1
|
Ellis DA, Jones M, Willems HME, Cheung S, Makullah M, Aimanianda V, Steele C. Fungal chitin is not an independent mediator of allergic fungal asthma severity. Am J Physiol Lung Cell Mol Physiol 2024; 327:L293-L303. [PMID: 38915287 PMCID: PMC11442099 DOI: 10.1152/ajplung.00041.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024] Open
Abstract
Chitin, a polysaccharide found in the fungal cell wall and the exoskeletons of house dust mites and cockroaches, has garnered attention as a potential immunoreactive allergen. Mammals have evolved to express chitin-degrading chitinases (acidic mammalian chitinase/AMCase and chitotriosidase) that may modulate immune responses to chitin. We have previously reported that mice deficient in AMCase (Chia-/-) demonstrated better lung function during allergic fungal asthma. As expected, we show that mice overexpressing AMCase (SPAM mice) had worse airway hyperreactivity (AHR) during allergic fungal asthma. We further demonstrate that chitin-positive Aspergillus fumigatus conidia are detectable in the allergic lung during chronic exposure. Lung function in Chia-/- and SPAM mice is directly correlated with the level of chitinase activity during chronic fungal exposure (Chia-/- mice, negligible chitinase activity, lower AHR; SPAM mice, heightened chitinase activity, higher AHR), suggesting that the breakdown of chitin promoted AHR. However, chronic exposure of normal mice to purified A. fumigatus chitin resulted in only moderate inflammatory changes in the lung that were not sufficient to induce AHR. Moreover, despite having dramatic differences in chitinase activity, chronic exposure of Chia-/- and SPAM mice to purified A. fumigatus chitin likewise did not modulate AHR. Collectively, these results indicate that chronic exposure to fungal chitin alone is incapable of driving AHR. Furthermore, our data suggest that the chitinase-mediated degradation of chitin associated with A. fumigatus conidia may facilitate unmasking and/or liberation of other fungal cell wall components that drive inflammatory responses that contribute to AHR.NEW & NOTEWORTHY Humans with asthma sensitized to fungi often have more severe asthma than those who are not fungal-sensitized. Chitin makes up a significant portion of the cell wall of fungi and has been implicated as a pathogenic factor in allergic asthma. Ellis et al. demonstrate that chronic exposure to fungal chitin alone is unable to modulate lung function, even in the presence of differential lung chitinase activity.
Collapse
Affiliation(s)
- Diandra A Ellis
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - MaryJane Jones
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Hubertine M E Willems
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Suki Cheung
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Mgayya Makullah
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Vishukumar Aimanianda
- Unité de Mycologie Moléculaire, Institut Pasteur, Université de Paris, CNRS, UMR2000, Paris, France
| | - Chad Steele
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
2
|
Johnson CD, Aranda-Espinoza H, Fisher JP. A Case for Material Stiffness as a Design Parameter in Encapsulated Islet Transplantation. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:334-346. [PMID: 36475851 PMCID: PMC10442690 DOI: 10.1089/ten.teb.2022.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Diabetes is a disease that plagues over 463 million people globally. Approximately 40 million of these patients have type 1 diabetes mellitus (T1DM), and the global incidence is increasing by up to 5% per year. T1DM is where the body's immune system attacks the pancreas, specifically the pancreatic beta cells, with antibodies to prevent insulin production. Although current treatments such as exogenous insulin injections have been successful, exorbitant insulin costs and meticulous administration present the need for alternative long-term solutions to glucose dysregulation caused by diabetes. Encapsulated islet transplantation (EIT) is a tissue-engineered solution to diabetes. Donor islets are encapsulated in a semipermeable hydrogel, allowing the diffusion of oxygen, glucose, and insulin but preventing leukocyte infiltration and antibody access to the transplanted cells. Although successful in small animal models, EIT is still far from commercial use owing to necessary long-term systemic immunosuppressants and consistent immune rejection. Most published research has focused on tailoring the characteristics of the capsule material to promote clinical viability. However, most studies have been limited in scope to biochemical changes. Current mechanobiology studies on the effect of substrate stiffness on the function of leukocytes, especially macrophages-primary foreign body response (FBR) orchestrators, show promise in tailoring a favorable response to tissue-engineered therapies such as EIT. In this review, we explore strategies to improve the clinical viability of EIT. A brief overview of the immune system, the FBR, and current biochemical approaches will be elucidated throughout this exploration. Furthermore, an argument for using substrate stiffness as a capsule design parameter to increase EIT efficacy and clinical viability will be posed.
Collapse
Affiliation(s)
- Courtney D. Johnson
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Helim Aranda-Espinoza
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
3
|
Aranaz I, Navarro-García F, Morri M, Acosta N, Casettari L, Heras A. Evaluation of chitosan salt properties in the production of AgNPs materials with antibacterial activity. Int J Biol Macromol 2023; 235:123849. [PMID: 36858087 DOI: 10.1016/j.ijbiomac.2023.123849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
In this study, water-soluble chitosan salts (chitosan amine sulfopropyl salts) were prepared from chitosan samples with different molecular weights and deacetylation degrees. These soluble-in-water polymer salts allowed us to produce, in an eco-friendly and facile method, silver nanoparticles (AgNPs) with better control on size and polydispersity, even at large silver concentrations than their corresponding chitosan sample. Chitosan salt-based materials (films and scaffolds) were analyzed in terms of antibacterial properties against Staphylococcus aureus ATCC23915 or Pseudomonas aeruginosa ATCC 27853. 3D scaffolds enhanced the effect of the chitosan-AgNPs combination compared to the equivalent films.
Collapse
Affiliation(s)
- I Aranaz
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, num. 1, E-28040 Madrid, Spain.
| | - F Navarro-García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - M Morri
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - N Acosta
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, num. 1, E-28040 Madrid, Spain
| | - L Casettari
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - A Heras
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, num. 1, E-28040 Madrid, Spain
| |
Collapse
|
4
|
Navaei-Nigjeh M, Mirzababaei S, Ghiass MA, Roshanbinfar K, Gholami M, Abdollahi M. Microfluidically fabricated fibers containing pancreatic islets and mesenchymal stromal cells improve longevity and sustained normoglycemia in diabetic rats. Biofabrication 2022; 15. [PMID: 36279872 DOI: 10.1088/1758-5090/ac9d04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes mellitus is an autoimmune disease characterized by the loss of pancreatic isletβcells. Insulin injections and pancreas transplants are currently available therapies. The former requires daily insulin injections, while the latter is constrained by donor organ availability. Islet transplantation is a promising alternative treatment for type 1 diabetes mellitus that may overcome the limitations of previous techniques. Two challenges, however, must be addressed: limited cell retention as a result of the immune response and limited function of the transplanted cells that survive. To address these problems, we developed a microfluidic technology for a one-step generation of islet-laden fibers to protect them from the immune response. This approach enables continuous generation of microfibers with a diameter suitable for islet encapsulation (275µm). We, then, transplanted islet-laden fibers into diabetic Wistar rats. While islet-laden fibers alone were unable to restore normoglycemia in diabetic rats, adding mesenchymal stromal cells (MSCs) restored normoglycemia for an extended time. It increased the animals' lifespan by up to 75 d. Additionally, it improved the glucose-stimulated response of islets to the point where there was no significant difference between the treatment group and the healthy animals. Additionally, the presence of MSCs suppressed the immune response, as seen by decreased levels of pro-inflammatory cytokines such as tumor necrosis factor-α. Taken together, these fibers including islet and MSCs provide a versatile platform for concurrently improving cell preservation and functioning followingin vivotransplantation.
