1
|
Giri P, Verma D. Dual crosslinked injectable protein-based hydrogels with cell anti-adhesive properties. Biomed Mater 2023; 18. [PMID: 36716499 DOI: 10.1088/1748-605x/acb74e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Currently, one of the most severe clinical concerns is post-surgical tissue adhesions. Using films or hydrogel to separate the injured tissue from surrounding tissues has proven the most effective method for minimizing adhesions. Therefore, by combining dual crosslinking with calcium ions (Ca2+) and tetrakis(hydroxymethyl) phosphonium chloride, we were able to create a novel, stable, robust, and injectable dual crosslinking hydrogel using albumin (BSA). This dual crosslinking has preserved the microstructure of the hydrogel network during the degradation process, which contributes to the hydrogel's mechanical strength and stability in a physiological situation. At 60% strain, compressive stress was 48.81 kPa obtained. It also demonstrated excellent self-healing characteristics (within 25 min), tissue adhesion, excellent cytocompatibility, and a quick gelling time of 27 ± 6 s. Based on these features, the dual crosslinked injectable hydrogels might find exciting applications in biomedicine, particularly for preventing post-surgical adhesions.
Collapse
Affiliation(s)
- Pijush Giri
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
2
|
Casella G, Carlotto S, Lanero F, Mozzon M, Sgarbossa P, Bertani R. Cyclo- and Polyphosphazenes for Biomedical Applications. Molecules 2022; 27:8117. [PMID: 36500209 PMCID: PMC9736570 DOI: 10.3390/molecules27238117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclic and polyphosphazenes are extremely interesting and versatile substrates characterized by the presence of -P=N- repeating units. The chlorine atoms on the P atoms in the starting materials can be easily substituted with a variety of organic substituents, thus giving rise to a huge number of new materials for industrial applications. Their properties can be designed considering the number of repetitive units and the nature of the substituent groups, opening up to a number of peculiar properties, including the ability to give rise to supramolecular arrangements. We focused our attention on the extensive scientific literature concerning their biomedical applications: as antimicrobial agents in drug delivery, as immunoadjuvants in tissue engineering, in innovative anticancer therapies, and treatments for cardiovascular diseases. The promising perspectives for their biomedical use rise from the opportunity to combine the benefits of the inorganic backbone and the wide variety of organic side groups that can lead to the formation of nanoparticles, polymersomes, or scaffolds for cell proliferation. In this review, some aspects of the preparation of phosphazene-based systems and their characterization, together with some of the most relevant chemical strategies to obtain biomaterials, have been described.
Collapse
Affiliation(s)
- Girolamo Casella
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 22, 90123 Palermo, Italy
| | - Silvia Carlotto
- Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (CNR), c/o Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Francesco Lanero
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mirto Mozzon
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Roberta Bertani
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
3
|
Overstreet DJ, Lee EJ, Pal A, Vernon BL. In situ crosslinking temperature-responsive hydrogels with improved delivery, swelling, and elasticity for endovascular embolization. J Biomed Mater Res B Appl Biomater 2022; 110:1911-1921. [PMID: 35262274 DOI: 10.1002/jbm.b.35048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 11/11/2022]
Abstract
Endovascular embolization of cerebral aneurysms is a common approach for reducing the risk of often-fatal hemorrhage. However, currently available materials used to occlude these aneurysms provide incomplete filling (coils) or require a complicated, time-consuming delivery procedure (solvent-exchange precipitating polymers). The objective of this work was to develop an easily deliverable in situ forming hydrogel that can occlude the entire volume of an aneurysm. The hydrogel is formed by mixing a solution of a temperature-responsive polymer containing pendent thiol groups (poly(NIPAAm-co-cysteamine) or poly(NIPAAm-co-cysteamine-co-JAAm)) with a solution of poly(ethylene glycol) diacrylate (PEGDA). Incorporation of hydrophilic grafts of polyetheramine acrylamide (JAAm) in the temperature-responsive polymer caused weaker physical crosslinking, facilitated faster and more complete chemical crosslinking, and increased gel swelling. One formulation (30 wt % PNCJ20 + PEGDA) could be delivered for over 220 s after mixing, formed a strong and elastic hydrogel (G' > 6000 Pa) within 30 min and once set, maintained its shape and volume in a model aneurysm under flow. This gel represents a promising candidate water-based material utilizing both physical and chemical crosslinking that warrants further investigation as an embolic agent for saccular aneurysms.
