrition distribution in large three-dimensional (3D) tissue constructs. To provide better support for cells inside the scaffolds, the vascularization of blood vessels within the scaffold could be a solution. This study compared the effects of different culturing systems using human adipose tissue-derived stem/stromal cells (ASCs), human umbilical vein endothelial cells (HUVECs), and coculture of ASCs and HUVECs in 3D-bioprinted gelatin methacrylate (GelMA) hydrogel constructs. The in vitro results showed that the number of live cells was highest in the coculture of ASCs and HUVECs in the GelMA hydrogel after culturing for 21 days. Additionally, the tubular structure was the most abundant in the GelMA hydrogel, containing both ASCs and HUVECs. In the in vivo test, blood vessels were present in both the HUVECs and the coculture of ASCs and HUVECs hydrogels implanted in mice. However, the blood vessel density was the highest in the HUVEC and ASC coculture groups. These findings indicate that the 3D-bioprinted GelMA hydrogel coculture system could be a promising biomaterial for large tissue engineering applications.
Collapse
Affiliation(s)
- Ming-Huei Cheng
- Center of Lymphedema Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jerry Wang
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Sasinan Bupphathong
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Wei Huang
- Department of Orthodontics, Rutgers School of Dental Medicine, Newark, New Jersey 07103, United States
| | - Chih-Hsin Lin
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
5
|
Liu P, Fu Y, Wei F, Ma T, Ren J, Xie Z, Wang S, Zhu J, Zhang L, Tao J, Zhu J. Microneedle Patches with O 2 Propellant for Deeply and Fast Delivering Photosensitizers: Towards Improved Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202591. [PMID: 35839467 PMCID: PMC9443460 DOI: 10.1002/advs.202202591] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/29/2022] [Indexed: 05/31/2023]
Abstract
Photodynamic therapy (PDT) is an emerging technique for treating tumors. Especially, topical administration of photosensitizers (PSs) is more favorable for superficial tumor treatments with low systematic phototoxicity. Yet, ineffective migration of PSs to targeted tumor tissues and rapid consumption of O2 during PDT greatly limit their effects. Herein, PS-loaded microneedle (MN) patches with O2 propellant for a deeper and faster transdermal delivery of PS and improved PDT by embedding sodium percarbonate (SPC) into dissolving poly(vinyl pyrrolidone) MNs are presented. It is shown that SPC in the MNs can react with surrounding fluid to generate gaseous oxygen bubbles, forming vigorous fluid flows and thus greatly enhancing PS of chlorin e6 (Ce6) penetration in both hydrogel models and skin tissues. Reactive oxygen species (ROS) in hypoxic breast cancer cells (4T1 cells) are greatly increased by rapid penetration of PS and relief of hypoxia in vitro, and Ce6-loaded SPC MNs show an excellent cell-killing effect. Moreover, lower tumor growth rate and tumor mass after a 20-d treatment in tumor-bearing mice model verify the improved PDT in gaseous oxygen-droved delivery of PS. This study demonstrates a facile yet effective route of MN delivery of PSs for improved PDT in hypoxic tumor treatment.
Collapse
Affiliation(s)
- Pei Liu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materialsand State Key Laboratory of Materials Processing and Mold TechnologySchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Yangxue Fu
- Department of DermatologyUnion HospitalTongji Medical CollegeHUSTWuhan430022China
| | - Fulong Wei
- School of Energy and Power EngineeringHUSTWuhan430074China
| | - Teng Ma
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materialsand State Key Laboratory of Materials Processing and Mold TechnologySchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Jingli Ren
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materialsand State Key Laboratory of Materials Processing and Mold TechnologySchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Zhanjun Xie
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materialsand State Key Laboratory of Materials Processing and Mold TechnologySchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Shanzheng Wang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materialsand State Key Laboratory of Materials Processing and Mold TechnologySchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Jinjin Zhu
- Department of DermatologyUnion HospitalTongji Medical CollegeHUSTWuhan430022China
| | - Lianbin Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materialsand State Key Laboratory of Materials Processing and Mold TechnologySchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| | - Juan Tao
- Department of DermatologyUnion HospitalTongji Medical CollegeHUSTWuhan430022China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materialsand State Key Laboratory of Materials Processing and Mold TechnologySchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)Wuhan430074China
| |
Collapse
|
6
|
Cai G, Hou Z, Sun W, Li P, Zhang J, Yang L, Chen J. Recent Developments in Biomaterial-Based Hydrogel as the Delivery System for Repairing Endometrial Injury. Front Bioeng Biotechnol 2022; 10:894252. [PMID: 35795167 PMCID: PMC9251415 DOI: 10.3389/fbioe.2022.894252] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Endometrial injury caused by intrauterine surgery often leads to pathophysiological changes in the intrauterine environment, resulting in infertility in women of childbearing age. However, clinical treatment strategies, especially for moderate to severe injuries, often fail to provide satisfactory therapeutic effects and pregnancy outcomes. With the development of reproductive medicine and materials engineering, researchers have developed bioactive hydrogel materials, which can be used as a physical anti-adhesion barrier alone or as functional delivery systems for intrauterine injury treatment by loading stem cells or various active substances. Studies have demonstrated that the biomaterial-based hydrogel delivery system can provide sufficient mechanical support and improve the intrauterine microenvironment, enhance the delivery efficiency of therapeutic agents, prolong intrauterine retention time, and perform efficiently targeted repair compared with ordinary drug therapy or stem cell therapy. It shows the promising application prospects of the hydrogel delivery system in reproductive medicine. Herein, we review the recent advances in endometrial repair methods, focusing on the current application status of biomaterial-based hydrogel delivery systems in intrauterine injury repair, including preparation principles, therapeutic efficacy, repair mechanisms, and current limitations and development perspectives.
Collapse
Affiliation(s)
- Guiyang Cai
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhipeng Hou
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, China
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Wei Sun
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Peng Li
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Jinzhe Zhang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
- *Correspondence: Liqun Yang, ; Jing Chen,
| | - Jing Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Liqun Yang, ; Jing Chen,
| |
Collapse
|
7
|
Zhou S, Lei Y, Wang P, Chen J, Zeng L, Qu T, Maldonado M, Huang J, Han T, Wen Z, Tian E, Meng X, Zhong Y, Gu J. Human Umbilical Cord Mesenchymal Stem Cells Encapsulated with Pluronic F-127 Enhance the Regeneration and Angiogenesis of Thin Endometrium in Rat via Local IL-1 β Stimulation. Stem Cells Int 2022; 2022:7819234. [PMID: 35761831 PMCID: PMC9233600 DOI: 10.1155/2022/7819234] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Thin endometrium (< 7 mm) could cause low clinical pregnancy, reduced live birth, increased spontaneous abortion, and decreased birth weight. However, the treatments for thin endometrium have not been well developed. In this study, we aim to determine the role of Pluronic F-127 (PF-127) encapsulation of human umbilical cord mesenchymal stem cells (hUC-MSCs) in the regeneration of thin endometrium and its underlying mechanism. Thin endometrium rat model was created by infusion of 95% ethanol. Thin endometrium modeled rat uterus were treated with saline, hUC-MSCs, PF-127, or hUC-MSCs plus PF-127 separately. Regenerated rat uterus was measured for gene expression levels of angiogenesis factors and histological morphology. Angiogenesis capacity of interleukin-1 beta (IL-1β)-primed hUC-MSCs was monitored via quantitative polymerase chain reaction (q-PCR), Luminex assay, and tube formation assay. Decreased endometrium thickness and gland number and increased inflammatory factor IL-1β were achieved in the thin endometrium rat model. Embedding of hUC-MSCs with PF-127 could prolong the hUC-MSCs retaining, which could further enhance endometrium thickness and gland number in the thin endometrium rat model via increasing angiogenesis capacity. Conditional medium derived from IL-1β-primed hUC-MSCs increased the concentration of angiogenesis factors (basic fibroblast growth factor (bFGF), vascular endothelial growth factors (VEGF), and hepatocyte growth factor (HGF)). Improvement in the thickness, number of glands, and newly generated blood vessels could be achieved by uterus endometrium treatment with PF-127 and hUC-MSCs transplantation. Local IL-1β stimulation-primed hUC-MSCs promoted the release of angiogenesis factors and may play a vital role on thin endometrium regeneration.
