1
|
Bedir T, Baykara D, Yildirim R, Calikoglu Koyuncu AC, Sahin A, Kaya E, Tinaz GB, Insel MA, Topuzogulları M, Gunduz O, Ustundag CB, Narayan R. Three-Dimensional-Printed GelMA-KerMA Composite Patches as an Innovative Platform for Potential Tissue Engineering of Tympanic Membrane Perforations. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:563. [PMID: 38607098 PMCID: PMC11013928 DOI: 10.3390/nano14070563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
Tympanic membrane (TM) perforations, primarily induced by middle ear infections, the introduction of foreign objects into the ear, and acoustic trauma, lead to hearing abnormalities and ear infections. We describe the design and fabrication of a novel composite patch containing photocrosslinkable gelatin methacryloyl (GelMA) and keratin methacryloyl (KerMA) hydrogels. GelMA-KerMA patches containing conical microneedles in their design were developed using the digital light processing (DLP) 3D printing approach. Following this, the patches were biofunctionalized by applying a coaxial coating with PVA nanoparticles loaded with gentamicin (GEN) and fibroblast growth factor (FGF-2) with the Electrohydrodynamic Atomization (EHDA) method. The developed nanoparticle-coated 3D-printed patches were evaluated in terms of their chemical, morphological, mechanical, swelling, and degradation behavior. In addition, the GEN and FGF-2 release profiles, antimicrobial properties, and biocompatibility of the patches were examined in vitro. The morphological assessment verified the successful fabrication and nanoparticle coating of the 3D-printed GelMA-KerMA patches. The outcomes of antibacterial tests demonstrated that GEN@PVA/GelMA-KerMA patches exhibited substantial antibacterial efficacy against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Furthermore, cell culture studies revealed that GelMA-KerMA patches were biocompatible with human adipose-derived mesenchymal stem cells (hADMSC) and supported cell attachment and proliferation without any cytotoxicity. These findings indicated that biofunctional 3D-printed GelMA-KerMA patches have the potential to be a promising therapeutic approach for addressing TM perforations.
Collapse
Affiliation(s)
- Tuba Bedir
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (T.B.); (D.B.); (A.C.C.K.); (O.G.)
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Dilruba Baykara
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (T.B.); (D.B.); (A.C.C.K.); (O.G.)
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Ridvan Yildirim
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (T.B.); (D.B.); (A.C.C.K.); (O.G.)
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Ayse Ceren Calikoglu Koyuncu
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (T.B.); (D.B.); (A.C.C.K.); (O.G.)
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Ali Sahin
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul 34722, Turkey;
| | - Elif Kaya
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul 34668, Turkey; (E.K.); (G.B.T.)
| | - Gulgun Bosgelmez Tinaz
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul 34668, Turkey; (E.K.); (G.B.T.)
| | - Mert Akin Insel
- Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Murat Topuzogulları
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey; (T.B.); (D.B.); (A.C.C.K.); (O.G.)
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul 34220, Turkey
| | - Cem Bulent Ustundag
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey;
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul 34220, Turkey
| | - Roger Narayan
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Ball JR, Shelby T, Hernandez F, Mayfield CK, Lieberman JR. Delivery of Growth Factors to Enhance Bone Repair. Bioengineering (Basel) 2023; 10:1252. [PMID: 38002376 PMCID: PMC10669014 DOI: 10.3390/bioengineering10111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The management of critical-sized bone defects caused by nonunion, trauma, infection, malignancy, pseudoarthrosis, and osteolysis poses complex reconstruction challenges for orthopedic surgeons. Current treatment modalities, including autograft, allograft, and distraction osteogenesis, are insufficient for the diverse range of pathology encountered in clinical practice, with significant complications associated with each. Therefore, there is significant interest in the development of delivery vehicles for growth factors to aid in bone repair in these settings. This article reviews innovative strategies for the management of critical-sized bone loss, including novel scaffolds designed for controlled release of rhBMP, bioengineered extracellular vesicles for delivery of intracellular signaling molecules, and advances in regional gene therapy for sustained signaling strategies. Improvement in the delivery of growth factors to areas of significant bone loss has the potential to revolutionize current treatment for this complex clinical challenge.
