1
|
Silva ARS, Copetti JB, Monteiro AC, Gotardo M, de Oliveira JD, Macagnan MH, Cardoso EM, Ogliari K. NUMERICAL AND EXPERIMENTAL INVESTIGATION OF DROPLET VITRIFICATION PROCESS: A THERMOFLUIDIC ANALYSIS FOR CRYOPRESERVATION. Cryobiology 2024; 117:105156. [PMID: 39490886 DOI: 10.1016/j.cryobiol.2024.105156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
One of the biggest challenges in studying vitrification protocols for small volumes of biological materials, especially the microdroplet vitrification protocol, is measuring the solidification rate, requiring equipment with a high level of technology, making it practically impossible to measure the degree of crystallization. An alternative is using mathematical models applied in computer simulations (CFD), helping to improve and develop new vitrification protocols. This study investigates the vitrification process utilizing the microdroplet method through experimental and numerical analysis. Droplets of mineralized water are deposited onto a copper substrate, temperature data is collected, and images of the process are taken with a high-speed camera. Numerical simulations are performed using ANSYS Fluent® software to analyze temperature and solidification behavior. Droplet contact angle measurements are also conducted to determine boundary conditions for numerical simulations. Mesh refinement is conducted using the Grid Convergence Index method, ensuring accuracy in computational results. The simulations employ a solidification model, considering phase enthalpy and thermal properties of the droplet, environment, and substrate. Results show good agreement between numerical and experimental data regarding solidification dynamics and temperature profiles. Furthermore, the study examines the influence of cooling surface geometry on the vitrification process. The contact area between the droplet and the surface increases by machining a cavity on the copper substrate, leading to enhanced cooling rates and reduced stabilization time. This research provides insights into optimizing vitrification processes, contributing to advancements in cryopreservation and material science applications.
Collapse
Affiliation(s)
- Alisson R S Silva
- UNISINOS - University of Vale do Rio dos Sinos, Polytechnic School, 950, São Leopoldo-RS, Brazil.
| | - Jacqueline B Copetti
- UNISINOS - University of Vale do Rio dos Sinos, Polytechnic School, 950, São Leopoldo-RS, Brazil
| | - André C Monteiro
- UNISINOS - University of Vale do Rio dos Sinos, Polytechnic School, 950, São Leopoldo-RS, Brazil
| | - Marcelo Gotardo
- UNISINOS - University of Vale do Rio dos Sinos, Polytechnic School, 950, São Leopoldo-RS, Brazil
| | - Jeferson D de Oliveira
- USP - University of São Paulo, Polytechnic School, SISEA - Renewable and Alternative Energy Systems Laboratory, São Paulo-SP, Brazil
| | - Mario H Macagnan
- UNISINOS - University of Vale do Rio dos Sinos, Polytechnic School, 950, São Leopoldo-RS, Brazil
| | - Elaine M Cardoso
- UNESP - São Paulo State University, School of Engineering, São João da Boa Vista-SP, Brazil
| | - Karolyn Ogliari
- HemoCord - Umbilical Cord Blood Bank, Unisinos Technology Park, São Leopoldo-RS, Brazil
| |
Collapse
|
2
|
Sirayapiwat P, Amorim CA, Sereepapong W, Tuntiviriyapun P, Suebthawinkul C, Thuwanut P. Application of fibrin-based biomaterial for human ovarian tissue encapsulation and cryopreservation as alternative approach for fertility preservation. Cryobiology 2024; 117:104955. [PMID: 39236797 DOI: 10.1016/j.cryobiol.2024.104955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
This study aimed to investigate the effects of fibrin-based hydrogel encapsulation, with or without vascular endothelial growth factor (VEGF), on follicle quality and cell survival signaling pathways after ovarian tissue cryopreservation. Ovarian cortex donated by seven patients (ages 44-47 years old) was divided into four groups: I) fresh control, II) ovarian tissue without encapsulation (non-FT), III) fibrin (10 mg/mL fibrinogen plus 50 IU/mL thrombin; 10FT) encapsulated tissue without VEGF, and IV) encapsulated tissue with 0.1 μg/mL VEGF (10FT-VEGF), followed by a slow freezing process. Evaluation criteria included normal follicle morphology, density, cell proliferation, apoptosis, and metabolism signaling pathways (BAX/BCL-2 ratio, CASPASE-3 and 9, ATP-6 genes, VEGF-A, and ERK-1/2 protein expression levels). Major outcomes revealed that the percentages of morphologically normal follicles and density were significantly decreased by cryopreservation. Ovarian tissue encapsulation using the 10FT formulation (with or without VEGF) could maintain the ERK-signaling cascade, which was comparable to the fresh control. Among the frozen-thawed cohorts, the BAX/BCL-2 ratio, CASPASE-3, CASPASE-9, and ATP-6 expression levels were unfavorable in the non-FT group. However, statistically different results, including VEGF-A expression levels, were not detected. Collectively, our present data demonstrated the first applicable biomaterial matrix for human ovarian tissue encapsulation which might create an optimal intra-ovarian cortex environment during cryopreservation. Further studies to optimize hydrogel polymerization should be expanded, given the potential benefits for cancer patients who wish to preserve fertility through ovarian tissue cryopreservation.
Collapse
Affiliation(s)
- Porntip Sirayapiwat
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction (REPR), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Wisan Sereepapong
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Punkavee Tuntiviriyapun
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chanakarn Suebthawinkul
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Paweena Thuwanut
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
3
|
Ferronato GDA, Vit FF, da Silveira JC. 3D culture applied to reproduction in females: possibilities and perspectives. Anim Reprod 2024; 21:e20230039. [PMID: 38510565 PMCID: PMC10954237 DOI: 10.1590/1984-3143-ar2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/13/2023] [Indexed: 03/22/2024] Open
Abstract
In vitro cell culture is a well-established technique present in numerous laboratories in diverse areas. In reproduction, gametes, embryos, and reproductive tissues, such as the ovary and endometrium, can be cultured. These cultures are essential for embryo development studies, understanding signaling pathways, developing drugs for reproductive diseases, and in vitro embryo production (IVP). Although many culture systems are successful, they still have limitations to overcome. Three-dimensional (3D) culture systems can be close to physiological conditions, allowing greater interaction between cells and cells with the surrounding environment, maintenance of the cells' natural morphology, and expression of genes and proteins such as in vivo. Additionally, three-dimensional culture systems can stimulated extracellular matrix generating responses due to the mechanical force produced. Different techniques can be used to perform 3D culture systems, such as hydrogel matrix, hanging drop, low attachment surface, scaffold, levitation, liquid marble, and 3D printing. These systems demonstrate satisfactory results in follicle culture, allowing the culture from the pre-antral to antral phase, maintaining the follicular morphology, and increasing the development rates of embryos. Here, we review some of the different techniques of 3D culture systems and their applications to the culture of follicles and embryos, bringing new possibilities to the future of assisted reproduction.