Collapse
Affiliation(s)
- Shuling Zhou
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong, China
| | - Yu Lei
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong, China
| | - Ping Wang
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Jianying Chen
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Liting Zeng
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong, China
| | - Ting Qu
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Martin Maldonado
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Jihua Huang
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Tingting Han
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Zina Wen
- Department of Andrology, Chengdu Xi'nan Gynecological Hospital, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Erpo Tian
- Department of Andrology, Chengdu Xi'nan Gynecological Hospital, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Xiangqian Meng
- Department of Embryology, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 3 San-guantang Road, Chengdu, 610066 Sichuan, China
| | - Ying Zhong
- Department of Embryology, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 3 San-guantang Road, Chengdu, 610066 Sichuan, China
| | - Jiang Gu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong, China
| |
Collapse
|
8
|
Avilkina V, Leterme D, Falgayrac G, Delattre J, Miellot F, Gauthier V, Chauveau C, Ghali Mhenni O. Severity Level and Duration of Energy Deficit in Mice Affect Bone Phenotype and Bone Marrow Stromal Cell Differentiation Capacity. Front Endocrinol (Lausanne) 2022; 13:880503. [PMID: 35733777 PMCID: PMC9207532 DOI: 10.3389/fendo.2022.880503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Anorexia nervosa is known to induce changes in bone parameters and an increase in bone marrow adiposity (BMA) that depend on the duration and seriousness of the disease. Previous studies have found that bone loss is associated with BMA accumulation. Sirtuin of type 1 (Sirt1), a histone deacetylase that is partly regulated by energy balance, was shown to have pro-osteoblastogenic and anti-adipogenic effects. To study the effects of the severity and duration of energy deficits related to bone loss, a mouse model of separation-based anorexia (SBA) was established. We recently demonstrated that moderate body weight loss (18%) 8-week SBA protocol in mice resulted in an increase in BMA, bone loss, and a significant reduction in Sirt1 expression in bone marrow stromal cells (BMSCs) extracted from SBA mice. We hypothesised that Sirt1 deficit in BMSCs is associated with bone and BMA alterations and could potentially depend on the severity of weight loss and the length of SBA protocol. We studied bone parameters, BMA, BMSC differentiation capacity, and Sirt1 expression after induction of 4 different levels of body weight loss (0%,12%,18%,24%), after 4 or 10 weeks of the SBA protocol. Our results demonstrated that 10 week SBA protocols associated with body weight loss (12%, 18%, 24%) induced a significant decrease in bone parameters without any increase in BMA. BMSCs extracted from 12% and 18% SBA groups showed a significant decrease in Sirt1 mRNA levels before and after co-differentiation. For these two groups, decrease in Sirt1 was associated with a significant increase in the mRNA level of adipogenic markers and a reduction of osteoblastogenesis. Inducing an 18% body weight loss, we tested a short SBA protocol (4-week). We demonstrated that a 4-week SBA protocol caused a significant decrease in Tb.Th only, without change in other bone parameters, BMA, Sirt1 expression, or differentiation capacity of BMSCs. In conclusion, this study showed, for the first time, that the duration and severity of energy deficits are critical for changes in bone parameters, BMSC differentiation, and Sirt1 expression. Furthermore, we showed that in this context, Sirt1 expression could impact BMSC differentiation with further effects on bone phenotype.
Collapse
Affiliation(s)
| | - Damien Leterme
- MAB Lab ULR4490, Univ Littoral Côte d'Opale, Boulogne-sur-Mer, France
| | | | | | - Flore Miellot
- MAB Lab ULR4490, Univ Littoral Côte d'Opale, Boulogne-sur-Mer, France
| | | | | | - Olfa Ghali Mhenni
- MAB Lab ULR4490, Univ Littoral Côte d'Opale, Boulogne-sur-Mer, France
| |
Collapse
|
9
|
Rafie M, Meshkini A. Tailoring the proliferation of fibroblast cells by multiresponsive and thermosensitive stem cells composite F127 hydrogel containing folic acid.MgO:ZnO/chitosan hybrid microparticles for skin regeneration. Eur J Pharm Sci 2021; 167:106031. [PMID: 34601068 DOI: 10.1016/j.ejps.2021.106031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/06/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
In this study, biodegradable and thermosensitive F127 hydrogel containing folic acid.MgO:ZnO/chitosan hybrid particles (FMZC) was fabricated as a 3D mesenchymal stem cells (MSCs) delivery vehicle for regenerative medicine and wound healing purposes, in such a way to be responsive to lysozyme and UVA irradiation. The results showed that F127 hydrogel containing FMZC is a suitable and nontoxic construct for encapsulation of MSCs in the presence of lysozyme and UVA irradiation, bearing high stem cell viability and proliferation. The final hydrogel, MSC&FMZC, in response to lysozyme induced a higher proliferation rate and migration in human foreskin fibroblast cells (HFF). These phenomena were attributed to the released F.MgO:ZnO nanocomposites from chitosan microparticles and paracrine factors from MSCs within the hydrogel, resulting in synergistic biological effects. Moreover, lysozyme-treated MSC&FMZC hydrogel showed higher antibacterial and anti-biofilm activity against both Gram-positive and Gram-negative bacteria than bare hydrogel. However, a significant increase in the antibacterial activity of MSC&FMZC was observed as the treated bacteria were subjected to UVA irradiation owing to the photocatalytic activity of F.MgO:ZnO nanocomposites. Regarding the antibacterial activity and stimulating skin cell behavior of MSC&FMZC hydrogel that can promote the regenerative activities of skin, it could be considered as a promising scaffold for bacteria-accompanied wound healing.
Collapse
Affiliation(s)
- Malihe Rafie
- Biochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Azadeh Meshkini
- Biochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
10
|
Abstract
Hyaluronic acid (HA) is a natural polyelectrolyte abundant in mammalian connective tissues, such as cartilage and skin. Both endogenous and exogenous HA produced by fermentation have similar physicochemical, rheological, and biological properties, leading to medical and dermo-cosmetic products. Chemical modifications such as cross-linking or conjugation in target groups of the HA molecule improve its properties and in vivo stability, expanding its applications. Currently, HA-based scaffolds and matrices are of great interest in tissue engineering and regenerative medicine. However, the partial oxidation of the proximal hydroxyl groups in HA to electrophilic aldehydes mediated by periodate is still rarely investigated. The introduced aldehyde groups in the HA backbone allow spontaneous cross-linking with adipic dihydrazide (ADH), thermosensitivity, and noncytotoxicity to the hydrogels, which are advantageous for medical applications. This review provides an overview of the physicochemical properties of HA and its usual chemical modifications to better understand oxi-HA/ADH hydrogels, their functional properties modulated by the oxidation degree and ADH concentration, and the current clinical research. Finally, it discusses the development of biomaterials based on oxi-HA/ADH as a novel approach in tissue engineering and regenerative medicine.
Collapse
|
11
|
Lin Y, Dong S, Zhao W, Hu KL, Liu J, Wang S, Tu M, Du B, Zhang D. Application of Hydrogel-Based Delivery System in Endometrial Repair. ACS APPLIED BIO MATERIALS 2020; 3:7278-7290. [PMID: 35019471 DOI: 10.1021/acsabm.0c00971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A receptive endometrium with proper thickness is essential for successful embryo implantation. However, endometrial injury caused by intrauterine procedures often leads to pathophysiological changes in its environment, resulting in subsequent female infertility. Among diverse treatment methods of endometrial injury, hydrogels are a class of hydrophilic three-dimensional polymeric network with biocompatibility as well as the capability of absorbing water and encapsulation, which have potential applications as a promising intrauterine controlled-release delivery system. This review summarizes recent advances in the approaches of endometrial repair and further focuses on the application of a hydrogel-based delivery system in endometrial repair, including its preparation, therapeutic loading considerations, clinical applications, as well as working mechanisms.
