1
|
Shafiei FS, Abroun S. Recent advancements in nanomedicine as a revolutionary approach to treating multiple myeloma. Life Sci 2024; 356:122989. [PMID: 39197575 DOI: 10.1016/j.lfs.2024.122989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Abstract
Multiple myeloma, the second most common hematological malignancy, remains incurable with a 5-year survival rate of approximately 50 % and recurrence rates near 100 %, despite significant attempts to develop effective medicines. Therefore, there is a pressing demand in the medical field for innovative and more efficient treatments for MM. Currently, the standard approach for treating MM involves administering high-dose chemotherapy, which frequently correlates with improved results; however, one major limiting factor is the significant side effects of these medications. Furthermore, the strategies used to deliver medications to tumors limit their efficacy, whether by rapid clearance from circulation or an insufficient concentration in cancer cells. Cancer treatment has shifted from cytotoxic, nonspecific chemotherapy regimens to molecularly targeted, rationally developed drugs with improved efficacy and fewer side effects. Nanomedicines may provide an effective alternative way to avoid these limits by delivering drugs into the complicated bone marrow microenvironment and efficiently reaching myeloma cells. Putting drugs into nanoparticles can make their pharmacokinetic and pharmacodynamic profiles much better. This can increase the drug's effectiveness in tumors, extend its time in circulation in the blood, and lower its off-target toxicity. In this review, we introduce several criteria for the rational design of nanomedicine to achieve the best anti-tumoral therapeutic results. Next, we discuss recent advances in nanomedicine for MM therapy.
Collapse
Affiliation(s)
- Fatemeh Sadat Shafiei
- Department Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Wang M, Ying T, Wu Y. Single-domain antibodies as therapeutics for solid tumor treatment. Acta Pharm Sin B 2024; 14:2854-2868. [PMID: 39027249 PMCID: PMC11252471 DOI: 10.1016/j.apsb.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 07/20/2024] Open
Abstract
Single-domain antibodies (sdAbs), initially identified in camelids or sharks and commonly referred to as nanobodies or VNARs, have emerged as a promising alternative to conventional therapeutic antibodies. These sdAbs have many superior physicochemical and pharmacological properties, including small size, good solubility and thermostability, easier accessible epitopes, and strong tissue penetration. However, the inherent challenges associated with the animal origin of sdAbs limit their clinical use. In recent years, various innovative humanization technologies, including complementarity-determining region (CDR) grafting or complete engineering of fully human sdAbs, have been developed to mitigate potential immunogenicity issues and enhance their compatibility. This review provides a comprehensive exploration of sdAbs, emphasizing their distinctive features and the progress in humanization methodologies. In addition, we provide an overview of the recent progress in developing drugs and therapeutic strategies based on sdAbs and their potential in solid tumor treatment, such as sdAb-drug conjugates, multispecific sdAbs, sdAb-based delivery systems, and sdAb-based cell therapy.
Collapse
Affiliation(s)
- Mingkai Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| |
Collapse
|
3
|
Sandbhor P, Palkar P, Bhat S, John G, Goda JS. Nanomedicine as a multimodal therapeutic paradigm against cancer: on the way forward in advancing precision therapy. NANOSCALE 2024. [PMID: 38470224 DOI: 10.1039/d3nr06131k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recent years have witnessed dramatic improvements in nanotechnology-based cancer therapeutics, and it continues to evolve from the use of conventional therapies (chemotherapy, surgery, and radiotherapy) to increasingly multi-complex approaches incorporating thermal energy-based tumor ablation (e.g. magnetic hyperthermia and photothermal therapy), dynamic therapy (e.g. photodynamic therapy), gene therapy, sonodynamic therapy (e.g. ultrasound), immunotherapy, and more recently real-time treatment efficacy monitoring (e.g. theranostic MRI-sensitive nanoparticles). Unlike monotherapy, these multimodal therapies (bimodal, i.e., a combination of two therapies, and trimodal, i.e., a combination of more than two therapies) incorporating nanoplatforms have tremendous potential to improve the tumor tissue penetration and retention of therapeutic agents through selective active/passive targeting effects. These combinatorial therapies can correspondingly alleviate drug response against hypoxic/acidic and immunosuppressive tumor microenvironments and promote/induce tumor cell death through various multi-mechanisms such as apoptosis, autophagy, and reactive oxygen-based cytotoxicity, e.g., ferroptosis, etc. These multi-faced approaches such as targeting the tumor vasculature, neoangiogenic vessels, drug-resistant cancer stem cells (CSCs), preventing intra/extravasation to reduce metastatic growth, and modulation of antitumor immune responses work complementary to each other, enhancing treatment efficacy. In this review, we discuss recent advances in different nanotechnology-mediated synergistic/additive combination therapies, emphasizing their underlying mechanisms for improving cancer prognosis and survival outcomes. Additionally, significant challenges such as CSCs, hypoxia, immunosuppression, and distant/local metastasis associated with therapy resistance and tumor recurrences are reviewed. Furthermore, to improve the clinical precision of these multimodal nanoplatforms in cancer treatment, their successful bench-to-clinic translation with controlled and localized drug-release kinetics, maximizing the therapeutic window while addressing safety and regulatory concerns are discussed. As we advance further, exploiting these strategies in clinically more relevant models such as patient-derived xenografts and 3D organoids will pave the way for the application of precision therapy.
Collapse
Affiliation(s)
- Puja Sandbhor
- Institute for NanoBioTechnology, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Pranoti Palkar
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Sakshi Bhat
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Geofrey John
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Jayant S Goda
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| |
Collapse
|
4
|
Hebels ER, Dietl S, Timmers M, Hak J, van den Dikkenberg A, Rijcken CJ, Hennink WE, Liskamp RMJ, Vermonden T. Versatile Click Linker Enabling Native Peptide Release from Nanocarriers upon Redox Trigger. Bioconjug Chem 2023; 34:2375-2386. [PMID: 38079189 PMCID: PMC10739580 DOI: 10.1021/acs.bioconjchem.3c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Nanocarriers have shown their ability to extend the circulation time of drugs, enhance tumor uptake, and tune drug release. Therapeutic peptides are a class of drug compounds in which nanocarrier-mediated delivery can potentially improve their therapeutic index. To this end, there is an urgent need for orthogonal covalent linker chemistry facilitating the straightforward on-the-resin peptide generation, nanocarrier conjugation, as well as the triggered release of the peptide in its native state. Here, we present a copper-free clickable ring-strained alkyne linker conjugated to the N-terminus of oncolytic peptide LTX-315 via standard solid-phase peptide synthesis (SPPS). The linker contains (1) a recently developed seven-membered ring-strained alkyne, 3,3,6,6-tetramethylthiacycloheptyne sulfoximine (TMTHSI), (2) a disulfide bond, which is sensitive to the reducing cytosolic and tumor environment, and (3) a thiobenzyl carbamate spacer enabling release of the native peptide upon cleavage of the disulfide via 1,6-elimination. We demonstrate convenient "clicking" of the hydrophilic linker-peptide conjugate to preformed pegylated core-cross-linked polymeric micelles (CCPMs) of 50 nm containing azides in the hydrophobic core under aqueous conditions at room temperature resulting in a loading capacity of 8 mass % of peptide to polymer (56% loading efficiency). This entrapment of hydrophilic cargo into/to a cross-linked hydrophobic core is a new and counterintuitive approach for this class of nanocarriers. The release of LTX-315 from the CCPMs was investigated in vitro and rapid release upon exposure to glutathione (within minutes) followed by slower 1,6-elimination (within an hour) resulted in the formation of the native peptide. Finally, cytotoxicity of LTX CCPMs as well as uptake of sulfocyanine 5-loaded CCPMs was investigated by cell culture, demonstrating successful tumor cell killing at concentrations similar to that of the free peptide treatment.