Collapse
Affiliation(s)
| | - Franciele Flores Vit
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | | |
Collapse
|
4
|
Cui M, Zhan T, Yang J, Dang H, Yang G, Han H, Liu L, Xu Y. Droplet Generation, Vitrification, and Warming for Cell Cryopreservation: A Review. ACS Biomater Sci Eng 2023; 9:1151-1163. [PMID: 36744931 DOI: 10.1021/acsbiomaterials.2c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cryopreservation is currently a key step in translational medicine that could provide new ideas for clinical applications in reproductive medicine, regenerative medicine, and cell therapy. With the advantages of a low concentration of cryoprotectant, fast cooling rate, and easy operation, droplet-based printing for vitrification has received wide attention in the field of cryopreservation. This review summarizes the droplet generation, vitrification, and warming method. Droplet generation techniques such as inkjet printing, microvalve printing, and acoustic printing have been applied in the field of cryopreservation. Droplet vitrification includes direct contact with liquid nitrogen vitrification and droplet solid surface vitrification. The limitations of droplet vitrification (liquid nitrogen contamination, droplet evaporation, gas film inhibition of heat transfer, frosting) and solutions are discussed. Furthermore, a comparison of the external physical field warming method with the conventional water bath method revealed that better applications can be achieved in automated rapid warming of microdroplets. The combination of droplet vitrification technology and external physical field warming technology is expected to enable high-throughput and automated cryopreservation, which has a promising future in biomedicine and regenerative medicine.
Collapse
Affiliation(s)
- Mengdong Cui
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Taijie Zhan
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Jiamin Yang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Hangyu Dang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Guoliang Yang
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Hengxin Han
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Linfeng Liu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| | - Yi Xu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai200093, China
- Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai200093, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai200093, China
| |
Collapse
|
5
|
Testicular Tissue Vitrification: a Promising Strategy for Male Fertility Preservation. Reprod Sci 2022; 30:1687-1700. [DOI: 10.1007/s43032-022-01113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
|
6
|
Venkatesan J, Murugan SS, Ad P, Dgv Y, Seong GH. Alginate-based Composites Microspheres: Preparations and Applications for Bone Tissue Engineering. Curr Pharm Des 2022; 28:1067-1081. [PMID: 35593346 DOI: 10.2174/1381612828666220518142911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Alginate-based biomaterials have been extensively studied for bone tissue engineering. Scaffolds, microspheres, and hydrogels can be developed using alginate, which is biocompatible, biodegradable, and able to deliver growth factors and drugs. Alginate microspheres can be produced using crosslinking, microfluidic, three-dimensional printing, extrusion, and emulsion methods. The sizes of the alginate microspheres range from 10 µm to 4 mm. This review describes the chemical characterization and mechanical assessment of alginate-based microspheres. Combinations of alginate with hydroxyapatite, chitosan, collagen, polylactic acid, polycaprolactone, and bioglass were discussed for bone tissue repair and regeneration. In addition, alginate combinations with bone morphogenetic proteins, vascular endothelial growth factor, transforming growth factor beta-3, other growth factors, cells, proteins, drugs, and osteoinductive drugs were analyzed for tissue engineering applications. Furthermore, the biocompatibility of developed alginate microspheres was discussed for different cell lines. Finally, alginate microsphere-based composites with stem cell interaction for bone tissue regeneration were presented. In the present review, we have assessed the preclinical research on in vivo models of alginate-based microspheres for bone tissue repair and regeneration. Overall, alginate-based microspheres are potential candidates for graft substitutes and the treatment of various bone-related diseases.
Collapse
Affiliation(s)
- Jayachandran Venkatesan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea.,Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Sesha Subramanian Murugan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea
| | - Pandurang Ad
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea
| | - Yashaswini Dgv
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea
| | - Gi Hun Seong
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| |
Collapse
|
7
|
Meiser I, Majer J, Katsen-Globa A, Schulz A, Schmidt K, Stracke F, Koutsouraki E, Witt G, Keminer O, Pless O, Gardner J, Claussen C, Gribbon P, Neubauer JC, Zimmermann H. Droplet-based vitrification of adherent human induced pluripotent stem cells on alginate microcarrier influenced by adhesion time and matrix elasticity. Cryobiology 2021; 103:57-69. [PMID: 34582849 DOI: 10.1016/j.cryobiol.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
The gold standard in cryopreservation is still conventional slow freezing of single cells or small aggregates in suspension, although major cell loss and limitation to non-specialised cell types in stem cell technology are known drawbacks. The requirement for rapidly available therapeutic and diagnostic cell types is increasing constantly. In the case of human induced pluripotent stem cells (hiPSCs) or their derivates, more sophisticated cryopreservation protocols are needed to address this demand. These should allow a preservation in their physiological, adherent state, an efficient re-cultivation and upscaling upon thawing towards high-throughput applications in cell therapies or disease modelling in drug discovery. Here, we present a novel vitrification-based method for adherent hiPSCs, designed for automated handling by microfluidic approaches and with ready-to-use potential e.g. in suspension-based bioreactors after thawing. Modifiable alginate microcarriers serve as a growth surface for adherent hiPSCs that were cultured in a suspension-based bioreactor and subsequently cryopreserved via droplet-based vitrification in comparison to conventional slow freezing. Soft (0.35%) versus stiff (0.65%) alginate microcarriers in concert with adhesion time variation have been examined. Findings revealed specific optimal conditions leading to an adhesion time and growth surface (matrix) elasticity dependent hypothesis on cryo-induced damaging regimes for adherent cell types. Deviations from the found optimum parameters give rise to membrane ruptures assessed via SEM and major cell loss after adherent vitrification. Applying the optimal conditions, droplet-based vitrification was superior to conventional slow freezing. A decreased microcarrier stiffness was found to outperform stiffer material regarding cell recovery, whereas the stemness characteristics of rewarmed hiPSCs were preserved.
Collapse
Affiliation(s)
- Ina Meiser
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280, Sulzbach, Saar, Germany.
| | - Julia Majer
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280, Sulzbach, Saar, Germany
| | - Alisa Katsen-Globa
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280, Sulzbach, Saar, Germany
| | - André Schulz
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280, Sulzbach, Saar, Germany
| | - Katharina Schmidt
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280, Sulzbach, Saar, Germany
| | - Frank Stracke
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280, Sulzbach, Saar, Germany
| | | | - Gesa Witt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, 22525, Hamburg, Germany
| | - Oliver Keminer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, 22525, Hamburg, Germany
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, 22525, Hamburg, Germany
| | - John Gardner
- Censo Biotechnologies Ltd, Roslin Midlothian, EH25 9RG, United Kingdom
| | - Carsten Claussen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, 22525, Hamburg, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, 22525, Hamburg, Germany
| | - Julia C Neubauer
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280, Sulzbach, Saar, Germany; Fraunhofer Project Centre for Stem Cell Process Engineering, 97081, Würzburg, Germany
| | - Heiko Zimmermann
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280, Sulzbach, Saar, Germany; Censo Biotechnologies Ltd, Roslin Midlothian, EH25 9RG, United Kingdom; Faculty of Marine Science, Universidad Católica Del Norte, 1781421, Coquimbo, Chile; Chair for Molecular and Cellular Biotechnology / Nanotechnology, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
8
|
Rial R, Liu Z, Ruso JM. Soft Actuated Hybrid Hydrogel with Bioinspired Complexity to Control Mechanical Flexure Behavior for Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1302. [PMID: 32635193 PMCID: PMC7407768 DOI: 10.3390/nano10071302] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 01/16/2023]
Abstract
Hydrogels exhibit excellent properties that enable them as nanostructured scaffolds for soft tissue engineering. However, single-component hydrogels have significant limitations due to the low versatility of the single component. To achieve this goal, we have designed and characterized different multi-component hydrogels composed of gelatin, alginate, hydroxyapatite, and a protein (BSA and fibrinogen). First, we describe the surface morphology of the samples and the main characteristics of the physiological interplay by using fourier transform infrared (FT-IR), and confocal Raman microscopy. Then, their degradation and swelling were studied and mechanical properties were determined by rheology measurements. Experimental data were carefully collected and quantitatively analyzed by developing specific approaches and different theoretical models to determining the most important parameters. Finally, we determine how the nanoscale of the system influences its macroscopic properties and characterize the extent to which degree each component maintains its own functionality, demonstrating that with the optimal components, in the right proportion, multifunctional hydrogels can be developed.
