1
|
Bello MB, Alsaadi A, Naeem A, Almahboub SA, Bosaeed M, Aljedani SS. Development of nucleic acid-based vaccines against dengue and other mosquito-borne flaviviruses: the past, present, and future. Front Immunol 2025; 15:1475886. [PMID: 39840044 PMCID: PMC11747009 DOI: 10.3389/fimmu.2024.1475886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
Due to their widespread geographic distribution and frequent outbreaks, mosquito-borne flaviviruses, such as DENV (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), and West Nile virus (WNV), are considered significant global public health threats and contribute to dramatic socioeconomic imbalances worldwide. The global prevalence of these viruses is largely driven by extensive international travels and ecological disruptions that create favorable conditions for the breeding of Aedes and Culex species, the mosquito vectors responsible for the spread of these pathogens. Currently, vaccines are available for only DENV, YFV, and JEV, but these face several challenges, including safety concerns, lengthy production processes, and logistical difficulties in distribution, especially in resource-limited regions, highlighting the urgent need for innovative vaccine approaches. Nucleic acid-based platforms, including DNA and mRNA vaccines, have emerged as promising alternatives due to their ability to elicit strong immune responses, facilitate rapid development, and support scalable manufacturing. This review provides a comprehensive update on the progress of DNA and mRNA vaccine development against mosquito-borne flaviviruses, detailing early efforts and current strategies that have produced candidates with remarkable protective efficacy and strong immunogenicity in preclinical models. Furthermore, we explore future directions for advancing nucleic acid vaccine candidates, which hold transformative potential for enhancing global public health.
Collapse
Affiliation(s)
- Muhammad Bashir Bello
- Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Ahlam Alsaadi
- Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Asif Naeem
- Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Sarah A. Almahboub
- Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammad Bosaeed
- Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Safia S. Aljedani
- Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Adugna T, Niu Q, Guan G, Du J, Yang J, Tian Z, Yin H. Advancements in nanoparticle-based vaccine development against Japanese encephalitis virus: a systematic review. Front Immunol 2024; 15:1505612. [PMID: 39759527 PMCID: PMC11695416 DOI: 10.3389/fimmu.2024.1505612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
Vaccination remains the sole effective strategy for combating Japanese encephalitis (JE). Both inactivated and live attenuated vaccines exhibit robust immunogenicity. However, the production of these conventional vaccine modalities necessitates extensive cultivation of the pathogen, incurring substantial costs and presenting significant biosafety risks. Moreover, the administration of live pathogens poses potential hazards for individuals or animals with compromised immune systems or other health vulnerabilities. Subsequently, ongoing research endeavors are focused on the development of next-generation JE vaccines utilizing nanoparticle (NP) platforms. This systematic review seeks to aggregate the research findings pertaining to NP-based vaccine development against JE. A thorough literature search was conducted across established English-language databases for research articles on JE NP vaccine development published between 2000 and 2023. A total of twenty-eight published studies were selected for detailed analysis in this review. Of these, 16 studies (57.14%) concentrated on virus-like particles (VLPs) employing various structural proteins. Other approaches, including sub-viral particles (SVPs), biopolymers, and both synthetic and inorganic NP platforms, were utilized to a lesser extent. The results of these investigations indicated that, despite variations in the usage of adjuvants, dosages, NP types, antigenic proteins, and animal models employed across different studies, the candidate NP vaccines developed were capable of eliciting enhanced humoral and cellular adaptive immune responses, providing effective protection (70-100%) for immunized mice against lethal challenges posed by virulent Japanese encephalitis virus (JEV). In conclusion, prospective next-generation JE vaccines for humans and animals may emerge from these candidate formulations following further evaluation in subsequent vaccine development phases.