Collapse
Affiliation(s)
- Erik R. Hebels
- Division
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Stefanie Dietl
- Division
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Matt Timmers
- Division
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
- Cristal
Therapeutics, Maastricht 6229 EV, The Netherlands
| | - Jaimie Hak
- Division
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Antionette van den Dikkenberg
- Division
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | | | - Wim E. Hennink
- Division
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Rob M. J. Liskamp
- Cristal
Therapeutics, Maastricht 6229 EV, The Netherlands
- Department
of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht 6229 ER, The Netherlands
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Tina Vermonden
- Division
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| |
Collapse
|
5
|
Bauer T, Alberg I, Zengerling LA, Besenius P, Koynov K, Slütter B, Zentel R, Que I, Zhang H, Barz M. Tuning the Cross-Linking Density and Cross-Linker in Core Cross-Linked Polymeric Micelles and Its Effects on the Particle Stability in Human Blood Plasma and Mice. Biomacromolecules 2023; 24:3545-3556. [PMID: 37449781 PMCID: PMC10428167 DOI: 10.1021/acs.biomac.3c00308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Core cross-linked polymeric micelles (CCPMs) are designed to improve the therapeutic profile of hydrophobic drugs, reduce or completely avoid protein corona formation, and offer prolonged circulation times, a prerequisite for passive or active targeting. In this study, we tuned the CCPM stability by using bifunctional or trifunctional cross-linkers and varying the cross-linkable polymer block length. For CCPMs, amphiphilic thiol-reactive polypept(o)ides of polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine) [pSar-b-pCys(SO2Et)] were employed. While the pCys(SO2Et) chain lengths varied from Xn = 17 to 30, bivalent (derivatives of dihydrolipoic acid) and trivalent (sarcosine/cysteine pentapeptide) cross-linkers have been applied. Asymmetrical flow field-flow fraction (AF4) displayed the absence of aggregates in human plasma, yet for non-cross-linked PM and CCPMs cross-linked with dihydrolipoic acid at [pCys(SO2Et)]17, increasing the cross-linking density or the pCys(SO2Et) chain lengths led to stable CCPMs. Interestingly, circulation time and biodistribution in mice of non-cross-linked and bivalently cross-linked CCPMs are comparable, while the trivalent peptide cross-linkers enhance the circulation half-life from 11 to 19 h.
Collapse
Affiliation(s)
- Tobias
A. Bauer
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Irina Alberg
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Lydia A. Zengerling
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Pol Besenius
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Bram Slütter
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Rudolf Zentel
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Ivo Que
- Translational
Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333
ZA Leiden, The Netherlands
| | - Heyang Zhang
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Matthias Barz
- Leiden
Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Department
of Dermatology, University Medical Center
of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
6
|
Chen X, Gholizadeh S, Ghovvati M, Wang Z, Jellen MJ, Mostafavi A, Dana R, Annabi N. Engineering a drug eluting ocular patch for delivery and sustained release of anti-inflammatory therapeutics. AIChE J 2023; 69:e18067. [PMID: 38250665 PMCID: PMC10798673 DOI: 10.1002/aic.18067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/25/2023] [Indexed: 01/23/2024]
Abstract
Ocular inflammation is commonly associated with eye disease or injury. Effective and sustained ocular delivery of therapeutics remains a challenge due to the eye physiology and structural barriers. Herein, we engineered a photocrosslinkable adhesive patch (GelPatch) incorporated with micelles (MCs) loaded with Loteprednol etabonate (LE) for delivery and sustained release of drug. The engineered drug loaded adhesive hydrogel, with controlled physical properties, provided a matrix with high adhesion to the ocular surfaces. The incorporation of MCs within the GelPatch enabled solubilization of LE and its sustained release within 15 days. In vitro studies showed that MC loaded GelPatch supported cell viability and growth. In addition, subcutaneous implantation of the MC loaded GelPatch in rats confirmed its in vivo biocompatibility and stability within 28 days. This non-invasive, adhesive, and biocompatible drug eluting patch can be used as a matrix for the delivery and sustained release of hydrophobic drugs.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA, USA
| | - Shima Gholizadeh
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA, USA
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA, USA
| | - Ziqing Wang
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA, USA
| | - Marcus J. Jellen
- Department of Chemistry and Biochemistry, University of California- Los Angeles, Los Angeles, CA, USA
| | - Azadeh Mostafavi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA, USA
| | - Reza Dana
- Schepens Eye Research Institute, Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California- Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Leng Q, Imtiyaz Z, Woodle MC, Mixson AJ. Delivery of Chemotherapy Agents and Nucleic Acids with pH-Dependent Nanoparticles. Pharmaceutics 2023; 15:1482. [PMID: 37242725 PMCID: PMC10222096 DOI: 10.3390/pharmaceutics15051482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
With less than one percent of systemically injected nanoparticles accumulating in tumors, several novel approaches have been spurred to direct and release the therapy in or near tumors. One such approach depends on the acidic pH of the extracellular matrix and endosomes of the tumor. With an average pH of 6.8, the extracellular tumor matrix provides a gradient for pH-responsive particles to accumulate, enabling greater specificity. Upon uptake by tumor cells, nanoparticles are further exposed to lower pHs, reaching a pH of 5 in late endosomes. Based on these two acidic environments in the tumor, various pH-dependent targeting strategies have been employed to release chemotherapy or the combination of chemotherapy and nucleic acids from macromolecules such as the keratin protein or polymeric nanoparticles. We will review these release strategies, including pH-sensitive linkages between the carrier and hydrophobic chemotherapy agent, the protonation and disruption of polymeric nanoparticles, an amalgam of these first two approaches, and the release of polymers shielding drug-loaded nanoparticles. While several pH-sensitive strategies have demonstrated marked antitumor efficacy in preclinical trials, many studies are early in their development with several obstacles that may limit their clinical use.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| | - Zuha Imtiyaz
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| | | | - A. James Mixson
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| |
Collapse
|
8
|
Bauer TA, Schramm J, Fenaroli F, Siemer S, Seidl CI, Rosenauer C, Bleul R, Stauber RH, Koynov K, Maskos M, Barz M. Complex Structures Made Simple - Continuous Flow Production of Core Cross-Linked Polymeric Micelles for Paclitaxel Pro-Drug-Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210704. [PMID: 36934295 DOI: 10.1002/adma.202210704] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Indexed: 05/26/2023]
Abstract
Translating innovative nanomaterials to medical products requires efficient manufacturing techniques that enable large-scale high-throughput synthesis with high reproducibility. Drug carriers in medicine embrace a complex subset of tasks calling for multifunctionality. Here, the synthesisof pro-drug-loaded core cross-linked polymeric micelles (CCPMs) in a continuous flow processis reported, which combines the commonly separated steps of micelle formation, core cross-linking, functionalization, and purification into a single process. Redox-responsive CCPMs are formed from thiol-reactive polypept(o)ides of polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine) and functional cross-linkers based on dihydrolipoic acid hydrazide for pH-dependent release of paclitaxel. The precisely controlled microfluidic process allows the production of spherical micelles (Dh = 35 nm) with low polydispersity values (PDI < 0.1) while avoiding toxic organic solvents and additives with unfavorable safety profiles. Self-assembly and cross-linking via slit interdigital micromixers produces 350-700 mg of CCPMs/h per single system, while purification by online tangential flow filtration successfully removes impurities (unimer ≤ 0.5%). The formed paclitaxel-loaded CCPMs possess the desired pH-responsive release profile, display stable drug encapsulation, an improved toxicity profile compared to Abraxane (a trademark of Bristol-Myers Squibb), and therapeutic efficiency in the B16F1-xenotransplanted zebrafish model. The combination of reactive polymers, functional cross-linkers, and microfluidics enables the continuous-flow synthesis of therapeutically active CCPMs in a single process.
Collapse
Affiliation(s)
- Tobias A Bauer
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
| | - Jonas Schramm
- Fraunhofer Institute for Microengineering and Microsystems, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Federico Fenaroli
- Department for Biosciences, University of Oslo, Blindernveien 31, 0371, Oslo, Norway
| | - Svenja Siemer
- Molecular and Cellular Oncology/Nanobiomedicine, ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Christine I Seidl
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
| | - Christine Rosenauer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Regina Bleul
- Fraunhofer Institute for Microengineering and Microsystems, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology/Nanobiomedicine, ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Michael Maskos
- Fraunhofer Institute for Microengineering and Microsystems, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| |
Collapse
|
9
|
Hegaard F, Thormann E. Influence of Ionic Strength and Specific Ion Effects on Polyelectrolyte Multilayer Films with pH-Responsive Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5012-5020. [PMID: 37000604 DOI: 10.1021/acs.langmuir.2c03515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Layer-by-layer assembled multilayer films have shown great potential for different applications owing to their responsive behavior. Herein, we systematically investigated the effects of composition, salt concentration, and ion specificity on the pH responsiveness of covalently crosslinked chitosan and alginate dialdehyde multilayer films. The changes in film swelling were measured using ellipsometry from low (0.01 mM) to high (3 M) salt (NaCl or NaSCN) concentrations at pH 3, 6, and 9. The swelling responses to increasing ionic strength matched the swelling responses observed for polyzwitterionic and weak monocomponent polyelectrolyte films and depended on the multilayer composition, pH, and ion specificity. Finally, we used the ellipsometric data to demonstrate that the pH responsiveness of such multilayer films, as measured using a quartz crystal microbalance with dissipation monitoring, strongly depends on the ionic condition under which the responses were measured. We thus show that erroneous conclusions about the pH responsiveness of polyelectrolyte multilayer films can be easily obtained if the ionic environment of the application does not closely resemble the ionic condition under which the pH responsiveness is tested.