Collapse
Affiliation(s)
- Derek J Overstreet
- School of Biological and Health Systems Engineering, Center for Interventional Biomaterials, Arizona State University, Tempe, Arizona, USA
| | - Elizabeth J Lee
- School of Biological and Health Systems Engineering, Center for Interventional Biomaterials, Arizona State University, Tempe, Arizona, USA
| | - Amrita Pal
- School of Biological and Health Systems Engineering, Center for Interventional Biomaterials, Arizona State University, Tempe, Arizona, USA
| | - Brent L Vernon
- School of Biological and Health Systems Engineering, Center for Interventional Biomaterials, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
4
|
Rodin M, Li J, Kuckling D. Dually cross-linked single networks: structures and applications. Chem Soc Rev 2021; 50:8147-8177. [PMID: 34059857 DOI: 10.1039/d0cs01585g] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cross-linked polymers have attracted an immense attention over the years, however, there are many flaws of these systems, e.g. softness and brittleness; such materials possess non-adjustable properties and cannot recover from damage and thus are limited in their practical applications. Supramolecular chemistry offers a variety of dynamic interactions that when integrated into polymeric gels endow the systems with reversibility and responsiveness to external stimuli. A combination of different cross-links in a single gel could be the key to tackle these drawbacks, since covalent or chemical cross-linking serve to maintain the permanent shape of the material and to improve overall mechanical performance, whereas non-covalent cross-links impart dynamicity, reversibility, stimuli-responsiveness and often toughness to the material. In the present review we sought to give a comprehensive overview of the progress in design strategies of different types of dually cross-linked single gels made by researchers over the past decade as well as the successful implementations of these advances in many demanding fields where versatile multifunctional materials are required, such as tissue engineering, drug delivery, self-healing and adhesive systems, sensors as well as shape memory materials and actuators.
Collapse
Affiliation(s)
- Maksim Rodin
- Department of Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
| | | | | |
Collapse
|
5
|
Chu W, Nie M, Ke X, Luo J, Li J. Recent Advances in Injectable Dual Crosslinking Hydrogels for Biomedical Applications. Macromol Biosci 2021; 21:e2100109. [PMID: 33908175 DOI: 10.1002/mabi.202100109] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/05/2021] [Indexed: 02/05/2023]
Abstract
Injectable dual crosslinking hydrogels hold great promise to improve therapeutic efficacy in minimally invasive surgery. Compared with prefabricated hydrogels, injectable hydrogels can be implanted more accurately into deeply enclosed sites and repair irregularly shaped lesions, showing great applicable potential. Here, the current fabrication considerations of injectable dual crosslinking hydrogels are reviewed. Besides, the progress of the hydrogels used in corresponding applications and emerging challenges are discussed, with detailed emphasis in the fields of bone and cartilage regeneration, wound dressings, sensors and other less mentioned applications for their more hopeful employments in clinic. It is envisioned that the further development of the injectable dual crosslinking hydrogels will catalyze their innovation and transformation in the biomedical field.
Collapse
Affiliation(s)
- Wenlin Chu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingxi Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
6
|
Ni Z, Yu H, Wang L, Shen D, Elshaarani T, Fahad S, Khan A, Haq F, Teng L. Recent research progress on polyphosphazene-based drug delivery systems. J Mater Chem B 2021; 8:1555-1575. [PMID: 32025683 DOI: 10.1039/c9tb02517k] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent years, synthetic polymer materials have become a research hotspot in the field of drug delivery. Compared with natural polymer materials, synthetic polymer materials have more flexible structural adjustability, and can be designed to obtain clinically required delivery vehicles. Polyphosphazenes are one of the most promising biomedical materials in the future due to their controllable degradation properties and structural flexibility. These materials can be designed by controlling the hydrophilic and hydrophobic balance, introducing functional groups or drugs to form different forms of administration, such as nanoparticles, polyphosphazene-drug conjugates, injectable hydrogels, coatings, etc. In addition, the flexible backbone of polyphosphazenes and the flexibility of substitution enable them to meet researchers' design requirements in terms of stereochemistry, nanostructures, and topologies. At present, researchers have achieved a lot of successful practices in the field of targeted delivery of anticancer drugs/proteins/genes, bone tissue engineering repair, cell imaging tracking, photothermal therapy, and immunologic preparations. This review provides a summary of the progress of the recent 10 years of polyphosphazene-based drug delivery systems in terms of of chemical structure and functions.