Collapse
Affiliation(s)
- Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Soheyl Mirzababaei
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Adel Ghiass
- Tissue Engineering Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Mahdi Gholami
- School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
5
|
Improvement in phenotype homeostasis of macrophages by chitosan nanoparticles and subsequent impacts on liver injury and tumor treatment. Carbohydr Polym 2022; 277:118891. [PMID: 34893293 DOI: 10.1016/j.carbpol.2021.118891] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022]
Abstract
When organic polymer-based drug nanocarriers become concentrated in macrophages, their influence on macrophage polarization has been rarely reported. This study prepared chitosan-based nanoparticles (CNs, 181.5 nm, +14.83 mV) and detected their impacts on macrophage reprogram. RT-PCR results showed in M1-like RAW264.7 cells (Mφ1), CNs decreased CD86 and iNOS expressions by 53.8% and 57.1%, and increased Arg-1 and IL-10 by 642.9% and 102.1%; in M2-like cells (Mφ2), CNs reduced Arg-1 and MR expressions by 70.7% and 93.0%, but increased CD86, iNOS and TNF-α by 290.4%, 86.2% and 728.6%; these results, consistent with cytokine secretions and surface CD86/CD206 expressions, showed CNs polarized Mφ1 and Mφ2 toward opposite type so as to improve the macrophage polarization homeostasis. In CCl4-induced mouse liver injury model, CNs reduced the hepatic Mφ1/Mφ2 ratio from 1.1 (model group) to 0.3, and then reduced the serum AST and ALT level by 42.3% and 39.0%; in mouse model of hepatocellular carcinoma, CNs decreased the number of CD163-positive cells and increased CD86-positive ones in tumor, and subsequently inhibited the tumor growth and metastasis. This study suggests CNs can improve the phenotype homeostasis of macrophages and subsequently promote the treatment of certain diseases such as liver injury and tumor.
Collapse
|
6
|
Caprifico AE, Foot PJS, Polycarpou E, Calabrese G. Overcoming the protein corona in chitosan-based nanoparticles. Drug Discov Today 2021; 26:1825-1840. [PMID: 33892141 DOI: 10.1016/j.drudis.2021.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/20/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022]
Abstract
Numerous properties of chitosan have led to its extensive use in the formulation of nanomaterials for drug delivery. However, the cationic surface of chitosan-based nanoparticles adsorbs proteins upon exposure to biological fluids, forming a phenomenon known as 'protein corona'. This causes several effects such as decreased bioavailability and limited in vivo clinical applications of chitosan nanoparticles. Understanding and overcoming the effects of protein adsorption on chitosan nanoparticles is key for drug delivery purposes. This review focuses on the strategies implemented to increase the stability of chitosan nanoparticles in the systemic circulation by averting the formation of protein corona and the limitations of PEGylation.
Collapse
Affiliation(s)
- Anna E Caprifico
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Peter J S Foot
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Elena Polycarpou
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Gianpiero Calabrese
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames KT1 2EE, UK.
| |
Collapse
|
7
|
Chitooligosaccharides for wound healing biomaterials engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111266. [DOI: 10.1016/j.msec.2020.111266] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 01/04/2023]
|
8
|
Wu C, Dai Y, Yuan G, Su J, Liu X. Immunomodulatory Effects and Induction of Apoptosis by Different Molecular Weight Chitosan Oligosaccharides in Head Kidney Macrophages From Blunt Snout Bream ( Megalobrama amblycephala). Front Immunol 2019; 10:869. [PMID: 31156612 PMCID: PMC6530513 DOI: 10.3389/fimmu.2019.00869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/04/2019] [Indexed: 01/14/2023] Open
Abstract
Prophylactic administration of immunopotentiators has been tested and practiced as one of the most promising disease prevention methods in aquaculture. Chitosan oligosaccharide (COS), as an ideal immunopotentiator, is mainly used as feed additives in aquaculture, and the antimicrobial and immune enhancement effects are highly correlated with molecular weight (MW), but little is known about the mechanisms in teleost. Here, we isolated and purified macrophages in head kidney from blunt snout bream (Megalobrama amblycephala), stimulated them with three different MW (~500 Da, ~1000 Da and 2000~3000 Da) COSs, performed RNA-sequencing, global transcriptional analyses, and verification by quantitative real-time PCR (qRT-PCR) and immunofluorescent staining methods. Differential expression gene (DEG) analysis indicated that gene expression patterns are different and the proportion of unique genes are relatively high in different treatment groups. Biological process and gene set enrichment analysis (GSEA) demonstrated that all three COSs activate resting macrophages, but the degrees are different. Weighted gene co-expression network analysis (WGCNA) reflected gene modules correlated to MW, the module hub genes and top GO terms showed the activation of macrophage was positively correlated with the MW, and larger MW COS activated cell death associated GO terms. Further use of the screening and enrichment functions of STRING and Pfam databases discovered that apoptosis-related pathways and protein families were activated, such as the P53 pathway and caspase protein family. qRT-PCR results showed that as the stimulation time extends, the innate immune-related and P53 pathways are gradually activated, and the degree of activation is positively correlated with the stimulation time. In addition, apoptosis was detected by immunofluorescent staining in three groups. Therefore, the use of COS has two sides—it can activate the immune system against pathogen invasion, but with the increase in stimulation time and MW, macrophage apoptosis is induced, which may be caused by abnormal replication of DNA and excessive inflammation. This study provides a theoretical basis for the rational use of COS as an immunopotentiator in aquaculture.
Collapse
Affiliation(s)
- Changsong Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yishan Dai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, China
| |
Collapse
|
9
|
Smole U, Schabussova I, Pickl WF, Wiedermann U. Murine models for mucosal tolerance in allergy. Semin Immunol 2017; 30:12-27. [PMID: 28807539 DOI: 10.1016/j.smim.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
Abstract
Immunity is established by a fine balance to discriminate between self and non-self. In addition, mucosal surfaces have the unique ability to establish and maintain a state of tolerance also against non-self constituents such as those represented by the large numbers of commensals populating mucosal surfaces and food-derived or air-borne antigens. Recent years have seen a dramatic expansion in our understanding of the basic mechanisms and the involved cellular and molecular players orchestrating mucosal tolerance. As a direct outgrowth, promising prophylactic and therapeutic models for mucosal tolerance induction against usually innocuous antigens (derived from food and aeroallergen sources) have been developed. A major theme in the past years was the introduction of improved formulations and novel adjuvants into such allergy vaccines. This review article describes basic mechanisms of mucosal tolerance induction and contrasts the peculiarities but also the interdependence of the gut and respiratory tract associated lymphoid tissues in that context. Particular emphasis is put on delineating the current prophylactic and therapeutic strategies to study and improve mucosal tolerance induction in allergy.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Buzzacchera I, Vorobii M, Kostina NY, de Los Santos Pereira A, Riedel T, Bruns M, Ogieglo W, Möller M, Wilson CJ, Rodriguez-Emmenegger C. Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings. Biomacromolecules 2017; 18:1983-1992. [PMID: 28475307 DOI: 10.1021/acs.biomac.7b00516] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.
Collapse
Affiliation(s)
| | - Mariia Vorobii
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Nina Yu Kostina
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Andres de Los Santos Pereira
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , v.v.i., Heyrovsky Square 2, 16206 Prague, Czech Republic
| | - Tomáš Riedel
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , v.v.i., Heyrovsky Square 2, 16206 Prague, Czech Republic
| | - Michael Bruns
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Wojciech Ogieglo
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| | | | - Cesar Rodriguez-Emmenegger
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
11
|
Chen PC, Hsieh MH, Kuo WS, Kao HF, Hsu CL, Wang JY. Water-soluble chitosan inhibits nerve growth factor and attenuates allergic inflammation in mite allergen-induced allergic rhinitis. J Allergy Clin Immunol 2017; 140:1146-1149.e8. [PMID: 28412394 DOI: 10.1016/j.jaci.2017.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 03/07/2017] [Accepted: 03/27/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Pei-Chi Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center for Allergy and Clinical Immunology Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Miao-Hsi Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center for Allergy and Clinical Immunology Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Shuo Kuo
- Center for Allergy and Clinical Immunology Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Fan Kao
- Center for Allergy and Clinical Immunology Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Chih-Li Hsu
- Institute of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiu-Yao Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center for Allergy and Clinical Immunology Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Graduate Institute of Integrated Medicine, School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
12
|
Alimohammadi M, Yeganeh F, Haji Molla Hoseini M. Preliminary Study on Gene Expression of Chitinase-Like Cytokines in Human Airway Epithelial Cell Under Chitin and Chitosan Microparticles Treatment. Inflammation 2017; 39:1108-15. [PMID: 27075589 DOI: 10.1007/s10753-016-0342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small-sized chitin and chitosan microparticles (MPs) reduce allergic inflammation. We examined the capacity of these glycans to stimulate A549 human airway epithelial cells to determine the feasibility of using of these glycans as allergic therapeutic modality. A549 cells were treated with MPs and then expressions levels of chitinase domain-containing 1 (CHID1) and chitinase 3-like 1 (CHI3L1) genes were determined by quantitative real-time PCR. IL-6 production was measured by ELISA. Chitin MPs resulted in upregulation of CHI3L1 expression by 35.7-fold while mRNA expression did not change with chitosan MPs. Compared to the untreated group, production of IL-6 was significantly decreased in the chitosan MPs-treated group, but chitin MPs treatment cause elevation of IL-6 level. This study demonstrates that chitin potently induces CHI3L1 expression, but chitosan is relatively inert. This effect and inhibition of pro-inflammatory cytokine (IL-6) suggest that chitosan MPs may possess more potential for therapeutic uses in human airway allergic inflammation.