Collapse
Affiliation(s)
- Frederik Hegaard
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Qu JB, Zhang XF, Zhang YB, Che HJ, Li GF, Li J, Wang X. Galactosylated Core-Shell Nanoparticles with pH/GSH Dual Sensitivity for Targeting Hepatocellular Carcinoma. ACS Macro Lett 2023; 12:201-207. [PMID: 36695919 DOI: 10.1021/acsmacrolett.2c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Galactosylated core-shell nanoparticles (NPs) with diameters of sub-50 nm were fabricated in one pot by reversible addition-fragmentation chain transfer (RAFT) soap-free emulsion polymerization. Their galactosylated shells and acidic cores endow them with high targeting and drug loading efficiencies, respectively. Morever, the physical shrinkage and cleavage of the disulfide cross-linked NPs can realize the rapid release of loaded doxorubicin (DOX) under pH 5.0 and reduced glutathione (GSH) conditions. The combination of these excellent properties resulted in an even lower IC50 of DOX-loaded NPs than free DOX, demonstrating that this platform would be promising in targeting the therapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jian-Bo Qu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Xue-Fei Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Yi-Bo Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Huan-Jie Che
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Gang-Feng Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Jing Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Xiaojuan Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| |
Collapse
|
11
|
Verma P, Gupta GD, Markandeywar TS, Singh D. A Critical Sojourn of Polymeric Micelles: Technological Concepts, Recent Advances, and Future Prospects. Assay Drug Dev Technol 2023; 21:31-47. [PMID: 36856457 DOI: 10.1089/adt.2022.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Poorly soluble drug molecules/phytoconstituents are still a growing concern for biopharmaceutical delivery in the body. Polymeric micelles are the amphiphilic block copolymers and have been widely investigated as targeted nanocarriers for the treatment of various ailments. The versatility of nanocarriers is the self-assembling properties in the aqueous medium and forms a stable isotropic system in vivo. The hydrophobic core-hydrophilic shell configuration of the polymers used to the mixed micelles makes easy encapsulation of hydrophobic and hydrophilic drugs into the core. Polymeric micelles can also be combined with targeting ligands that increase their uptake by specific cells, decreasing off-target effects, and provide enhanced therapeutic effect. In the present review, we primarily focused on a critical appraisal of Polymeric micelles along with the method of preparation, mechanism of micelle formulation, and the ongoing formulations under clinical trials. In addition, the biological applications of this isotropic nanocarrier have been duly presented in each route of administration along with suitable case studies.
Collapse
Affiliation(s)
- Princi Verma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
12
|
Liu X, Tang L, Chen Y, Fu M, Guo ZH, Tang W, Yue K. Solvent-Free Templated Synthesis of Core-Crosslinked Star-Shaped Polymers in Supramolecular Body-Centered Cubic Phase. Macromol Rapid Commun 2023; 44:e2200292. [PMID: 35578983 DOI: 10.1002/marc.202200292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Indexed: 01/11/2023]
Abstract
This study reports the exploration of a solvent-free supramolecular templated synthesis strategy toward highly core-cross-linked star-shaped polymers (CSPs). To achieve this, a kind of cross-linkable giant surfactant, based on a functionalized polyhedral oligomeric silsesquioxanes (POSS) head tethered with a diblock copolymer tail containing reactive benzocyclobutene groups, is designed and prepared. By varying the volume fraction of linear block copolymer tail, these giant surfactants can self-assemble into a body-centered cubic (BCC) structure in bulk, in which the supramolecular spheres are composed of a core of POSS cages, a middle shell of crosslinkable poly(4-vinylbenzocyclobutene) (PBCB) blocks, and a corona of inert polystyrene (PS) blocks. The solvent-free thermally induced cross-linking reaction of the benzocyclobutene groups can be finished in 5 min upon heating, resulting in well-defined polymeric spheres with over 90 linear chains surrounding the cross-linked cores. The outer PS blocks serve as the protection corona to ensure that cross-linking of giant surfactants occurs in each supramolecular spherical domain. Given the modular design and diversity of the POSS-based giant surfactants, it is believed that the strategy may enable access to a wide range of CSPs.
Collapse
Affiliation(s)
- Xiaobo Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Lei Tang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Yutong Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Mi Fu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Zi-Hao Guo
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Wen Tang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
13
|
Rijcken CJF, De Lorenzi F, Biancacci I, Hanssen RGJM, Thewissen M, Hu Q, Atrafi F, Liskamp RMJ, Mathijssen RHJ, Miedema IHC, Menke-van der Houven van Oordt CW, van Dongen GAMS, Vugts DJ, Timmers M, Hennink WE, Lammers T. Design, development and clinical translation of CriPec®-based core-crosslinked polymeric micelles. Adv Drug Deliv Rev 2022; 191:114613. [PMID: 36343757 DOI: 10.1016/j.addr.2022.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/18/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Nanomedicines are used to improve the efficacy and safety of pharmacotherapeutic interventions. Unraveling the biological behavior of nanomedicines, including their biodistribution and target site accumulation, is essential to establish design criteria that contribute to superior performance. CriPec® technology is based on amphiphilic methoxy-poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide lactate] (mPEG-b-pHPMAmLacn) block copolymers, which are designed to upon self-assembly covalently entrap active pharmaceutical ingredients (API) in core-crosslinked polymeric micelles (CCPM). Key features of CCPM are a prolonged circulation time, high concentrations at pathological sites, and low levels of accumulation in the majority of healthy tissues. Proprietary hydrolysable linkers allow for tunable and sustained release of entrapped API, including hydrophobic and hydrophilic small molecules, as well as peptides and oligonucleotides. Preclinical imaging experiments provided valuable information on their tumor and tissue accumulation and distribution, as well as on uptake by cancer, healthy and immune cells. The frontrunner formulation CPC634, which refers to 65 nm-sized CCPM entrapping the chemotherapeutic drug docetaxel, showed excellent pharmacokinetic properties, safety, tumor accumulation and antitumor efficacy in multiple animal models. In the clinic, CPC634 also demonstrated favorable pharmacokinetics, good tolerability, signs of efficacy, and enhanced localization in tumor tissue as compared to conventional docetaxel. PET imaging of radiolabeled CPC634 showed quantifiable accumulation in ∼50 % of tumors and metastases in advanced-stage cancer patients, and demonstrated potential for use in a theranostic setting even when applied at a companion diagnostic dose. Altogether, the preclinical and clinical results obtained to date demonstrate that mPEG-b-pHPMAmLacn CCPM based on CriPec® technology are a potent, tunable, broadly applicable and well-tolerable platform for targeted drug delivery and improved anticancer therapy.