Collapse
Affiliation(s)
- Yifeng Lin
- Key Laboratory of Re/productive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Shunni Dong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Wei Zhao
- Key Laboratory of Women Reproductive Health of Zhejiang Province, and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Kai-Lun Hu
- Key Laboratory of Re/productive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Juan Liu
- Key Laboratory of Re/productive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Siwen Wang
- Key Laboratory of Re/productive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Mixue Tu
- Key Laboratory of Re/productive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Dan Zhang
- Key Laboratory of Re/productive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China.,Key Laboratory of Women Reproductive Health of Zhejiang Province, and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| |
Collapse
|
12
|
Giuliano E, Paolino D, Cristiano MC, Fresta M, Cosco D. Rutin-Loaded Poloxamer 407-Based Hydrogels for In Situ Administration: Stability Profiles and Rheological Properties. NANOMATERIALS 2020; 10:nano10061069. [PMID: 32486354 PMCID: PMC7352531 DOI: 10.3390/nano10061069] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 01/04/2023]
Abstract
Rutin is a flavone glycoside contained in many plants, and exhibits antioxidant, anti-inflammatory, anticancer, and wound-healing properties. The main disadvantage related to the use of this molecule for pharmaceutical application is its poor bioavailability, due to its low solubility in aqueous media. Poloxamer 407-hydrogels show interesting thermo-sensitive properties that make them attractive candidates as pharmaceutical formulations. The hydrophobic domains in the chemical structure of the copolymer, a polymer made up of two or more monomer species, are useful for retaining poorly water-soluble compounds. In this investigation various poloxamer 407-based hydrogels containing rutin were developed and characterized as a function of the drug concentration. In detail, the Turbiscan stability index, the micro- and dynamic rheological profiles and in vitro drug release were investigated and discussed. Rutin (either as a free powder or solubilized in ethanol) did not modify the stability or the rheological properties of these poloxamer 407-based hydrogels. The drug leakage was constant and prolonged for up to 72 h. The formulations described are expected to represent suitable systems for the in situ application of the bioactive as a consequence of their peculiar versatility.
Collapse
Affiliation(s)
- Elena Giuliano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (E.G.); (M.F.)
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (D.P.); (M.C.C.)
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (D.P.); (M.C.C.)
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (E.G.); (M.F.)
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (E.G.); (M.F.)
- Correspondence: ; Tel.: +39-0961-369-4119
| |
Collapse
|
13
|
He P, Zhang H, Li Y, Ren M, Xiang J, Zhang Z, Ji P, Yang S. 1α,25-Dihydroxyvitamin D3-loaded hierarchical titanium scaffold enhanced early osseointegration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110551. [DOI: 10.1016/j.msec.2019.110551] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/29/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022]
|
14
|
Bender L, Boostrom HM, Varricchio C, Zuanon M, Celiksoy V, Sloan A, Cowpe J, Heard CM. A novel dual action monolithic thermosetting hydrogel loaded with lidocaine and metronidazole as a potential treatment for alveolar osteitis. Eur J Pharm Biopharm 2020; 149:85-94. [DOI: 10.1016/j.ejpb.2020.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/17/2019] [Accepted: 01/18/2020] [Indexed: 11/26/2022]
|
15
|
Chiu CH, Chang TH, Chang SS, Chang GJ, Chen ACY, Cheng CY, Chen SC, Fu JF, Wen CJ, Chan YS. Application of Bone Marrow-Derived Mesenchymal Stem Cells for Muscle Healing After Contusion Injury in Mice. Am J Sports Med 2020; 48:1226-1235. [PMID: 32134689 DOI: 10.1177/0363546520905853] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Skeletal muscle injuries are very common in sports medicine. Conventional therapies have limited clinical efficacy. New treatment methods should be developed to allow athletes to return to play with better function. PURPOSE To evaluate the in vitro differentiation potential of bone marrow-derived mesenchymal stem cells and the in vivo histologic and physiologic effects of mesenchymal stem cell therapy on muscle healing after contusion injury. STUDY DESIGN Controlled laboratory study. METHODS Bone marrow cells were flushed from both femurs of 5-week-old C57BL/6 mice to establish immortalized mesenchymal stem cell lines. A total of 36 mice aged 8 to 10 weeks were used to develop a muscle contusion model and were divided into 6 groups (6 mice/group) on the basis of the different dosages of IM2 cells to be injected (0, 1.25 × 105, and 2.5 × 105 cells with/without F-127 in 100 μL of phosphate-buffered saline). Histological analysis of muscle regeneration was performed, and the fast-twitch and tetanus strength of the muscle contractions was measured 28 days after muscle contusion injury, after injections of different doses of mesenchymal stem cells with or without the F-127 scaffold beginning 14 days after contusion injury. RESULTS The mesenchymal stem cell-treated muscles exhibited numerous regenerating myofibers. All the groups treated with mesenchymal stem cells (1.25 × 105 cells, 2.5 × 105 cells, 1.25 × 105 cells plus F-127, and 2.5 × 105 cells plus F-127) exhibited a significantly higher number of regenerating myofibers (mean ± SD: 111.6 ± 14.77, 133.4 ± 21.44, 221.89 ± 32.65, and 241.5 ± 25.95, respectively) as compared with the control group and the control with F-127 (69 ± 18.79 and 63.2 ± 18.98). The physiologic evaluation of fast-twitch and tetanus strength did not reveal differences between the age-matched uninjured group and the groups treated with various doses of mesenchymal stem cells 28 days after contusion. Significant differences were found between the control group and the groups treated with various doses of mesenchymal stem cells after muscle contusion. CONCLUSION Mesenchymal stem cell therapy increased the number of regenerating myofibers and improved fast-twitch and tetanus muscle strength in a mouse model of muscle contusion. However, the rapid decay of transplanted mesenchymal stem cells suggests a paracrine effect of this action. Treatment with mesenchymal stem cells at various doses combined with the F-127 scaffold is a potential therapy for a muscle contusion. CLINICAL RELEVANCE Mesenchymal stem cell therapy has an effect on sports medicine because of its effects on myofiber regeneration and muscle strength after contusion injury.
Collapse
Affiliation(s)
- Chih-Hao Chiu
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou
| | - Tsan-Hsuan Chang
- Department of General Medicine, Tri-service General Hospital, Taipei
| | - Shih-Sheng Chang
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou
| | - Gwo-Jyh Chang
- Graduate Institute of Clinical and Medicinal Sciences, College of Medicine, Chang Gung University, Taoyuan
| | - Alvin Chao-Yu Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou
| | - Chun-Ying Cheng
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou
| | - Su-Ching Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou
| | - Jen-Fen Fu
- Department of Medical Research, Chang Gung Memorial Hospital, Linkou.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan
| | - Chih-Jen Wen
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Linkou.,College of Medicine, Chang Gung University, Taoyuan
| | - Yi-Sheng Chan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou
| |
Collapse
|
16
|
Goetzke R, Keijdener H, Franzen J, Ostrowska A, Nüchtern S, Mela P, Wagner W. Differentiation of Induced Pluripotent Stem Cells towards Mesenchymal Stromal Cells is Hampered by Culture in 3D Hydrogels. Sci Rep 2019; 9:15578. [PMID: 31666572 PMCID: PMC6821810 DOI: 10.1038/s41598-019-51911-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/10/2019] [Indexed: 01/08/2023] Open
Abstract
Directed differentiation of induced pluripotent stem cells (iPSCs) towards specific lineages remains a major challenge in regenerative medicine, while there is a growing perception that this process can be influenced by the three-dimensional environment. In this study, we investigated whether iPSCs can differentiate towards mesenchymal stromal cells (MSCs) when embedded into fibrin hydrogels to enable a one-step differentiation procedure within a scaffold. Differentiation of iPSCs on tissue culture plastic or on top of fibrin hydrogels resulted in a typical MSC-like phenotype. In contrast, iPSCs embedded into fibrin gel gave rise to much smaller cells with heterogeneous growth patterns, absence of fibronectin, faint expression of CD73 and CD105, and reduced differentiation potential towards osteogenic and adipogenic lineage. Transcriptomic analysis demonstrated that characteristic genes for MSCs and extracellular matrix were upregulated on flat substrates, whereas genes of neural development were upregulated in 3D culture. Furthermore, the 3D culture had major effects on DNA methylation profiles, particularly within genes for neuronal and cardiovascular development, while there was no evidence for epigenetic maturation towards MSCs. Taken together, iPSCs could be differentiated towards MSCs on tissue culture plastic or on a flat fibrin hydrogel. In contrast, the differentiation process was heterogeneous and not directed towards MSCs when iPSCs were embedded into the hydrogel.
Collapse
Affiliation(s)
- Roman Goetzke
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Hans Keijdener
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Julia Franzen
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Alina Ostrowska
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Selina Nüchtern
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Petra Mela
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany. .,Medical Materials and Implants, Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Garching, Germany.
| | - Wolfgang Wagner
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany. .,Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.
| |
Collapse
|
17
|
Choi JH, Choi OK, Lee J, Noh J, Lee S, Park A, Rim MA, Reis RL, Khang G. Evaluation of double network hydrogel of poloxamer-heparin/gellan gum for bone marrow stem cells delivery carrier. Colloids Surf B Biointerfaces 2019; 181:879-889. [DOI: 10.1016/j.colsurfb.2019.06.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/04/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
|
18
|
Freedman BR, Mooney DJ. Biomaterials to Mimic and Heal Connective Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806695. [PMID: 30908806 PMCID: PMC6504615 DOI: 10.1002/adma.201806695] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/27/2019] [Indexed: 05/11/2023]
Abstract
Connective tissue is one of the four major types of animal tissue and plays essential roles throughout the human body. Genetic factors, aging, and trauma all contribute to connective tissue dysfunction and motivate the need for strategies to promote healing and regeneration. The goal here is to link a fundamental understanding of connective tissues and their multiscale properties to better inform the design and translation of novel biomaterials to promote their regeneration. Major clinical problems in adipose tissue, cartilage, dermis, and tendon are discussed that inspire the need to replace native connective tissue with biomaterials. Then, multiscale structure-function relationships in native soft connective tissues that may be used to guide material design are detailed. Several biomaterials strategies to improve healing of these tissues that incorporate biologics and are biologic-free are reviewed. Finally, important guidance documents and standards (ASTM, FDA, and EMA) that are important to consider for translating new biomaterials into clinical practice are highligted.