Collapse
Affiliation(s)
- Masumeh Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Yeganeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Applied Cell Sciences, School of Advance Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Phitochemistry Recearch Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Denzinger M, Hinkel H, Kurz J, Hierlemann T, Schlensak C, Wendel HP, Krajewski S. Hemostyptic property of chitosan: Opportunities and pitfalls. Biomed Mater Eng 2016; 27:353-364. [PMID: 27689569 DOI: 10.3233/bme-161591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Chitosan is used in a wide field of applications and therapies and has been reported to be an effective hemostyptic. The objective of this study was to provide further information about the use of chitosan as a hemostyptic agent also taking into focus its hemocompatible effects. METHODS Human whole blood (n=5) was anticoagulated with heparin, treated with different chitosan concentrations (0, 2.5, 5, 7.5, 10, 12.5, 25 mg/mL) and incubated at 37°C for 30 minutes. Before and after incubation different parameters for coagulation and hemocompatibility were evaluated. RESULTS Blood treated with high chitosan concentrations showed enhanced coagulation, which we evaluated with activated clotting time, activated partial thromboplastin time and concentration of thrombin-antithrombin complexes. Furthermore, we observed an activation of blood platelets, complement cascade and granulocytes in the groups treated with chitosan. CONCLUSION Our data indicate that chitosan activates human blood coagulation and hence has good properties as a hemostyptic agent. However, inflammatory parameters were upregulated after direct contact with human blood indicating that systemic administration of chitosans should not be performed whereas the topical use of chitosan as a hemostypticum should not present any hazard with regard to adverse inflammatory reactions at the site of application.
Collapse
Affiliation(s)
- Markus Denzinger
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tuebingen, Germany
| | - Helena Hinkel
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tuebingen, Germany
| | - Julia Kurz
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tuebingen, Germany
| | - Teresa Hierlemann
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tuebingen, Germany
| | - Christian Schlensak
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tuebingen, Germany
| | - Hans Peter Wendel
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tuebingen, Germany
| | - Stefanie Krajewski
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tuebingen, Germany
| |
Collapse
|
14
|
Davydova VN, Kalitnik AA, Markov PA, Volod’ko AV, Popov SV, Ermak IM. Cytokine-inducing and anti-inflammatory activity of chitosan and its low-molecular derivative. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816050070] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Cho EJ, Doh KO, Park J, Hyun H, Wilson EM, Snyder PW, Tsifansky MD, Yeo Y. Zwitterionic chitosan for the systemic treatment of sepsis. Sci Rep 2016; 6:29739. [PMID: 27412050 PMCID: PMC4944199 DOI: 10.1038/srep29739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/23/2016] [Indexed: 12/29/2022] Open
Abstract
Severe sepsis and septic shock are life-threatening conditions, with Gram-negative organisms responsible for most sepsis mortality. Systemic administration of compounds that block the action of lipopolysaccharide (LPS), a constituent of the Gram-negative outer cell membrane, is hampered by their hydrophobicity and cationic charge, the very properties responsible for their interactions with LPS. We hypothesize that a chitosan derivative zwitterionic chitosan (ZWC), previously shown to suppress the production of pro-inflammatory cellular mediators in LPS-challenged macrophages, will have protective effects in an animal model of sepsis induced by systemic injection of LPS. In this study, we evaluate whether ZWC attenuates the fatal effect of LPS in C57BL/6 mice and investigate the mechanism by which ZWC counteracts the LPS effect using a PMJ2-PC peritoneal macrophage cell line. Unlike its parent compound with low water solubility, intraperitoneally administered ZWC is readily absorbed with no local residue or adverse tissue reaction at the injection site. Whether administered at or prior to the LPS challenge, ZWC more than doubles the animals' median survival time. ZWC appears to protect the LPS-challenged organisms by forming a complex with LPS and thus attenuating pro-inflammatory signaling pathways. These findings suggest that ZWC have utility as a systemic anti-LPS agent.
Collapse
Affiliation(s)
- Eun Jung Cho
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Kyung-Oh Doh
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Department of Physiology, College of Medicine, Yeungnam University, 317-1 Daemyung-dong, Daegu, Korea
| | - Jinho Park
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Hyesun Hyun
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Erin M. Wilson
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Paul W. Snyder
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| | - Michael D. Tsifansky
- Department of Pediatrics and the Congenital Heart Center, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
16
|
Long-term Efficacy and Biocompatibility of Encapsulated Islet Transplantation With Chitosan-Coated Alginate Capsules in Mice and Canine Models of Diabetes. Transplantation 2016; 100:334-43. [PMID: 26479281 DOI: 10.1097/tp.0000000000000927] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Clinical application of encapsulated islet transplantation is hindered by low biocompatibility of capsules leading to pericapsular fibrosis and decreased islet viability. To improve biocompatibility, we designed a novel chitosan-coated alginate capsules and compared them to uncoated alginate capsules. METHODS Alginate capsules were formed by crosslinking with BaCl2, then they were suspended in chitosan solution for 10 minutes at pH 4.5. Xenogeneic islet transplantation, using encapsulated porcine islets in 1,3-galactosyltransferase knockout mice, and allogeneic islet transplantation, using encapsulated canine islets in beagles, were performed without immunosuppressants. RESULTS The chitosan-alginate capsules showed similar pore size, islet viability, and insulin secretory function compared to alginate capsules, in vitro. Xenogeneic transplantation of chitosan-alginate capsules demonstrated a trend toward superior graft survival (P = 0.07) with significantly less pericapsular fibrosis (cell adhesion score: 3.77 ± 0.41 vs 8.08 ± 0.05; P < 0.001) compared to that of alginate capsules up to 1 year after transplantation. Allogeneic transplantation of chitosan-alginate capsules normalized the blood glucose level up to 1 year with little evidence of pericapsular fibrotic overgrowth on graft explantation. CONCLUSIONS The efficacy and biocompatibility of chitosan-alginate capsules were demonstrated in xenogeneic and allogeneic islet transplantations using small and large animal models of diabetes. This capsule might be a potential candidate applicable in the treatment of type 1 diabetes mellitus patients, and further studies in nonhuman primates are required.
Collapse
|
17
|
Ravindranathan S, Koppolu BP, Smith SG, Zaharoff DA. Effect of Chitosan Properties on Immunoreactivity. Mar Drugs 2016; 14:md14050091. [PMID: 27187416 PMCID: PMC4882565 DOI: 10.3390/md14050091] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/15/2016] [Accepted: 05/02/2016] [Indexed: 11/16/2022] Open
Abstract
Chitosan is a widely investigated biopolymer in drug and gene delivery, tissue engineering and vaccine development. However, the immune response to chitosan is not clearly understood due to contradicting results in literature regarding its immunoreactivity. Thus, in this study, we analyzed effects of various biochemical properties, namely degree of deacetylation (DDA), viscosity/polymer length and endotoxin levels, on immune responses by antigen presenting cells (APCs). Chitosan solutions from various sources were treated with mouse and human APCs (macrophages and/or dendritic cells) and the amount of tumor necrosis factor-α (TNF-α) released by the cells was used as an indicator of immunoreactivity. Our results indicate that only endotoxin content and not DDA or viscosity influenced chitosan-induced immune responses. Our data also indicate that low endotoxin chitosan (<0.01 EU/mg) ranging from 20 to 600 cP and 80% to 97% DDA is essentially inert. This study emphasizes the need for more complete characterization and purification of chitosan in preclinical studies in order for this valuable biomaterial to achieve widespread clinical application.