Collapse
Affiliation(s)
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Ilaria Biancacci
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | | | | | - Qizhi Hu
- Cristal Therapeutics, Maastricht, the Netherlands
| | - Florence Atrafi
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Iris H C Miedema
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - C Willemien Menke-van der Houven van Oordt
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - Guus A M S van Dongen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Danielle J Vugts
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Matt Timmers
- Cristal Therapeutics, Maastricht, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht University, Utrecht, the Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
14
|
Xue X, Qu H, Li Y. Stimuli-responsive crosslinked nanomedicine for cancer treatment. EXPLORATION (BEIJING, CHINA) 2022; 2:20210134. [PMID: 37324805 PMCID: PMC10190936 DOI: 10.1002/exp.20210134] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/21/2022] [Indexed: 06/17/2023]
Abstract
Nanomedicines are attractive paradigms to deliver drugs, contrast agents, immunomodulators, and gene editors for cancer therapy and diagnosis. However, the currently developed nanomedicine suffers from poor serum stability, premature drug release, and lack of responsiveness. Crosslinking strategy can be utilized to overcome these shortcomings by employing stimuli-responsive chemical bonds to tightly hold the nanostructure and releasing the payloads spatiotemporally in a highly controlled manner. In this Review, we summarize the recently ingenious design of the stimuli-responsive crosslinked nanomedicines (SCN) in the field of cancer treatment and their advances in circumventing the drawbacks of the conventional drug delivery system. We classify the SCNs into three categories based on the crosslinking strategies, including built-in, on-surface, and inter-particle crosslinking nanomedicines. Thanks to the stimuli-responsive crosslinkages, SCNs are capable of keeping robust stability during systemic circulation. They also respond to the particular tumoral conditions to experience a series of dynamic changes, such as the changes in size, surface charge, targeting moieties, integrity, and imaging signals. These characteristics allow them to efficiently overcome different biological barriers and substantially improve the drug delivery efficiency, tumor-targeting ability, and imaging sensitivities. With the examples discussed, we envision that our perspectives can inspire more attempts to engineer intelligent nanomedicine to achieve effective cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Xiangdong Xue
- School of Pharmacy, Pharm‐X CenterShanghai Jiao Tong UniversityShanghaiChina
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer CenterUniversity of California DavisSacramentoCaliforniaUSA
| | - Haijing Qu
- School of Pharmacy, Pharm‐X CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer CenterUniversity of California DavisSacramentoCaliforniaUSA
| |
Collapse
|
15
|
Shukla A, Maiti P. Nanomedicine and versatile therapies for cancer treatment. MedComm (Beijing) 2022; 3:e163. [PMID: 35992969 PMCID: PMC9386439 DOI: 10.1002/mco2.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022] Open
Abstract
The higher prevalence of cancer is related to high rates of mortality and morbidity worldwide. By virtue of the properties of matter at the nanoscale, nanomedicine is proven to be a powerful tool to develop innovative drug carriers with greater efficacies and fewer side effects than conventional therapies. In this review, different nanocarriers for controlled drug release and their routes of administration have been discussed in detail, especially for cancer treatment. Special emphasis has been given on the design of drug delivery vehicles for sustained release and specific application methods for targeted delivery to the affected areas. Different polymeric vehicles designed for the delivery of chemotherapeutics have been discussed, including graft copolymers, liposomes, hydrogels, dendrimers, micelles, and nanoparticles. Furthermore, the effect of dimensional properties on chemotherapy is vividly described. Another integral section of the review focuses on the modes of administration of nanomedicines and emerging therapies, such as photothermal, photodynamic, immunotherapy, chemodynamic, and gas therapy, for cancer treatment. The properties, therapeutic value, advantages, and limitations of these nanomedicines are highlighted, with a focus on their increased performance versus conventional molecular anticancer therapies.
Collapse
Affiliation(s)
- Aparna Shukla
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Pralay Maiti
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| |
Collapse
|
16
|
New Advances in Biomedical Application of Polymeric Micelles. Pharmaceutics 2022; 14:pharmaceutics14081700. [PMID: 36015325 PMCID: PMC9416043 DOI: 10.3390/pharmaceutics14081700] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 12/20/2022] Open
Abstract
In the last decade, nanomedicine has arisen as an emergent area of medicine, which studies nanometric systems, namely polymeric micelles (PMs), that increase the solubility and the stability of the encapsulated drugs. Furthermore, their application in dermal drug delivery is also relevant. PMs present unique characteristics because of their unique core-shell architecture. They are colloidal dispersions of amphiphilic compounds, which self-assemble in an aqueous medium, giving a structure-type core-shell, with a hydrophobic core (that can encapsulate hydrophobic drugs), and a hydrophilic shell, which works as a stabilizing agent. These features offer PMs adequate steric protection and determine their hydrophilicity, charge, length, and surface density properties. Furthermore, due to their small size, PMs can be absorbed by the intestinal mucosa with the drug, and they transport the drug in the bloodstream until the therapeutic target. Moreover, PMs improve the pharmacokinetic profile of the encapsulated drug, present high load capacity, and are synthesized by a reproducible, easy, and low-cost method. In silico approaches have been explored to improve the physicochemical properties of PMs. Based on this, a computer-aided strategy was developed and validated to enable the delivery of poorly soluble drugs and established critical physicochemical parameters to maximize drug loading, formulation stability, and tumor exposure. Poly(2-oxazoline) (POx)-based PMs display unprecedented high loading concerning water-insoluble drugs and over 60 drugs have been incorporated in POx PMs. Among various stimuli, pH and temperature are the most widely studied for enhanced drug release at the site of action. Researchers are focusing on dual (pH and temperature) responsive PMs for controlled and improved drug release at the site of action. These dual responsive systems are mainly evaluated for cancer therapy as certain malignancies can cause a slight increase in temperature and a decrease in the extracellular pH around the tumor site. This review is a compilation of updated therapeutic applications of PMs, such as PMs that are based on Pluronics®, micelleplexes and Pox-based PMs in several biomedical applications.
Collapse
|
17
|
Asgari S, Ziarani GM, Badiei A, Pourjavadi A, Kiani M. A smart tri-layered nanofibrous hydrogel thin film with controlled release of dual drugs for chemo-thermal therapy of breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
The in vivo fate of polymeric micelles. Adv Drug Deliv Rev 2022; 188:114463. [PMID: 35905947 DOI: 10.1016/j.addr.2022.114463] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022]
Abstract
This review aims to provide a systemic analysis of the in vivo, as well as subcellular, fate of polymeric micelles (PMs), starting from the entry of PMs into the body. Few PMs are able to cross the biological barriers intact and reach the circulation. In the blood, PMs demonstrate fairly good stability mainly owing to formation of protein corona despite controversial results reported by different groups. Although the exterior hydrophilic shells render PMs "long-circulating", the biodistribution of PMs into the mononuclear phagocyte systems (MPS) is dominant as compared with non-MPS organs and tissues. Evidence emerges to support that the copolymer poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) is first broken down into pieces of PEG and PLA and then remnants to be eliminated from the body finally. At the cellular level, PMs tend to be internalized via endocytosis due to their particulate nature and disassembled and degraded within the cell. Recent findings on the effect of particle size, surface characteristics and shape are also reviewed. It is envisaged that unraveling the in vivo and subcellular fate sheds light on the performing mechanisms and gears up the clinical translation of PMs.
Collapse
|
19
|
Miedema IHC, Zwezerijnen GJC, Huisman MC, Doeleman E, Mathijssen RHJ, Lammers T, Hu Q, van Dongen GAMS, Rijcken CJF, Vugts DJ, Menke-van der Houven van Oordt CW. PET-CT Imaging of Polymeric Nanoparticle Tumor Accumulation in Patients. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201043. [PMID: 35427430 DOI: 10.1002/adma.202201043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Several FDA/EMA-approved nanomedicines have demonstrated improved pharmacokinetics and toxicity profiles compared to their conventional chemotherapeutic counterparts. The next step to increase therapeutic efficacy depends on tumor accumulation, which can be highly heterogeneous. A clinical tool for patient stratification is urgently awaited. Therefore, a docetaxel-entrapping polymeric nanoparticle (89 Zr-CPC634) is radiolabeled, and positron emission tomography/computed tomography (PET/CT) imaging is performed in seven patients with solid tumors with two different doses of CPC634: an on-treatment (containing 60 mg m-2 docetaxel) and a diagnostic (1-2 mg docetaxel) dose (NCT03712423). Pharmacokinetic half-life for 89 Zr-CPC634 is mean 97.0 ± 14.4 h on-treatment, and 62.4 ± 12.9 h for the diagnostic dose (p = 0.003). At these doses accumulation is observed in 46% and 41% of tumor lesions with a median accumulation in positive lesions 96 h post-injection of 4.94 and 4.45%IA kg-1 (p = 0.91), respectively. In conclusion, PET/CT imaging with a diagnostic dose of 89 Zr-CPC634 accurately reflects on-treatment tumor accumulation and thus opens the possibility for patient stratification in cancer nanomedicine with polymeric nanoparticles.