Collapse
Affiliation(s)
- Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
19
|
Moncal KK, Ozbolat V, Datta P, Heo DN, Ozbolat IT. Thermally-controlled extrusion-based bioprinting of collagen. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:55. [PMID: 31041538 DOI: 10.1007/s10856-019-6258-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 04/17/2019] [Indexed: 05/23/2023]
Abstract
Thermally-crosslinked hydrogels in bioprinting have gained increasing attention due to their ability to undergo tunable crosslinking by modulating the temperature and time of crosslinking. In this paper, we present a new bioink composed of collagen type-I and Pluronic® F-127 hydrogels, which was bioprinted using a thermally-controlled bioprinting unit. Bioprintability and rheology of the composite bioink was studied in a thorough manner in order to determine the optimal bioprinting time and extrusion profile of the bioink for fabrication of three-dimensional (3D) constructs, respectively. It was observed that collagen fibers aligned themselves along the directions of the printed filaments after bioprinting based on the results on an anisotropy study. Furthermore, rat bone marrow-derived stem cells (rBMSCs) were bioprinted in order to determine the effect of thermally-controlled extrusion process. In vitro viability and proliferation study revealed that rBMSCs were able to maintain their viability after extrusion and attached to collagen fibers, spread and proliferated within the constructs up to seven days of culture.
Collapse
Affiliation(s)
- Kazim K Moncal
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Veli Ozbolat
- Department of Mechanical Engineering, Ceyhan Engineering Faculty, Cukurova University, 01950, Adana, Turkey
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, West Bengal, 711103, India
| | - Dong N Heo
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ibrahim T Ozbolat
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, USA.
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
- Biomedical Engineering Department, Pennsylvania State University, University Park, PA, 16802, USA.
- Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
20
|
Maity PP, Dutta D, Ganguly S, Kapat K, Dixit K, Chowdhury AR, Samanta R, Das NC, Datta P, Das AK, Dhara S. Isolation and mass spectrometry based hydroxyproline mapping of type II collagen derived from Capra hircus ear cartilage. Commun Biol 2019; 2:146. [PMID: 31044171 PMCID: PMC6488623 DOI: 10.1038/s42003-019-0394-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/18/2019] [Indexed: 11/19/2022] Open
Abstract
Collagen II (COLII), the most abundant protein in vertebrates, helps maintain the structural and functional integrity of cartilage. Delivery of COLII from animal sources could improve cartilage regeneration therapies. Here we show that COLII can be purified from the Capra ear cartilage, a commonly available bio-waste product, with a high yield. MALDI-MS/MS analysis evidenced post-translational modifications of the signature triplet, Glycine-Proline-Hydroxyproline (G-P-Hyp), in alpha chain of isolated COLII (COLIIA1). Additionally, thirty-two peptides containing 59 Hyp residues and a few G-X-Y triplets with positional alterations of Hyp in COLIIA1 are also identified. Furthermore, we show that an injectable hydrogel formulation containing the isolated COLII facilitates chondrogenic differentiation towards cartilage regeneration. These findings show that COLII can be isolated from Capra ear cartilage and that positional alteration of Hyp in its structural motif, as detected by newly developed mass spectrometric method, might be an early marker of cartilage disorder.
Collapse
Affiliation(s)
- Priti Prasanna Maity
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103 India
| | - Debabrata Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Sayan Ganguly
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Kausik Kapat
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Krishna Dixit
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Amit Roy Chowdhury
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103 India
| | - Ramapati Samanta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Narayan Chandra Das
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103 India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| |
Collapse
|
21
|
O'Halloran NA, Dolan EB, Kerin MJ, Lowery AJ, Duffy GP. Hydrogels in adipose tissue engineering-Potential application in post-mastectomy breast regeneration. J Tissue Eng Regen Med 2018; 12:2234-2247. [PMID: 30334613 DOI: 10.1002/term.2753] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
Current methods of breast reconstruction are associated with significant shortcomings, including capsular contracture, infection, rupture, the need for reoperation in implant-based reconstruction, and donor site morbidity in autologous reconstruction. These limitations result in severe physical and psychological issues for breast cancer patients. Recently, research has moved into the field of adipose tissue engineering to overcome these limitations. A wide range of regenerative strategies has been devised utilising various scaffold designs and biomaterials. A scaffold capable of providing appropriate biochemical and biomechanical cues for adipogenesis is required. Hydrogels have been widely studied for their suitability for adipose tissue regeneration and are advantageous secondary to their ability to accurately imitate the native extracellular matrix. The aim of this review was to analyse the use of hydrogel scaffolds in the field of adipose tissue engineering.
Collapse
Affiliation(s)
- Niamh A O'Halloran
- Discipline of Surgery, The Lambe Institute, National University of Ireland Galway, Galway, Ireland
| | - Eimear B Dolan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Discipline of Anatomy, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Michael J Kerin
- Discipline of Surgery, The Lambe Institute, National University of Ireland Galway, Galway, Ireland
| | - Aoife J Lowery
- Discipline of Surgery, The Lambe Institute, National University of Ireland Galway, Galway, Ireland
| | - Garry P Duffy
- Discipline of Anatomy, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
22
|
Singh YP, Moses JC, Bhardwaj N, Mandal BB. Injectable hydrogels: a new paradigm for osteochondral tissue engineering. J Mater Chem B 2018; 6:5499-5529. [PMID: 32254962 DOI: 10.1039/c8tb01430b] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteochondral tissue engineering has become a promising strategy for repairing focal chondral lesions and early osteoarthritis (OA), which account for progressive joint pain and disability in millions of people worldwide. Towards improving osteochondral tissue repair, injectable hydrogels have emerged as promising matrices due to their wider range of properties such as their high water content and porous framework, similarity to the natural extracellular matrix (ECM), ability to encapsulate cells within the matrix and ability to provide biological cues for cellular differentiation. Further, their properties such as those that facilitate minimally invasive deployment or delivery, and their ability to repair geometrically complex irregular defects have been critical for their success. In this review, we provide an overview of innovative approaches to engineer injectable hydrogels towards improved osteochondral tissue repair. Herein, we focus on understanding the biology of osteochondral tissue and osteoarthritis along with the need for injectable hydrogels in osteochondral tissue engineering. Furthermore, we discuss in detail different biomaterials (natural and synthetic) and various advanced fabrication methods being employed for the development of injectable hydrogels in osteochondral repair. In addition, in vitro and in vivo applications of developed injectable hydrogels for osteochondral tissue engineering are also reviewed. Finally, conclusions and future perspectives of using injectable hydrogels in osteochondral tissue engineering are provided.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | | | | | | |
Collapse
|
23
|
Wang X, Yan J, Pan D, Yang R, Wang L, Xu Y, Sheng J, Yue Y, Huang Q, Wang Y, Wang R, Yang M. Polyphenol-Poloxamer Self-Assembled Supramolecular Nanoparticles for Tumor NIRF/PET Imaging. Adv Healthc Mater 2018; 7:e1701505. [PMID: 29761649 DOI: 10.1002/adhm.201701505] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Self-assembled supramolecular nanoparticles have remarkable benefits in bioimaging and drug delivery. Here it is first reported that polyphenol and poloxamer self-assemble supramolecular nanoparticles (PPNPs). PPNPs are fabricated by multivalent hydrogen bonding between tannic acid and Pluronic F-127 together with hydrophobic interactions of poly(propylene oxide) chains, to be applied in tumor near-infrared fluorescence (NIRF) imaging and positron emission tomography (PET) imaging. With near-infrared fluorescent dyes such as IR780 encapsulated via hydrophobic interactions, PPNPs are used in NIRF imaging. PPNPs with excess phenolic hydroxyl groups chelating positron emitting radionuclide 89 Zr function as a PET contrast agent. The in vivo results show surprisingly higher fluorescence intensity in tumors than in other tissues. In addition, PPNPs exhibit good biocompatibility in various cell lines and do not induce hemolysis in vitro. In this study, it is demonstrated that biodegradable and biocompatible PPNPs are an excellent bimodal contrast agent for in vivo tumor imaging.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Junjie Yan
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Runlin Yang
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Lizhen Wang
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Yuping Xu
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Jie Sheng
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Yuanyuan Yue
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Qianhuan Huang
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Yanting Wang
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Rongrong Wang
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| | - Min Yang
- Key Laboratory of Nuclear Medicine; Ministry of Health; Jiangsu Key Laboratory of Molecular Nuclear Medicine; Jiangsu Institute of Nuclear Medicine; Wuxi 214063 China
| |
Collapse
|
24
|
Leach JK, Whitehead J. Materials-Directed Differentiation of Mesenchymal Stem Cells for Tissue Engineering and Regeneration. ACS Biomater Sci Eng 2018; 4:1115-1127. [PMID: 30035212 PMCID: PMC6052883 DOI: 10.1021/acsbiomaterials.6b00741] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell-based therapies are a promising alternative to grafts and organ transplantation for treating tissue loss or damage due to trauma, malfunction, or disease. Over the past two decades, mesenchymal stem cells (MSCs) have attracted much attention as a potential cell population for use in regenerative medicine. While the proliferative capacity and multilineage potential of MSCs provide an opportunity to generate clinically relevant numbers of transplantable cells, their use in tissue regenerative applications has met with relatively limited success to date apart from secreting paracrine-acting factors to modulate the defect microenvironment. Presently, there is significant effort to engineer the biophysical properties of biomaterials to direct MSC differentiation and further expand on the potential of MSCs in tissue engineering, regeneration, and repair. Biomaterials can dictate MSC differentiation by modulating features of the substrate including composition, mechanical properties, porosity, and topography. The purpose of this review is to highlight recent approaches for guiding MSC fate using biomaterials and provide a description of the underlying characteristics that promote differentiation toward a desired phenotype.