Collapse
Affiliation(s)
- Jacob R. Ball
- Department of Orthopaedic Surgery, University of Southern California Keck School of Medicine, 1500 San Pablo St., Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
3
|
Słota D, Piętak K, Jampilek J, Sobczak-Kupiec A. Polymeric and Composite Carriers of Protein and Non-Protein Biomolecules for Application in Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2235. [PMID: 36984115 PMCID: PMC10059071 DOI: 10.3390/ma16062235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Conventional intake of drugs and active substances is most often based on oral intake of an appropriate dose to achieve the desired effect in the affected area or source of pain. In this case, controlling their distribution in the body is difficult, as the substance also reaches other tissues. This phenomenon results in the occurrence of side effects and the need to increase the concentration of the therapeutic substance to ensure it has the desired effect. The scientific field of tissue engineering proposes a solution to this problem, which creates the possibility of designing intelligent systems for delivering active substances precisely to the site of disease conversion. The following review discusses significant current research strategies as well as examples of polymeric and composite carriers for protein and non-protein biomolecules designed for bone tissue regeneration.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Karina Piętak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
4
|
Liang W, Chen X, Dong Y, Zhou P, Xu F. Recent advances in biomaterials as instructive scaffolds for stem cells in tissue repair and regeneration. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1848832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, P. R. China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, P. R. China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People’s Hospital, Shaoxing, P. R. China
| | - Ping Zhou
- Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, P. R. China
| | - Fangming Xu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, P. R. China
| |
Collapse
|
5
|
Zhang Y, Yu T, Peng L, Sun Q, Wei Y, Han B. Advancements in Hydrogel-Based Drug Sustained Release Systems for Bone Tissue Engineering. Front Pharmacol 2020; 11:622. [PMID: 32435200 PMCID: PMC7218105 DOI: 10.3389/fphar.2020.00622] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Bone defects caused by injury, disease, or congenital deformity remain a major health concern, and efficiently regenerating bone is a prominent clinical demand worldwide. However, bone regeneration is an intricate process that requires concerted participation of both cells and bioactive factors. Mimicking physiological bone healing procedures, the sustained release of bioactive molecules plays a vital role in creating an optimal osteogenic microenvironment and achieving promising bone repair outcomes. The utilization of biomaterial scaffolds can positively affect the osteogenesis process by integrating cells with bioactive factors in a proper way. A high water content, tunable physio-mechanical properties, and diverse synthetic strategies make hydrogels ideal cell carriers and controlled drug release reservoirs. Herein, we reviewed the current advancements in hydrogel-based drug sustained release systems that have delivered osteogenesis-inducing peptides, nucleic acids, and other bioactive molecules in bone tissue engineering (BTE).
Collapse
Affiliation(s)
- Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Liying Peng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qiannan Sun
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
6
|
Abdulghani S, Mitchell GR. Biomaterials for In Situ Tissue Regeneration: A Review. Biomolecules 2019; 9:E750. [PMID: 31752393 PMCID: PMC6920773 DOI: 10.3390/biom9110750] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
This review focuses on a somewhat unexplored strand of regenerative medicine, that is in situ tissue engineering. In this approach manufactured scaffolds are implanted in the injured region for regeneration within the patient. The scaffold is designed to attract cells to the required volume of regeneration to subsequently proliferate, differentiate, and as a consequence develop tissue within the scaffold which in time will degrade leaving just the regenerated tissue. This review highlights the wealth of information available from studies of ex-situ tissue engineering about the selection of materials for scaffolds. It is clear that there are great opportunities for the use of additive manufacturing to prepare complex personalized scaffolds and we speculate that by building on this knowledge and technology, the development of in situ tissue engineering could rapidly increase. Ex-situ tissue engineering is handicapped by the need to develop the tissue in a bioreactor where the conditions, however optimized, may not be optimum for accelerated growth and maintenance of the cell function. We identify that in both methodologies the prospect of tissue regeneration has created much promise but delivered little outside the scope of laboratory-based experiments. We propose that the design of the scaffolds and the materials selected remain at the heart of developments in this field and there is a clear need for predictive modelling which can be used in the design and optimization of materials and scaffolds.
Collapse
Affiliation(s)
- Saba Abdulghani
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-080 Marinha Grande, Portugal;
| | | |
Collapse
|
7
|
Abstract
This review focuses on a somewhat unexplored strand of regenerative medicine, that is in situ tissue engineering. In this approach manufactured scaffolds are implanted in the injured region for regeneration within the patient. The scaffold is designed to attract cells to the required volume of regeneration to subsequently proliferate, differentiate, and as a consequence develop tissue within the scaffold which in time will degrade leaving just the regenerated tissue. This review highlights the wealth of information available from studies of ex-situ tissue engineering about the selection of materials for scaffolds. It is clear that there are great opportunities for the use of additive manufacturing to prepare complex personalized scaffolds and we speculate that by building on this knowledge and technology, the development of in situ tissue engineering could rapidly increase. Ex-situ tissue engineering is handicapped by the need to develop the tissue in a bioreactor where the conditions, however optimized, may not be optimum for accelerated growth and maintenance of the cell function. We identify that in both methodologies the prospect of tissue regeneration has created much promise but delivered little outside the scope of laboratory-based experiments. We propose that the design of the scaffolds and the materials selected remain at the heart of developments in this field and there is a clear need for predictive modelling which can be used in the design and optimization of materials and scaffolds.