Collapse
Affiliation(s)
- Iris H C Miedema
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - Gerben J C Zwezerijnen
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - Marc C Huisman
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - Ellen Doeleman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - Ron H J Mathijssen
- Erasmus University Medical Center, Erasmus University, Erasmus MC Cancer Institute, Department of Medical Oncology, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH - Aachen University, Templergraben 55, 52062, Aachen, Germany
| | - Qizhi Hu
- Cristal Therapeutics, Oxfordlaan 55, Maastricht, 6229 EV, The Netherlands
| | - Guus A M S van Dongen
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | | | - Danielle J Vugts
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - C Willemien Menke-van der Houven van Oordt
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|
20
|
Varela-Moreira A, van Leur H, Krijgsman D, Ecker V, Braun M, Buchner M, H.A.M. Fens M, Hennink WE, Schiffelers RM. Utilizing In Vitro Drug Release Assays to Predict In Vivo Retention of Micelles. Int J Pharm 2022; 618:121638. [DOI: 10.1016/j.ijpharm.2022.121638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
21
|
Karataş D, Bahadori F, Tekin A, Ergin Kizilcay G, Celik MS. Enhancing the Kinetic Stability of Polymeric Nanomicelles (PLGA) Using Nano-Montmorillonite for Effective Targeting of Cancer Tumors. J Phys Chem B 2022; 126:463-479. [PMID: 35005971 DOI: 10.1021/acs.jpcb.1c07334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The toxic profile of chemical cross-linkers used in enhancing the stability of self-assembled nanomicelles made of amphiphilic polymeric materials hinders their use in clinical applications. This study was aimed to use the layered structure of Na-montmorillonite (MMT) as a stabilizer for nanomicelles made of poly(d,l-lactide-co-glycolide) (PLGA) amphiphilic polymer. The size of Na-MMT was reduced below 40 nm (nano-MMT) by processing in an attritor prior to its incorporation with PLGA. Hybrid PLGA nano-MMT (PM) nanoparticles (NPs) were prepared using dialysis nanoprecipitation. The size distribution was measured using dynamic light scattering (DLS). Loading 1250 μg of the model drug molecule curcumin to PM (PMC) resulted in obtaining 88 nm-sized particles, suitable for passive targeting of cancer tumors. The structure of nano-MMT and its position in PMC were investigated using FT-IR, differential scanning chalorimetry (DSC), XRF, XRD, ESEM, and EDAX assays, all of which showed the exfoliated structure of nano-MMT incorporated with both hydrophilic and hydrophobic blocks of PLGA. Curcumin was mutually loaded to PLGA and nano-MMT. This firm incorporation caused a serious extension in the release of curcumin from PMC compared to PLGA (PC). Fitting the release profile to different mathematical models showed the remarkable role of nano-MMT in surface modification of PLGA NPs. The ex vivo dynamic model showed the enhanced stability of PMC in simulated blood flow, while cytotoxicity assays showed that nano-MMT does not aggravate the good toxic profile of PLGA but improves the anticancer effect of payload. Nano-MMT could be used as an effective nontoxic stabilizer agent for self-assembled NPs.
Collapse
Affiliation(s)
- Deniz Karataş
- Mineral Processing Engineering Department, Istanbul Technical University, 34469 Maslak, Turkey
| | - Fatemeh Bahadori
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Bezmialem Vakif University, 34093 Fatih, Turkey
| | - Adem Tekin
- Informatics Institute, Istanbul Technical University, 34469 Maslak, Turkey
| | - Gamze Ergin Kizilcay
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Beyazit, Istanbul, Turkey
| | - Mehmet Sabri Celik
- Mineral Processing Engineering Department, Istanbul Technical University, 34469 Maslak, Turkey
| |
Collapse
|
22
|
Moulahoum H, Ghorbanizamani F, Bayir E, Timur S, Zihnioglu F. A polyplex human saliva peptide histatin 5-grafted methoxy PEG-b-polycaprolactone polymersome for intelligent stimuli-oriented doxorubicin delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Stouten J, Sijstermans N, Babilotte J, Pich A, Moroni L, Bernaerts KV. Micellar drug delivery vehicles formed from amphiphilic block copolymers bearing photo-cross-linkable cyclopentenone side groups. Polym Chem 2022. [DOI: 10.1039/d2py00631f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UV core cross-linkable amphiphilic block copolymers containing cyclopentenone side groups on the hydrophobic backbone were synthesized and drug delivery experiments were done with the cancer therapeutic drug Doxorubicin.
Collapse
Affiliation(s)
- Jules Stouten
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Nick Sijstermans
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- Zuyd University of Applied Science, Faculty of Beta Sciences and Technology, Nieuw Eyckholt 300, 6419 DJ, Heerlen, The Netherlands
| | - Joanna Babilotte
- Complex Tissue Regeneration department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Andrij Pich
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- DWI Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | - Lorenzo Moroni
- Complex Tissue Regeneration department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Katrien V. Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
24
|
Pereira P, Serra AC, Coelho JF. Vinyl Polymer-based technologies towards the efficient delivery of chemotherapeutic drugs. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
|
26
|
Cao XT, Vu-Quang H, Doan VD, Nguyen VC. One-step approach of dual-responsive prodrug nanogels via Diels-Alder reaction for drug delivery. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04789-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Abstract
Today, bio-medical efforts are entering the subcellular level, which is witnessed with the fast-developing fields of nanomedicine, nanodiagnostics and nanotherapy in conjunction with the implementation of nanoparticles for disease prevention, diagnosis, therapy and follow-up. Nanoparticles or nanocontainers offer advantages including high sensitivity, lower toxicity and improved safety—characteristics that are especially valued in the oncology field. Cancer cells develop and proliferate in complex microenvironments leading to heterogeneous diseases, often with a fatal outcome for the patient. Although antibody-based therapy is widely used in the clinical care of patients with solid tumours, its efficiency definitely needs improvement. Limitations of antibodies result mainly from their big size and poor penetration in solid tissues. Nanobodies are a novel and unique class of antigen-binding fragments, derived from naturally occurring heavy-chain-only antibodies present in the serum of camelids. Their superior properties such as small size, high stability, strong antigen-binding affinity, water solubility and natural origin make them suitable for development into next-generation biodrugs. Less than 30 years after the discovery of functional heavy-chain-only antibodies, the nanobody derivatives are already extensively used by the biotechnology research community. Moreover, a number of nanobodies are under clinical investigation for a wide spectrum of human diseases including inflammation, breast cancer, brain tumours, lung diseases and infectious diseases. Recently, caplacizumab, a bivalent nanobody, received approval from the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) for treatment of patients with thrombotic thrombocytopenic purpura.
Collapse
Affiliation(s)
- Ivana Jovčevska
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
28
|
Abstract
Polymeric micelles have gained interest as novel drug delivery systems for the treatment and diagnosis of cancer, as they offer several advantages over conventional drug therapies. This includes drug targeting to tumor tissue, in vivo biocompatibility and biodegradability, prolonged circulation time, enhanced accumulation, retention of the drug loaded micelle in the tumor and decreased side effects. This article provides an overview on the current state of micellar formulations as nanocarriers for anticancer drugs and their effectiveness in cancer therapeutics, including their clinical status. The type of copolymers used, their physicochemical properties and characterization as well as recent developments in the design of functional polymeric micelles are highlighted. The article also presents the design and outcomes of various types of stimuli-responsive polymeric micelles.
Collapse
|
29
|
Abstract
Polymeric micelles have gained interest as novel drug delivery systems for the treatment and diagnosis of cancer, as they offer several advantages over conventional drug therapies. This includes drug targeting to tumor tissue, in vivo biocompatibility and biodegradability, prolonged circulation time, enhanced accumulation, retention of the drug loaded micelle in the tumor and decreased side effects. This article provides an overview on the current state of micellar formulations as nanocarriers for anticancer drugs and their effectiveness in cancer therapeutics, including their clinical status. The type of copolymers used, their physicochemical properties and characterization as well as recent developments in the design of functional polymeric micelles are highlighted. The article also presents the design and outcomes of various types of stimuli-responsive polymeric micelles.