Collapse
Affiliation(s)
- Sruthi Ravindranathan
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Bhanu Prasanth Koppolu
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Sean G Smith
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | - David A Zaharoff
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
18
|
Nowotny J, Aibibu D, Farack J, Nimtschke U, Hild M, Gelinsky M, Kasten P, Cherif C. Novel fiber-based pure chitosan scaffold for tendon augmentation: biomechanical and cell biological evaluation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:917-36. [PMID: 27109607 DOI: 10.1080/09205063.2016.1155879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
One possibility to improve the mechanical properties after tendon ruptures is augmentation with a scaffold. Based on wet spinning technology, chitosan fibres were processed to a novel pure high-grade multifilament yarn with reproducible quality. The fibres were braided to obtain a 3D tendon scaffold. The CS fibres and scaffolds were evaluated biomechanically and compared to human supraspinatus (SSP) tendons. For the cytobiological characterization, in vitro cell culture experiments with human mesenchymal stem cells (hMSC) were performed. Three types of 3D circular braided scaffolds were fabricated. Significantly, higher ultimate stress values were measured for scaffold with larger filament yarn, compared to scaffold with smaller filament yarn. During cultivation over 28 days, the cells showed in dependence of isolation method and/or donor a doubling or tripling of the cell number or even a six-fold increase on the CS scaffold, which was comparable to the control (polystyrene) or in the case of cells obtained from human biceps tendon even higher proliferation rates. After 14 days, the scaffold surface was covered homogeneously with a cell layer. In summary, the present work demonstrates that braided chitosan scaffolds constitute a straightforward approach for designing tendon analogues, maintaining important flexibility in scaffold design and providing favourable mechanical properties of the resulting construct.
Collapse
Affiliation(s)
- J Nowotny
- a Division of Upper Extremity Surgery, University Centre for Orthopaedic and Trauma Surgery, University Hospital Carl Gustav Carus , Technische Universität Dresden , Dresden , Germany.,b Centre for Translational Bone, Joint and Soft Tissue Research , Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden , Dresden , Germany
| | - D Aibibu
- c Institute of Textile Machinery and High Performance Material Technology , Technische Universität Dresden , Dresden , Germany
| | - J Farack
- b Centre for Translational Bone, Joint and Soft Tissue Research , Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden , Dresden , Germany
| | - U Nimtschke
- d Institute of Anatomy , Technische Universität Dresden , Dresden , Germany
| | - M Hild
- c Institute of Textile Machinery and High Performance Material Technology , Technische Universität Dresden , Dresden , Germany
| | - M Gelinsky
- b Centre for Translational Bone, Joint and Soft Tissue Research , Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden , Dresden , Germany
| | - P Kasten
- a Division of Upper Extremity Surgery, University Centre for Orthopaedic and Trauma Surgery, University Hospital Carl Gustav Carus , Technische Universität Dresden , Dresden , Germany.,b Centre for Translational Bone, Joint and Soft Tissue Research , Technische Universität Dresden, University Hospital Carl Gustav Carus Dresden , Dresden , Germany
| | - Ch Cherif
- c Institute of Textile Machinery and High Performance Material Technology , Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
19
|
Chitosan lowers body weight through intestinal microbiota and reduces IL-17 expression via mTOR signalling. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
20
|
Hoseini MHM, Moradi M, Alimohammadian MH, Shahgoli VK, Darabi H, Rostami A. Immunotherapeutic effects of chitin in comparison with chitosan against Leishmania major infection. Parasitol Int 2016; 65:99-104. [DOI: 10.1016/j.parint.2015.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/20/2015] [Accepted: 10/24/2015] [Indexed: 11/27/2022]
|
21
|
Wu N, Wen ZS, Xiang XW, Huang YN, Gao Y, Qu YL. Immunostimulative Activity of Low Molecular Weight Chitosans in RAW264.7 Macrophages. Mar Drugs 2015; 13:6210-25. [PMID: 26437419 PMCID: PMC4626685 DOI: 10.3390/md13106210] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/09/2015] [Accepted: 09/21/2015] [Indexed: 12/26/2022] Open
Abstract
Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been reported to exert many biological activities, such as antioxidant and antitumor effects. However, complex and molecular weight dependent effects of chitosan remain controversial and the mechanisms that mediate these complex effects are still poorly defined. This study was carried out to investigate the immunostimulative effect of different molecular weight chitosan in RAW264.7 macrophages. Our data suggested that two LMWCs (molecular weight of 3 kDa and 50 kDa) both possessed immunostimulative activity, which was dependent on dose and, at the higher doses, also on the molecular weight. LMWCs could significantly enhance the the pinocytic activity, and induce the production of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon-γ (IFN-γ), nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in a molecular weight and concentration-dependent manner. LMWCs were further showed to promote the expression of the genes including iNOS, TNF-α. Taken together, our findings suggested that LMWCs elicited significantly immunomodulatory response through up-regulating mRNA expression of proinflammatory cytokines and activated RAW264.7 macrophage in a molecular weight- and concentration-dependent manner.
Collapse
Affiliation(s)
- Ning Wu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Zheng-Shun Wen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Xing-Wei Xiang
- Zhejiang Marine Development Research Institute, Zhoushan 316000, China.
| | - Yan-Na Huang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Yang Gao
- School of Fishery, Zhejiang Ocean University, Zhoushan, 316000, China.
| | - You-Le Qu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
22
|
Tripathi P, Dwivedi P, Khatik R, Jaiswal AK, Dube A, Shukla P, Mishra PR. Development of 4-sulfated N-acetyl galactosamine anchored chitosan nanoparticles: A dual strategy for effective management of Leishmaniasis. Colloids Surf B Biointerfaces 2015; 136:150-9. [PMID: 26381698 DOI: 10.1016/j.colsurfb.2015.08.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/14/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022]
Abstract
The present investigation reports the modification of chitosan nanoparticles with a ligand 4-sulfated N-acetyl galactosamine (4-SO4GalNAc) for efficient chemotherapy in leishmaniasis (SCNPs) by using dual strategy of targeting. These (SCNPs) were loaded with amphotericin B (AmB) for specific delivery to infected macrophages. Developed AmB loaded SCNPs (AmB-SCNPs) had mean particle size of 333 ± 7 nm, and showed negative zeta potential (-13.9 ± 0.016 mV). Flow cytometric analysis revealed enhanced uptake of AmB-SCNPs in J774A.1, when compared to AmB loaded unmodified chitosan NPs (AmB-CNPs). AmB-SCNPs provide significantly higher localization of AmB in liver and spleen as compared to AmB-CNPs after i.v. administration. The study stipulates that 4-SO4GalNAc assures of targeting, resident macrophages. Highly significant anti-leishmanial activity (P<0.05 compared with AmB-CNPs) was observed with AmB-SCNPs, causing 75.30 ± 3.76% inhibition of splenic parasitic burdens. AmB-CNPs and plain AmB caused only 63.89 ± 3.44% and 47.56 ± 2.37% parasite inhibition, respectively, in Leishmania-infected hamsters (P<0.01 for AmB-SCNPs versus plain AmB and AmB-CNPs versus plain AmB).
Collapse
Affiliation(s)
- Priyanka Tripathi
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pankaj Dwivedi
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Renuka Khatik
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Kumar Jaiswal
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anuradha Dube
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Poonam Shukla
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Prabhat Ranjan Mishra
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
23
|
Nolte A, Hossfeld S, Post M, Niederlaender J, Walker T, Schlensak C, Wendel HP. Endotoxins affect diverse biological activity of chitosans in matters of hemocompatibility and cytocompatibility. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2121-2130. [PMID: 24879573 DOI: 10.1007/s10856-014-5244-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/18/2014] [Indexed: 06/03/2023]
Abstract
Chitosan is used in several pharmaceutical and medical applications, owing to its good cytocompatibility and hemocompatibility. However, there are conflicting reports regarding the biological activities of chitosan with some studies reporting anti-inflammatory properties while others report pro-inflammatory properties. In this regards we analyzed the endotoxin content in five different chitosans and examined these chitosans with their different deacetylation degrees for their hemocompatibility and cytocompatibility. Therefore, we incubated primary human endothelial cells or whole blood with different chitosan concentrations and studied the protein and mRNA expression of different inflammatory markers or cytokines. Our data indicate a correlation of the endotoxin content and cytokine up-regulation in whole blood for Poly-Morpho-Nuclear (PMN)-Elastase, soluble terminal complement complex SC5b-9, complement component C5/C5a, granulocyte colony-stimulating factor, Interleukin-8 (IL), IL-10, IL-13, IL-17E, Il-32α and monocyte chemotactic protein-1. In contrast, the incubation of low endotoxin containing chitosans with primary endothelial cells resulted in increased expression of E-selectin, intercellular adhesion molecule-1, vascular cell adhesion protein-1, IL-1β, IL-6 and IL-8 in endothelial cells. We suggest that the endotoxin content in chitosan plays a major role in the biological activity of chitosan. Therefore, we strongly recommend analysis of the endotoxin concentration in chitosan, before further determining if it has pro- or anti-inflammatory properties or if it is applicable for pharmaceutical and medical fields.