Collapse
Affiliation(s)
- Ramón Rial
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Zhen Liu
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA;
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| |
Collapse
|
9
|
Wang Z, Yang B, Chen Z, Liu D, Jing L, Gao C, Li J, He Z, Wang J. Bioinspired Cryoprotectants of Glucose-Based Carbon Dots. ACS APPLIED BIO MATERIALS 2020; 3:3785-3791. [DOI: 10.1021/acsabm.0c00376] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhanhui Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bin Yang
- The Sixth Affiliated Hospital; Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhuo Chen
- School of Materials Science & Engineering, Department of Materials Physics & Chemistry, Beijing Institute of Technology, Beijing 100081, China
| | - Dan Liu
- School of Materials Science & Engineering, Department of Materials Physics & Chemistry, Beijing Institute of Technology, Beijing 100081, China
| | - Lihong Jing
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chong Gao
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Zhiyuan He
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianjun Wang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Jia N, Zhang X, Li W, Chen D, Hu H. Phospholipid-Coated Guanosine Diphosphate Auxiliary CaP Active Nanoparticles Can Systematically Improve the Efficiency of Gene Therapy for Cancer Disease. ACS Biomater Sci Eng 2020; 6:2107-2116. [PMID: 33455334 DOI: 10.1021/acsbiomaterials.0c00316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endogenous active substance guanosine diphosphate (GDP) is involved in the physiological process of DNA transfection and expression in the cytoplasm by binding to Ran proteins. To substantially improve the gene delivery efficiency of nanoparticles, phospholipid-coated Ca(P-GDP)/pDNA/NLS hybrid nanoparticles were prepared using GDP as a common biophosphorus source based on the biological process of exogenous gene expression in the cells. This nanoparticle has a relative uniform particle size distribution and in vitro stability. The addition of GDP in nanoparticles significantly enhanced the gene expression efficiency with good biocompatibility. Moreover, an in vivo study further verified that hybrid nanoparticles were more effective in increasing the p53 gene expression, thus significantly inhibiting the tumor growth in the heterotopic tumor model of nude mice. These results demonstrated that phospholipid-coated Ca(P-GDP) nanoparticles were a potential nonviral gene vector to promote gene expression. The experimental results confirmed the feasibility of designing a delivery system based on active substances and provided a new solution to improve the transfection efficiency of gene drugs.
Collapse
Affiliation(s)
- Nan Jia
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Xirui Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Wenpan Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Dawei Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| | - Haiyang Hu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China
| |
Collapse
|
11
|
Mutsenko V, Knaack S, Lauterboeck L, Tarusin D, Sydykov B, Cabiscol R, Ivnev D, Belikan J, Beck A, Dipresa D, Lode A, El Khassawna T, Kampschulte M, Scharf R, Petrenko AY, Korossis S, Wolkers WF, Gelinsky M, Glasmacher B, Gryshkov O. Effect of 'in air' freezing on post-thaw recovery of Callithrix jacchus mesenchymal stromal cells and properties of 3D collagen-hydroxyapatite scaffolds. Cryobiology 2020; 92:215-230. [PMID: 31972153 DOI: 10.1016/j.cryobiol.2020.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022]
Abstract
Through enabling an efficient supply of cells and tissues in the health sector on demand, cryopreservation is increasingly becoming one of the mainstream technologies in rapid translation and commercialization of regenerative medicine research. Cryopreservation of tissue-engineered constructs (TECs) is an emerging trend that requires the development of practically competitive biobanking technologies. In our previous studies, we demonstrated that conventional slow-freezing using dimethyl sulfoxide (Me2SO) does not provide sufficient protection of mesenchymal stromal cells (MSCs) frozen in 3D collagen-hydroxyapatite scaffolds. After simple modifications to a cryopreservation protocol, we report on significantly improved cryopreservation of TECs. Porous 3D scaffolds were fabricated using freeze-drying of a mineralized collagen suspension and following chemical crosslinking. Amnion-derived MSCs from common marmoset monkey Callithrix jacchus were seeded onto scaffolds in static conditions. Cell-seeded scaffolds were subjected to 24 h pre-treatment with 100 mM sucrose and slow freezing in 10% Me2SO/20% FBS alone or supplemented with 300 mM sucrose. Scaffolds were frozen 'in air' and thawed using a two-step procedure. Diverse analytical methods were used for the interpretation of cryopreservation outcome for both cell-seeded and cell-free scaffolds. In both groups, cells exhibited their typical shape and well-preserved cell-cell and cell-matrix contacts after thawing. Moreover, viability test 24 h post-thaw demonstrated that application of sucrose in the cryoprotective solution preserves a significantly greater portion of sucrose-pretreated cells (more than 80%) in comparison to Me2SO alone (60%). No differences in overall protein structure and porosity of frozen scaffolds were revealed whereas their compressive stress was lower than in the control group. In conclusion, this approach holds promise for the cryopreservation of 'ready-to-use' TECs.
Collapse
Affiliation(s)
- Vitalii Mutsenko
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany.