Collapse
|
30
|
Siboro SA, Salma SA, Kim HR, Jeong YT, Gal YS, Lim KT. Diselenide Core Cross-Linked Micelles of Poly(Ethylene Oxide)- b-Poly(Glycidyl Methacrylate) Prepared through Alkyne-Azide Click Chemistry as a Near-Infrared Controlled Drug Delivery System. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2846. [PMID: 32630421 PMCID: PMC7344481 DOI: 10.3390/ma13122846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022]
Abstract
In this article, a drug delivery system with a near-infrared (NIR) light-responsive feature was successfully prepared using a block copolymer poly(ethylene oxide)-b-poly(glycidyl methacrylate)-azide (PEO-b-PGMA-N3) and a cross-linker containing a Se-Se bond through "click" chemistry. Doxorubicin (DOX) was loaded into the core-cross-linked (CCL) micelles of the block copolymer along with indocyanine green (ICG) as a generator of reactive oxygen species (ROS). During NIR light exposure, ROS were generated by ICG and attacked the Se-Se bond of the cross-linker, leading to de-crosslinking of the CCL micelles. After NIR irradiation, the CCL micelles were continuously disrupted, which can be a good indication for effective drug release. Photothermal analysis showed that the temperature elevation during NIR exposure was negligible, thus safe for normal cells. In vitro drug release tests demonstrated that the drug release from diselenide CCL micelles could be controlled by NIR irradiation and affected by the acidity of the environment.
Collapse
Affiliation(s)
- Sonita A.P. Siboro
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (S.A.P.S.); (S.A.S.); (Y.T.J.)
| | - Sabrina Aufar Salma
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (S.A.P.S.); (S.A.S.); (Y.T.J.)
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea;
| | - Yeon Tae Jeong
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (S.A.P.S.); (S.A.S.); (Y.T.J.)
| | - Yeong-Soon Gal
- Department of Fire Safety, Kyungil University, Gyeongsan 34828, Korea;
| | - Kwon Taek Lim
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (S.A.P.S.); (S.A.S.); (Y.T.J.)
| |
Collapse
|
31
|
Sheybanifard M, Beztsinna N, Bagheri M, Buhl EM, Bresseleers J, Varela-Moreira A, Shi Y, van Nostrum CF, van der Pluijm G, Storm G, Hennink WE, Lammers T, Metselaar JM. Systematic evaluation of design features enables efficient selection of Π electron-stabilized polymeric micelles. Int J Pharm 2020; 584:119409. [PMID: 32389790 DOI: 10.1016/j.ijpharm.2020.119409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 11/26/2022]
Abstract
Polymeric micelles (PM) based on poly(ethylene glycol)-b-poly(N-2-benzoyloxypropyl methacrylamide) (mPEG-b-p(HPMA-Bz)) loaded with paclitaxel (PTX-PM) have shown promising results in overcoming the suboptimal efficacy/toxicity profile of paclitaxel. To get insight into the stability of PTX-PM formulations upon storage and to optimize their in vivo tumor-targeted drug delivery properties, we set out to identify a lead PTX-PM formulation with the optimal polymer composition. To this end, PM based on four different mPEG5k-b-p(HPMA-Bz) block copolymers with varying molecular weight of the hydrophobic block (17-3 kDa) were loaded with different amounts of PTX. The hydrodynamic diameter was 52 ± 1 nm for PM prepared using polymers with longer hydrophobic blocks (mPEG5k-b-p(HPMA-Bz)17k and mPEG5k-b-p(HPMA-Bz)10k) and 39 ± 1 nm for PM composed of polymers with shorter hydrophobic blocks (mPEG5k-b-p(HPMA-Bz)5k and mPEG5k-b-p(HPMA-Bz)3k). The best storage stability and the slowest PTX release was observed for PM with larger hydrophobic blocks. On the other hand, smaller sized PM of shorter mPEG5k-b-p(HPMA-Bz)5k showed a better tumor penetration in 3D spheroids. Considering better drug retention capacity of the mPEG5k-b-p(HPMA-Bz)17k and smaller size of the mPEG5k-b-p(HPMA-Bz)5k as two desirable design features, we argue that PM based on these two polymers are the lead candidates for further in vivo studies.
Collapse
Affiliation(s)
- Maryam Sheybanifard
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Nataliia Beztsinna
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3508 TB Utrecht, the Netherlands
| | - Mahsa Bagheri
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3508 TB Utrecht, the Netherlands
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH University Hospital, Aachen, Germany
| | - Jaleesa Bresseleers
- ChemConnection BV - Ardena Oss, 5349 AB Oss, the Netherlands; Department of Bio-Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Aida Varela-Moreira
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3508 TB Utrecht, the Netherlands; Laboratory of Clinical Chemistry and Hematology (LKCH), University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3508 TB Utrecht, the Netherlands
| | - Gabri van der Pluijm
- Leiden University Medical Center, Department of Urology, J-3-108, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3508 TB Utrecht, the Netherlands; Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3508 TB Utrecht, the Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3508 TB Utrecht, the Netherlands; Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
32
|
Shi H, van Steenbergen MJ, Lou B, Liu Y, Hennink WE, Kok RJ. Folate decorated polymeric micelles for targeted delivery of the kinase inhibitor dactolisib to cancer cells. Int J Pharm 2020; 582:119305. [PMID: 32278056 DOI: 10.1016/j.ijpharm.2020.119305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Abstract
One of the main challenges in clinical translation of polymeric micelles is retention of the drug in the nanocarrier system upon its systemic administration. Core crosslinking and coupling of the drug to the micellar backbone are common strategies to overcome these issues. In the present study, polymeric micelles were prepared for tumor cell targeting of the kinase inhibitor dactolisib which inhibits both the mammalian Target of Rapamycin (mTOR) kinase and phosphatidylinositol-3-kinase (PI3K). We employed platinum(II)-based linker chemistry to couple dactolisib to the core of poly(ethylene glycol)-b-poly(acrylic acid) (PEG-b-PAA) polymeric micelles. The formed dactolisib-PEG-PAA unimers are amphiphilic and self-assemble in an aqueous milieu into core-shell polymeric micelles. Folate was conjugated onto the surface of the micelles to yield folate-decorated polymeric micelles which can target folate receptor over-expressing tumor cells. Fluorescently labeled polymeric micelles were prepared using a lissamine-platinum complex linked in a similar manner as dactolisib. Dactolisib polymeric micelles showed good colloidal stability in water and released the coupled drug in buffers containing chloride or glutathione. Folate decorated micelles were avidly internalized by folate-receptor-positive KB cells and displayed targeted cellular cytotoxicity at 50-75 nM IC50. In conclusion, we have prepared a novel type of folate-receptor targeted polymeric micelles in which platinum(II) linker chemistry modulates drug retention and sustained release of the coupled inhibitor dactolisib.
Collapse
Affiliation(s)
- Haili Shi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Mies J van Steenbergen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Bo Lou
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Yanna Liu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Robbert J Kok
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands.
| |
Collapse
|
33
|
Kostka L, Kotrchová L, Šubr V, Libánská A, Ferreira CA, Malátová I, Lee HJ, Barnhart TE, Engle JW, Cai W, Šírová M, Etrych T. HPMA-based star polymer biomaterials with tuneable structure and biodegradability tailored for advanced drug delivery to solid tumours. Biomaterials 2020; 235:119728. [DOI: 10.1016/j.biomaterials.2019.119728] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/27/2019] [Accepted: 12/22/2019] [Indexed: 02/03/2023]
|
34
|
Bidram E, Esmaeili Y, Ranji-Burachaloo H, Al-Zaubai N, Zarrabi A, Stewart A, Dunstan DE. A concise review on cancer treatment methods and delivery systems. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101350] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Zhang Y, Miyamoto Y, Ihara S, Yang JZ, Zuill DE, Angsantikul P, Zhang Q, Gao W, Zhang L, Eckmann L. Composite thermoresponsive hydrogel with auranofin-loaded nanoparticles for topical treatment of vaginal trichomonad infection. ADVANCED THERAPEUTICS 2019; 2:1900157. [PMID: 32377561 PMCID: PMC7202563 DOI: 10.1002/adtp.201900157] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 12/17/2022]
Abstract
Trichomonas vaginalis is responsible for the most common non-viral sexually-transmitted disease worldwide. Standard treatment is with oral nitro-heterocyclic compounds, metronidazole or tinidazole, but resistance to these drugs is emerging and adverse effects can be problematic. Topical treatment offers potential benefits for increasing local drug concentrations and efficacy, while reducing systemic drug exposure, but no topical strategies are currently approved for trichomoniasis. The anti-rheumatic drug, auranofin (AF), was recently discovered to have significant trichomonacidal activity, but has a long plasma half-life and significant adverse effects. Here, we used this drug as a model to develop a novel topical formulation composed of AF-loaded nanoparticles (NP) embedded in a thermoresponsive hydrogel for intravaginal administration. The AF-NP composite gel showed sustained drug release for at least 12 h, and underwent sol-gel transition with increased viscoelasticity within a minute. Intravaginal administration in mice showed excellent NP retention for >6 h and markedly increased local AF levels, but reduced plasma and liver levels compared to oral treatment with a much higher dose. Furthermore, intravaginal AF-NP gel greatly outperformed oral AF in eliminating vaginal trichomonad infection in mice, while causing no systemic or local toxicity. These results show the potential of the AF-NP hydrogel formulation for effective topical therapy of vaginal infections.