Collapse
Affiliation(s)
- Takele Adugna
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, State Key Laboratory of Veterinary Etiological Biology Project, Yangzhou, China
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Qingli Niu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, State Key Laboratory of Veterinary Etiological Biology Project, Yangzhou, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, State Key Laboratory of Veterinary Etiological Biology Project, Yangzhou, China
| | - Junzheng Du
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, State Key Laboratory of Veterinary Etiological Biology Project, Yangzhou, China
| | - Jifei Yang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, State Key Laboratory of Veterinary Etiological Biology Project, Yangzhou, China
| | - Zhancheng Tian
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, State Key Laboratory of Veterinary Etiological Biology Project, Yangzhou, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, State Key Laboratory of Veterinary Etiological Biology Project, Yangzhou, China
| |
Collapse
|
3
|
Zhang W, Jiao Y, Zhang Z, Zhang Y, Yu J, Gu Z. Transdermal gene delivery. J Control Release 2024; 371:516-529. [PMID: 38849095 DOI: 10.1016/j.jconrel.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Gene delivery has revolutionized conventional medical approaches to vaccination, cancer, and autoimmune diseases. However, current gene delivery methods are limited to either intravenous administration or direct local injections, failing to achieve well biosafety, tissue targeting, drug retention, and transfection efficiency for desired therapeutic outcomes. Transdermal drug delivery based on various delivery strategies can offer improved therapeutic potential and superior patient experiences. Recently, there has been increased foundational and clinical research focusing on the role of the transdermal route in gene delivery and exploring its impact on the efficiency of gene delivery. This review introduces the recent advances in transdermal gene delivery approaches facilitated by drug formulations and medical devices, as well as discusses their prospects.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Jiao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziru Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
4
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
5
|
Sahu RC, Suthar T, Pathak A, Jain K. Interventions for the Prevention and Treatment of Japanese Encephalitis. Curr Infect Dis Rep 2022; 24:189-204. [PMID: 36187900 PMCID: PMC9510552 DOI: 10.1007/s11908-022-00786-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/04/2022]
Abstract
Purpose of Review Japanese encephalitis (JE), a clinical indication of JE virus–induced brain inflammation, is the most prevalent cause of viral encephalitis in the world. This review gives a comprehensive update on the epidemiology, clinical features, therapeutic trials and approaches for preventing the spread of JE. It also outlines the different JE vaccines used in various countries and recommendations for administration of JE vaccines. Recent Findings According to the WHO, annual incidence of JE is estimated to be approximately 68,000 cases worldwide. It is widespread across Asia–Pacific, with a potential for worldwide transmission. In endemic locations, JE is believed to affect children below 6 years of age, but in newly affected areas, both adults and children are at risk due to a lack of protective antibodies. Various vaccines have been developed for the prevention of JE and are being administered in endemic countries. Summary JE is a neuroinvasive disease that causes symptoms ranging from simple fever to severe encephalitis and death. Despite a vast number of clinical trials on various drugs, there is still no complete cure available, and it can only be prevented by adequate vaccination. Various nanotechnological approaches for the prevention and treatment of JE are outlined in this review.
Supplementary Information The online version contains supplementary material available at 10.1007/s11908-022-00786-1.
Collapse
|
6
|
Dmour I, Islam N. Recent advances on chitosan as an adjuvant for vaccine delivery. Int J Biol Macromol 2022; 200:498-519. [PMID: 34973993 DOI: 10.1016/j.ijbiomac.2021.12.129] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/05/2021] [Accepted: 12/19/2021] [Indexed: 12/21/2022]
Abstract
Chitosan (CS) is a natural polymer derived from chitin that has wide applications in drugs, vaccines, and antigen delivery. The distinctive mucoadhesive, biocompatibility, biodegradable, and less toxic properties of chitosan compared to the currently used vaccine adjuvants made it a promising candidate for use as an adjuvant/carrier in vaccine delivery. In addition, chitosan exhibits intrinsic immunomodulating properties making it a suitable adjuvant in preparing vaccines delivery systems. Nanoparticles (NPs) of chitosan and its derivatives loaded with antigen have been shown to induce cellular and humoral responses. Versatility in the physicochemical properties of chitosan can provide an excellent opportunity to engineer antigen-specific adjuvant/delivery systems. This review discusses the recent advances of chitosan and its derivatives as adjuvants in vaccine deliveryand the published literature in the last fifteen years. The impact of physicochemical properties of chitosan on vaccine formulation has been described in detail. Applications of chitosan and its derivatives, their physicochemical properties, and mechanisms in enhancing immune responses have been discussed. Finally, challenges and future aspects of chitosan use has been pointed out.
Collapse
Affiliation(s)
- Isra Dmour
- Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
7
|
Tortajada L, Felip C, Vicent MJ. Polymer-based Non-viral Vectors for Gene Therapy in the Skin. Polym Chem 2022. [DOI: 10.1039/d1py01485d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gene therapy has emerged as a versatile technique with the potential to treat a range of human diseases; however, examples of the topical application of gene therapy as a treatment...