| | - Sven Knaack
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine of Technische Universität Dresden, Dresden, Germany
| | - Lothar Lauterboeck
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center New Orleans, USA
| | - Dmytro Tarusin
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Bulat Sydykov
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Ramon Cabiscol
- Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dmitrii Ivnev
- Institute of Power Plant Engineering and Heat Transfer, Leibniz University Hannover, Hannover, Germany
| | - Jan Belikan
- Department of Radiology, University Hospital of Giessen Marburg, Giessen, Germany
| | - Annemarie Beck
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Daniele Dipresa
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine of Technische Universität Dresden, Dresden, Germany
| | - Thaqif El Khassawna
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Marian Kampschulte
- Department of Radiology, University Hospital of Giessen Marburg, Giessen, Germany
| | - Roland Scharf
- Institute of Power Plant Engineering and Heat Transfer, Leibniz University Hannover, Hannover, Germany
| | - Alexander Yu Petrenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Sotirios Korossis
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany; Centre for Biological Engineering, Wolfson School for Mechanical Electrical and Manufacturing Engineering, University of Loughborough, Loughborough, United Kingdom
| | - Willem F Wolkers
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine of Technische Universität Dresden, Dresden, Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
12
|
Li Y, Memon K, Zheng Y, Cheng Y, Mbogba MK, Wang P, Ouyang X, Zhao G. Microencapsulation Facilitates Low-Cryoprotectant Vitrification of Human Umbilical Vein Endothelial Cells. ACS Biomater Sci Eng 2019; 5:5273-5283. [DOI: 10.1021/acsbiomaterials.9b00726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yufang Li
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Kashan Memon
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Yuanyuan Zheng
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Yue Cheng
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Momoh Karmah Mbogba
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Peitao Wang
- Department of Cryomedicine and Andrology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xilin Ouyang
- The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| |
Collapse
|
13
|
Gurruchaga H, Saenz Del Burgo L, Orive G, Hernandez RM, Ciriza J, Pedraz JL. Low molecular-weight hyaluronan as a cryoprotectant for the storage of microencapsulated cells. Int J Pharm 2018; 548:206-216. [PMID: 29969709 DOI: 10.1016/j.ijpharm.2018.06.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
The low-temperature storage of therapeutic cell-based products plays a crucial role in their clinical translation for the treatment of diverse diseases. Although dimethylsulfoxide (DMSO) is the most successful cryoprotectant in slow freezing of microencapsulated cells, it has shown adverse effects after cryopreserved cell-based products implantation. Therefore, the search of alternative non-toxic cryoprotectants for encapsulated cells is continuously investigated to move from bench to the clinic. In this work, we investigated the low molecular-weight hyaluronan (low MW-HA), a natural non-toxic and non-sulfated glycosaminoglycan, as an alternative non-permeant cryoprotectant for the slow freezing cryopreservation of encapsulated cells. Cryopreservation with low MW-HA provided similar metabolic activity, cell dead and early apoptotic cell percentage and membrane integrity after thawing, than encapsulated cells stored with either DMSO 10% or Cryostor 10. However, the beneficial outcomes with low MW-HA were not comparable to DMSO with some encapsulated cell types, such as the human insulin secreting cell line, 1.1B4, maybe explained by the different expression of the CD44 surface receptor. Altogether, we can conclude that low MW-HA represents a non-toxic natural alternative cryoprotectant to DMSO for the cryopreservation of encapsulated cells.
Collapse
Affiliation(s)
- H Gurruchaga
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - L Saenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - R M Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - J Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - J L Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
14
|
Gurgul A, Romanek J, Pawlina-Tyszko K, Szmatoła T, Opiela J. Evaluation of changes arising in the pig mesenchymal stromal cells transcriptome following cryopreservation and Trichostatin A treatment. PLoS One 2018; 13:e0192147. [PMID: 29390033 PMCID: PMC5794156 DOI: 10.1371/journal.pone.0192147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/17/2018] [Indexed: 12/27/2022] Open
Abstract
Cryopreservation is an important procedure in maintenance and clinical applications of mesenchymal stem/stromal cells (MSCs). Although the methods of cell freezing using various cryoprotectants are well developed and allow preserving structurally intact living cells, the freezing process can be considered as a severe cellular stress associated with ice formation, osmotic damage, cryoprotectants migration/cytotoxicity or rapid cell shrinkage. The cellular response to freezing stress is aimed at the restoring of homeostasis and repair of cell damage and is crucial for cell viability. In this study we evaluated the changes arising in the pig mesenchymal stromal cell transcriptome following cryopreservation and showed the vast alterations in cell transcriptional activity (5,575 genes with altered expression) suggesting the engagement in post-thawing cell recovery of processes connected with cell membrane tension regulation, membrane damage repair, cell shape maintenance, mitochondria-connected energy homeostasis and apoptosis mediation. We also evaluated the effect of known gene expression stimulator—Trichostain A (TSA) on the frozen/thawed cells transcriptome and showed that TSA is able to counteract to a certain extent transcriptome alterations, however, its specificity and advantages for cell recovery after cryopreservation require further studies.
Collapse
Affiliation(s)
- Artur Gurgul
- National Research Institute of Animal Production, Department of Genomics and Molecular Biology, Balice, Poland
| | - Joanna Romanek
- National Research Institute of Animal Production, Department of Animal Reproduction Biotechnology, Balice, Poland
| | - Klaudia Pawlina-Tyszko
- National Research Institute of Animal Production, Department of Genomics and Molecular Biology, Balice, Poland
| | - Tomasz Szmatoła
- National Research Institute of Animal Production, Department of Genomics and Molecular Biology, Balice, Poland
| | - Jolanta Opiela
- National Research Institute of Animal Production, Department of Animal Reproduction Biotechnology, Balice, Poland
- * E-mail:
| |
Collapse
|
15
|
Zhang X, Zhao G, Cao Y, Haider Z, Wang M, Fu J. Magnetothermal heating facilitates the cryogenic recovery of stem cell–laden alginate–Fe3O4 nanocomposite hydrogels. Biomater Sci 2018; 6:3139-3151. [DOI: 10.1039/c8bm01004h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A report on the self-heating enabled cryopreservation of stem cell–laden magnetic nanocomposite hydrogels.
Collapse
Affiliation(s)
- Xiaozhang Zhang
- Department of Electronic Science and Technology
- University of Science and Technology of China
- Hefei
- China
| | - Gang Zhao
- Department of Electronic Science and Technology
- University of Science and Technology of China
- Hefei
- China
| | - Yuan Cao
- Department of Electronic Science and Technology
- University of Science and Technology of China
- Hefei
- China
| | - Zeeshan Haider
- Department of Electronic Science and Technology
- University of Science and Technology of China
- Hefei
- China
| | - Meng Wang
- Department of Electronic Science and Technology
- University of Science and Technology of China
- Hefei
- China
| | - Jianping Fu
- Department of Mechanical Engineering
- University of Michigan
- Ann Arbor
- USA
- Department of Biomedical Engineering
| |
Collapse
|
16
|
Van Pham P, Nguyen HT, Vu NB. Evolution of Stem Cell Products in Medicine: Future of Off-the-Shelf Products. STEM CELL DRUGS - A NEW GENERATION OF BIOPHARMACEUTICALS 2018. [DOI: 10.1007/978-3-319-99328-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Zhao G, Liu X, Zhu K, He X. Hydrogel Encapsulation Facilitates Rapid-Cooling Cryopreservation of Stem Cell-Laden Core-Shell Microcapsules as Cell-Biomaterial Constructs. Adv Healthc Mater 2017; 6:10.1002/adhm.201700988. [PMID: 29178480 PMCID: PMC5729581 DOI: 10.1002/adhm.201700988] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/30/2017] [Indexed: 01/08/2023]
Abstract
Core-shell structured stem cell microencapsulation in hydrogel has wide applications in tissue engineering, regenerative medicine, and cell-based therapies because it offers an ideal immunoisolative microenvironment for cell delivery and 3D culture. Long-term storage of such microcapsules as cell-biomaterial constructs by cryopreservation is an enabling technology for their wide distribution and ready availability for clinical transplantation. However, most of the existing studies focus on cryopreservation of single cells or cells in microcapsules without a core-shell structure (i.e., hydrogel beads). The goal of this study is to achieve cryopreservation of stem cells encapsulated in core-shell microcapsules as cell-biomaterial constructs or biocomposites. To this end, a capillary microfluidics-based core-shell alginate hydrogel encapsulation technology is developed to produce porcine adipose-derived stem cell-laden microcapsules for vitreous cryopreservation with very low concentration (2 mol L-1 ) of cell membrane penetrating cryoprotective agents (CPAs) by suppressing ice formation. This may provide a low-CPA and cost-effective approach for vitreous cryopreservation of "ready-to-use" stem cell-biomaterial constructs, facilitating their off-the-shelf availability and widespread applications.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaoli Liu
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Kaixuan Zhu
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
18
|
Bit A, Kumar A, Singh AK, Rizvanov AA, Kiassov AP, Patra PK, Kumar M, Bissoyi A. Crosstalk between Substrates and Rho-Associated Kinase Inhibitors in Cryopreservation of Tissue-Engineered Constructs. Stem Cells Int 2017; 2017:1380304. [PMID: 29201057 PMCID: PMC5672132 DOI: 10.1155/2017/1380304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/06/2017] [Accepted: 09/07/2017] [Indexed: 11/28/2022] Open
Abstract
It is documented that human mesenchymal stem cells (hMSCs) can be differentiated into various types of cells to present a tool for tissue engineering and regenerative medicine. Thus, the preservation of stem cells is a crucial factor for their effective long-term storage that further facilitates their continuous supply and transportation for application in regenerative medicine. Cryopreservation is the most important, practicable, and the only established mechanism for long-term preservation of cells, tissues, and organs, and engineered tissues; thus, it is the key step for the improvement of tissue engineering. A significant portion of MSCs loses cellular viability while freeze-thawing, which represents an important technical limitation to achieving sufficient viable cell numbers for maximum efficacy. Several natural and synthetic materials are extensively used as substrates for tissue engineering constructs and cryopreservation because they promote cell attachment and proliferation. Rho-associated kinase (ROCK) inhibitors can improve the physiological function and postthaw viability of cryopreserved MSCs. This review proposes a crosstalk between substrate topology and interaction of cells with ROCK inhibitors. It is shown that incorporation of ionic nanoparticles in the presence of an external electrical field improves the generation of ROCK inhibitors to safeguard cellular viability for the enhanced cryopreservation of engineered tissues.