Collapse
Affiliation(s)
- Yue Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Yukiko Miyamoto
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Sozaburo Ihara
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Justin Z Yang
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Douglas E Zuill
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Pavimol Angsantikul
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Qiangzhe Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Lars Eckmann
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
36
|
Wang Z, Ling L, Xia Q, Li X. Disulfide-crosslinked reduction-responsive Prodrug Micelles for On-demand Paclitaxel Release. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Dutta D, Ke W, Xi L, Yin W, Zhou M, Ge Z. Block copolymer prodrugs: Synthesis, self-assembly, and applications for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1585. [PMID: 31452353 DOI: 10.1002/wnan.1585] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 01/06/2023]
Abstract
Block copolymer prodrugs (BCPs) have emerged as one of the most promising anticancer drug delivery strategies, which can self-assemble into nanoparticles with optimal physicochemical properties including sizes, morphologies, surface properties, and integration of multifunction for improved in vivo applications. Moreover, the utility of stimuli-responsive linkages to conjugate drugs onto the polymer backbones can achieve efficient and targeting drug release. Several BCP micellar delivery systems have been pushed ahead into the clinical trials, which showed great promising potentials for cancer therapy. In recent years, various novel and more efficient BCP systems have been developed for better in vivo performance. In this focus article, we focus on the recent advances of BCPs including the synthesis, self-assembly, and applications for cancer therapy. The synthetic methods are first introduced, and the self-assembly of BCPs for in vivo anticancer applications is discussed along the line of varying endogenous stimuli-responsive linkages including amide or ester bonds, pH, reduction, and oxidation-responsive linkages. Finally, conclusions along with the brief future perspectives are presented. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Debabrata Dutta
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Wendong Ke
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Longchang Xi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Wei Yin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Min Zhou
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
38
|
Zhou X, Chen F, Lu H, Kong L, Zhang S, Zhang W, Nie J, Du B, Wang X. Ionic Microgel Loaded with Gold Nanoparticles for the Synergistic Dual-Drug Delivery of Doxorubicin and Diclofenac Sodium. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01904] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xianjing Zhou
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Feng Chen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haipeng Lu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lingli Kong
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Siyu Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | | | | - Xinping Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
39
|
Acetylated cashew gum-based nanoparticles for the incorporation of alkaloid epiisopiloturine. Int J Biol Macromol 2019; 128:965-972. [PMID: 30711562 DOI: 10.1016/j.ijbiomac.2019.01.206] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 12/12/2022]
Abstract
The natural alkaloid epiisopiloturine has recently become the focus of study for various medicinal properties, particularly for its anti-inflammatory and antischistosomal effect. The incorporation of active molecules in natural polymeric matrices has garnered increasing interest during recent decades. A new derivative of cashew gum successfully obtained by gum acetylation has shown great potential as a carrier in controlled drug release systems. In this work, epiisopiloturine was encapsulated in acetylated cashew gum nanoparticles in order to increase solubility and allow slow release, whereas the morphology results were supported by computer simulations. The particles were produced under a variety of conditions, and thoroughly characterized using light scattering and microscopic techniques. The particles were spherical and highly stable in solution, and showed drug incorporation at high levels, up to 55% efficiency. Using a dialysis-based in vitro assay, these particles were shown to release the drug via a Fickian diffusion mechanism, leading to gradual drug release over approximately 6 h. These nanoparticles show potential for the use as drug delivery system, while studies on their potential anti-inflammatory action, as well as toxicity and efficacy assays would need to be performed in the future to confirm their suitability as drug delivery candidates.
Collapse
|
40
|
Abumanhal-Masarweh H, Koren L, Zinger A, Yaari Z, Krinsky N, Kaneti G, Dahan N, Lupu-Haber Y, Suss-Toby E, Weiss-Messer E, Schlesinger-Laufer M, Shainsky-Roitman J, Schroeder A. Sodium bicarbonate nanoparticles modulate the tumor pH and enhance the cellular uptake of doxorubicin. J Control Release 2019; 296:1-13. [PMID: 30615983 DOI: 10.1016/j.jconrel.2019.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/22/2022]
Abstract
Acidic pH in the tumor microenvironment is associated with cancer metabolism and creates a physiological barrier that prevents from drugs to penetrate cells. Specifically, ionizable weak-base drugs, such as doxorubicin, freely permeate membranes in their uncharged form, however, in the acidic tumor microenvironment these drugs become charged and their cellular permeability is retarded. In this study, 100-nm liposomes loaded with sodium bicarbonate were used as adjuvants to elevate the tumor pH. Combined treatment of triple-negative breast cancer cells (4T1) with doxorubicin and sodium-bicarbonate enhanced drug uptake and increased its anti-cancer activity. In vivo, mice bearing orthotropic 4T1 breast cancer tumors were administered either liposomal or free bicarbonate intravenously. 3.7 ± 0.3% of the injected liposomal dose was detected in the tumor after twenty-four hours, compared to 0.17% ± 0.04% in the group injected free non-liposomal bicarbonate, a 21-fold increase. Analyzing nanoparticle biodistribution within the tumor tissue revealed that 93% of the PEGylated liposomes accumulated in the extracellular matrix, while 7% were detected intracellularly. Mice administered bicarbonate-loaded liposomes reached an intra-tumor pH value of 7.38 ± 0.04. Treating tumors with liposomal bicarbonate combined with a sub-therapeutic dose of doxorubicin achieved an improved therapeutic outcome, compared to mice treated with doxorubicin or bicarbonate alone. Interestingly, analysis of the tumor microenvironment demonstrated an increase in immune cell' population (T-cell, B-cell and macrophages) in tumors treated with liposomal bicarbonate. This study demonstrates that targeting metabolic adjuvants with nanoparticles to the tumor microenvironment can enhance anticancer drug activity and improve treatment.
Collapse
Affiliation(s)
- Hanan Abumanhal-Masarweh
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel; Russell Berrie Nanotechnology Institute, The Norman Seiden Multidisciplinary Graduate Program, Technion - Israel Institute of Technology, Haifa 3200, Israel
| | - Lilach Koren
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Assaf Zinger
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Zvi Yaari
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Nitzan Krinsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel; The Interdisciplinary Program for Biotechnology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Galoz Kaneti
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Nitsan Dahan
- Life Sciences and Engineering Infrastructure Center, Lorry I. Lokey Interdisciplinary Center, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Lupu-Haber
- Life Sciences and Engineering Infrastructure Center, Lorry I. Lokey Interdisciplinary Center, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Edith Suss-Toby
- Bioimging Center, Biomedical Core Facility, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Esther Weiss-Messer
- Bioimging Center, Biomedical Core Facility, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Michal Schlesinger-Laufer
- The Pre-Clinical Research Authority Unit, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Janna Shainsky-Roitman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
41
|
Oudin A, Chauvin J, Gibot L, Rols MP, Balor S, Goudounèche D, Payré B, Lonetti B, Vicendo P, Mingotaud AF, Lapinte V. Amphiphilic polymers based on polyoxazoline as relevant nanovectors for photodynamic therapy. J Mater Chem B 2019; 7:4973-4982. [DOI: 10.1039/c9tb00118b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Coumarin crosslinked polyoxazoline-based vectors developed for efficient photodynamic therapy.
Collapse
|
42
|
Liu Y, Chen F, Zhang K, Wang Q, Chen Y, Luo X. pH-Responsive reversibly cross-linked micelles by phenol–yne click via curcumin as a drug delivery system in cancer chemotherapy. J Mater Chem B 2019. [DOI: 10.1039/c9tb00305c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
pH-sensitive reversibly cross-linked micelles by phenol–yne click via curcumin (Cur) using mPEG-b-PHEMA-5HA are developed by combining drug loading and cross-linking as a drug delivery system.