Collapse
|
8
|
Croisfelt FM, Tundisi LL, Ataide JA, Silveira E, Tambourgi EB, Jozala AF, Souto EMB, Mazzola PG. Modified-release topical hydrogels: a ten-year review. JOURNAL OF MATERIALS SCIENCE 2019; 54:10963-10983. [DOI: 10.1007/s10853-019-03557-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/20/2019] [Indexed: 01/06/2025]
|
9
|
Shahbazi S, Zamanian A, Pazouki M, Jafari Y. Introducing an attractive method for total biomimetic creation of a synthetic biodegradable bioactive bone scaffold based on statistical experimental design. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [PMID: 29525086 DOI: 10.1016/j.msec.2017.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new total biomimetic technique based on both the water uptake and degradation processes is introduced in this study to provide an interesting procedure to fabricate a bioactive and biodegradable synthetic scaffold, which has a good mechanical and structural properties. The optimization of effective parameters to scaffold fabrication was done by response surface methodology/central composite design (CCD). With this method, a synthetic scaffold was fabricated which has a uniform and open-interconnected porous structure with the largest pore size of 100-200μm. The obtained compressive ultimate strength of ~35MPa and compression modulus of 58MPa are similar to some of the trabecular bone. The pore morphology, size, and distribution of the scaffold were characterized using a scanning electron microscope and mercury porosimeter. Fourier transform infrared spectroscopy, EDAX and X-ray diffraction analyses were used to determine the chemical composition, Ca/P element ratio of mineralized microparticles, and the crystal structure of the scaffolds, respectively. The optimum biodegradable synthetic scaffold based on its raw materials of polypropylene fumarate, hydroxyethyl methacrylate and nano bioactive glass (PPF/HEMA/nanoBG) as 70/30wt/wt%, 20wt%, and 1.5wt/wt% (PHB.732/1.5) with desired porosity, pore size, and geometry were created by 4weeks immersion in SBF. This scaffold showed considerable biocompatibility in the ranging from 86 to 101% for the indirect and direct contact tests and good osteoblast cell attachment when studied with the bone-like cells.
Collapse
Affiliation(s)
- Sara Shahbazi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Alborz, Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Alborz, Iran.
| | - Mohammad Pazouki
- Department of Energy, Materials and Energy Research Center, Karaj, Alborz, Iran
| | - Yaser Jafari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
10
|
Charoenlarp P, Rajendran AK, Iseki S. Role of fibroblast growth factors in bone regeneration. Inflamm Regen 2017; 37:10. [PMID: 29259709 PMCID: PMC5725923 DOI: 10.1186/s41232-017-0043-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/25/2017] [Indexed: 11/17/2022] Open
Abstract
Bone is a metabolically active organ that undergoes continuous remodeling throughout life. However, many complex skeletal defects such as large traumatic bone defects or extensive bone loss after tumor resection may cause failure of bone healing. Effective therapies for these conditions typically employ combinations of cells, scaffolds, and bioactive factors. In this review, we pay attention to one of the three factors required for regeneration of bone, bioactive factors, especially the fibroblast growth factor (FGF) family. This family is composed of 22 members and associated with various biological functions including skeletal formation. Based on the phenotypes of genetically modified mice and spatio-temporal expression levels during bone fracture healing, FGF2, FGF9, and FGF18 are regarded as possible candidates useful for bone regeneration. The role of these candidate FGFs in bone regeneration is also discussed in this review.
Collapse
Affiliation(s)
- Pornkawee Charoenlarp
- Section of Molecular Craniofacial Embryology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Arun Kumar Rajendran
- Section of Molecular Craniofacial Embryology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549 Japan
| | - Sachiko Iseki
- Section of Molecular Craniofacial Embryology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549 Japan
| |
Collapse
|
11
|
Gyles DA, Castro LD, Silva JOC, Ribeiro-Costa RM. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.01.027] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
SOHAIL MUHAMMAD, AHMAD MAHMOOD, MINHAS MUHAMMADUSMAN, RASHID HAROON, KHALID IKRIMA. Development and In Vitro Evaluation of High Molecular Weight Chitosan Based Polymeric Composites for Controlled Delivery of Valsartan. ADVANCES IN POLYMER TECHNOLOGY 2016. [DOI: 10.1002/adv.21558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- MUHAMMAD SOHAIL
- Department of Pharmacy; COMSATS Institute of Information Technology; Abbottabad 22060 Pakistan
| | - MAHMOOD AHMAD
- Faculty of Pharmacy and Alternative Medicine; The Islamia University of Bahawalpur; Bahawalpur 63100 Pakistan
| | - MUHAMMAD USMAN MINHAS
- Faculty of Pharmacy and Alternative Medicine; The Islamia University of Bahawalpur; Bahawalpur 63100 Pakistan
| | - HAROON RASHID
- Faculty of Pharmacy and Alternative Medicine; The Islamia University of Bahawalpur; Bahawalpur 63100 Pakistan
| | - IKRIMA KHALID
- Faculty of Pharmacy and Alternative Medicine; The Islamia University of Bahawalpur; Bahawalpur 63100 Pakistan
| |
Collapse
|
13
|