Collapse
|
8
|
Boroumand H, Badie F, Mazaheri S, Seyedi ZS, Nahand JS, Nejati M, Baghi HB, Abbasi-Kolli M, Badehnoosh B, Ghandali M, Hamblin MR, Mirzaei H. Chitosan-Based Nanoparticles Against Viral Infections. Front Cell Infect Microbiol 2021; 11:643953. [PMID: 33816349 PMCID: PMC8011499 DOI: 10.3389/fcimb.2021.643953] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/22/2021] [Indexed: 01/23/2023] Open
Abstract
Viral infections, in addition to damaging host cells, can compromise the host immune system, leading to frequent relapse or long-term persistence. Viruses have the capacity to destroy the host cell while liberating their own RNA or DNA in order to replicate within additional host cells. The viral life cycle makes it challenging to develop anti-viral drugs. Nanotechnology-based approaches have been suggested to deal effectively with viral diseases, and overcome some limitations of anti-viral drugs. Nanotechnology has enabled scientists to overcome the challenges of solubility and toxicity of anti-viral drugs, and can enhance their selectivity towards viruses and virally infected cells, while preserving healthy host cells. Chitosan is a naturally occurring polymer that has been used to construct nanoparticles (NPs), which are biocompatible, biodegradable, less toxic, easy to prepare, and can function as effective drug delivery systems (DDSs). Furthermore, chitosan is Generally Recognized as Safe (GRAS) by the US Food and Drug Administration (U.S. FDA). Chitosan NPs have been used in drug delivery by the oral, ocular, pulmonary, nasal, mucosal, buccal, or vaginal routes. They have also been studied for gene delivery, vaccine delivery, and advanced cancer therapy. Multiple lines of evidence suggest that chitosan NPs could be used as new therapeutic tools against viral infections. In this review we summarize reports concerning the therapeutic potential of chitosan NPs against various viral infections.
Collapse
Affiliation(s)
- Homa Boroumand
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fereshteh Badie
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Mazaheri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Badehnoosh
- Department of Gynecology and Obstetrics, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Nanoparticles as Vaccines to Prevent Arbovirus Infection: A Long Road Ahead. Pathogens 2021; 10:pathogens10010036. [PMID: 33466440 PMCID: PMC7824877 DOI: 10.3390/pathogens10010036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) are a significant public health problem worldwide. Vaccination is considered one of the most effective ways to control arbovirus diseases in the human population. Nanoparticles have been widely explored as new vaccine platforms. Although nanoparticles' potential to act as new vaccines against infectious diseases has been identified, nanotechnology's impact on developing new vaccines to prevent arboviruses is unclear. Thus, we used a comprehensive bibliographic survey to integrate data concerning the use of diverse nanoparticles as vaccines against medically important arboviruses. Our analysis showed that considerable research had been conducted to develop and evaluate nanovaccines against Chikungunya virus, Dengue virus, Zika virus, Japanese encephalitis virus, and West Nile virus. The main findings indicate that nanoparticles have great potential for use as a new vaccine system against arboviruses. Most of the studies showed an increase in neutralizing antibody production after mouse immunization. Nevertheless, even with significant advances in this field, further efforts are necessary to address the nanoparticles' potential to act as a vaccine against these arboviruses. To promote advances in the field, we proposed a roadmap to help researchers better characterize and evaluate nanovaccines against medically important arboviruses.
Collapse
|
10
|
Cunningham FJ, Demirer GS, Goh NS, Zhang H, Landry MP. Nanobiolistics: An Emerging Genetic Transformation Approach. Methods Mol Biol 2020; 2124:141-159. [PMID: 32277452 PMCID: PMC10461872 DOI: 10.1007/978-1-0716-0356-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biolistic delivery of biomolecular cargoes to plants with micron-scale projectiles is a well-established technique in plant biotechnology. However, the relatively large micron-scale biolistic projectiles can result in tissue damage, low regeneration efficiency, and create difficulties for the biolistic transformation of isomorphic small cells or subcellular target organelles (i.e., mitochondria and plastids). As an alternative to micron-sized carriers, nanomaterials provide a promising approach for biomolecule delivery to plants. While most studies exploring nanoscale biolistic carriers have been carried out in animal cells and tissues, which lack a cell wall, we can nonetheless extrapolate their utility for nanobiolistic delivery of biomolecules in plant targets. Specifically, nanobiolistics has shown promising results for use in animal systems, in which nanoscale projectiles yield lower levels of cell and tissue damage while maintaining similar transformation efficiencies as their micron-scale counterparts. In this chapter, we specifically discuss biolistic delivery of nanoparticles for plant genetic transformation purposes and identify the figures of merit requiring optimization for broad-scale implementation of nanobiolistics in plant genetic transformations.