Collapse
Affiliation(s)
- Andrea Nolte
- Department of Thoracic, Cardiac, and Vascular Surgery, University Hospital Tuebingen, University of Tuebingen, Calwerstr. 7/1, 72076, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Chitosan-Assisted Immunotherapy for Intervention of Experimental Leishmaniasis via Amphotericin B-Loaded Solid Lipid Nanoparticles. Appl Biochem Biotechnol 2014; 174:1309-1330. [DOI: 10.1007/s12010-014-1084-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/22/2014] [Indexed: 01/27/2023]
|
25
|
Effects of chitosan on intestinal inflammation in weaned pigs challenged by enterotoxigenic Escherichia coli. PLoS One 2014; 9:e104192. [PMID: 25090447 PMCID: PMC4121323 DOI: 10.1371/journal.pone.0104192] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to investigate whether supplementation with chitosan (COS) could reduce diarrhea and to explore how COS alleviates intestinal inflammation in weaned pigs. Thirty pigs (Duroc×Landrace×Yorkshire, initial BW of 5.65±0.27) weaned at age 21 d were challenged with enterotoxigenic Escherichia coli during a preliminary trial period, and then divided into three treatment groups. Pigs in individual pens were fed a corn-soybean meal diet, that contained either 0 (control), 50 mg/kg chlortetracycline, or 300 mg/kg COS for 21 days. The post-weaning diarrhea frequency, calprotectin levels and TLR4 protein expression were decreased (P<0.05) in both the COS and chlortetracycline groups compared with control. Simultaneously, supplemental COS and chlortetracycline had no effect on the mRNA expression of TNF-α in the jejunal mucosa, or on the concentrations of IL-1β, IL-6 and TNF-α in serum. However, COS supplementation improved (P<0.05) the mRNA expression of IL-1β and IL-6 in the jejunal mucosa. The results indicate that supplementation with COS at 300 mg/kg was effective for alleviating intestinal inflammation and enhancing the cell-mediated immune response. As feed additives, chitosan and chlortetracycline may influence different mechanisms for alleviating inflammation in piglets.
Collapse
|
26
|
Di Rosa M, Tibullo D, Vecchio M, Nunnari G, Saccone S, Di Raimondo F, Malaguarnera L. Determination of chitinases family during osteoclastogenesis. Bone 2014; 61:55-63. [PMID: 24440516 DOI: 10.1016/j.bone.2014.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/13/2013] [Accepted: 01/09/2014] [Indexed: 01/18/2023]
Abstract
Mammalian chitinases consisting of CHIA, CHIT1, CHI3L1, CHI3L2 and CHID1 exert important biological roles in the monocyte lineage and chronic inflammatory diseases. Pathological bone resorption is a cause of significant morbidity in diseases affecting the skeleton such as rheumatoid arthritis, osteoporosis, periodontitis and cancer metastasis. The biologic role of chitinases in bone resorption is poorly understood. In this study, we evaluated the expression of the chitinases family during osteoclast differentiation. The expression of CHIA, CHI3L2 and CHID1 resulted unchanged during osteoclast differentiation, whereas CHIT1 and CHI3L1 increased significantly. We also observed that CHIT1 and CHI3L1 are involved in osteoclast function. Indeed, silencing CHIT1 and CHI3L1 with siRNA resulted in a significant decrease in bone resorption activity. In addition, transfection with CHIT1 or CHI3L1 siRNA and co-transfection with both decreased the levels of the pro-differentiative marker MMP9. Overall, these discoveries reveal a novel and crucial role for both CHIT1 and CHI3L1 in promoting bone resorption and identifying new potential candidate markers for therapeutic targeting.
Collapse
Affiliation(s)
| | - Daniele Tibullo
- Department of Clinical and Molecular Biomedicine, University of Catania, Ospedale Ferrarotto, Italy
| | - Michele Vecchio
- Physical Medicine and Rehabilitation Unit, University of Catania, Hospital Policlinic Vittorio Emanuele, Catania, Italy
| | - Giuseppe Nunnari
- Department of Clinical and Molecular Biomedicine, Division of Infectious Diseases, University of Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Francesco Di Raimondo
- Department of Clinical and Molecular Biomedicine, University of Catania, Ospedale Ferrarotto, Italy
| | | |
Collapse
|
27
|
Maciel J, Oliveira MI, Colton E, McNally AK, Oliveira C, Anderson JM, Barbosa MA. Adsorbed fibrinogen enhances production of bone- and angiogenic-related factors by monocytes/macrophages. Tissue Eng Part A 2013; 20:250-63. [PMID: 23937279 DOI: 10.1089/ten.tea.2012.0439] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Macrophages are phagocytic cells with great importance in guiding multiple stages of inflammation and tissue repair. By producing a large number of biologically active molecules, they can affect the behavior of other cells and events, such as the foreign body response and angiogenesis. Since protein adsorption to biomaterials is crucial for the inflammatory process, we addressed the ability of the pro-inflammatory molecule fibrinogen (Fg) to modulate macrophage behavior toward tissue repair/regeneration. For this purpose, we used chitosan (Ch) as a substrate for Fg adsorption. Freshly isolated human monocytes were seeded on Ch substrates alone or previously adsorbed with Fg, and allowed to differentiate into macrophages for 10 days. Cell adhesion and morphology, formation of foreign body giant cells (FBGC), and secretion of a total of 80 cytokines and growth factors were evaluated. Both substrates showed similar numbers of adherent macrophages along differentiation as compared with RGD-coated surfaces, which were used as positive controls. Fg did not potentiate FBGC formation. In addition, actin cytoskeleton staining revealed the presence of punctuate F-actin with more elongated and interconnecting cells on Ch substrates. Antibody array screening and quantification of inflammation- and wound-healing-related factors indicated an overall reduction in Ch-based substrates versus RGD-coated surfaces. At late times, most inflammatory agents were down-regulated in the presence of Fg, in contrast to growth factor production, which was stimulated by Fg. Importantly, on Ch+Fg substrates, fully differentiated macrophages produced significant amounts of macrophage inflammatory protein-1delta (MIP-1δ), platelet-derived growth factor-BB, bone morphogenetic protein (BMP)-5, and BMP-7 compared with Ch alone. In addition, other important factors involved in bone homeostasis and wound healing, such as growth hormone, transforming growth factor-β3, and insulin-like growth factor-binding proteins, as well as several angiogenic mediators, including endocrine gland-derived vascular endothelial factor, fibroblast growth factor-7, and placental growth factor, were significantly promoted by Fg. This work provides a new perspective on the inflammatory response in the context of bone repair/regeneration mediated by a pro-inflammatory protein (Fg) adsorbed onto a biomaterial (Ch) that does not otherwise exhibit osteogenic properties.
Collapse
Affiliation(s)
- Joana Maciel
- 1 INEB-Instituto de Engenharia Biomédica, Universidade do Porto , Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
28
|
Xiao D, Tang Z, Yin Y, Zhang B, Hu X, Feng Z, Wang J. Effects of dietary administering chitosan on growth performance, jejunal morphology, jejunal mucosal sIgA, occluding, claudin-1 and TLR4 expression in weaned piglets challenged by enterotoxigenic Escherichia coli. Int Immunopharmacol 2013; 17:670-6. [DOI: 10.1016/j.intimp.2013.07.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 11/29/2022]
|
29
|
The graft survival protection of subcutaneous allogeneic islets with hydrogel grafting and encapsulated by CTLA4Ig and IL1ra. Polym J 2013. [DOI: 10.1038/pj.2013.71] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Morphological effects of autologous hsp70 on peritoneal macrophages in a murine T cell lymphoma. Tumour Biol 2013; 34:3407-15. [PMID: 23784457 DOI: 10.1007/s13277-013-0913-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/03/2013] [Indexed: 02/01/2023] Open
Abstract
Heat shock protein 70 is highly conserved cytosolic protein which have important role in growth, development, and apoptosis. Hsp70 is well-known activator of macrophages and enhances the release of specific and non-specific effector molecules that have major role in tumor destruction and immunopotentiation of host. However, morphological effects of hsp 70 has not been carried out, therefore, morphological effects of hsp 70 on murine peritoneal macrophages were examined by light microscopy and scanning electron microscopy. Thioglycolate-induced peritoneal macrophages were prepared from BALB/c mice and cultured for 24 h in the presence of the hsp70. Tumor-associated macrophages treated with 10 μg/ml were varied in shape, mostly spindle shaped, i.e., stretched bidirectionally; surface ruffles were increased and their lamellipodia was prominent which suggest that hsp 70 treatment not only enhances the functional state of the peritoneal macrophages but also initiate immense morphological changes leading to increased endothelium adherence, increased antigen uptake, and increased migration to the inflammatory site.