Collapse
Affiliation(s)
- Zhipeng Ni
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Tarig Elshaarani
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Shah Fahad
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Amin Khan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Lison Teng
- Biological Surgery and Cancer Center, The First Affiliated Hospital, Zhejiang University, 310003, P. R. China
| |
Collapse
|
7
|
Hsu W, Csaba N, Alexander C, Garcia‐Fuentes M. Polyphosphazenes for the delivery of biopharmaceuticals. J Appl Polym Sci 2020. [DOI: 10.1002/app.48688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei‐Hsin Hsu
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS)Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Division of Molecular Therapeutics and Formulation School of PharmacyUniversity of Nottingham UK
| | - Noemi Csaba
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS)Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation School of PharmacyUniversity of Nottingham UK
| | - Marcos Garcia‐Fuentes
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS)Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
8
|
Strasser P, Teasdale I. Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications. Molecules 2020; 25:E1716. [PMID: 32276516 PMCID: PMC7181247 DOI: 10.3390/molecules25071716] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Polymers in which phosphorus is an integral part of the main chain, including polyphosphazenes and polyphosphoesters, have been widely investigated in recent years for their potential in a number of therapeutic applications. Phosphorus, as the central feature of these polymers, endears the chemical functionalization, and in some cases (bio)degradability, to facilitate their use in such therapeutic formulations. Recent advances in the synthetic polymer chemistry have allowed for controlled synthesis methods in order to prepare the complex macromolecular structures required, alongside the control and reproducibility desired for such medical applications. While the main polymer families described herein, polyphosphazenes and polyphosphoesters and their analogues, as well as phosphorus-based dendrimers, have hitherto predominantly been investigated in isolation from one another, this review aims to highlight and bring together some of this research. In doing so, the focus is placed on the essential, and often mutual, design features and structure-property relationships that allow the preparation of such functional materials. The first part of the review details the relevant features of phosphorus-containing polymers in respect to their use in therapeutic applications, while the second part highlights some recent and innovative applications, offering insights into the most state-of-the-art research on phosphorus-based polymers in a therapeutic context.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| |
Collapse
|
9
|
Grinberg VY, Burova TV, Grinberg NV, Papkov VS, Khokhlov AR. Binding Energetics of Charged Amphiphilic Ligands to Thermoresponsive Biodegradable Poly(methoxyethylaminophosphazene) Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16915-16924. [PMID: 31763846 DOI: 10.1021/acs.langmuir.9b03204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Changes in the affinity of the swollen and collapsed forms of a thermoresponsive polymer gel for targeted ligands can be directly estimated using a thermodynamic approach based on high-sensitivity differential scanning calorimetry (HS-DSC). For macromolecular ligands (proteins) bound to the gel, this method provides information on changes in their conformational stability, which is of crucial importance for the biological or pharmaceutical activity of the protein. We used HS-DSC for the study of interactions of two widely administrated drugs-gemfibrozil and ibuprofen-and two globular proteins-α-lactalbumin and BSA-with hydrogels of the cross-linked poly(methoxyethylaminophosphazene). The gel collapse resulted in a substantial increase in the gel affinity for the drugs. We obtained quantitative estimations of the affinity of the collapsed gels depending on the gel structure, pH, concentration of NaCl, and phosphate buffer (an inductor of the thermoresponsivity). The gels retained a high affinity for the drugs in the near-physiological conditions (ionic composition and pH). The binding curves of globular proteins to the gels in the swollen and collapsed states were obtained. The different proteins demonstrated the preferential binding to the swollen or collapsed state of the gels, presumably depending on the protein surface hydrophobicity. The proteins bound to the gel subchains retain their native tertiary structure and, therefore, maintain their functionality when immobilized in the polyphosphazene hydrogels.