Collapse
Affiliation(s)
- Francis J Cunningham
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Gozde S Demirer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Huan Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
11
|
Shamsi M, Zahedi P, Ghourchian H, Minaeian S. Microfluidic-aided fabrication of nanoparticles blend based on chitosan for a transdermal multidrug delivery application. Int J Biol Macromol 2017; 99:433-442. [DOI: 10.1016/j.ijbiomac.2017.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/18/2017] [Accepted: 03/03/2017] [Indexed: 02/03/2023]
|
12
|
Pamornpathomkul B, Wongkajornsilp A, Laiwattanapaisal W, Rojanarata T, Opanasopit P, Ngawhirunpat T. A combined approach of hollow microneedles and nanocarriers for skin immunization with plasmid DNA encoding ovalbumin. Int J Nanomedicine 2017; 12:885-898. [PMID: 28184159 PMCID: PMC5291464 DOI: 10.2147/ijn.s125945] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The aim of this study was to investigate the use of different types of microneedles (MNs) and nanocarriers for in vitro skin permeation and in vivo immunization of plasmid DNA encoding ovalbumin (pOVA). In vitro skin permeation studies indicated that hollow MNs had a superior enhancing effect on skin permeation compared with solid MN patches, electroporation (EP) patches, the combination of MN and EP patches, and untreated skin. Upon using hollow MNs combined with nanocarriers for pOVA delivery, the skin permeation was higher than for the delivery of naked pOVA, as evidenced by the increased amount of pOVA in Franz diffusion cells and immunoglobulin G (IgG) antibody responses. When the hollow MNs were used for the delivery of nanocarrier:pOVA complexes into the skin of mice, they induced a stronger IgG immune response than conventional subcutaneous (SC) injections. In addition, immunization of mice with the hollow MNs did not induce signs of skin infection or pinpoint bleeding. Accordingly, the hollow MNs combined with a nanocarrier delivery system is a promising approach for delivering pOVA complexes to the skin for promoting successful immunization.
Collapse
Affiliation(s)
- Boonnada Pamornpathomkul
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Pharmaceutical Development of Green Innovations Group, Silpakorn University, Nakhon Pathom
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok
| | - Wanida Laiwattanapaisal
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Theerasak Rojanarata
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Pharmaceutical Development of Green Innovations Group, Silpakorn University, Nakhon Pathom
| | - Praneet Opanasopit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Pharmaceutical Development of Green Innovations Group, Silpakorn University, Nakhon Pathom
| | - Tanasait Ngawhirunpat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Pharmaceutical Development of Green Innovations Group, Silpakorn University, Nakhon Pathom
| |
Collapse
|
13
|
Kaurav M, Minz S, Sahu K, Kumar M, Madan J, Pandey RS. Nanoparticulate mediated transcutaneous immunization: Myth or reality. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1063-1081. [PMID: 26767517 DOI: 10.1016/j.nano.2015.12.372] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/02/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
UNLABELLED Transcutaneous immunization (TCI) is a promising route of vaccine delivery through skin due to many well documented advantages. The main obstacle in TCI is the skin's top dead layer i.e. stratum corneum which is difficult to penetrate. Efficiently delivery of antigen to the immune competent cells of epidermis or dermis in TCI might elicit an effective immune response. In this review, skin immunology with a particular focus on potential of immunological active receptors in influencing adaptive immune responses is highlighted. The challenges with TCI and methods to improve it using different adjuvants, chemical and physical approaches, delivery systems, and combination of above methods to further improve immune response following skin application of antigen are elaborately discussed. Nanoparticulate vaccine delivery systems with reference to their applications in TCI are classified according to their chronological development. Conclusively, clinical translations of above methods are also briefly reviewed. FROM THE CLINICAL EDITOR Transcutaneous immunization has been investigated by many as a promising route of vaccination. In this comprehensive review article, the authors described and discussed the existing knowledge and difficulties in this approach. Furthermore, ways of improving transcutaneous delivery were also reviewed.