Collapse
|
31
|
Torres A, Santos S, Oliveira M, Barbosa M. Fibrinogen promotes resorption of chitosan by human osteoclasts. Acta Biomater 2013; 9:6553-62. [PMID: 23376128 DOI: 10.1016/j.actbio.2013.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/12/2013] [Accepted: 01/18/2013] [Indexed: 02/07/2023]
Abstract
The osteoconductive and osteoinductive properties of materials intended for bone regeneration have been extensively tested, but the resorbability of these materials is often overlooked. Osteoclasts are responsible for bone resorption and play a crucial role in bone remodeling, which is essential for complete regeneration of bone tissue following injury. In this study we compare, for the first time, the ability of unmodified and fibrinogen (Fg)-modified chitosan (Ch) substrates to support the formation of multinucleated osteoclasts, and the potential of these cells to resorb the two substrates in vitro. Osteoclasts were differentiated from primary human peripheral blood monocytes directly on the substrates being investigated. Our results showed similar cell adhesion to unmodified and Fg-modified Ch substrates. Although the number of multinucleated osteoclasts on both Ch substrates increased throughout the culture period, by 21 days of culture significantly more highly multinucleated osteoclasts (>10 nuclei per cell) were observed on Fg-modified Ch, when compared to Ch alone. In addition, cells were tartrate-resistant acid phosphatase positive and secreted significantly more enzyme on Ch-based substrates than in control conditions. Unmodified and Fg-modified Ch resorption was investigated by fluorescence microscopy and confirmed by electron microscopy. Quantification of results obtained by fluorescence microscopy shows that Fg modification led to significantly higher substrate resorption by 17 days of culture. Our results show that osteoclasts, beyond resorbing mineralized substrates, successfully resorb a polymeric substrate (Ch), with Fg accelerating this process. Thus, in bone tissue regeneration strategies employing polymeric biomaterials, resorption may depend not only on macrophages, but also on osteoclasts.
Collapse
|
32
|
Preyat N, Leo O. Sirtuin deacylases: a molecular link between metabolism and immunity. J Leukoc Biol 2013; 93:669-80. [PMID: 23325925 DOI: 10.1189/jlb.1112557] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lysine deacetylation by the NAD(+)-dependent family of sirtuins has been recognized as an important post-translational modification regulating a wide range of cellular processes. These lysine deacetylases have attracted much interest based on their ability to promote survival in response to stress. Sirtuins require NAD(+) for their enzymatic activity, suggesting that these enzymes may represent molecular links between cell metabolism and several human disorders, including diabetes and cancer. Inflammation represents a pathological situation with clear connections to metabolism and aging in humans, raising the possibility that sirtuins may also play an important role during a normal and/or a pathological immune response. A growing body of data has confirmed the immunomodulatory properties of sirtuins, although often with contrasting and opposing conclusions. These observations will be summarized herein and the possible strategies that may lead to the development of novel therapeutic approaches to treat inflammation briefly discussed.
Collapse
Affiliation(s)
- Nicolas Preyat
- Laboratory of Immunobiology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, Gosselies, Belgium
| | | |
Collapse
|
33
|
Collinge M, Thorn M, Peachee V, White K. Validation of a Candida albicans delayed-type hypersensitivity (DTH) model in female juvenile rats for use in immunotoxicity assessments. J Immunotoxicol 2013; 10:341-8. [PMID: 23282408 DOI: 10.3109/1547691x.2012.747232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Establishing an in vivo cell-mediated immunity (CMI) assay, such as the delayed-type hypersensitivity (DTH) assay, has been identified as an important gap and recommended to receive highest priority for new model development in several workshops on developmental immunotoxicity. A Candida albicans DTH model has recently been developed that has the advantage over other DTH models, which use alternative sensitizing antigens, in that antigen-specific antibodies, which may interfere with the assay, are not produced. In addition, the in vivo C. albicans DTH model was demonstrated to be more sensitive in detecting immunosuppression than DTH models using keyhole limpet hemocyanin (KLH) or sheep red blood cells as antigens, as well as some ex vivo CMI assays. While KLH and sheep red blood cells are non-physiological immunogens, C. albicans is an important human pathogen. The present studies were conducted in order to optimize and validate the C. albicans DTH model for use in developmental immunotoxicity studies using juvenile rats. Three known immunosuppressive compounds with different mechanisms of action were tested in this model, cyclosprorin A (CsA), cyclophosphamide (CPS), and dexamethasone (DEX). Animals were sensitized with formalin-fixed C. albicans on postnatal day (PND) 28 and challenged with chitosan on PND 38. Drug was administered beginning on PND 23 and continued until PND 37. Exposure to each of the three immunotoxicants resulted in statistically significant decreases in the DTH response to C. albicans-derived chitosan. Decreases in footpad swelling were observed at ≥10 mg CsA/kg/day, ≥5 mg CPS/kg/day, and ≥0.03 mg DEX/kg/day. These results demonstrate that the C. albicans DTH model, optimized for use in juvenile rats, can be used to identify immunotoxic compounds, and fills the need for a sensitive in vivo CMI model for assessments of developmental immunotoxicity. Abbreviations Ab, antibody APC, antigen presenting cell BSA, bovine serum albumin C. albicans, Candida albicans CI, challenge interval CMI, cell-mediated immunity CO, challenge only CPS, cyclophosphamide CsA, cyclosporin A CTL, cytotoxic T lymphocyte DEX, dexamethasone DIT, developmental immunotoxicity DTH, delayed-type hypersensitivity ip, intraperitoneal KLH, keyhole limpet hemocyanin MLR, mixed lymphocyte reaction OVA, ovalbumin PBS, phosphate-buffered saline PND, postnatal day sc, subcutaneous SEM, standard error of the mean SRBC, sheep red blood cells.
Collapse
Affiliation(s)
- Mark Collinge
- Immunotoxicology Center of Emphasis, Drug Safety Research and Development, Pfizer Inc. , Groton, CT , USA
| | | | | | | |
Collapse
|
34
|
Dwivedi P, Kansal S, Sharma M, Shukla R, Verma A, Shukla P, Tripathi P, Gupta P, Saini D, Khandelwal K, Verma R, Dwivedi AK, Mishra PR. Exploiting 4-sulphateN-acetyl galactosamine decorated gelatin nanoparticles for effective targeting to professional phagocytesin vitroandin vivo. J Drug Target 2012; 20:883-96. [DOI: 10.3109/1061186x.2012.725169] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Kin NW, Stefanov EK, Dizon BLP, Kearney JF. Antibodies generated against conserved antigens expressed by bacteria and allergen-bearing fungi suppress airway disease. THE JOURNAL OF IMMUNOLOGY 2012; 189:2246-56. [PMID: 22837487 DOI: 10.4049/jimmunol.1200702] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There has been a sharp rise in allergic asthma and asthma-related deaths in the developed world, in contrast to many childhood illnesses that have been reduced or eliminated. The hygiene hypothesis proposes that excessively sanitary conditions early in life result in autoimmune and allergic phenomena because of a failure of the immune system to receive proper microbial stimulation during development. We demonstrate that Abs generated against conserved bacterial polysaccharides are reactive with and dampen the immune response against chitin and Aspergillus fumigatus. A reduction in Ag uptake, cell influx, cell activation, and cytokine production occurred in the presence of anti-polysaccharide Abs, resulting in a striking decrease in the severity of allergic airway disease in mice. Overall, our results suggest that Ag exposure--derived from environmental sources, self-antigens, or vaccination--during the neonatal period has dramatic effects on the adult Ab response and modifies the development of allergic airway disease.