Collapse
Affiliation(s)
- Valerij Y Grinberg
- N.M. Emanuel Institute of Biochemical Physics , Russian Academy of Sciences , Kosygin St. 4 , Moscow 119991 , Russian Federation
- A.N. Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilov St. 28 , Moscow 119991 , Russian Federation
| | - Tatiana V Burova
- A.N. Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilov St. 28 , Moscow 119991 , Russian Federation
| | - Natalia V Grinberg
- A.N. Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilov St. 28 , Moscow 119991 , Russian Federation
| | - Vladimir S Papkov
- A.N. Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilov St. 28 , Moscow 119991 , Russian Federation
| | - Alexei R Khokhlov
- Physics Department , M.V. Lomonosov Moscow State University , Vorobyevy Gory , Moscow 119334 , Russian Federation
| |
Collapse
|
10
|
Oh HM, Kang E, Li Z, Cho IS, Kim DE, Mallick S, Kang SW, Roh KH, Huh KM. Preparation and characterization of an in situ crosslinkable glycol chitosan thermogel for biomedical applications. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Zhang Y, Li X, Zhong N, Huang Y, He K, Ye X. Injectable in situ dual-crosslinking hyaluronic acid and sodium alginate based hydrogels for drug release. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:995-1007. [PMID: 31084413 DOI: 10.1080/09205063.2019.1618546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A series of injectable in situ dual-crosslinking hydrogels (HA/ALG) based on oxidized sodium alginate (oxi-ALG) and hyaluronic acid modified with thiol and hydrazide (HA-SH/CDH) were prepared via hydrazone bonds and disulfide bonds. The chemical structures, morphologies, rheological properties, gelling time, swelling ratio, degradation rate and drug release behavior of hydrogels were investigated. HA/ALG hydrogels exhibited tunable gelling time, rheological properties, swelling ratio and degradation rate with varying precursor concentrations. The gelling time of HA/ALG hydrogels ranged from 157 s to 955 s, the values of yield stress of HA2/ALG2, HA3/ALG3 and HA4/ALG4 hydrogels were 1724, 4349 and 5306 Pa, and the degradation percentage of HA2/ALG2, HA3/ALG3 and HA4/ALG4 hydrogels were about 64%, 51% and 42% after incubating 35 days, respectively. Bovine serum albumin (BSA) was used as a model drug to investigate the drug controlled release properties, and the in vitro cumulative release percentage of BSA from HA2/ALG2, HA3/ALG3 and HA4/ALG4 drug-loaded hydrogels were about 79%, 72% and 69% after 20 days. The series of injectable in situ dual-crosslinking HA/ALG hydrogels could be an attractive candidate for drug delivery system, tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yufan Zhang
- a School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang , P. R. China
| | - Xian Li
- a School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang , P. R. China
| | - Nan Zhong
- a School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang , P. R. China
| | - Yuanlin Huang
- a School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang , P. R. China
| | - Kewen He
- a School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang , P. R. China
| | - Xu Ye
- a School of Materials Science and Engineering , Southwest University of Science and Technology , Mianyang , P. R. China
| |
Collapse
|
12
|
Lin HR, Chen YT, Wu YC, Lin YJ. Glycol chitin/PAA hydrogel composite incorporated bio-functionalized PLGA microspheres intended for sustained release of anticancer drug through intratumoral injection. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1839-1858. [DOI: 10.1080/09205063.2018.1510069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hong-Ru Lin
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Yan-Ting Chen
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Yu-Chun Wu
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Yiu-Jiuan Lin
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| |
Collapse
|
13
|
|
14
|
Khan RU, Wang L, Yu H, Zain-ul-Abdin, Akram M, Wu J, Haroon M, Ullah RS, Deng Z, Xia X. Recent progress in the synthesis of poly(organo)phosphazenes and their applications in tissue engineering and drug delivery. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Grinberg VY, Burova TV, Grinberg NV, Papkov VS, Dubovik AS, Khokhlov AR. Salt-Induced Thermoresponsivity of Cross-Linked Polymethoxyethylaminophosphazene Hydrogels: Energetics of the Volume Phase Transition. J Phys Chem B 2018; 122:1981-1991. [DOI: 10.1021/acs.jpcb.7b11288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Valerij Y. Grinberg
- N.M.
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119334 Moscow, Russian Federation
| | - Tatiana V. Burova
- A.N.
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St. 28, 119991 Moscow, Russian Federation
| | - Natalia V. Grinberg
- A.N.