Collapse
Affiliation(s)
- Monika Kaurav
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, India.
| | - Sunita Minz
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, India.
| | - Kantrol Sahu
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, India.
| | - Manoj Kumar
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, India.
| | | | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, India.
| |
Collapse
|
14
|
Josepriya TA, Chien KH, Lin HY, Huang HN, Wu CJ, Song YL. Immobilization antigen vaccine adjuvanted by parasitic heat shock protein 70C confers high protection in fish against cryptocaryonosis. FISH & SHELLFISH IMMUNOLOGY 2015; 45:517-527. [PMID: 25957883 DOI: 10.1016/j.fsi.2015.04.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/18/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
The immobilization antigen (iAg) has been demonstrated as a protective immunogen against Cryptocaryon irritans infection. In this study, C-terminal domain of heat shock protein 70 cloned from C. irritans (Hsp70C) was tested for its immuno-stimulatory effects. The iAg and Hsp70C cDNAs were constructed independently in secretory forms and were encapsulated in chitosan nanoparticles. In the first immunization trial, grouper fingerlings orally intubated with iAg and iAg:Hsp70C presented 96% and 100% relative percent survival (RPS), respectively, after a lethal challenge. In the second trial, both iAg and iAg:Hsp70C groups showed 100% RPS and the skin trophont burden was significantly lowered. The iAg:Hsp70C still provides a significantly high protection of 51% RPS at 49 days post immunization, when an even more serious lethal infection occurs. RT-qPCR results showed that Hsp70C could up-regulate the expression of i) T cell markers: Cluster of Differentiation 8 alpha (CD8α) and CD4, ii) cytokine genes: Interferon gamma (IFNγ), Tumor Necrosis Factor alpha (TNFα) and Interleukin 12 p40 (IL-12/P40), iii) antibody genes: Immunoglobulin M heavy chain (IgMH) and IgTH, and iv) major histocompatibility complex (MHC-I & MHC-II), in the spleen of iAg:Hsp70C group. Furthermore, significantly high levels of iAg-specific IgM was detected in skin mucus which efficiently immobilized live theronts in iAg- and iAg:Hsp70C-immunized fish at 5 weeks post immunization. Hsp70C significantly increased the number of nonspecific CD8(+) skin leucocytes which exerted cytotoxicity against theronts, although cytotoxic activity showed no difference among the various groups. Because of this complementary cooperation of cellular and humoral immune responses, Hsp70C enhances the efficacy of iAg vaccine and constrains C. irritans infection. In view of the severe loss caused by cryptocaryonosis, application of this parasitic vaccine in farmed and ornamental fish, is worthy to be considered.
Collapse
Affiliation(s)
- T A Josepriya
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Kuo-Hsuan Chien
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Hsin-Yun Lin
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Han-Ning Huang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan; Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Yen-Ling Song
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
15
|
Abstract
It has been demonstrated that nanoparticles used for follicular delivery provide some advantages over conventional pathways, including improved skin bioavailability, enhanced penetration depth, prolonged residence duration, fast transport into the skin and tissue targeting. This review describes recent developments using nanotechnology approaches for drug delivery into the follicles. Different types of nanosystems may be employed for management of follicular permeation, such as polymeric nanoparticles, metallic nanocrystals, liposomes, and lipid nanoparticles. This review systematically introduces the mechanisms of follicles for nanoparticulate penetration, highlighting the therapeutic potential of drug-loaded nanoparticles for treating skin diseases. Special attention is paid to the use of nanoparticles in treating appendage-related disorders, in particular, nanomedical strategies for treating alopecia, acne, and transcutaneous immunization.
Collapse
|
16
|
Buschmann MD, Merzouki A, Lavertu M, Thibault M, Jean M, Darras V. Chitosans for delivery of nucleic acids. Adv Drug Deliv Rev 2013; 65:1234-70. [PMID: 23872012 PMCID: PMC7103275 DOI: 10.1016/j.addr.2013.07.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 05/22/2013] [Accepted: 07/05/2013] [Indexed: 01/19/2023]
Abstract
Alternatives to efficient viral vectors in gene therapy are desired because of their poor safety profiles. Chitosan is a promising non-viral nucleotide delivery vector because of its biocompatibility, biodegradability, low immunogenicity and ease of manufacturing. Since the transfection efficiency of chitosan polyplexes is relatively low compared to viral counterparts, there is an impetus to gain a better understanding of the structure-performance relationship. Recent progress in preparation and characterisation has enabled coupling analysis of chitosans structural parameters that has led to increased TE by tailoring of chitosan's structure. In this review, we summarize the recent advances that have lead to a more rational design of chitosan polyplexes. We present an integrated review of all major areas of chitosan-based transfection, including preparation, chitosan and polyplexes physicochemical characterisation, in vitro and in vivo assessment. In each, we present the obstacles to efficient transfection and the strategies adopted over time to surmount these impediments.