Effectiveness of non-biodegradable poly(2-hydroxyethyl methacrylate)-based hydrogel particles as a fibroblast growth factor-2 releasing carrier. Dent Mater 2015; 31:1406-14. [DOI: 10.1016/j.dental.2015.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/08/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022]
|
14
|
Gibbs DMR, Black CRM, Dawson JI, Oreffo ROC. A review of hydrogel use in fracture healing and bone regeneration. J Tissue Eng Regen Med 2014; 10:187-98. [DOI: 10.1002/term.1968] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 10/13/2014] [Accepted: 10/20/2014] [Indexed: 01/01/2023]
|
15
|
Babo =P, Santo VE, Duarte ARC, Correia C, Costa MHG, Mano JF, Reis RL, Gomes ME. Platelet lysate membranes as new autologous templates for tissue engineering applications. Inflamm Regen 2014. [DOI: 10.2492/inflammregen.34.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
16
|
Shim IK, Chung HJ, Jung MR, Nam SY, Lee SY, Lee H, Heo SJ, Lee SJ. Biofunctional porous anodized titanium implants for enhanced bone regeneration. J Biomed Mater Res A 2013; 102:3639-48. [PMID: 24265190 DOI: 10.1002/jbm.a.35026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/07/2013] [Accepted: 10/31/2013] [Indexed: 11/10/2022]
Abstract
Efficient osseointegration is a key factor in dental implants to reduce the total time-course of therapy. Titanium implants with anodized surface gained much interest for their enhanced osseointegration. Anodized implant combined with bioactive drugs is an ideal candidate for enhance bone regeneration. Previously delivery of drugs from the metal implants has been attempted by utilizing a polymeric dip-coating method. However, the entire surface coating with polymer can diminish the advantageous surface roughness of anodized implants and cause contact inhibition between bone and implant surface. In this study, fibroblast growth factor-2 (FGF-2) loaded poly(lactide-co-glycolide) nanoparticles were partially coated on anodized Ti discs by an electrospray deposition. Nanoparticle coated anodized discs maintained their native porous structure and provided a sustained release of FGF-2 for more than 2 weeks with 40% initial burst. In vitro study confirmed the influence of polymeric nanoparticles and the release of growth factors from the Ti disc. Nanoparticle-coated groups significantly enhanced cell spreading and differentiation. For in vivo evaluation, the anodized titanium implants were applied to rabbit tibia model. The osseointegration was estimated by bone to implant contact of best three consecutive threads at the border of the implant. The mean osteointegration value of FGF-2 releasing implant groups (70.1%) was significantly higher than that of untreated implants (47.1%). We believe that the electrospray deposition technique is a particularly attractive approach for the coating of medical devices with porous surface to maintain their surface topography while allowing a sustained delivery of growth factors for bone regeneration. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 3639-3648, 2014.
Collapse
Affiliation(s)
- In Kyong Shim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
In situ tissue regeneration through host stem cell recruitment. Exp Mol Med 2013; 45:e57. [PMID: 24232256 PMCID: PMC3849571 DOI: 10.1038/emm.2013.118] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 07/31/2013] [Accepted: 08/06/2013] [Indexed: 02/06/2023] Open
Abstract
The field of tissue engineering has made steady progress in translating various tissue applications. Although the classical tissue engineering strategy, which involves the use of culture-expanded cells and scaffolds to produce a tissue construct for implantation, has been validated, this approach involves extensive cell expansion steps, requiring a lot of time and laborious effort before implantation. To bypass this ex vivo process, a new approach has been introduced. In situ tissue regeneration utilizes the body's own regenerating capacity by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the site of injury. This approach relies on development of a target-specific biomaterial scaffolding system that can effectively control the host microenvironment and mobilize host stem/progenitor cells to target tissues. An appropriate microenvironment provided by implanted scaffolds would facilitate recruitment of host cells that can be guided to regenerating structural and functional tissues.
Collapse
|
18
|
Abstract
Growth factors are soluble secreted proteins capable of affecting a variety of cellular processes important for tissue regeneration. Consequently, the self-healing capacity of patients can be augmented by artificially enhancing one or more processes important for healing through the application of growth factors. However, their application in clinics remains limited due to lack of robust delivery systems and biomaterial carriers. Interestingly, all clinically approved therapies involving growth factors utilize some sort of a biomaterial carrier for growth factor delivery. This suggests that biomaterial delivery systems are extremely important for successful usage of growth factors in regenerative medicine. This review outlines the role of growth factors in tissue regeneration, and their application in both pre-clinical animal models of regeneration and clinical trials is discussed. Additionally, current status of biomaterial substrates and sophisticated delivery systems such as nanoparticles for delivery of exogenous growth factors and peptides in humans are reviewed. Finally, issues and possible future research directions for growth factor therapy in regenerative medicine are discussed.