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St. 28, 119991 Moscow, Russian Federation
| | - Vladimir S. Papkov
- A.N.
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St. 28, 119991 Moscow, Russian Federation
| | - Alexander S. Dubovik
- N.M.
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119334 Moscow, Russian Federation
| | - Alexei R. Khokhlov
- M.V. Lomonosov Moscow State University, Physics
Department, Vorobyevy
Gory, 119992 Moscow, Russian Federation
| |
Collapse
|
16
|
Ullah RS, Wang L, Yu H, Abbasi NM, Akram M, -ul-Abdin Z, Saleem M, Haroon M, Khan RU. Synthesis of polyphosphazenes with different side groups and various tactics for drug delivery. RSC Adv 2017. [DOI: 10.1039/c6ra27103k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polyphosphazenes (PPZs) are hybrid polymers comprising a main chain containing nitrogen and phosphorous linked through interchanging single and double bonds, and side chains.
Collapse
Affiliation(s)
- Raja Summe Ullah
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Li Wang
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Nasir M. Abbasi
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Muhammad Akram
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zain -ul-Abdin
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Muhammad Saleem
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Muhammad Haroon
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Rizwan Ullah Khan
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
17
|
Eslahi N, Abdorahim M, Simchi A. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions. Biomacromolecules 2016; 17:3441-3463. [PMID: 27775329 DOI: 10.1021/acs.biomac.6b01235] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stimuli responsive hydrogels (SRHs) are attractive bioscaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics. Nanostructured SRHs with more structural similarity to natural ECM up-regulate cell-material interactions for faster tissue repair and more controlled stimuli-response to environmental changes. This review highlights most recent advances in the development of nanostructured or smart hydrogels for cartilage tissue engineering. Different types of stimuli-responsive hydrogels are introduced and their fabrication processes through physicochemical procedures are reported. The applications and characteristics of natural and synthetic polymers used in SRHs are also reviewed with an outline on clinical considerations and challenges.
Collapse
Affiliation(s)
- Niloofar Eslahi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University , P.O. Box 14515/775, Tehran, Iran
| | | | | |
Collapse
|
18
|
Cho IS, Cho MO, Li Z, Nurunnabi M, Park SY, Kang SW, Huh KM. Synthesis and characterization of a new photo-crosslinkable glycol chitosan thermogel for biomedical applications. Carbohydr Polym 2016; 144:59-67. [DOI: 10.1016/j.carbpol.2016.02.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 01/15/2023]
|
19
|
Stem cells and injectable hydrogels: Synergistic therapeutics in myocardial repair. Biotechnol Adv 2016; 34:362-379. [PMID: 26976812 DOI: 10.1016/j.biotechadv.2016.03.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/27/2016] [Accepted: 03/07/2016] [Indexed: 02/08/2023]
Abstract
One of the major problems in the treatment of cardiovascular diseases is the inability of myocardium to self-regenerate. Current therapies are unable to restore the heart's function after myocardial infarction. Myocardial tissue engineering is potentially a key approach to regenerate damaged heart muscle. Myocardial patches are applied surgically, whereas injectable hydrogels provide effective minimally invasive approaches to recover functional myocardium. These hydrogels are easily administered and can be either cell free or loaded with bioactive agents and/or cardiac stem cells, which may apply paracrine effects. The aim of this review is to investigate the advantages and disadvantages of injectable stem cell-laden hydrogels and highlight their potential applications for myocardium repair.
Collapse
|
20
|
Hacker MC, Nawaz HA. Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine. Int J Mol Sci 2015; 16:27677-706. [PMID: 26610468 PMCID: PMC4661914 DOI: 10.3390/ijms161126056] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 10/31/2015] [Accepted: 11/04/2015] [Indexed: 01/09/2023] Open
Abstract
Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications.