Collapse
Affiliation(s)
- Michael D Buschmann
- Dept. Chemical Engineering and Inst. Biomedical Engineering, Ecole Polytechnique, Montreal, QC, Canada.
| | | | | | | | | | | |
Collapse
|
17
|
Sezer AD, Cevher E. Topical drug delivery using chitosan nano- and microparticles. Expert Opin Drug Deliv 2012; 9:1129-46. [DOI: 10.1517/17425247.2012.702752] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Jazi MHZ, Dabaghian M, Tebianian M, Gharagozlou MJ, Ebrahimi SM. In vivo electroporation enhances immunogenicity and protection against influenza A virus challenge of an M2e-HSP70c DNA vaccine. Virus Res 2012; 167:219-25. [PMID: 22609252 DOI: 10.1016/j.virusres.2012.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 12/23/2022]
Abstract
There is a growing concern regarding continuous risk of emerging a new influenza pandemic. It is highlighted the need for novel vaccination techniques that quickly and effectively employed to respond to such threats. Although, DNA vaccine is a simple and effective approach to induce antigen specific immune responses, their potency requires further improvement. DNA vaccine encoding conserved antigen of influenza virus could provide protection in various animal models. Therefore, we constructed a plasmid vector encoding M2e-HSP70c sequences, pcDNA/MHc, as a candidate for universal influenza vaccine. The expression of newly constructed vectors was verified by transient transfection of mammalian cells (HEK293T cell line) and western blot analysis using commercial antibodies. Mice were injected subcutaneously (s.c.) by the help of electroporation (IEP) in the footpad area and boosted without IEP with 100 μg of constructed vector. Furthermore, the potency of this construct to provoke humoral immune responses and its protectivity against lethal dose of viral challenge were evaluated. Based on our study, the fusion construct was immunogenic in mice and was able to confer both protection against lethal challenge of H1N1 virus and reduce viral load in lung homogenates of the infected mice.
Collapse
Affiliation(s)
- Mohammad Hossein Zabeh Jazi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tehran, PO Box 14155-6453, Tehran, Iran
| | | | | | | | | |
Collapse
|
19
|
Rattanapak T, Young K, Rades T, Hook S. Comparative study of liposomes, transfersomes, ethosomes and cubosomes for transcutaneous immunisation: characterisation and in vitro skin penetration. J Pharm Pharmacol 2012; 64:1560-9. [DOI: 10.1111/j.2042-7158.2012.01535.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
Lipid colloidal vaccines, including liposomes, transfersomes, ethosomes and cubosomes, were formulated, characterised and investigated for their ability to enhance penetration of a peptide vaccine through stillborn piglet skin in vitro.
Methods
Liposomes and transfersomes were formulated using a film-hydration method, ethosomes using a modified reverse phase method and cubosomes using a lipid precursor method. The size, zeta potential, peptide loading and interfacial behaviour of the formulations were characterised. Skin penetration studies were performed using Franz diffusion cells with piglet skin as the membrane. The localization of peptide in the skin was examined using confocal laser scanning microscopy.
Key finding
The various formulations contained negatively charged particles of similar size (range: 134–200 nm). Addition of the saponin adjuvant Quil A to the formulations destabilised the monolayers and reduced peptide loading. Cubosomes and ethosomes showed superior skin retention compared with the other systems. Confocal laser scanning microscopy showed greater peptide penetration and accumulation in the skin treated with cubosomes and ethosomes. With the other systems peptide was only located in the vicinity of the hair follicles and within the hair shaft.
Conclusions
We conclude from the in-vitro studies that cubosomes and ethosomes are promising lipid carriers for transcutaneous immunisation.