Collapse
Affiliation(s)
- Piyush Koria
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
19
|
SOX9 gene plus heparinized TGF-β 3 coated dexamethasone loaded PLGA microspheres for inducement of chondrogenesis of hMSCs. Biomaterials 2012; 33:7151-63. [PMID: 22795539 DOI: 10.1016/j.biomaterials.2012.06.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/15/2012] [Indexed: 11/20/2022]
Abstract
Microparticulated types of scaffolds have been widely applied in stem cell therapy and the tissue engineering field for the regeneration of wound tissues. During application of simple genes or growth factors and cell delivery vehicles, we designed a method that employs dexamethsone loaded PLGA microspheres consisting of polyplexed SOX9 genes plus heparinized TGF-β 3 on the surface of polymeric microspheres prepared using a layer-by-layer (LbL) method. The fabrication of the polyplexed SOX9 genes plus heparinized TGF-β 3 and their subsequent coating onto dexamethsone loaded PLGA microspheres represents a method for functionalization of the polymeric matrix. The use of SOX9 gene plus heparinized TGF-β 3 coated dexamethsone loaded PLGA microspheres was evaluated to determine their potential as both gene carriers and cell delivery vehicle. By adhesion of hMSCs onto SOX9 gene plus heparinized TGF-β 3 coated dexamethsone loaded PLGA microspheres, the chondrogenesis-related specific genes of collagen type II were increased 30 times comparing to control. Also, the specific extracellular matrix of glycosaminoglycan (GAG) production of hMSCs adhered onto SOX9 gene plus heparinized TGF-β 3 coated dexamethasone loaded PLGA microspheres increased more 2.5 times than control group. Not only in vitro culture but in vivo results, the specific genes of COMP, aggrecan, collagen type II, and SOX9 showed much more gene expressions such as 20, 15, 10, 8 times.
Collapse
|
20
|
Lozano D, Feito MJ, Portal-Núñez S, Lozano RM, Matesanz MC, Serrano MC, Vallet-Regí M, Portolés MT, Esbrit P. Osteostatin improves the osteogenic activity of fibroblast growth factor-2 immobilized in Si-doped hydroxyapatite in osteoblastic cells. Acta Biomater 2012; 8:2770-7. [PMID: 22487933 DOI: 10.1016/j.actbio.2012.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
Si-doped hydroxyapatite (Si-HA) is a suitable ceramic for the controlled release of agents to improve bone repair. We recently showed that parathyroid hormone-related protein (PTHrP) (107-111) (osteostatin) has remarkable osteogenic features in various in vitro and in vivo systems. Fibroblast growth factor (FGF)-2 modulates osteoblastic function and induces angiogenesis, and can promote osteoblast adhesion and proliferation after immobilization on Si-HA. In the present study we examined whether osteostatin might improve the biological efficacy of FGF-2-coated Si-HA in osteoblastic MC3T3-E1 cells in vitro. We found that Si-HA/FGF-2 in the presence or absence of osteostatin (100 nM) similarly increased cell growth (by about 50%). However, addition of the latter peptide to Si-HA/FGF-2 significantly enhanced gene expression of Runx2, osteocalcin, vascular endothelial growth factor (VEGF) and the VEGF receptors 1 and 2, without significantly affecting that of FGF receptors in these cells. Moreover, secreted VEGF in the MC3T3-E1 cell conditioned medium, which induced the proliferation of pig endothelial-like cells, was also enhanced by these combined factors. The synergistic action of osteostatin and Si-HA/FGF-2 on the VEGF system was abrogated by a mitogen-activated protein kinase inhibitor (U0126) and by the calcium antagonist verapamil. This action was related to an enhancement of alkaline phosphatase activity and matrix mineralization in MC3T3-E1 cells, and also in primary human osteoblastic cells. These in vitro data show that osteostatin increases the osteogenic efficacy of a Si-HA/FGF-2 biomaterial by a mechanism involving mitogen-activated protein kinases and intracellular Ca(2+). These findings provide an attractive strategy for bone tissue engineering.