Collapse
Affiliation(s)
- Michael C Hacker
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15a, D-04317 Leipzig, Germany.
| | - Hafiz Awais Nawaz
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, Eilenburger Str. 15a, D-04317 Leipzig, Germany.
| |
Collapse
|
21
|
Nguyen QV, Huynh DP, Park JH, Lee DS. Injectable polymeric hydrogels for the delivery of therapeutic agents: A review. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.03.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
22
|
Kim DY, Kwon DY, Kwon JS, Kim JH, Min BH, Kim MS. Stimuli-Responsive InjectableIn situ-Forming Hydrogels for Regenerative Medicines. POLYM REV 2015. [DOI: 10.1080/15583724.2014.983244] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Ishii S, Kaneko J, Nagasaki Y. Dual Stimuli-Responsive Redox-Active Injectable Gel by Polyion Complex Based Flower Micelles for Biomedical Applications. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00305] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shiro Ishii
- Department
of Materials Science, Graduate School of Pure and Applied
Sciences, ‡Master’s School of Medical Sciences, Graduate School of Comprehensive
Human Sciences, and §Satellite Laboratory, International Center for Materials Nanoarchitectonics
(WPI-MANA), National Institute for Materials Science (NIMS), University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Japan
| | - Junya Kaneko
- Department
of Materials Science, Graduate School of Pure and Applied
Sciences, ‡Master’s School of Medical Sciences, Graduate School of Comprehensive
Human Sciences, and §Satellite Laboratory, International Center for Materials Nanoarchitectonics
(WPI-MANA), National Institute for Materials Science (NIMS), University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Japan
| | - Yukio Nagasaki
- Department
of Materials Science, Graduate School of Pure and Applied
Sciences, ‡Master’s School of Medical Sciences, Graduate School of Comprehensive
Human Sciences, and §Satellite Laboratory, International Center for Materials Nanoarchitectonics
(WPI-MANA), National Institute for Materials Science (NIMS), University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Japan
| |
Collapse
|
24
|
Chen S, Lu X, Huang Z, Lu Q. In situ growth of a polyphosphazene nanoparticle coating on a honeycomb surface: facile formation of hierarchical structures for bioapplication. Chem Commun (Camb) 2015; 51:5698-701. [DOI: 10.1039/c4cc10379c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclomatrix polyphosphazene nanoparticles are selectively grownin situon a honeycomb surface for the preparation of a hierarchical cell scaffold.
Collapse
Affiliation(s)
- Shuangshuang Chen
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
| | - Xuemin Lu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
| | - Zhangjun Huang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
| | - Qinghua Lu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
| |
Collapse
|
25
|
Kang H, Li M, Tang Z, Xue J, Hu X, Zhang L, Guo B. Synthesis and characterization of biobased isosorbide-containing copolyesters as shape memory polymers for biomedical applications. J Mater Chem B 2014; 2:7877-7886. [PMID: 32262077 DOI: 10.1039/c4tb01304b] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel biobased isosorbide-containing copolyesters (PBISI copolyesters) with both biocompatibility and sustainability were synthesized by using commercially available biobased diols and diacids. Due to the presence of itaconate in copolyesters, it can be readily crosslinked by peroxide into a crystallizable network. The structure and thermal properties of PBISI copolyesters were determined by 1H NMR, FTIR, DSC, and WAXD. The chain composition, melting point and crystallinity of the PBISI copolyesters can be tuned continuously by changing the content of isosorbide. The crosslinked copolyester is demonstrated to be a promising shape memory polymer (SMP) with excellent shape memory properties including shape fixity and shape recovery rate close to 100%. The switching temperatures of PBISI-based SMPs can be tuned between 26 °C and 54 °C by altering the composition of PBISI copolyesters and curing extent. Cell adhesion and proliferation were adopted to evaluate the potential biocompatibility of PBISI-based SMPs, and the results indicated that all the PBISI-based SMPs were essentially noncytotoxic, making them suitable for fabricating biomedical devices.