Collapse
Affiliation(s)
- Teerawan Rattanapak
- New Zealand's National School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Katie Young
- New Zealand's National School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Thomas Rades
- New Zealand's National School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sarah Hook
- New Zealand's National School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
20
|
Kim YC, Song JM, Lipatov AS, Choi SO, Lee JW, Donis RO, Compans RW, Kang SM, Prausnitz MR. Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch. Eur J Pharm Biopharm 2012; 81:239-47. [PMID: 22504442 DOI: 10.1016/j.ejpb.2012.03.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/16/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
Effective public health responses to an influenza pandemic require an effective vaccine that can be manufactured and administered to large populations in the shortest possible time. In this study, we evaluated a method for vaccination against avian influenza virus that uses a DNA vaccine for rapid manufacturing and delivered by a microneedle skin patch for simplified administration and increased immunogenicity. We prepared patches containing 700-μm long microneedles coated with an avian H5 influenza hemagglutinin DNA vaccine from A/Viet Nam/1203/04 influenza virus. The coating DNA dose increased with DNA concentration in the coating solution and the number of dip-coating cycles. Coated DNA was released into the skin tissue by dissolution within minutes. Vaccination of mice using microneedles induced higher levels of antibody responses and hemagglutination inhibition titers, and improved protection against lethal infection with avian influenza as compared to conventional intramuscular delivery of the same dose of the DNA vaccine. Additional analysis showed that the microneedle coating solution containing carboxymethylcellulose and a surfactant may have negatively affected the immunogenicity of the DNA vaccine. Overall, this study shows that DNA vaccine delivery by microneedles can be a promising approach for improved vaccination to mitigate an influenza pandemic.
Collapse
Affiliation(s)
- Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li N, Peng LH, Chen X, Nakagawa S, Gao JQ. Transcutaneous vaccines: Novel advances in technology and delivery for overcoming the barriers. Vaccine 2011; 29:6179-90. [DOI: 10.1016/j.vaccine.2011.06.086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 06/19/2011] [Accepted: 06/22/2011] [Indexed: 12/17/2022]
|
22
|
Huang HN, Rajanbabu V, Pan CY, Chan YL, Hui CF, Chen JY, Wu CJ. Modulation of the immune-related gene responses to protect mice against Japanese encephalitis virus using the antimicrobial peptide, tilapia hepcidin 1-5. Biomaterials 2011; 32:6804-14. [PMID: 21726898 DOI: 10.1016/j.biomaterials.2011.05.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
Japanese encephalitis virus (JEV), a neurotropic flavivirus, is one of the major causes of acute encephalitis in humans. After infection, it is commonly associated with inflammatory reactions and neurological disease. There is still no effective antiviral drug available against Japanese encephalitis virus infection. Recently, a number of investigators found that antimicrobial peptide (AMPs) present a broad range of biological activities including antimicrobial and immunomodulatory activities. In this study, we found that an AMP, tilapia hepcidin (TH)1-5, caused no harm to either cells or test animals during the test course and could control JEV viral infection in BHK-21 cells. Mice co-injected with TH1-5/JEV and subsequently subjected to JEV re-challenge survived and behaved normally. The neuroprotective effects were associated with marked decreases in: (i) the viral load and viral replication within the brain, (ii) neuronal death, and (iii) secondary inflammation resulting from microglial activation. TH1-5 was also determined to enhance adaptive immunity by elevating levels of anti-JEV-neutralizing antibodies in the serum. The microarray data also showed that TH1-5 modulated Socs-6, interleukin (IL)-6, Toll-like receptor (TLR)-1, TLR-7, caspase-4, interferon (IFN)-β1, ATF-3, and several immune-responsive genes to protect mice against JEV infection. In addition, TH1-5 was confirmed to modulate the expressions of several proinflammatory and immune-responsive genes, such as IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, tumor necrosis factor (TNF)-α, IFN-γ and monocyte chemoattractant protein (MCP)-1 at both the transcriptional and translational levels in JEV-infected mice. In conclusion, our findings provide mechanistic insights into the actions of TH1-5 against JEV. Results from our in vivo and in vitro experiments clearly indicate that TH1-5 has antiviral, neuroprotective, anti-inflammatory, and immunomodulatory activities. Furthermore, TH1-5 successfully reduced the severity of disease induced by JEV. Our results point out that TH1-5 is a promising candidate for further development as an antiviral agent against JEV infection.