Collapse
Affiliation(s)
- Arindam Bit
- Department of Biomedical Engineering, National Institute of Technology, Raipur 492010, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, India
| | | | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Andrey P. Kiassov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | | | - Munish Kumar
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Akalabya Bissoyi
- Department of Biomedical Engineering, National Institute of Technology, Raipur 492010, India
| |
Collapse
|
19
|
Alginate: A Versatile Biomaterial to Encapsulate Isolated Ovarian Follicles. Ann Biomed Eng 2017; 45:1633-1649. [DOI: 10.1007/s10439-017-1816-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/22/2017] [Indexed: 12/19/2022]
|
20
|
Bissoyi A, Bit A, Singh BK, Singh AK, Patra PK. Enhanced cryopreservation of MSCs in microfluidic bioreactor by regulated shear flow. Sci Rep 2016; 6:35416. [PMID: 27748463 PMCID: PMC5066325 DOI: 10.1038/srep35416] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/02/2016] [Indexed: 11/09/2022] Open
Abstract
Cell-matrix systems can be stored for longer period of time by means of cryopreservation. Cell-matrix and cell-cell interaction has been found to be critical in a number of basic biological processes. Tissue structure maintenance, cell secretary activity, cellular migration, and cell-cell communication all exist because of the presence of cell interactions. This complex and co-ordinated interaction between cellular constituents, extracellular matrix and adjacent cells has been identified as a significant contributor in the overall co-ordination of tissue. The prime objective of this investigation is to evaluate the effects of shear-stress and cell-substrate interaction in successful recovery of adherent human mesenchymal-stem-cells (hMSCs). A customized microfluidic bioreactor has been used for the purpose. We have measured the changes in focal-point-adhesion (FPAs) by changing induced shear stress inside the bioreactor. The findings indicate that with increase in shear stress, FPAs increases between substrate and MSCs. Further, experimental results show that increased FPAs (4e-3 μbar) enhances the cellular survivability of adherent MSCs. Probably, for the first time involvement of focal point interaction in the outcome of cryopreservation of MSCs has been clarified, and it proved a potentially new approach for modification of cryopreservation protocol by up-regulating focal point of cells to improve its clinical application.
Collapse
Affiliation(s)
- Akalabya Bissoyi
- Department of Biomedical Engineering, National Institute of Technology, Raipur, India
| | - Arindam Bit
- Department of Biomedical Engineering, National Institute of Technology, Raipur, India
| | - Bikesh Kumar Singh
- Department of Biomedical Engineering, National Institute of Technology, Raipur, India
| | | | | |
Collapse
|
21
|
Shikata H, Kaku M, Kojima SI, Sumi H, Kojima ST, Yamamoto T, Yashima Y, Kawata T, Tanne K, Tanimoto K. The effect of magnetic field during freezing and thawing of rat bone marrow-derived mesenchymal stem cells. Cryobiology 2016; 73:15-9. [DOI: 10.1016/j.cryobiol.2016.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022]
|
22
|
Pirnia A, Parivar K, Hemadi M, Yaghmaei P, Gholami M. Stemness of spermatogonial stem cells encapsulated in alginate hydrogel during cryopreservation. Andrologia 2016; 49. [DOI: 10.1111/and.12650] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 01/15/2023] Open
Affiliation(s)
- A. Pirnia
- Department of Biology; Science and Research Branch; Islamic Azad University; Tehran Iran
| | - K. Parivar
- Department of Biology; Science and Research Branch; Islamic Azad University; Tehran Iran
| | - M. Hemadi
- Fertility and Infertility Research Center; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - P. Yaghmaei
- Department of Biology; Science and Research Branch; Islamic Azad University; Tehran Iran
| | - M. Gholami
- Razi Herbal Medicine Research center and department of Anatomical sciences; Lorestan University of Medical Sciences; Khorramabad Iran
| |
Collapse
|
23
|
Popa EG, Reis RL, Gomes ME. Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage. Crit Rev Biotechnol 2016; 35:410-24. [PMID: 24646368 DOI: 10.3109/07388551.2014.889079] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This manuscript provides an overview of the in vitro and in vivo studies reported in the literature focusing on seaweed polysaccharides based hydrogels that have been proposed for applications in regenerative medicine, particularly, in the field of cartilage tissue engineering. For a better understanding of the main requisites for these specific applications, the main aspects of the native cartilage structure, as well as recognized diseases that affect this tissue are briefly described. Current available treatments are also presented to emphasize the need for alternative techniques. The following part of this review is centered on the description of the general characteristics of algae polysaccharides, as well as relevant properties required for designing hydrogels for cartilage tissue engineering purposes. An in-depth overview of the most well known seaweed polysaccharide, namely agarose, alginate, carrageenan and ulvan biopolymeric gels, that have been proposed for engineering cartilage is also provided. Finally, this review describes and summarizes the translational aspect for the clinical application of alternative systems emphasizing the importance of cryopreservation and the commercial products currently available for cartilage treatment.