Collapse
Affiliation(s)
- Hailan Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Omobono MA, Zhao X, Furlong MA, Kwon CH, Gill TJ, Randolph MA, Redmond RW. Enhancing the stiffness of collagen hydrogels for delivery of encapsulated chondrocytes to articular lesions for cartilage regeneration. J Biomed Mater Res A 2014; 103:1332-8. [PMID: 25044419 DOI: 10.1002/jbm.a.35266] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/02/2014] [Accepted: 06/24/2014] [Indexed: 11/08/2022]
Abstract
This study investigated a dual crosslinking paradigm, consisting of (a) photocrosslinking with Rose Bengal (RB) and green light followed by (b) chemical crosslinking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), and N-hydroxysuccinimide (NHS) to enhance collagen gel stiffness. In group 1, 50 μL collagen constructs of 2% (w/v) type I collagen containing 10 μM RB were allowed to gel spontaneously at 37 °C. In group 2, the spontaneous gels were exposed to green light (532 nm). In group 3, the photochemically crosslinked gels were subsequently treated with a 1-h exposure to 33 mM EDC/6 mM NHS. Samples (n = 18) were subjected to 0.08% (w/v) collagenase digestion, and the storage modulus of samples was measured by rheometry. Viability of encapsulated chondrocytes was measured by live/dead assay. Chondrocytes were ≥ 95% viable in all constructs at 10 days in vitro. Resistance to collagenase digestion increased as; spontaneous gels (2 h) < photochemical gels (3-4 h) < dual crosslinked gels (>24 h). The storage modulus of dual-crosslinked constructs was increased 5-fold over both photocrosslinked and spontaneous gels. As the dual crosslinking paradigm did not reduce encapsulated chondrocyte viability, these crosslinked collagen hydrogels could be a useful tool for the practical delivery of encapsulated chondrocytes to articular defects.
Collapse
Affiliation(s)
- Mark A Omobono
- Department of Surgery, Plastic Surgery Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, 02114; Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, 02114
| | | | | | | | | | | | | |
Collapse
|
27
|
Lai MC, Chang KC, Hsu SC, Chou MC, Hung WI, Hsiao YR, Lee HM, Hsieh MF, Yeh JM. In situ gelation of PEG-PLGA-PEG hydrogels containing high loading of hydroxyapatite: in vitro and in vivo characteristics. Biomed Mater 2014; 9:015011. [PMID: 24457223 DOI: 10.1088/1748-6041/9/1/015011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thermosensitive hydrogels are renowned carriers that are used to deliver a variety of drugs with the aim of combating diseases. In this study, the injectability of thermosensitive hydrogels comprised of poly(ethylene glycol)-poly(lactic acid-co-glycolic acid)-poly(ethylene glycol) (PEG-PLGA-PEG, PELGE) and hydroxyapatite (HA) were examined for their ability to deliver bone morphological protein 2 (BMP-2). The physicochemical characteristics of PELGE, HA, and PELGE/HA hydrogel composites were investigated by (1)H NMR, GPC, FTIR, XRD, SEM, and TEM. The rheological properties, injectability, in vitro degradation, and in vivo biocompatibility were investigated. The hydrogel with a weight ratio of 4:6 of polymer to HA was found to be resistant to auto-catalyzed degradation of acidic monomers (LA, GA) for a period of 70 days owing to the presence of alkaline HA. Injectability was quantitatively determined by the ejected weight of the hydrogel composite at room temperature and was a close match to the weight amount predetermined by the syringe pump. The results not only revealed that the PELGE/HA hydrogel composite presented a minor tissue response in the subcutis of ICR mice at eight weeks, but they also indicated an acceptable tolerance of the hydrogel composite in animals. Thus, PELGE/HA hydrogel composite is expected to be a promising injectable orthopedic substitute because of its desirable thermosensitivity and injectability.
Collapse
Affiliation(s)
- Mei-Chun Lai
- Department of Chemistry, Center for Nanotechnology and Center for Biomedical Technology at Chung-Yuan Christian University, Chung Li, Taiwan 32023, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kharkar PM, Kiick KL, Kloxin AM. Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem Soc Rev 2013; 42:7335-72. [PMID: 23609001 PMCID: PMC3762890 DOI: 10.1039/c3cs60040h] [Citation(s) in RCA: 476] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Indexed: 12/12/2022]
Abstract
Degradable and cell-compatible hydrogels can be designed to mimic the physical and biochemical characteristics of native extracellular matrices and provide tunability of degradation rates and related properties under physiological conditions. Hence, such hydrogels are finding widespread application in many bioengineering fields, including controlled bioactive molecule delivery, cell encapsulation for controlled three-dimensional culture, and tissue engineering. Cellular processes, such as adhesion, proliferation, spreading, migration, and differentiation, can be controlled within degradable, cell-compatible hydrogels with temporal tuning of biochemical or biophysical cues, such as growth factor presentation or hydrogel stiffness. However, thoughtful selection of hydrogel base materials, formation chemistries, and degradable moieties is necessary to achieve the appropriate level of property control and desired cellular response. In this review, hydrogel design considerations and materials for hydrogel preparation, ranging from natural polymers to synthetic polymers, are overviewed. Recent advances in chemical and physical methods to crosslink hydrogels are highlighted, as well as recent developments in controlling hydrogel degradation rates and modes of degradation. Special attention is given to spatial or temporal presentation of various biochemical and biophysical cues to modulate cell response in static (i.e., non-degradable) or dynamic (i.e., degradable) microenvironments. This review provides insight into the design of new cell-compatible, degradable hydrogels to understand and modulate cellular processes for various biomedical applications.