Collapse
Affiliation(s)
- J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Medical Center, Sacramento, C 95817
| | - Jacklyn Whitehead
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| |
Collapse
|
25
|
Allbright KO, Bliley JM, Havis E, Kim D, Dibernardo GA, Grybowski D, Waldner M, James IB, Sivak WN, Rubin JP, Marra KG. Delivery of adipose‐derived stem cells in poloxamer hydrogel improves peripheral nerve regeneration. Muscle Nerve 2018; 58:251-260. [DOI: 10.1002/mus.26094] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Kassandra O. Allbright
- Department of Plastic Surgery, School of MedicineUniversity of Pittsburgh3550 Terrace Street 6B, Scaife Hall Pittsburgh Pennsylvania15261 USA
| | - Jacqueline M. Bliley
- Department of Plastic Surgery, School of MedicineUniversity of Pittsburgh3550 Terrace Street 6B, Scaife Hall Pittsburgh Pennsylvania15261 USA
| | - Emmanuelle Havis
- Department of Plastic Surgery, School of MedicineUniversity of Pittsburgh3550 Terrace Street 6B, Scaife Hall Pittsburgh Pennsylvania15261 USA
| | - Deok‐Yeol Kim
- Department of Plastic Surgery, School of MedicineUniversity of Pittsburgh3550 Terrace Street 6B, Scaife Hall Pittsburgh Pennsylvania15261 USA
| | - Gabriella A. Dibernardo
- Department of Plastic Surgery, School of MedicineUniversity of Pittsburgh3550 Terrace Street 6B, Scaife Hall Pittsburgh Pennsylvania15261 USA
| | - Damian Grybowski
- Department of Plastic Surgery, School of MedicineUniversity of Pittsburgh3550 Terrace Street 6B, Scaife Hall Pittsburgh Pennsylvania15261 USA
| | - Matthias Waldner
- Department of Plastic Surgery, School of MedicineUniversity of Pittsburgh3550 Terrace Street 6B, Scaife Hall Pittsburgh Pennsylvania15261 USA
| | - Isaac B. James
- Department of Plastic Surgery, School of MedicineUniversity of Pittsburgh3550 Terrace Street 6B, Scaife Hall Pittsburgh Pennsylvania15261 USA
| | - Wesley N. Sivak
- Department of Plastic Surgery, School of MedicineUniversity of Pittsburgh3550 Terrace Street 6B, Scaife Hall Pittsburgh Pennsylvania15261 USA
| | - J. Peter Rubin
- Department of Plastic Surgery, School of MedicineUniversity of Pittsburgh3550 Terrace Street 6B, Scaife Hall Pittsburgh Pennsylvania15261 USA
| | - Kacey G. Marra
- Department of Plastic Surgery, School of MedicineUniversity of Pittsburgh3550 Terrace Street 6B, Scaife Hall Pittsburgh Pennsylvania15261 USA
| |
Collapse
|
26
|
Yang H, Wu S, Feng R, Huang J, Liu L, Liu F, Chen Y. Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats. Stem Cell Res Ther 2017; 8:267. [PMID: 29157289 PMCID: PMC5697119 DOI: 10.1186/s13287-017-0718-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/03/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022] Open
Abstract
Background Intrauterine adhesion (IUA) is a common uterine cavity disease which can be caused by mechanical damage that may eventually lead to infertility and pregnancy abnormalities. Since the effect of therapeutic drugs appears disappointing, cell therapy has emerged as an alternative choice for endometrium regeneration. The aim of this study is to investigate whether the combination of hydrogel Pluronic F-127 (PF-127), Vitamin C (Vc), and a bone marrow stromal cell (BMSC) mixture could be a feasible strategy to improve the endometrial regeneration in a mechanical damage model of IUA in rats. Methods Firstly, PF-127 cytotoxicity and the effect of Vc was tested in vitro using the Annexin V/propidium iodide (PI) apoptosis test, cell count kit (CCK) growth test, and enzyme-linked immunosorbent assay (ELISA). For the establishment of the rat IUA model, a 2-mm transverse incision in the uterus was prepared at the upper end, and 1.5- to 2.0-cm endometrial damage was scraped. Rats were randomly assigned to five groups to investigate the combined strategy on IUA uterine regeneration: a sham group, an IUA control group, an IUA BMSC encapsulated in PF-127 plus Vc group, an IUA BMSC plus Vc group, and an IUA PF-127 plus Vc group. A cell mixture was injected into the uterine horn while making the IUA model. Eight weeks after cell transplantation, the rats were sacrificed and the uterine was dissected for analysis. Endometrial thickness, gland number, fibrosis area, and the expression of marker proteins for endometrial membrane were examined by hematoxylin and eosin staining, Masson’s staining, and immunohistochemistry. Results Vc promoted the survival and health of PF-127-encapsulated BMSCs in vitro. When this combination was transplanted in vivo, the endometrium showed better restoration as the endometrium membrane became thicker and had more glands and less fibrosis areas. The expression of cytokeratin, von Willebrand Factor (vWF), was also restored. The proinflammatory cytokine interleukin-1β (IL-1β) was significantly lower compared with the control group. Conclusions Vc alleviates the cytotoxic effect of PF-127 and promotes cell survival and growth in rat BMSC encapsulation. Thus, a cell therapy strategy containing biomaterial scaffold, BMSCs and the modulatory factor Vc promotes the restoration of damaged IUA endometrium.
Collapse
Affiliation(s)
- Huan Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Center for Reproductive Medicine, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Su Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ran Feng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lixiang Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Feng Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yuqing Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
27
|
Van Nieuwenhove I, Tytgat L, Ryx M, Blondeel P, Stillaert F, Thienpont H, Ottevaere H, Dubruel P, Van Vlierberghe S. Soft tissue fillers for adipose tissue regeneration: From hydrogel development toward clinical applications. Acta Biomater 2017; 63:37-49. [PMID: 28941654 DOI: 10.1016/j.actbio.2017.09.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/05/2017] [Accepted: 09/19/2017] [Indexed: 02/08/2023]
Abstract
There is a clear and urgent clinical need to develop soft tissue fillers that outperform the materials currently used for adipose tissue reconstruction. Recently, extensive research has been performed within this field of adipose tissue engineering as the commercially available products and the currently existing techniques are concomitant with several disadvantages. Commercial products are highly expensive and associated with an imposing need for repeated injections. Lipofilling or free fat transfer has an unpredictable outcome with respect to cell survival and potential resorption of the fat grafts. Therefore, researchers are predominantly investigating two challenging adipose tissue engineering strategies: in situ injectable materials and porous 3D printed scaffolds. The present work provides an overview of current research encompassing synthetic, biopolymer-based and extracellular matrix-derived materials with a clear focus on emerging fabrication technologies and developments realized throughout the last decade. Moreover, clinical relevance of the most promising materials will be discussed, together with potential concerns associated with their application in the clinic.