Collapse
|
21
|
Lu C, Mikhail AS, Wang X, Brook MA, Allen C. Hydrogels Containing Core Cross-Linked Block Co-Polymer Micelles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1069-90. [DOI: 10.1163/092050611x575414] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Changhai Lu
- a Leslie Dan Faculty of Pharmacy, and Department of Chemistry, Faculty of Arts and Science, University of Toronto, 144 College Street, Toronto, ON, Canada M5S 3M2
| | - Andrew S. Mikhail
- b Leslie Dan Faculty of Pharmacy, and Department of Chemistry, Faculty of Arts and Science, University of Toronto, 144 College Street, Toronto, ON, Canada M5S 3M2
| | - Xinyue Wang
- c Leslie Dan Faculty of Pharmacy, and Department of Chemistry, Faculty of Arts and Science, University of Toronto, 144 College Street, Toronto, ON, Canada M5S 3M2
| | - Michael A. Brook
- d Department of Chemistry 1280 Main Street West, McMaster University, Hamilton, ON, Canada L8S 4M1
| | - Christine Allen
- e Leslie Dan Faculty of Pharmacy, and Department of Chemistry, Faculty of Arts and Science, University of Toronto, 144 College Street, Toronto, ON, Canada M5S 3M2.
| |
Collapse
|
22
|
Li Z, Kong W, Li X, Xu C, He Y, Gao J, Ma Z, Wang X, Zhang Y, Xing F, Li M, Liu Y. Antibiotic-Containing Biodegradable Bead Clusters with Porous PLGA Coating as Controllable Drug-Releasing Bone Fillers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:1713-31. [PMID: 20836923 DOI: 10.1163/092050610x521603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Zhiliang Li
- a School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Weina Kong
- b School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiulan Li
- c Tianjin Orthopedic Hospital, Tianjin 300211, P. R. China
| | - Chen Xu
- d Beijing 302 Hospital, Beijing 300060, P. R. China
| | - Yongqiang He
- e School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Jianping Gao
- f School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Zhiqing Ma
- g School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaodong Wang
- h School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yang Zhang
- i Tianjin Orthopedic Hospital, Tianjin 300211, P. R. China
| | - Fubao Xing
- j School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Min Li
- k School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yu Liu
- l School of Science, Tianjin University, Tianjin 300072, P. R. China.
| |
Collapse
|
23
|
Effect of monomeric sequence on transport properties of d-glucose and ascorbic acid in poly(VP-co-HEMA) hydrogels with various water contents: molecular dynamics simulation approach. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1206-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
de la Concepción Matesanz M, Feito MJ, Ramírez-Santillán C, Lozano RM, Sánchez-Salcedo S, Arcos D, Vallet-Regí M, Portolés MT. Signaling Pathways of Immobilized FGF-2 on Silicon-Substituted Hydroxyapatite. Macromol Biosci 2012; 12:446-53. [DOI: 10.1002/mabi.201100456] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/21/2011] [Indexed: 01/29/2023]
|
25
|
The development of a serum-free medium utilizing the interaction between growth factors and biomaterials. Biomaterials 2011; 33:444-54. [PMID: 22014458 DOI: 10.1016/j.biomaterials.2011.09.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 09/22/2011] [Indexed: 11/22/2022]
Abstract
To promote clinical application of cartilage tissue engineering, we should establish a serum-free chondrocyte growth medium. The serum-free medium would increase the cell numbers by more than 20-fold within one week, which proliferation ability almost matches that of serum-based one. For that, we examined the combinations of growth factors and the methods to enhance their effects by making use of the interaction with biomaterials. From various growth factors that are contained within the serum, we made the cocktail of FGF-2 (100 ng/mL), insulin (5 μg/mL), EGF (10 pg/mL), PDGF (625 pg/mL) and TGF-β (5 pg/mL), which increased the chondrocyte numbers by approximately 3-fold for 7 days. Moreover, we used the biomaterials including albumin and hyaluronan as the carrier of those factors. By direct mixing of those factors with biomaterials before the administration to the medium, the medium containing those mixture showed the chondrocyte growth of approximately a 25-fold increase by day 10. In this medium, the FGF-2 or insulin concentration hardly decreased, and rather enhanced the activation of ERK. Due to the optimal usage of biomaterials, this serum-free medium will realize a constant harvest of chondrocytes and could contribute to the safety and quality in regenerative medicine.