Collapse
Affiliation(s)
- Elena Geta Popa
- a 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark , Guimarães , Portugal and
| | | | | |
Collapse
|
24
|
Neves LS, Rodrigues MT, Reis RL, Gomes ME. Current approaches and future perspectives on strategies for the development of personalized tissue engineering therapies. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1140004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Gandhi JK, Zivkovic L, Fisher JP, Yoder MC, Brey EM. Enhanced Viability of Endothelial Colony Forming Cells in Fibrin Microbeads for Sensor Vascularization. SENSORS 2015; 15:23886-902. [PMID: 26393602 PMCID: PMC4610420 DOI: 10.3390/s150923886] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/03/2015] [Accepted: 09/15/2015] [Indexed: 11/29/2022]
Abstract
Enhanced vascularization at sensor interfaces can improve long-term function. Fibrin, a natural polymer, has shown promise as a biomaterial for sensor coating due to its ability to sustain endothelial cell growth and promote local vascularization. However, the culture of cells, particularly endothelial cells (EC), within 3D scaffolds for more than a few days is challenging due to rapid loss of EC viability. In this manuscript, a robust method for developing fibrin microbead scaffolds for long-term culture of encapsulated ECs is described. Fibrin microbeads are formed using sodium alginate as a structural template. The size, swelling and structural properties of the microbeads were varied with needle gauge and composition and concentration of the pre-gel solution. Endothelial colony-forming cells (ECFCs) were suspended in the fibrin beads and cultured within a perfusion bioreactor system. The perfusion bioreactor enhanced ECFCs viability and genome stability in fibrin beads relative to static culture. Perfusion bioreactors enable 3D culture of ECs within fibrin beads for potential application as a sensor coating.
Collapse
Affiliation(s)
- Jarel K Gandhi
- Department of Biomedical Engineering, Wishnick Hall 223, 3255 South Dearborn Street, Chicago, IL 60616, USA.
| | - Lada Zivkovic
- Department of Biomedical Engineering, Wishnick Hall 223, 3255 South Dearborn Street, Chicago, IL 60616, USA.
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade 11000, Serbia.
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Mervin C Yoder
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46201, USA.
| | - Eric M Brey
- Department of Biomedical Engineering, Wishnick Hall 223, 3255 South Dearborn Street, Chicago, IL 60616, USA.
- Research Service, Hines Veterans Administration Hospital, Hines, IL 60141, USA.
| |
Collapse
|
26
|
Sakai S, Inamoto K, Ashida T, Takamura R, Taya M. Cancer stem cell marker-expressing cell-rich spheroid fabrication from PANC-1 cells using alginate microcapsules with spherical cavities templated by gelatin microparticles. Biotechnol Prog 2015; 31:1071-6. [DOI: 10.1002/btpr.2111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/30/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Shinji Sakai
- Div. of Chemical Engineering, Dept. of Materials Science and Engineering, Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Kazuya Inamoto
- Div. of Chemical Engineering, Dept. of Materials Science and Engineering, Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Tomoaki Ashida
- Div. of Chemical Engineering, Dept. of Materials Science and Engineering, Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Ryo Takamura
- Div. of Chemical Engineering, Dept. of Materials Science and Engineering, Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| | - Masahito Taya
- Div. of Chemical Engineering, Dept. of Materials Science and Engineering, Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
27
|
Gurruchaga H, Saenz del Burgo L, Ciriza J, Orive G, Hernández RM, Pedraz JL. Advances in cell encapsulation technology and its application in drug delivery. Expert Opin Drug Deliv 2015; 12:1251-67. [PMID: 25563077 DOI: 10.1517/17425247.2015.1001362] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Cell encapsulation technology has improved enormously since it was proposed 50 years ago. The advantages offered over other alternative systems, such as the prevention of repetitive drug administration, have triggered the use of this technology in multiple therapeutic applications. AREAS COVERED In this article, improvements in cell encapsulation technology and strategies to overcome the drawbacks that prevent its use in the clinic have been summarized and discussed. Different studies and clinical trials that have been performed in several therapeutic applications have also been described. EXPERT OPINION The authors believe that the future translation of this technology from bench to bedside requires the optimization of diverse aspects: i) biosafety, controlling and monitoring cell viability; ii) biocompatibility, reducing pericapsular fibrotic growth and hypoxia suffered by the graft; iii) control over drug delivery; iv) and the final scale up. On the other hand, an area that deserves more attention is the cryopreservation of encapsulated cells as this will facilitate the arrival of these biosystems to the clinic.
Collapse
Affiliation(s)
- Haritz Gurruchaga
- University of the Basque Country, Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Group, Faculty of Pharmacy, UPV/EHU , Vitoria-Gasteiz, 01006 , Spain
| | | | | | | | | | | |
Collapse
|
28
|
Cryopreserved dentin matrix as a scaffold material for dentin-pulp tissue regeneration. Biomaterials 2014; 35:4929-39. [DOI: 10.1016/j.biomaterials.2014.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/10/2014] [Indexed: 11/21/2022]
|
29
|
Bissoyi A, Pramanik K, Panda NN, Sarangi S. Cryopreservation of hMSCs seeded silk nanofibers based tissue engineered constructs. Cryobiology 2014; 68:332-42. [DOI: 10.1016/j.cryobiol.2014.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 03/31/2014] [Accepted: 04/13/2014] [Indexed: 10/25/2022]
|
30
|
Malagón-Romero D, Hernández N, Cardozo C, Godoy-Silva RD. Rheological characterization of a gel produced using human blood plasma and alginate mixtures. J Mech Behav Biomed Mater 2014; 34:171-80. [PMID: 24603213 DOI: 10.1016/j.jmbbm.2014.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 01/11/2023]
Abstract
Human blood plasma is a material used to generate tissue equivalents due to presence of fibrinogen. However, gels formed using human blood plasma has weak mechanical properties. In this study, different mixtures of sodium alginate and blood plasma were performed and evaluated. By determining ζ potential can be established the stability of the plasma-alginate mixture and by dynamic rheology can determine the most suitable parameters for the gelation of the above mixtures, when calcium chloride is used as a crosslinker. Experimental results evidence an increment in ζ potential at alginate concentrations of 0.8% and 1.6% with a resulting pseudoplastic behavior of evaluated mixtures, which described the homogenization of the mixture. On the other hand, mixtures were gelled by using aspersion of calcium chloride and characterized by dynamic rheology. Solid behavior is dominant in all range of frequency sweep test between 0.1Hz and 100Hz. Finally, the ultimate tensile strength of a gel reach 6.36938±0.24320kPa, which is enough for manual handling of the gel. Between the tasks of the gel would be used for cell entrapment, for controlled release of drugs or in the manufacture of wound dressings.
Collapse
Affiliation(s)
- Dionisio Malagón-Romero
- Universidad Nacional de Colombia, Bogotá, Colombia; Universidad Santo Tomás, Bogotá, Colombia.