Collapse
Affiliation(s)
- Nicholas W Kin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
36
|
Intranasal immunization with live attenuated influenza vaccine plus chitosan as an adjuvant protects mice against homologous and heterologous virus challenge. Arch Virol 2012; 157:1451-61. [DOI: 10.1007/s00705-012-1318-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
|
37
|
Investigations into an alternate approach to target mannose receptors on macrophages using 4-sulfated N-acetyl galactosamine more efficiently in comparison with mannose-decorated liposomes: an application in drug delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:468-77. [DOI: 10.1016/j.nano.2011.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/01/2011] [Accepted: 07/11/2011] [Indexed: 11/20/2022]
|
38
|
Zhu A, Li F, Ji L. Poly(lactic acid)/N-maleoylchitosan core–shell capsules: Preparation and drug release properties. Colloids Surf B Biointerfaces 2012; 91:162-7. [DOI: 10.1016/j.colsurfb.2011.10.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/26/2011] [Accepted: 10/28/2011] [Indexed: 11/27/2022]
|
39
|
Bajaj G, Van Alstine WG, Yeo Y. Zwitterionic chitosan derivative, a new biocompatible pharmaceutical excipient, prevents endotoxin-mediated cytokine release. PLoS One 2012; 7:e30899. [PMID: 22292072 PMCID: PMC3265529 DOI: 10.1371/journal.pone.0030899] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/23/2011] [Indexed: 12/18/2022] Open
Abstract
Chitosan is a cationic polymer of natural origin and has been widely explored as a pharmaceutical excipient for a broad range of biomedical applications. While generally considered safe and biocompatible, chitosan has the ability to induce inflammatory reactions, which varies with the physical and chemical properties. We hypothesized that the previously reported zwitterionic chitosan (ZWC) derivative had relatively low pro-inflammatory potential because of the aqueous solubility and reduced amine content. To test this, we compared various chitosans with different aqueous solubilities or primary amine contents with respect to the intraperitoneal (i.p.) biocompatibility and the propensity to induce pro-inflammatory cytokine production from macrophages. ZWC was relatively well tolerated in ICR mice after i.p. administration and had no pro-inflammatory effect on naïve macrophages. Comparison with other chitosans indicates that these properties are mainly due to the aqueous solubility at neutral pH and relatively low molecular weight of ZWC. Interestingly, ZWC had a unique ability to suppress cytokine/chemokine production in macrophages challenged with lipopolysaccharide (LPS). This effect is likely due to the strong affinity of ZWC to LPS, which inactivates the pro-inflammatory function of LPS, and appears to be related to the reduced amine content. Our finding warrants further investigation of ZWC as a functional biomaterial.
Collapse
Affiliation(s)
- Gaurav Bajaj
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, United States of America
| | - William G. Van Alstine
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, United States of America
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, United States of America
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
40
|
Kim J, Kim SW, Choi SJ, Lim KT, Lee JB, Seonwoo H, Choung PH, Park K, Cho CS, Choung YH, Chung JH. A Healing Method of Tympanic Membrane Perforations Using Three-Dimensional Porous Chitosan Scaffolds. Tissue Eng Part A 2011; 17:2763-72. [DOI: 10.1089/ten.tea.2010.0533] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jangho Kim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Won Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seong Jun Choi
- Department of Otolaryngology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Ki Taek Lim
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jong Bin Lee
- Department of Otolaryngology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Hoon Seonwoo
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Pill-Hoon Choung
- Tooth Bioengineering National Research Lab, Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Keehyun Park
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chong-Su Cho
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
41
|
Bosnjak B, Stelzmueller B, Erb KJ, Epstein MM. Treatment of allergic asthma: modulation of Th2 cells and their responses. Respir Res 2011; 12:114. [PMID: 21867534 PMCID: PMC3179723 DOI: 10.1186/1465-9921-12-114] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/25/2011] [Indexed: 02/08/2023] Open
Abstract
Atopic asthma is a chronic inflammatory pulmonary disease characterised by recurrent episodes of wheezy, laboured breathing with an underlying Th2 cell-mediated inflammatory response in the airways. It is currently treated and, more or less, controlled depending on severity, with bronchodilators e.g. long-acting beta agonists and long-acting muscarinic antagonists or anti-inflammatory drugs such as corticosteroids (inhaled or oral), leukotriene modifiers, theophyline and anti-IgE therapy. Unfortunately, none of these treatments are curative and some asthmatic patients do not respond to intense anti-inflammatory therapies. Additionally, the use of long-term oral steroids has many undesired side effects. For this reason, novel and more effective drugs are needed. In this review, we focus on the CD4+ Th2 cells and their products as targets for the development of new drugs to add to the current armamentarium as adjuncts or as potential stand-alone treatments for allergic asthma. We argue that in early disease, the reduction or elimination of allergen-specific Th2 cells will reduce the consequences of repeated allergic inflammatory responses such as lung remodelling without causing generalised immunosuppression.
Collapse
Affiliation(s)
- Berislav Bosnjak
- Department of Dermatology, DIAID, Experimental Allergy Laboratory, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
42
|
Stopinšek S, Ihan A, Wraber B, Terčelj M, Salobir B, Rylander R, Simčič S. Fungal cell wall agents suppress the innate inflammatory cytokine responses of human peripheral blood mononuclear cells challenged with lipopolysaccharide in vitro. Int Immunopharmacol 2011; 11:939-47. [DOI: 10.1016/j.intimp.2011.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 01/26/2023]
|
43
|
Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, He CH, Takyar S, Elias JA. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol 2011; 73:479-501. [PMID: 21054166 DOI: 10.1146/annurev-physiol-012110-142250] [Citation(s) in RCA: 626] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 18 glycosyl hydrolase family of chitinases is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In mammals, despite the absence of endogenous chitin, a number of chitinases and chitinase-like proteins (C/CLPs) have been identified. However, their roles have only recently begun to be elucidated. Acidic mammalian chitinase (AMCase) inhibits chitin-induced innate inflammation; augments chitin-free, allergen-induced Th2 inflammation; and mediates effector functions of IL-13. The CLPs BRP-39/YKL-40 (also termed chitinase 3-like 1) inhibit oxidant-induced lung injury, augments adaptive Th2 immunity, regulates apoptosis, stimulates alternative macrophage activation, and contributes to fibrosis and wound healing. In accord with these findings, levels of YKL-40 in the lung and serum are increased in asthma and other inflammatory and remodeling disorders and often correlate with disease severity. Our understanding of the roles of C/CLPs in inflammation, tissue remodeling, and tissue injury in health and disease is reviewed below.
Collapse
Affiliation(s)
- Chun Geun Lee
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8057, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Incidences of allergic disease have recently increased worldwide. Allergen-specific immunotherapy (SIT) has long been a controversial treatment for allergic diseases. Although beneficial effects on clinically relevant outcomes have been demonstrated in clinical trials by subcutaneous immunotherapy (SCIT), there remains a risk of severe and sometimes fatal anaphylaxis. Mucosal immunotherapy is one advantageous choice because of its non-injection routes of administration and lower side-effect profile. This study reviews recent progress in mucosal immunotherapy for allergic diseases. Administration routes, antigen quality and quantity, and adjuvants used are major considerations in this field. Also, direct uses of unique probiotics, or specific cytokines, have been discussed. Furthermore, some researchers have reported new therapeutic ideas that combine two or more strategies. The most important strategy for development of mucosal therapies for allergic diseases is the improvement of antigen formulation, which includes continuous searching for efficient adjuvants, collecting more information about dominant T-cell epitopes of allergens, and having the proper combination of each. In clinics, when compared to other mucosal routes, sublingual immunotherapy (SLIT) is a preferred choice for therapeutic administration, although local and systemic side effects have been reported. Additionally, not every allergen has the same beneficial effect. Further studies are needed to determine the benefits of mucosal immunotherapy for different allergic diseases after comparison of the different administration routes in children and adults. Data collected from large, well-designed, double-blind, placebo-controlled, and randomized trials, with post-treatment follow-up, can provide robust substantiation of current evidence.
Collapse
|
45
|
Shen CR, Wu ST, Tsai ZT, Wang JJ, Yen TC, Tsai JS, Shih MF, Liu CL. Characterization of quaternized chitosan-stabilized iron oxide nanoparticles as a novel potential magnetic resonance imaging contrast agent for cell tracking. POLYM INT 2011. [DOI: 10.1002/pi.3059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Ruiz-Caro R, Veiga MD. In vitro Evaluation of Acyclovir/Chitosan Floating Systems. MATERIALS 2010; 3:5195-5211. [PMID: 28883376 PMCID: PMC5445812 DOI: 10.3390/ma3125195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 11/18/2022]
Abstract
Chitosan (CS) floating lyophilized formulations (L) for gastric drug delivery of acyclovir (ACV) have been developed. The freeze-dried formulations were obtained from acidic aqueous suspensions prepared with different ACV/CS ratios. No changes in ACV crystallinity were observed during X-ray diffraction powder studies as a consequence of the manufacturing process. Considering that fed and fasted states modified the intragastric pH, swelling and in vitro dissolution studies were carried out in different acidic media (0.1 M HCl and progressive pH medium) in order to understand the influence of these physiological states on ACV/CS formulations. Swelling behavior of the floating lyophilized formulations was dependent on CS and ACV proportions within L and on medium nature due to pH dependent CS solubility. Furthermore, no interactions between ACV and CS were detected in solid state according to the X-ray studies. In vitro dissolution of ACV from L was influenced by the swelling behavior. However, it is feasible to optimize the ACV/CS ratios to achieve a desired formulation that releases the total quantity of ACV at a specific time. Moreover, floatability was assessed by buoyancy tests. The results demonstrated that the freeze-drying process achieved effective floating systems capable of remaining within the stomach while the total amount of ACV is released from L.