Collapse
|
26
|
The characterization of protein release from sericin film in the presence of an enzyme: Towards fibroblast growth factor-2 delivery. Int J Pharm 2011; 414:193-202. [DOI: 10.1016/j.ijpharm.2011.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/23/2011] [Accepted: 05/11/2011] [Indexed: 01/02/2023]
|
27
|
Feito MJ, Lozano RM, Alcaide M, Ramírez-Santillán C, Arcos D, Vallet-Regí M, Portolés MT. Immobilization and bioactivity evaluation of FGF-1 and FGF-2 on powdered silicon-doped hydroxyapatite and their scaffolds for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:405-416. [PMID: 21132351 DOI: 10.1007/s10856-010-4193-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 11/19/2010] [Indexed: 05/30/2023]
Abstract
Fibroblast growth factors (FGFs) are polypeptides that control the proliferation and differentiation of various cell types including osteoblasts. FGFs are also strong inducers of angiogenesis, necessary to obtain oxygen and nutrients during tissue repair. With the aim to incorporate these desirable FGF biological properties into bioceramics for bone repair, silicon substituted hydroxyapatites (Si-HA) were used as materials to immobilize bioactive FGF-1 and FGF-2. Thus, the binding of these growth factors to powdered Si-HA and Si-HA scaffolds was carried out efficiently in the present study and both FGFs maintained its biological activity on osteoblasts after its immobilization. The improvement of cell adhesion and proliferation onto Si-HA scaffolds suggests the potential utility of these FGF/scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- María José Feito
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Universidad Complutense, 28040, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kim H, Choi SH, Chung SM, Li LH, Lee IS. Enhanced bone forming ability of SLA-treated Ti coated with a calcium phosphate thin film formed by e-beam evaporation. Biomed Mater 2010; 5:044106. [PMID: 20683124 DOI: 10.1088/1748-6041/5/4/044106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With an electron-beam evaporation process, a calcium phosphate (Ca-P) thin film of approximately 500 nm thick was deposited on sand blasted with large grits and acid etched (SLA) Ti without changing the typical morphology of the SLA surface. Dissolution behavior was investigated by measuring the amount of dissolved phosphate ions with ion chromatography after immersing the SLA Ti sample coated with a Ca-P film in 1 ml de-ionized water maintained at 37 degrees C for different periods of soaking time, and the surface morphology was observed with field emission scanning electron microscopy. The amount of phosphate ions increased quickly right after immersion but began to decrease after 2 days of immersion by redeposition with Ca ions as apatite, and the amount of biomimetic apatite increased with the extended soaking time. The Saos-2 cell was more attached on the coated surface, and the in vivo evaluation was that the Ca-P deposited SLA implant greatly improved the new bone formation ability.
Collapse
Affiliation(s)
- Hyeongil Kim
- Restorative Dentistry, School of Dental Medicine, University at Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
29
|
Morita K, Doi K, Kubo T, Takeshita R, Kato S, Shiba T, Akagawa Y. Enhanced initial bone regeneration with inorganic polyphosphate-adsorbed hydroxyapatite. Acta Biomater 2010; 6:2808-15. [PMID: 20056175 DOI: 10.1016/j.actbio.2009.12.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 12/23/2009] [Accepted: 12/30/2009] [Indexed: 10/20/2022]
Abstract
Inorganic polyphosphate (poly(P)) can promote binding between fibroblast growth factors and their receptors and enhance osteoblastic cell differentiation and calcification. This study evaluated the possibilities for poly(P) adsorbed onto interconnected porous calcium hydroxyapatite (IP-CHA) as a new bone regeneration material. Prepared 1%, 5%, 25% and 50% poly(P)/IP-CHA composites showed the elution peak of poly(P) between 15 and 20 min, respectively, with the highest value from 50% poly(P)/IP-CHA in vitro. Histologically, at 1 week of placement into the femur of rabbits, granulation tissue had penetrated into the pores in all composites and IP-CHA as a control. In contrast, at 2 weeks of placement, newly formed lamellar bone was found in all groups, although a higher amount of bone regeneration was obviously formed in the 25% and 50% poly(P)/IP-CHA with a significantly higher value of bone regeneration ratio of 50% poly(P)/IP-CHA. These results indicate that 25% and 50% poly(P)/IP-CHA composites may enhance initial bone regeneration.
Collapse
|
30
|
Lee SG, Brunello GF, Jang SS, Bucknall DG. Molecular dynamics simulation study of P (VP-co-HEMA) hydrogels: Effect of water content on equilibrium structures and mechanical properties. Biomaterials 2009; 30:6130-41. [DOI: 10.1016/j.biomaterials.2009.07.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 07/19/2009] [Indexed: 11/30/2022]
|
31
|
Yuan Q, Kubo T, Doi K, Morita K, Takeshita R, Katoh S, Shiba T, Gong P, Akagawa Y. Effect of combined application of bFGF and inorganic polyphosphate on bioactivities of osteoblasts and initial bone regeneration. Acta Biomater 2009; 5:1716-24. [PMID: 19251495 DOI: 10.1016/j.actbio.2009.01.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 12/29/2008] [Accepted: 01/24/2009] [Indexed: 01/09/2023]
Abstract
Basic fibroblast growth factor (bFGF) and inorganic polyphosphate (poly(P)) have been recognized as therapeutic agents that enhance bone regeneration. It has also been shown that poly(P) may enhance the mitogenic activity of bFGF. The purpose of this study is to evaluate the combined effect of bFGF and poly(P) on bioactivities of osteoblasts and initial bone regeneration in vitro and in vivo. MC3T3-E1 cells were treated with bFGF, poly(P) or bFGF+poly(P), then subjected to cell proliferation assay, alkaline phosphatase (ALP) activity measurement, quantitative real-time reverse transcription-polymerase chain reaction and Alizarin S Red staining. In an in vivo study, bFGF-, poly(P)- and bFGF+poly(P)-modified interconnected porous hydroxyapatite (IPHA) complexes were fabricated, and placed into the femurs of rabbits to evaluate new bone formation histologically and histomorphometrically. The highest enhancement of cell proliferation were observed in those treated with bFGF+poly(P) on days 5 and 7. Cells treated with bFGF+poly(P) also exhibited increased ALP activity on days 5 and 10, up-regulated mRNA levels of osteocalcin and osteopontin, and enhanced calcification when compared to the non-treated cells. In vivo, the highest bone formation ratio was observed in bFGF+poly(P)-modified IPHA complexes. This study indicated that co-application of bFGF and poly(P) may provide enhanced bone formation by modulating cell proliferation and the mineralization process. It is anticipated that a combined application of bFGF and poly(P) can provide a novel method for bone regeneration in clinical use.