| | | | | | | |
Collapse
|
31
|
Rodriguez MA, López-López MT, Durán JD, Alaminos M, Campos A, Rodriguez IA. Cryopreservation of an artificial human oral mucosa stroma. A viability and rheological study. Cryobiology 2013; 67:355-62. [DOI: 10.1016/j.cryobiol.2013.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/03/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
|
32
|
Zhu X, Yuan F, Li H, Zheng Y, Xiao Y, Yan F. Evaluation of Canine Bone Marrow-derived Mesenchymal Stem Cells After Long-term Cryopreservation. Zoolog Sci 2013; 30:1032-7. [DOI: 10.2108/zsj.30.1032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Camboni A, Van Langendonckt A, Donnez J, Vanacker J, Dolmans M, Amorim C. Alginate beads as a tool to handle, cryopreserve and culture isolated human primordial/primary follicles. Cryobiology 2013; 67:64-9. [DOI: 10.1016/j.cryobiol.2013.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/08/2013] [Accepted: 05/08/2013] [Indexed: 11/29/2022]
|
34
|
Ahmad HF, Sambanis A. Cryopreservation effects on recombinant myoblasts encapsulated in adhesive alginate hydrogels. Acta Biomater 2013; 9:6814-22. [PMID: 23499987 DOI: 10.1016/j.actbio.2013.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/24/2013] [Accepted: 03/01/2013] [Indexed: 10/27/2022]
Abstract
Cell encapsulation in hydrogels is widely used in tissue engineering applications, including encapsulation of islets or other insulin-secreting cells in pancreatic substitutes. Use of adhesive, biofunctionalized hydrogels is receiving increasing attention as cell-matrix interactions in three-dimensional (3-D) environments can be important for various cell processes. With pancreatic substitutes, studies have indicated benefits of 3-D adhesion on the viability and/or function of insulin-secreting cells. As long-term storage of microencapsulated cells is critical for their clinical translation, cryopreservation of cells in hydrogels is being actively investigated. Previous studies have examined the cryopreservation response of cells encapsulated in non-adhesive hydrogels using conventional freezing and/or vitrification (ice-free cryopreservation); however, none have systematically compared the two cryopreservation methods with cells encapsulated within an adhesive 3-D environment. The latter would be significant, as evidence suggests adhesion influences the cellular response to cryopreservation. Thus, the objective of this study was to determine the response to conventional freezing and vitrification of insulin-secreting cells encapsulated in an adhesive biomimetic hydrogel. Recombinant insulin-secreting C2C12 myoblasts were encapsulated in oxidized RGD-alginate and cultured for 1 or 4days post-encapsulation, cryopreserved, and assessed up to 3days post-warming for metabolic activity and insulin secretion, and 1day post-warming for cell morphology. Besides certain transient differences in the vitrified group relative to the fresh control, both conventional freezing and vitrification maintained the metabolism, secretory activity, and morphology of the recombinant C2C12 cells. Thus, due to a simpler procedure and slightly superior results, conventional freezing is recommended over vitrification for the cryopreservation of C2C12 cells encapsulated in oxidized, RGD-modified alginate.
Collapse
|
35
|
Wang X, Magalhães R, Wu Y, Wen F, Gouk SS, Watson PF, Yu H, Kuleshova LL. Development of a modified vitrification strategy suitable for subsequent scale-up for hepatocyte preservation. Cryobiology 2012; 65:289-300. [PMID: 22940432 DOI: 10.1016/j.cryobiol.2012.07.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 12/22/2022]
Abstract
This work explores the design of a vitrification solution (VS) for scaled-up cryopreservation of hepatocytes, by adapting VS(basic) (40% (v/v) ethylene glycol 0.6M sucrose, i.e. 7.17 M ethylene glycol 0.6M sucrose), previously proven effective in vitrifying bioengineered constructs and stem cells. The initial section of the scale-up study involved the selection of non-penetrating additives to supplement VS(basic) and increase the solution's total solute concentration. This involved a systematic approach with a step-by-step elimination of non-penetrating cryoprotectants, based on their effect on cells after long/short term exposures to high/low concentrations of the additives alone or in combinations, on the attachment ability of hepatocytes after exposure. At a second stage, hepatocyte suspension was vitrified and functions were assessed after continuous culture up to 5 days. Results indicated Ficoll as the least toxic additive. Within 60 min, the exposure of hepatocytes to a solution composed of 9% Ficoll+0.6M sucrose (10⁻³ M Ficoll+0.6 M sucrose) sustained attachment efficiency of 95%, similar to control. Furthermore, this additive did not cause any detriment to the attachment of these cells when supplementing the base vitrification solution VS(basic). The addition of 9% Ficoll, raised the total solute concentration to 74.06% (w/v) with a negligible 10⁻³ M increase in molarity of the solution. This suggests main factor in inducing detriment to cells was the molar contribution of the additive. Vitrification protocol for scale-up condition sustained hepatocyte suspension attachment efficiency and albumin production. We conclude that although established approach will permit scaling-up of vitrification of hepatocyte suspension, vitrification of hepatocytes which are attached prior to vitrification is more effective by comparison.
Collapse
Affiliation(s)
- Xianwei Wang
- Low Temperature Preservation Unit, National University Medical Institutes, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Naaldijk Y, Staude M, Fedorova V, Stolzing A. Effect of different freezing rates during cryopreservation of rat mesenchymal stem cells using combinations of hydroxyethyl starch and dimethylsulfoxide. BMC Biotechnol 2012; 12:49. [PMID: 22889198 PMCID: PMC3465236 DOI: 10.1186/1472-6750-12-49] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/31/2012] [Indexed: 11/21/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are increasingly used as therapeutic agents as well as research tools in regenerative medicine. Development of technologies which allow storing and banking of MSC with minimal loss of cell viability, differentiation capacity, and function is required for clinical and research applications. Cryopreservation is the most effective way to preserve cells long term, but it involves potentially cytotoxic compounds and processing steps. Here, we investigate the effect of decreasing dimethyl sulfoxide (DMSO) concentrations in cryosolution by substituting with hydroxyethyl starch (HES) of different molecular weights using different freezing rates. Post-thaw viability, phenotype and osteogenic differentiation capacity of MSCs were analysed. Results The study confirms that, for rat MSC, cryopreservation effects need to be assessed some time after, rather than immediately after thawing. MSCs cryopreserved with HES maintain their characteristic cell surface marker expression as well as the osteogenic, adipogenic and chondrogenic differentiation potential. HES alone does not provide sufficient cryoprotection for rat MSCs, but provides good cryoprotection in combination with DMSO, permitting the DMSO content to be reduced to 5%. There are indications that such a combination would seem useful not just for the clinical disadvantages of DMSO but also based on a tendency for reduced osteogenic differentiation capacity of rat MSC cryopreserved with high DMSO concentration. HES molecular weight appears to play only a minor role in its capacity to act as a cryopreservation solution for MSC. The use of a ‘straight freeze’ protocol is no less effective in maintaining post-thaw viability of MSC compared to controlled rate freezing methods. Conclusion A 5% DMSO / 5% HES solution cryopreservation solution using a ‘straight freeze’ approach can be recommended for rat MSC.
Collapse
Affiliation(s)
- Yahaira Naaldijk
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, Leipzig, 04103, Germany
| | | | | | | |
Collapse
|
37
|
Sambu S, Xu X, Ye H, Cui ZF. Predicting the survival rate of mouse embryonic stem cells cryopreserved in alginate beads. Proc Inst Mech Eng H 2012; 225:1092-107. [PMID: 22292208 DOI: 10.1177/0954411911418568] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stem cell cryopreservation in three-dimensional (3D) scaffolds may offer better protection to cells leading to higher survival rates. However, it introduces heterogeneity in cryoprotective agent (CPA) concentrations, durations of exposure to CPA, and freezing and thawing rate within constructs. This paper applies a mathematical model which couples the mass transport of dimethyl sulphoxide (DMSO) in a cell-seeded spherical construct and cell membrane transport into mouse embryonic stem cells (mESCs) to predict overall cell survival rate (CSR) based on CPA equilibrium exposure times (t(E)) and concentrations. The effect of freeze-concentration is also considered. To enable such a prediction, a contour plot was constructed using experimental data obtained in cryopreservation of cell suspensions with DMSO at a cooling rate of 1 degrees C/min. Thereafter, the diffusion in the alginate bead and the membrane transport of CPA was numerically simulated. Results were mapped onto the survival rate contours yielding 'predicted' CSR. The effects of loading time, hindrance, construct radius, and CPA concentration on predicted CSR were examined. From these results, an operation window with upper and lower t(E) of 12-19 min (for 0.6 mm radius beads and 1.4 M DMSO) yielded an overall viability of 60 per cent. The model predictions and the best experimental cryopreservation results with encapsulated mESCs were in agreement. Hence, optimization based on post-thaw CSR can accelerate the identification of cryopreservation protocols and parameters for maximizing cell survival.