Collapse
Affiliation(s)
- Han-Ning Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan
| | | | | | | | | | | | | |
Collapse
|
23
|
Li A, Qin L, Wang W, Zhu R, Yu Y, Liu H, Wang S. The use of layered double hydroxides as DNA vaccine delivery vector for enhancement of anti-melanoma immune response. Biomaterials 2010; 32:469-77. [PMID: 20934217 DOI: 10.1016/j.biomaterials.2010.08.107] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 08/30/2010] [Indexed: 12/24/2022]
Abstract
Our previous studies have shown that Mg:Al 1:1 layered double hydroxides (LDH(R1)) nanoparticles could be taken up by the MDDCs effectively and had an adjuvant activity for DC maturation. Furthermore, these LDH(R1) nanoparticles could up-regulate the expression of CCR7 and augment the migration of DCs in response to CCL21. In current study, we have evaluated whether LDH(R1) as DNA vaccine delivery carrier can augment the efficacy of DNA vaccine immunization in vivo. Firstly, we found that LDH(R1) was efficient in combining DNA and formed LDH(R1)/DNA complex with an average diameter of about 80-120 nm. Its high transfection efficiency in vivo delivered with a GFP expression plasmid was also observed. After delivery of pcDNA(3)-OVA/LDH(R1) complex by intradermal immunization in C57BL/6 mice, the LDH(R1) induced an enhanced serum antibody response much greater than naked DNA vaccine. Using B16-OVA melanoma as tumor model, we demonstrated that pcDNA(3)-OVA/LDH(R1) complex enhanced immune priming and protection from tumor challenge in vivo. Furthermore, we showed that LDH(R1) induced dramatically more effective CTL activation and skewed T helper polarization to Th1. Collectively, these findings demonstrate that this LDH(R1)/DNA plasmid complex should be a new and promising way in vaccination against tumor.
Collapse
Affiliation(s)
- Ang Li
- Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Prostate cancer is a significant public health problem, and the most commonly diagnosed cancer in the USA. The long natural history of prostate cancer, the presence of a serum biomarker that can be used to detect very early recurrences, and the previous identification of multiple potential tissue-specific target antigens are all features that make this disease suitable for the development of anti-tumor vaccines. To date, many anti-tumor vaccines have entered clinical testing for patients with prostate cancer, and some have demonstrated clinical benefit. DNA vaccines represent one vaccine approach that has been evaluated in multiple preclinical models and clinical trials. The safety, specificity for the target antigen, ease of manufacturing and ease of incorporating other immune-modulating approaches make DNA vaccines particularly relevant for future development. This article focuses on DNA vaccines specifically in the context of prostate cancer treatment, focusing on antigens targeted in preclinical models, recent clinical trials and efforts to improve the potency of these vaccines.
Collapse
Affiliation(s)
- Sheeba Alam
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI, USA
| | | |
Collapse
|
25
|
Ji C, Barrett A, Poole-Warren LA, Foster NR, Dehghani F. The development of a dense gas solvent exchange process for the impregnation of pharmaceuticals into porous chitosan. Int J Pharm 2010; 391:187-96. [PMID: 20214968 DOI: 10.1016/j.ijpharm.2010.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/11/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
The aim of this study was to prepare stable formulations of poorly water-soluble drugs in amorphous forms to enhance their dissolution rates, promote the bioavailability, minimize the dosage, thereby theoretically decreasing their side effects. A dense gas solvent exchange process was developed for the impregnation of poorly water-soluble drugs such as camptothecin and griseofulvin into a chitosan matrix. The amount of drug impregnated was measured by UV-spectrophotometery and gravimetric techniques. Pore characteristics and the crystallinity of the drugs in the impregnated chitosan were measured. Homogenous nano-sized pores with thin walls were formed in chitosan using the dense gas solvent exchange process. The method was efficient for the impregnation of a drug into chitosan. Results of XRD, Fourier transform infrared spectroscopy and differential scanning calorimetry demonstrated that as a result of interaction between chitosan and the drug, both camptothecin and griseofulvin were in amorphous forms after processing. The dissolution rate of processed griseofulvin was increased threefold due to the hydrophilic properties of chitosan and its interaction with the drug. A new approach was developed for promoting drug bioavailability that has the potential to decrease the required dose and side effects, particularly for chemotherapeutic drugs with narrow therapeutic index.
Collapse
Affiliation(s)
- Chengdong Ji
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|