Collapse
|
32
|
Lee SG, Brunello GF, Jang SS, Lee JH, Bucknall DG. Effect of Monomeric Sequence on Mechanical Properties of P(VP-co-HEMA) Hydrogels at Low Hydration. J Phys Chem B 2009; 113:6604-12. [DOI: 10.1021/jp8058867] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Seung Geol Lee
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, and School of Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0295
| | - Giuseppe F. Brunello
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, and School of Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0295
| | - Seung Soon Jang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, and School of Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0295
| | - J. Hannah Lee
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, and School of Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0295
| | - David G. Bucknall
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, and School of Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0295
| |
Collapse
|
33
|
A nanoscale drug-entrapment strategy for hydrogel-based systems for the delivery of poorly soluble drugs. Biomaterials 2009; 30:2102-11. [DOI: 10.1016/j.biomaterials.2008.12.047] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Accepted: 12/19/2008] [Indexed: 11/20/2022]
|
34
|
Silva AKA, Richard C, Bessodes M, Scherman D, Merten OW. Growth Factor Delivery Approaches in Hydrogels. Biomacromolecules 2008; 10:9-18. [DOI: 10.1021/bm801103c] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Amanda K. Andriola Silva
- Université d’Évry Val d’Essonne, École doctorale des Génomes Aux Organismes, Boulevard François Mitterrand 91025 Evry, cedex France, Genethon, 1 bis rue de l’Internationale, BP 60, 91002 Evry cedex, France, Unité de Pharmacologie Chimique et Génétique, CNRS, UMR 8151, Paris, F-75270 cedex France, Inserm, U 640, Paris, F-75270 cedex France, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, F-75270 cedex France, and ENSCP, Paris, F-75231 cedex France
| | - Cyrille Richard
- Université d’Évry Val d’Essonne, École doctorale des Génomes Aux Organismes, Boulevard François Mitterrand 91025 Evry, cedex France, Genethon, 1 bis rue de l’Internationale, BP 60, 91002 Evry cedex, France, Unité de Pharmacologie Chimique et Génétique, CNRS, UMR 8151, Paris, F-75270 cedex France, Inserm, U 640, Paris, F-75270 cedex France, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, F-75270 cedex France, and ENSCP, Paris, F-75231 cedex France
| | - Michel Bessodes
- Université d’Évry Val d’Essonne, École doctorale des Génomes Aux Organismes, Boulevard François Mitterrand 91025 Evry, cedex France, Genethon, 1 bis rue de l’Internationale, BP 60, 91002 Evry cedex, France, Unité de Pharmacologie Chimique et Génétique, CNRS, UMR 8151, Paris, F-75270 cedex France, Inserm, U 640, Paris, F-75270 cedex France, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, F-75270 cedex France, and ENSCP, Paris, F-75231 cedex France
| | - Daniel Scherman
- Université d’Évry Val d’Essonne, École doctorale des Génomes Aux Organismes, Boulevard François Mitterrand 91025 Evry, cedex France, Genethon, 1 bis rue de l’Internationale, BP 60, 91002 Evry cedex, France, Unité de Pharmacologie Chimique et Génétique, CNRS, UMR 8151, Paris, F-75270 cedex France, Inserm, U 640, Paris, F-75270 cedex France, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, F-75270 cedex France, and ENSCP, Paris, F-75231 cedex France
| | - Otto-Wilhelm Merten
- Université d’Évry Val d’Essonne, École doctorale des Génomes Aux Organismes, Boulevard François Mitterrand 91025 Evry, cedex France, Genethon, 1 bis rue de l’Internationale, BP 60, 91002 Evry cedex, France, Unité de Pharmacologie Chimique et Génétique, CNRS, UMR 8151, Paris, F-75270 cedex France, Inserm, U 640, Paris, F-75270 cedex France, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, F-75270 cedex France, and ENSCP, Paris, F-75231 cedex France
| |
Collapse
|