Collapse
|
28
|
Kaisang L, Siyu W, Lijun F, Daoyan P, Xian CJ, Jie S. Adipose-derived stem cells seeded in Pluronic F-127 hydrogel promotes diabetic wound healing. J Surg Res 2017; 217:63-74. [DOI: 10.1016/j.jss.2017.04.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
|
29
|
Ceccaldi C, Bushkalova R, Cussac D, Duployer B, Tenailleau C, Bourin P, Parini A, Sallerin B, Girod Fullana S. Elaboration and evaluation of alginate foam scaffolds for soft tissue engineering. Int J Pharm 2017; 524:433-442. [DOI: 10.1016/j.ijpharm.2017.02.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 01/18/2023]
|
30
|
Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: A comprehensive review on bioprintable materials. Biotechnol Adv 2017; 35:217-239. [PMID: 28057483 DOI: 10.1016/j.biotechadv.2016.12.006] [Citation(s) in RCA: 559] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/16/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
This paper discusses "bioink", bioprintable materials used in three dimensional (3D) bioprinting processes, where cells and other biologics are deposited in a spatially controlled pattern to fabricate living tissues and organs. It presents the first comprehensive review of existing bioink types including hydrogels, cell aggregates, microcarriers and decellularized matrix components used in extrusion-, droplet- and laser-based bioprinting processes. A detailed comparison of these bioink materials is conducted in terms of supporting bioprinting modalities and bioprintability, cell viability and proliferation, biomimicry, resolution, affordability, scalability, practicality, mechanical and structural integrity, bioprinting and post-bioprinting maturation times, tissue fusion and formation post-implantation, degradation characteristics, commercial availability, immune-compatibility, and application areas. The paper then discusses current limitations of bioink materials and presents the future prospects to the reader.
Collapse
Affiliation(s)
- Monika Hospodiuk
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Madhuri Dey
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Department of Chemistry, Penn State University, University Park, PA, 16802, USA
| | - Donna Sosnoski
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA; The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA; Materials Research Institute, Penn State University, University Park, PA 16802, USA; Biomedical Engineering Department, Penn State University, University Park, PA 16802, USA.
| |
Collapse
|
31
|
Chae DS, Han S, Son M, Kim SW. Stromal vascular fraction shows robust wound healing through high chemotactic and epithelialization property. Cytotherapy 2017; 19:543-554. [PMID: 28209525 DOI: 10.1016/j.jcyt.2017.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/17/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although human stromal vascular fraction (SVF) has been regarded as an attractive stem cell source, its therapeutic mechanism in wound healing has not been fully elucidated. AIMS In this study, we investigated the molecular characteristics and therapeutic property of SVF for wound healing. METHODS Microarray data showed that SVF cells are enriched with a higher level of wound healing or epithelium development-related genes and micro RNA. RESULTS Quantitative polymerase chain reaction (PCR) and reverse transcriptase PCR results revealed that the epithelialization growth factor, epidermal growth factor (EGF), chemokines, stromal cell-derived factor (SDF-1 or CXCL12), neutrophil-activating protein-2 (NAP-2 or CXCL7), chemokine receptors (CXCR1, CCR2 and CCR3) and wound healing genes were up-regulated in SVF compared with those in adipose-derived mesenchymal stem cells (ASCs). An in vitro scratch wound closure experiment demonstrated that co-culture with SVF substantially accelerated the wound closure of fibroblasts. Wounds in nude mice were created by skin excisions followed by injections of SVF with Pluronic hydrogel. SVF implantation highly accelerated wound closure and increased cellularity and re-epithelialization. In addition, the transplanted SVF exhibited high engraftment rates in the wound area, suggesting direct benefits for cutaneous closure. CONCLUSIONS Taken together, these data suggest that SVF possesses high therapeutic capability for wound healing via the secretion of epithelialization and chemotactic growth factors and enhanced engraftment properties.
Collapse
Affiliation(s)
- Dong-Sic Chae
- Department of Orthopedic Surgery, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Seongho Han
- Department of Family Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Mina Son
- Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Sung-Whan Kim
- Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea.
| |
Collapse
|
32
|
Pyrintegrin Induces Soft Tissue Formation by Transplanted or Endogenous Cells. Sci Rep 2017; 7:36402. [PMID: 28128224 PMCID: PMC5269584 DOI: 10.1038/srep36402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022] Open
Abstract
Focal adipose deficiency, such as lipoatrophy, lumpectomy or facial trauma, is a formidable challenge in reconstructive medicine, and yet scarcely investigated in experimental studies. Here, we report that Pyrintegrin (Ptn), a 2,4-disubstituted pyrimidine known to promote embryonic stem cells survival, is robustly adipogenic and induces postnatal adipose tissue formation in vivo of transplanted adipose stem/progenitor cells (ASCs) and recruited endogenous cells. In vitro, Ptn stimulated human adipose tissue derived ASCs to differentiate into lipid-laden adipocytes by upregulating peroxisome proliferator-activated receptor (PPARγ) and CCAAT/enhancer-binding protein-α (C/EBPα), with differentiated cells increasingly secreting adiponectin, leptin, glycerol and total triglycerides. Ptn-primed human ASCs seeded in 3D-bioprinted biomaterial scaffolds yielded newly formed adipose tissue that expressed human PPARγ, when transplanted into the dorsum of athymic mice. Remarkably, Ptn-adsorbed 3D scaffolds implanted in the inguinal fat pad had enhanced adipose tissue formation, suggesting Ptn’s ability to induce in situ adipogenesis of endogenous cells. Ptn promoted adipogenesis by upregulating PPARγ and C/EBPα not only in adipogenesis induction medium, but also in chemically defined medium specifically for osteogenesis, and concurrently attenuated Runx2 and Osx via BMP-mediated SMAD1/5 phosphorylation. These findings suggest Ptn’s novel role as an adipogenesis inducer with a therapeutic potential in soft tissue reconstruction and augmentation.
Collapse
|
33
|
Wang P, Chu W, Zhuo X, Zhang Y, Gou J, Ren T, He H, Yin T, Tang X. Modified PLGA–PEG–PLGA thermosensitive hydrogels with suitable thermosensitivity and properties for use in a drug delivery system. J Mater Chem B 2017; 5:1551-1565. [DOI: 10.1039/c6tb02158a] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PLGA–PEG–PLGA (PPP) triblock copolymer is the most widely studied thermosensitive hydrogel owing to its non-toxic, biocompatible, biodegradable, and thermosensitive properties.
Collapse
Affiliation(s)
- Puxiu Wang
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Wei Chu
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Xuezhi Zhuo
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Yu Zhang
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Jingxin Gou
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Tianyang Ren
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Haibing He
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Tian Yin
- School of Functional Food and Wine
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Xing Tang
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- China
| |
Collapse
|
34
|
Gu D, O'Connor AJ, G H Qiao G, Ladewig K. Hydrogels with smart systems for delivery of hydrophobic drugs. Expert Opin Drug Deliv 2016; 14:879-895. [PMID: 27705026 DOI: 10.1080/17425247.2017.1245290] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Smart hydrogel systems present opportunities to not only provide hydrophobic molecule encapsulation capability but to also respond to specific delivery routes. Areas covered: An overview of the design principles, preparation methods and applications of hydrogel systems for delivery of hydrophobic drugs is given. It begins with a summary of the advantages of hydrogels as delivery vehicles over other approaches, particularly macromolecular nanocarriers, before proceeding to address the design and preparation strategies and chemistry involved, with a particular focus on the introduction of hydrophobic domains into (naturally) hydrophilic hydrogels. Finally, the applications in different delivery routes are discussed. Expert opinion: Modifications to conventional hydrogels can endow them with the capability to carry hydrophobic drugs but other functions as well, such as the improved mechanical stability, which is important for long-term in vivo residence and/or self-healing properties useful for injectable delivery pathways. These modifications harness hydrophobic-hydrophobic forces, physical interactions and inclusion complexes. The lack of in-depth understanding of these interactions, currently limits more delicate and application-oriented designs. Increased efforts are needed in (i) understanding the interplay of gel formation and simultaneous drug loading; (ii) improving hydrogel systems with respect to their biosafety; and (iii) control over release mechanism and profile.