Collapse
Affiliation(s)
- Yuancheng Liu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Fan Chen
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Kui Zhang
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Quan Wang
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Yuanwei Chen
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Xianglin Luo
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
- State Key Laboratory of Polymer Materials Engineering
| |
Collapse
|
43
|
Lipowska-Kur D, Szweda R, Trzebicka B, Dworak A. Preparation and characterization of doxorubicin nanocarriers based on thermoresponsive oligo(ethylene glycol) methyl ether methacrylate polymer-drug conjugates. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Ling L, Ismail M, Du Y, Xia Q, He W, Yao C, Li X. High Drug Loading, Reversible Disulfide Core-Cross-Linked Multifunctional Micelles for Triggered Release of Camptothecin. Mol Pharm 2018; 15:5479-5492. [DOI: 10.1021/acs.molpharmaceut.8b00585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Longbing Ling
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Muhammad Ismail
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Qing Xia
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Wei He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Chen Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
45
|
Chen Y, Sun J, Huang Y, Liu Y, Liang L, Yang D, Lu B, Li S. Targeted codelivery of doxorubicin and IL-36γ expression plasmid for an optimal chemo-gene combination therapy against cancer lung metastasis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 15:129-141. [PMID: 30308300 DOI: 10.1016/j.nano.2018.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
Cancer metastasis is the main cause for the high mortality in breast cancer patients. In this work we developed a polymer POEG-st-Pmor for targeted co-delivery of IL-36γ expression plasmid and doxorubicin (Dox) to lung metastasis of breast cancer. The polymer readily formed micelles that were effective in loading Dox and simultaneously forming complexes with IL-36γ plasmid. Interestingly, particles co-loaded with Dox and plasmid was significantly smaller and more stable than the particles loaded with Dox only. Gene transfection in both lungs and s.c. tumors was significantly higher with our polymer compared to PEI. In addition, the Dox + IL-36γ/POEG-st-Pmor not only could bring improved anti-metastatic effect but synergistically enhance the type I immune response by increasing the IFN-γ positive CD4+ and CD8+ T cells and simultaneously decreasing the immunosuppressive myeloid-derived suppressor cells in the lung. POEG-st-Pmor may represent a simple and effective delivery system for an optimal chemo-gene combination therapy.
Collapse
Affiliation(s)
- Yichao Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Lei Liang
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
46
|
Xu HL, Fan ZL, ZhuGe DL, Tong MQ, Shen BX, Lin MT, Zhu QY, Jin BH, Sohawon Y, Yao Q, Zhao YZ. Ratiometric delivery of two therapeutic candidates with inherently dissimilar physicochemical property through pH-sensitive core-shell nanoparticles targeting the heterogeneous tumor cells of glioma. Drug Deliv 2018; 25:1302-1318. [PMID: 29869524 PMCID: PMC6060705 DOI: 10.1080/10717544.2018.1474974] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Currently, combination drug therapy is one of the most effective approaches to glioma treatment. However, due to the inherent dissimilar pharmacokinetics of individual drugs and blood brain barriers, it was difficult for the concomitant drugs to simultaneously be delivered to glioma in an optimal dose ratio manner. Herein, a cationic micellar core (Cur-M) was first prepared from d-α-tocopherol-grafted-ε-polylysine polymer to encapsulate the hydrophobic curcumin, followed by dopamine-modified-poly-γ-glutamic acid polymer further deposited on its surface as a anion shell through pH-sensitive linkage to encapsulate the hydrophilic doxorubicin (DOX) hydrochloride. By controlling the combinational Cur/DOX molar ratio at 3:1, a pH-sensitive core-shell nanoparticle (PDCP-NP) was constructed to simultaneously target the cancer stem cells (CSCs) and the differentiated tumor cells. PDCP-NP exhibited a dynamic diameter of 160.8 nm and a zeta-potential of -30.5 mV, while its core-shell structure was further confirmed by XPS and TEM. The ratiometric delivery capability of PDCP-NP was confirmed by in vitro and in vivo studies, in comparison with the cocktail Cur/DOX solution. Meanwhile, the percentage of CSCs in tumors was significantly decreased from 4.16% to 0.95% after treatment with PDCP-NP. Overall, PDCP-NP may be a promising carrier for the combination therapy with drug candidates having dissimilar physicochemical properties.
Collapse
Affiliation(s)
- He-Lin Xu
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Zi-Liang Fan
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - De-Li ZhuGe
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Meng-Qi Tong
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Bi-Xin Shen
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Meng-Ting Lin
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Qun-Yan Zhu
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Bing-Hui Jin
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Yasin Sohawon
- b School of International Studies , Wenzhou Medical University , Wenzhou City , China.,c First Affiliated Hospital of Wenzhou Medical University , Wenzhou City , China
| | - Qing Yao
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Ying-Zheng Zhao
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| |
Collapse
|
47
|
Lu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. NANO RESEARCH 2018; 11:4985-4998. [PMID: 30370014 PMCID: PMC6201237 DOI: 10.1007/s12274-018-2152-3] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 05/22/2023]
Abstract
Micelles have been studied as drug delivery carriers for decades. Their use can potentially result in high drug accumulation at the target site through the enhanced permeability and retention effect. Nevertheless, the lack of stability of micelles in the physiological environment limits their efficacy as a drug carrier. In particular, micelles tend to disassociate and prematurely release the encapsulated drugs, lowering delivery efficacy and creating toxicity concerns. Many efforts to enhance the stability of micelles have focused mainly on decreasing the critical micelle forming concentration and improving blood circulation. Herein, we review different strategies including crosslinking and non-crosslinking approaches designed to stabilize micelles and offer perspectives on future research directions.
Collapse
Affiliation(s)
- Yang Lu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit 48202, MI, USA
| | - Ershuai Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit 48202, MI, USA
| | - Jianhai Yang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit 48202, MI, USA
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit 48202, MI, USA
| |
Collapse
|
48
|
Tao J, Dang M, Su X, Hao Q, Zhang J, Ma X, Lu G, Zhang Y, Tian Y, Weng L, Teng Z, Wang L. Facile synthesis of yolk–shell structured monodisperse mesoporous organosilica nanoparticles by a mild alkalescent etching approach. J Colloid Interface Sci 2018; 527:33-39. [DOI: 10.1016/j.jcis.2018.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 12/18/2022]
|
49
|
Nuhn L, Van Herck S, Best A, Deswarte K, Kokkinopoulou M, Lieberwirth I, Koynov K, Lambrecht BN, De Geest BG. FRET Monitoring of Intracellular Ketal Hydrolysis in Synthetic Nanoparticles. Angew Chem Int Ed Engl 2018; 57:10760-10764. [DOI: 10.1002/anie.201803847] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Lutz Nuhn
- Department of PharmaceuticsGhent University Belgium
- Max-Planck-Institute for Polymer Research Mainz Germany
| | | | - Andreas Best
- Max-Planck-Institute for Polymer Research Mainz Germany
| | - Kim Deswarte
- IRC-VIB, Zwijnaarde, and Department of Respiratory MedicineGhent University Belgium
| | | | | | | | - Bart N. Lambrecht
- IRC-VIB, Zwijnaarde, and Department of Respiratory MedicineGhent University Belgium
| | | |
Collapse
|
50
|
Nuhn L, Van Herck S, Best A, Deswarte K, Kokkinopoulou M, Lieberwirth I, Koynov K, Lambrecht BN, De Geest BG. Förster‐Resonanzenergietransfer‐basierter Nachweis intrazellulärer Ketal‐Hydrolyse in synthetisch vernetzten Nanopartikeln. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lutz Nuhn
- Faculteit Farmaceutische WetenschappenUniversiteit Gent Belgien
- Max-Planck-Institut für Polymerforschung Mainz Deutschland
| | - Simon Van Herck
- Faculteit Farmaceutische WetenschappenUniversiteit Gent Belgien
| | - Andreas Best
- Max-Planck-Institut für Polymerforschung Mainz Deutschland
| | - Kim Deswarte
- IRC-VIB, Zwijnaarde, und Faculteit Geneeskunde en, GezondheidswetenschappenUniversiteit Gent Belgien
| | | | | | - Kaloian Koynov
- Max-Planck-Institut für Polymerforschung Mainz Deutschland
| | - Bart N. Lambrecht
- IRC-VIB, Zwijnaarde, und Faculteit Geneeskunde en, GezondheidswetenschappenUniversiteit Gent Belgien
| | | |
Collapse
|