Collapse
Affiliation(s)
- S Sambu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | | | | | | |
Collapse
|
38
|
Hao L, Sun H, Wang J, Wang T, Wang M, Zou Z. Mesenchymal stromal cells for cell therapy: besides supporting hematopoiesis. Int J Hematol 2012; 95:34-46. [PMID: 22183780 DOI: 10.1007/s12185-011-0991-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 02/07/2023]
Abstract
Mesenchymal stromal cells (MSC) have attracted the attention of scientists and clinicians due to their self-renewal, capacity for multipotent differentiation, and immunomodulatory properties. Some essential problems remain to be solved before the clinical application of MSC. Platelet lysate (PL) has recently been used as a substitute for FBS in MSC amplification in vitro to achieve clinically applicable numbers of MSC. In addition to promising trials in regenerative medicine, such as in the treatment of major bone defects and myocardial infarction, MSC have shown therapeutic effect other than direct hematopoiesis support in hematopoietic reconstruction. It has been confirmed that MSC promote hematopoietic cell engraftment and immune recovery after allogeneic hematopoietic stem cell transplantation, probably through the provision of cytokines, matrix proteins, and cell-to-cell contacts. Their suppressive effects on immune cells, including T cells, B cells, NK cells and DC cells, suggest MSCs as a novel therapy for GVHD and other autoimmune disorders. These cells thus present as promising candidates for cellular therapy in the fields of regenerative medicine, allogeneic hematopoietic stem cell transplantation, and autoimmune disorders.
Collapse
Affiliation(s)
- Lei Hao
- Department of Internal Medicine, No. 324 Hospital of PLA, Chongqing 400020, China
| | | | | | | | | | | |
Collapse
|
39
|
Umemura E, Yamada Y, Nakamura S, Ito K, Hara K, Ueda M. Viable Cryopreserving Tissue-Engineered Cell-Biomaterial for Cell Banking Therapy in an Effective Cryoprotectant. Tissue Eng Part C Methods 2011; 17:799-807. [DOI: 10.1089/ten.tec.2011.0003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Eri Umemura
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoichi Yamada
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sayaka Nakamura
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Ito
- Hamamatsu Kita Hospital, Shizuoka, Japan
| | - Kenji Hara
- Hamamatsu Kita Hospital, Shizuoka, Japan
| | - Minoru Ueda
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
40
|
Gouk SS, Jason Loh YF, Kumar SD, Watson PF, Kuleshova LL. Cryopreservation of mouse testicular tissue: prospect for harvesting spermatogonial stem cells for fertility preservation. Fertil Steril 2011; 95:2399-403. [DOI: 10.1016/j.fertnstert.2011.03.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/03/2011] [Accepted: 03/10/2011] [Indexed: 01/15/2023]
|
41
|
Umemura E, Yamada Y, Nakamura S, Ito K, Hara K, Ueda M. Viable cryopreserving tissue-engineered cell-biomaterial for cell banking therapy in an effective cryoprotectant. Tissue Eng Part C Methods 2011. [DOI: 10.1089/ten.tea.2011.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Wang S, Zhao J, Zhang W, Ye D, Yu W, Zhu C, Zhang X, Sun X, Yang C, Jiang X, Zhang Z. Maintenance of phenotype and function of cryopreserved bone-derived cells. Biomaterials 2011; 32:3739-49. [PMID: 21367449 DOI: 10.1016/j.biomaterials.2011.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
Abstract
The emerging fields of tissue engineering and regenerative medicine require large numbers of cells for therapy. Although the properties of cells obtained from a variety of fresh tissues have been delineated, the knowledge regarding cryopreserved grafts-derived cells remains elusive. Previous studies have shown that living cells could be isolated from cryopreserved bone grafts. However, whether cryopreserved bone-derived cells can be applied in regenerative medicine is largely unknown. The present study was to evaluate the potential application of cryopreserved grafts-derived cells for tissue regeneration. We showed that cells derived from cryopreserved bone grafts could maintain good proliferation activity and osteogenic phenotype. The biological phenotype of these cells could be well preserved. The transplantation of cryopreserved bone-derived cells on scaffold could promote new bone formation in nude mice and enhance the osteointegration for dental implants in canine, which confirmed their osteogenic capacity, and showed that cells derived from cryopreserved bone were comparable to that of fresh bone in terms of the ability to promote osteogenesis in vivo. This work demonstrates that cryopreserved bone grafts may represent a novel, accessible source of cells for tissue regeneration therapy, and the results of our study may also stimulate the development of other cryopreservation techniques in basic and clinical studies.
Collapse
Affiliation(s)
- Shaoyi Wang
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yin H, Cui L, Liu G, Cen L, Cao Y. Vitreous cryopreservation of tissue engineered bone composed of bone marrow mesenchymal stem cells and partially demineralized bone matrix. Cryobiology 2009; 59:180-7. [DOI: 10.1016/j.cryobiol.2009.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 06/07/2009] [Accepted: 06/29/2009] [Indexed: 11/16/2022]
|
44
|
Murua A, Orive G, Hernández RM, Pedraz JL. Cryopreservation based on freezing protocols for the long-term storage of microencapsulated myoblasts. Biomaterials 2009; 30:3495-501. [DOI: 10.1016/j.biomaterials.2009.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 03/07/2009] [Indexed: 11/25/2022]
|
45
|
Cryopreservable and tumorigenic three-dimensional tumor culture in porous poly(lactic-co-glycolic acid) microsphere. Biomaterials 2009; 30:4227-32. [PMID: 19446875 DOI: 10.1016/j.biomaterials.2009.04.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 04/21/2009] [Indexed: 11/22/2022]
Abstract
In vitro tumor models that mimic in vivo conditions may be ideal for screening anticancer drugs and their formulations and developing tumors in animal models. Three-dimensional (3-D) culture of cancer cells on polymeric scaffolds can be an option for such models. In the present study, porous poly(lactic acid-co-glycolic acid) (PLGA) microsphere was used both as a cancer cell culture substrate to expand cells and as a cancer cell transplantation vehicle for tumor construction in mice. MCF-7 cells cultured on porous PLGA microspheres in stirred suspension bioreactors expanded by 2.8-fold over seven days and maintained viability. At three months after inoculation with 2x10(6) cells/site, the tumor formation by MCF-7 cells cultured on microspheres was much more effective (4 tumors/5 mice) than its counterpart cultured on plates (1/5). More importantly, cell viability and metabolic activity were not significantly changed even after one freeze-thaw cycle of the 3-D culture. MCF-7 cells cultured on the microspheres and the cells in 3-D after cryopreservation were more resistant to doxorubicin than MCF-7 cells cultured on plates.
Collapse
|