Collapse
Affiliation(s)
- Roberto Ruiz-Caro
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040-Madrid, Spain.
| | - María D Veiga
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040-Madrid, Spain.
- Unidad de Biotransformaciones Industriales, Parque Científico de Madrid PTM, 28760-Tres Cantos, Madrid, Spain.
| |
Collapse
|
47
|
Smith MJ, White KL. Establishment and comparison of delayed-type hypersensitivity models in the B₆C₃F₁ mouse. J Immunotoxicol 2010; 7:308-17. [PMID: 20825253 DOI: 10.3109/1547691x.2010.509707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of these studies was to establish and compare delayed-type hypersensitivity (DTH) models, using keyhole limpet hemocyanin (KLH), sheep red blood cells (SRBC), and Candida albicans as sensitizing antigens, for their capability to assess a DTH response (utilizing footpad swelling as the endpoint) with minimal confounding factors resulting from antigen-specific antibody (Ab) production. The key elements of the DTH are the sensitization dose, time interval between sensitization and challenge [i.e. the challenge interval (CI)], and the challenge dose. Models were established by first determining the challenge dose, or the amount of antigen that produced no greater footpad swelling 24-h post-injection than the trauma induced by injection of physiological saline. Time-course studies determined the CI that produced a peak response for each antigen. Dose-response sensitization studies were conducted to determine the optimum sensitization concentration (i.e. maximum footpad swelling with minimal impact by antigen-specific Ab production). Footpad swelling decreased dose-responsively with increasing KLH sensitization concentration and corresponded to a dose-responsive increase in KLH-specific Ab levels. In the SRBC model, footpad swelling decreased at the high dose (1 x 10⁹ SRBC/mouse), and a corresponding increase in SRBC-specific Ab was observed at this dose level. A dose-responsive increase in footpad swelling was observed in the C. albicans model up to 3 x 10⁷ organisms/mouse, while antigen-specific antibody levels were not different from background (unsensitized) levels following sensitization with any concentration of C. albicans (up to 1.2 x 10⁸ organisms/mouse, the highest concentration tested). Finally, each model was evaluated for its ability to detect immunosuppression following exposure to benzo[a]pyrene (B[a]P), with the C. albicans model demonstrating greater sensitivity than the other models. These results indicate that, of the three models examined here, the C. albicans DTH model may be the most appropriate model for evaluating effects on cell-mediated immunity when conducting immunotoxicological investigations.
Collapse
Affiliation(s)
- Matthew J Smith
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | |
Collapse
|
48
|
Rauw F, Gardin Y, Palya V, Anbari S, Gonze M, Lemaire S, van den Berg T, Lambrecht B. The positive adjuvant effect of chitosan on antigen-specific cell-mediated immunity after chickens vaccination with live Newcastle disease vaccine. Vet Immunol Immunopathol 2010; 134:249-58. [DOI: 10.1016/j.vetimm.2009.10.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/23/2009] [Accepted: 10/23/2009] [Indexed: 01/17/2023]
|
49
|
Muzzarelli RAA. Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar Drugs 2010; 8:292-312. [PMID: 20390107 PMCID: PMC2852840 DOI: 10.3390/md8020292] [Citation(s) in RCA: 309] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/20/2010] [Indexed: 12/22/2022] Open
Abstract
Due to the fact that some individuals are allergic to crustaceans, the presumed relationship between allergy and the presence of chitin in crustaceans has been investigated. In vivo, chitin is part of complex structures with other organic and inorganic compounds: in arthropods chitin is covalently linked to proteins and tanned by quinones, in fungi it is covalently linked to glucans, while in bacteria chitin is diversely combined according to Gram(+/-) classification. On the other hand, isolated, purified chitin is a plain polysaccharide that, at the nano level, presents itself as a highly associated structure, recently refined in terms of regularity, nature of bonds, crystallinity degree and unusual colloidal behavior. Chitins and modified chitins exert a number of beneficial actions, i.e., (i) they stimulate macrophages by interacting with receptors on the macrophage surface that mediate the internalization of chitin particles to be degraded by lysozyme and N-acetyl-beta-glucosaminidase (such as Nod-like, Toll-like, lectin, Dectin-1, leukotriene 134 and mannose receptors); (ii) the macrophages produce cytokines and other compounds that confer non-specific host resistance against bacterial and viral infections, and anti-tumor activity; (iii) chitin is a strong Th1 adjuvant that up-regulates Th1 immunity induced by heat-killed Mycobacterium bovis, while down- regulating Th2 immunity induced by mycobacterial protein; (iv) direct intranasal application of chitin microparticles into the lung was also able to significantly down-regulate allergic response to Dermatophagoids pteronyssinus and Aspergillus fumigatus in a murine model of allergy; (v) chitin microparticles had a beneficial effect in preventing and treating histopathologic changes in the airways of asthmatic mice; (vi) authors support the fact that chitin depresses the development of adaptive type 2 allergic responses. Since the expression of chitinases, chitrotriosidase and chitinase-like proteins is greatly amplified during many infections and diseases, the common feature of chitinase-like proteins and chitinase activity in all organisms appears to be the biochemical defense of the host. Unfortunately, conceptual and methodological errors are present in certain recent articles dealing with chitin and allergy, i.e., (1) omitted consideration of mammalian chitinase and/or chitotriosidase secretion, accompanied by inactive chitinase-like proteins, as an ancestral defensive means against invasion, capable to prevent the insurgence of allergy; (2) omitted consideration of the fact that the mammalian organism recognizes more promptly the secreted water soluble chitinase produced by a pathogen, rather than the insoluble and well protected chitin within the pathogen itself; (3) superficial and incomplete reports and investigations on chitin as an allergen, without mentioning the potent allergen from crustacean flesh, tropomyosine; (4) limited perception of the importance of the chemical/biochemical characteristics of the isolated chitin or chitosan for the replication of experiments and optimization of results; and (5) lack of interdisciplinarity. There is quite a large body of knowledge today on the use of chitosans as biomaterials, and more specifically as drug carriers for a variety of applications: the delivery routes being the same as those adopted for the immunological studies. Said articles, that devote attention to the safety and biocompatibility aspects, never reported intolerance or allergy in individuals and animals, even when the quantities of chitosan used in single experiments were quite large. Therefore, it is concluded that crab, shrimp, prawn and lobster chitins, as well as chitosans of all grades, once purified, should not be considered as "crustacean derivatives", because the isolation procedures have removed proteins, fats and other contaminants to such an extent as to allow them to be classified as chemicals regardless of their origin.
Collapse
|
50
|
Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev 2010; 62:59-82. [PMID: 19925837 DOI: 10.1016/j.addr.2009.11.009] [Citation(s) in RCA: 403] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/16/2009] [Accepted: 11/04/2009] [Indexed: 11/28/2022]
Abstract
Therapeutic peptides/proteins and protein-based antigens are chemically and structurally labile compounds, which are almost exclusively administered by parenteral injections. Recently, non-invasive mucosal routes have attracted interest for administration of these biotherapeutics. Chitosan-based delivery systems enhance the absorption and/or cellular uptake of peptides/proteins across mucosal sites and have immunoadjuvant properties. Chitosan is a mucoadhesive polysaccharide capable of opening the tight junctions between epithelial cells and it has functional groups for chemical modifications, which has resulted in a large variety of chitosan derivatives with tunable properties for the aimed applications. This review provides an overview of chitosan-based polymers for preparation of both therapeutic peptides/protein and antigen formulations. The physicochemical properties of these carrier systems as well as their applications in protein and antigen delivery through parenteral and mucosal (particularly nasal and pulmonary) administrations are summarized and discussed.
Collapse
Affiliation(s)
- Maryam Amidi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | |
Collapse
|