Collapse
Affiliation(s)
- Dunyin Gu
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| | - Andrea J O'Connor
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| | - Greg G H Qiao
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| | - Katharina Ladewig
- a Department of Chemical and Biomolecular Engineering , The University of Melbourne , Parkville , Australia
| |
Collapse
|
35
|
Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells. Stem Cells Int 2016; 2016:5786257. [PMID: 26977158 PMCID: PMC4764745 DOI: 10.1155/2016/5786257] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022] Open
Abstract
Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.
Collapse
|
36
|
Diniz IMA, Chen C, Xu X, Ansari S, Zadeh HH, Marques MM, Shi S, Moshaverinia A. Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:153. [PMID: 25773231 PMCID: PMC4477746 DOI: 10.1007/s10856-015-5493-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/09/2015] [Indexed: 05/16/2023]
Abstract
Dental-derived mesenchymal stem cells (MSCs) provide an advantageous therapeutic option for tissue engineering due to their high accessibility and bioavailability. However, delivering MSCs to defect sites while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated tissue regeneration. Here, we tested the osteogenic and adipogenic differentiation capacity of dental pulp stem cells (DPSCs) in a thermoreversible Pluronic F127 hydrogel scaffold encapsulation system in vitro. DPSCs were encapsulated in Pluronic (®) F-127 hydrogel and stem cell viability, proliferation and differentiation into adipogenic and osteogenic tissues were evaluated. The degradation profile and swelling kinetics of the hydrogel were also analyzed. Our results confirmed that Pluronic F-127 is a promising and non-toxic scaffold for encapsulation of DPSCs as well as control human bone marrow MSCs (hBMMSCs), yielding high stem cell viability and proliferation. Moreover, after 2 weeks of differentiation in vitro, DPSCs as well as hBMMSCs exhibited high levels of mRNA expression for osteogenic and adipogenic gene markers via PCR analysis. Our histochemical staining further confirmed the ability of Pluronic F-127 to direct the differentiation of these stem cells into osteogenic and adipogenic tissues. Furthermore, our results revealed that Pluronic F-127 has a dense tubular and reticular network morphology, which contributes to its high permeability and solubility, consistent with its high degradability in the tested conditions. Altogether, our findings demonstrate that Pluronic F-127 is a promising scaffold for encapsulation of DPSCs and can be considered for cell delivery purposes in tissue engineering.
Collapse
Affiliation(s)
- Ivana M. A. Diniz
- />Center for Craniofacial Molecular Biology, Ostrow School of Dentistry of USC, University of Southern California, 2250 Alcazar Street - CSA 103, Los Angeles, CA 90033 USA
- />Restorative Dentistry Department, School of Dentistry, Universidade de São Paulo, São Paulo, SP Brazil
| | - Chider Chen
- />Center for Craniofacial Molecular Biology, Ostrow School of Dentistry of USC, University of Southern California, 2250 Alcazar Street - CSA 103, Los Angeles, CA 90033 USA
| | - Xingtian Xu
- />Center for Craniofacial Molecular Biology, Ostrow School of Dentistry of USC, University of Southern California, 2250 Alcazar Street - CSA 103, Los Angeles, CA 90033 USA
| | - Sahar Ansari
- />Center for Craniofacial Molecular Biology, Ostrow School of Dentistry of USC, University of Southern California, 2250 Alcazar Street - CSA 103, Los Angeles, CA 90033 USA
- />Laboratory for Immunoregulation and Tissue Engineering (LITE), Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA USA
| | - Homayoun H. Zadeh
- />Laboratory for Immunoregulation and Tissue Engineering (LITE), Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA USA
| | - Márcia M. Marques
- />Restorative Dentistry Department, School of Dentistry, Universidade de São Paulo, São Paulo, SP Brazil
| | - Songtao Shi
- />Center for Craniofacial Molecular Biology, Ostrow School of Dentistry of USC, University of Southern California, 2250 Alcazar Street - CSA 103, Los Angeles, CA 90033 USA
| | - Alireza Moshaverinia
- />Center for Craniofacial Molecular Biology, Ostrow School of Dentistry of USC, University of Southern California, 2250 Alcazar Street - CSA 103, Los Angeles, CA 90033 USA
| |
Collapse
|
37
|
Taşlı PN, Doğan A, Demirci S, Şahin F. Myogenic and neurogenic differentiation of human tooth germ stem cells (hTGSCs) are regulated by pluronic block copolymers. Cytotechnology 2015; 68:319-29. [PMID: 25698158 DOI: 10.1007/s10616-014-9784-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 08/26/2014] [Indexed: 01/26/2023] Open
Abstract
Stem cells with high proliferation, self-renewal and differentiation capacities are promising for tissue engineering approaches. Among stem cells, human tooth germ stem cells (hTGSCs) having mesenchymal stem cell characteristics are highly proliferative and able to differentiate into several cell lineages. Researchers have recently focused on transplanting stem cells with bioconductive and/or bioinductive materials that can provide cell commitment to the desired cell lineages. In the present study, effects of pluronic block copolymers (F68, F127 and P85) on in vitro myo- and neurogenic differentiation of human tooth germ stem cells (hTGSCs) were investigated. As P85 was found to exert considerable toxicity to hTGSCs even at low concentrations, it was not evaluated for further differentiation experiments. Immunocytochemical analysis, gene and protein expression studies revealed that while F68 treatment increased lineage-specific gene expression in both myo- and neuro-genically differentiated cells, F127 did not result in any remarkable difference compared to cells treated with differentiation medium. Subsequent studies are required to explore the exact mechanisms of how F68 increases the myogenic and neurogenic differentiation of hTGSCs. The present work indicates that pluronic F68 might be used in functional skeletal and neural tissue engineering applications.
Collapse
Affiliation(s)
- P Neslihan Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Agustos Campus, Kayisdagi cad., Kayisdagi, 34755, Istanbul, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Agustos Campus, Kayisdagi cad., Kayisdagi, 34755, Istanbul, Turkey.
| | - Selami Demirci
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Agustos Campus, Kayisdagi cad., Kayisdagi, 34755, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Agustos Campus, Kayisdagi cad., Kayisdagi, 34755, Istanbul, Turkey.
| |
Collapse
|
38
|
Directing parthenogenetic stem cells differentiate into adipocytes for engineering injectable adipose tissue. Stem Cells Int 2014; 2014:423635. [PMID: 25587287 PMCID: PMC4284990 DOI: 10.1155/2014/423635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/01/2014] [Accepted: 11/04/2014] [Indexed: 01/01/2023] Open
Abstract
The selection of appropriate seed cells is crucial for adipose tissue engineering. Here, we reported the stepwise induction of parthenogenetic embryonic stem cells (pESCs) to differentiate into adipogenic cells and its application in engineering injectable adipose tissue with Pluronic F-127. pESCs had pluripotent differentiation capacity and could form teratomas that include the three primary germ layers. Cells that migrated from the embryoid bodies (EBs) were selectively separated and expanded to obtain embryonic mesenchymal stem cells (eMSCs). The eMSCs exhibited similar cell surface marker expression profiles with bone morrow mesenchymal stem cells (BMSCs) and had multipotent differentiation capacity. Under the induction of dexamethasone, indomethacin, and insulin, eMSCs could differentiate into adipogenic cells with increased expression of adipose-specific genes and oil droplet depositions within the cytoplasm. To evaluate their suitability as seed cells for adipose tissue engineering, the CM-Dil labelled adipogenic cells derived from eMSCs were seeded into Pluronic F-127 hydrogel and injected subcutaneously into nude mice. Four weeks after injection, glistering and semitransparent constructs formed in the subcutaneous site. Histological observations demonstrated that new adipose tissue was successfully fabricated in the specimen by the labelled cells. The results of the current study indicated that pESCs have great potential in the fabrication of injectable adipose tissue.
Collapse
|
39
|
Zhao W, Li X, Liu X, Zhang N, Wen X. Effects of substrate stiffness on adipogenic and osteogenic differentiation of human mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 40:316-23. [PMID: 24857499 DOI: 10.1016/j.msec.2014.03.048] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/01/2014] [Accepted: 03/19/2014] [Indexed: 12/13/2022]
Abstract
Substrate mechanical properties, in addition to biochemical signals, have been shown to modulate cell phenotype. In this study, we inspected the effects of substrate stiffness on human mesenchymal stem cells (hMSCs) derived from adult human bone marrow differentiation into adipogenic and osteogenic cells. A chemically modified extracellular matrix derived and highly biocompatible hydrogel, based on thiol functionalized hyaluronic acid (HA-SH) and thiol functionalized recombinant human gelatin (Gtn-SH), which can be crosslinked by poly (ethylene glycol) tetra-acrylate (PEGTA), was used as a model system. The stiffness of the hydrogel was controlled by adjusting the crosslinking density. Human bone marrow MSCs were cultured on the hydrogels with different stiffness under adipogenic and osteogenic conditions. Oil Red O staining and F-actin staining were applied to assess the change of cell morphologies under adipogenic and osteogenic differentiation, respectively. Gene expression of cells was determined with reverse transcription polymerase chain reaction (RT-PCR) as a function of hydrogel stiffness. Results support the hypothesis that adipogenic and osteogenic differentiation of hMSCs are inclined to occur on substrate with stiffness similar to their in vivo microenvironments.
Collapse
Affiliation(s)
- Wen Zhao
- Department of Orthopedic Surgery, The General Hospital of Chinese People's Liberation Army (301 hospital), Beijing, 100853, PR China; Department of Orthopedic Surgery; Beijing Aerospace General Hospital, Beijing, 100076, PR China
| | - Xiaowei Li
- Clemson -MUSC Bioengineering Program, Department of Bioengineering, Clemson University, Charleston, SC 29425, USA
| | - Xiaoyan Liu
- Clemson -MUSC Bioengineering Program, Department of Bioengineering, Clemson University, Charleston, SC 29425, USA
| | - Ning Zhang
- Clemson -MUSC Bioengineering Program, Department of Bioengineering, Clemson University, Charleston, SC 29425, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xuejun Wen
- Clemson -MUSC Bioengineering Program, Department of Bioengineering, Clemson University, Charleston, SC 29425, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Orthopedic Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China; The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, 200092, PR China.
| |
Collapse
|
40
|
Tanzi MC, Farè S. Adipose tissue engineering: state of the art, recent advances and innovative approaches. Expert Rev Med Devices 2014; 6:533-51. [DOI: 10.1586/erd.09.37] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Khan W, Challa VGS, Langer R, Domb AJ. Biodegradable Polymers for Focal Delivery Systems. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1007/978-1-4614-9434-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Abstract
Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.
Collapse
Affiliation(s)
- Wenting Zhu
- Department of Chemical and Biological Engineering; Princeton University; Princeton, NJ USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering; Princeton University; Princeton, NJ USA; Department of Molecular Biology; Princeton University; Princeton, NJ USA
| |
Collapse
|
43
|
Campbell JJ, Watson CJ. Three-dimensional culture models of mammary gland. Organogenesis 2012; 5:43-9. [PMID: 19794898 DOI: 10.4161/org.5.2.8321] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 03/02/2009] [Indexed: 01/14/2023] Open
Abstract
The mammary gland is a complex tissue comprised of a branching network of ducts embedded within an adipocyte-rich stroma. The ductal epithelium is a bi-layer of luminal and myoepithelial cells, the latter being in contact with a basement membrane. During pregnancy, tertiary branching occurs and lobuloalveolar structures, which produce milk during lactation, form in response to hormonal and cytokine signals. Postlactational regression is characterized by extensive cell death and tissue remodeling. These complex developmental events have been difficult to mimic in cell culture although many useful culture models exist. Recently, considerable advances in three-dimensional modelling of the mammary gland have been made with the use of collagen and other biomaterials for the study of branching morphogenesis and tumorigenesis, techniques which may enable rapid advances in our understanding of both basic biology and the study of cancer therapeutics.
Collapse
|
44
|
Doğan A, Yalvaç ME, Şahin F, Kabanov AV, Palotás A, Rizvanov AA. Differentiation of human stem cells is promoted by amphiphilic pluronic block copolymers. Int J Nanomedicine 2012; 7:4849-60. [PMID: 23028214 PMCID: PMC3441230 DOI: 10.2147/ijn.s31949] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stem cell usage provides novel avenues of tissue regeneration and therapeutics across disciplines. Apart from ethical considerations, the selection and amplification of donor stem cells remain a challenge. Various biopolymers with a wide range of properties have been used extensively to deliver biomolecules such as drugs, growth factors and nucleic acids, as well as to provide biomimetic surface for cellular adhesion. Using human tooth germ stem cells with high proliferation and transformation capacity, we have investigated a range of biopolymers to assess their potential for tissue engineering. Tolerability, toxicity, and their ability to direct differentiation were evaluated. The majority of pluronics, consisting of both hydrophilic and hydrophobic poly(ethylene oxide) chains, either exerted cytotoxicity or had no significant effect on human tooth germ stem cells; whereas F68 increased the multi-potency of stem cells, and efficiently transformed them into osteogenic, chondrogenic, and adipogenic tissues. The data suggest that differentiation and maturation of stem cells can be promoted by selecting the appropriate mechanical and chemical properties of polymers. It has been shown for the first time that F68, with its unique molecular characteristics, has a great potential to increase the differentiation of cells, which may lead to the development of new tissue engineering strategies in regenerative medicine.
Collapse
Affiliation(s)
- Ayşegül Doğan
- Department of Genetics and BioEngineering, College of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
45
|
Choi JS, Yoo HS. Chitosan/Pluronic Hydrogel Containing bFGF/Heparin for Encapsulation of Human Dermal Fibroblasts. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:210-23. [DOI: 10.1163/156856212x630267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Ji Suk Choi
- a Department of Biomaterials Engineering , School of Bioscience and Bioengineering, Kangwon National University , Chuncheon , 200-701 , South Korea
| | - Hyuk Sang Yoo
- a Department of Biomaterials Engineering , School of Bioscience and Bioengineering, Kangwon National University , Chuncheon , 200-701 , South Korea
- b Institute of Bioscience and Bioengineering, Kangwon National University , South Korea
| |
Collapse
|
46
|
Ye F, Larsen SW, Yaghmur A, Jensen H, Larsen C, Østergaard J. Real-time UV imaging of piroxicam diffusion and distribution from oil solutions into gels mimicking the subcutaneous matrix. Eur J Pharm Sci 2012; 46:72-8. [DOI: 10.1016/j.ejps.2012.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 01/27/2012] [Accepted: 02/16/2012] [Indexed: 12/23/2022]
|
47
|
Srisuwan T, Tilkorn D, Al-Benna S, Vashi A, Penington A, Messer H, Abberton K, Thompson E. Survival of rat functional dental pulp cells in vascularized tissue engineering chambers. Tissue Cell 2012; 44:111-21. [DOI: 10.1016/j.tice.2011.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 12/16/2011] [Accepted: 12/17/2011] [Indexed: 01/09/2023]
|
48
|
Abstract
Adipose tissue engineering has recently gained significant attention from materials scientists as a result of the exponential growth of soft tissue filler procedures being performed within the clinic. While several injectable materials are currently being marketed for filling subcutaneous voids, they often face limited longevity due to rapid resorption. Their inability to encourage natural adipose formation or ingrowth necessitates repeated injections for a prolonged effect and thus classifies them as temporary fillers. As a result, a significant need for injectable materials that not only act as fillers but also promote in vivo adipogenesis is beginning to be realized. This paper will discuss the advantages and disadvantages of commercially available soft tissue fillers. It will then summarize the current state of research using injectable synthetic materials, biopolymers and extracellular matrix-derived materials for adipose tissue engineering. Furthermore, the successful attributes observed across each of these materials will be outlined along with a discussion of the current difficulties and future directions for adipose tissue engineering.
Collapse
Affiliation(s)
- D A Young
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | | |
Collapse
|
49
|
Huang J, Wang S, Wei C, Xu Y, Wang Y, Jin J, Teng G. In vivo differentiation of adipose-derived stem cells in an injectable poloxamer-octapeptide hybrid hydrogel. Tissue Cell 2011; 43:344-9. [DOI: 10.1016/j.tice.2011.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
|
50
|
Zhang J, Tokatlian T, Zhong J, Ng QKT, Patterson M, Lowry B, Carmichael ST, Segura T. Physically associated synthetic hydrogels with long-term covalent stabilization for cell culture and stem cell transplantation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:5098-103. [PMID: 21997799 PMCID: PMC3242734 DOI: 10.1002/adma.201103349] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 09/16/2011] [Indexed: 05/21/2023]
Affiliation(s)
- Jianjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Talar Tokatlian
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Jin Zhong
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| | - Quinn KT Ng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Michaela Patterson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Bill Lowry
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
- Corresponding-Author Prof. Tatiana Segura 420 Westwood Plaza, 5531 Boelter Hall Los Angeles, CA 90095 Phone: +1-310-206-3980 Fax: +1-310-206-4170
| |
Collapse
|