Collapse
Affiliation(s)
- Prathamesh M. Kharkar
- Department of Materials Science and Engineering , University of Delaware , Newark , DE 19716 , USA . ;
| | - Kristi L. Kiick
- Department of Materials Science and Engineering , University of Delaware , Newark , DE 19716 , USA . ;
- Biomedical Engineering , University of Delaware , Newark , DE 19716 , USA
- Delaware Biotechnology Institute , University of Delaware , Newark , DE 19716 , USA
| | - April M. Kloxin
- Department of Materials Science and Engineering , University of Delaware , Newark , DE 19716 , USA . ;
- Department of Chemical and Biomolecular Engineering , University of Delaware , Newark , DE 19716 , USA
| |
Collapse
|
29
|
Park SJ, Li Z, Hwang IN, Huh KM, Min KS. Glycol chitin-based thermoresponsive hydrogel scaffold supplemented with enamel matrix derivative promotes odontogenic differentiation of human dental pulp cells. J Endod 2013; 39:1001-7. [PMID: 23880267 DOI: 10.1016/j.joen.2013.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/18/2013] [Accepted: 04/03/2013] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Hydrogels have been widely studied as tissue engineering scaffolds over the past 2 decades because of their favorable biological properties. Recently, a new biodegradable glycol chitin-based thermoresponsive hydrogel scaffold (GC-TRS) was developed that can be easily applied as a mild viscous solution at room temperature but quickly transforms into a durable hydrogel under physiological conditions. The aim of this study was to investigate the effects of GC-TRS on the proliferation and odontogenic differentiation of colony-forming human dental pulp cells (hDPCs) in the presence of enamel matrix derivative. METHODS Glycol chitin was synthesized by N-acetylation of glycol chitosan. The morphology of the thermoresponsive hydrogel scaffold was observed by using scanning electron microscopy. The sol gel phase transition of the aqueous solution of glycol chitin was investigated by using the tilting method and rheometer studies. hDPCs were isolated based on their ability to generate clonogenic adherent cell clusters. The effect of GC-TRS and collagen on cell viability was examined by performing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Expression of markers for odontogenic/osteogenic differentiation (ie, dentin sialophosphoprotein, dentin matrix protein-1, osteonectin, and osteopontin) was analyzed by performing real-time polymerase chain reaction. RESULTS GC-TRS exhibited a highly macroporous and well-interconnected porous structure. The polymer solution existed in a mildly viscous sol state, but it transitioned to a gel state and did not flow above approximately 37°C. Rheometer studies showed that the glycol chitin solution exhibited a fast sol gel transition approximately at body temperature. GC-TRS and collagen did not inhibit cell viability until 7 days. Dentin sialophosphoprotein and dentin matrix protein-1 were expressed by cells cultured in GC-TRS at a higher level than that in cells cultured in collagen (P < .05). In both the scaffold groups, dentin sialophosphoprotein, dentin matrix protein-1, and osteopontin messenger RNA was up-regulated significantly in EMD-treated hDPCs when compared with the nontreated cells (P < .05). CONCLUSIONS GC-TRS allowed the proliferation and odontogenic differentiation of hDPCs. Furthermore, the differentiation was facilitated by EMD. These results suggest that GC-TRS has the potential to be used in tissue engineering techniques for dentin regeneration.
Collapse
Affiliation(s)
- Su-Jung Park
- Department of Conservative Dentistry, Wonkwang University School of Dentistry, Iksan, Korea
| | | | | | | | | |
Collapse
|
30
|
Page JM, Harmata AJ, Guelcher SA. Design and development of reactive injectable and settable polymeric biomaterials. J Biomed Mater Res A 2013; 101:3630-45. [DOI: 10.1002/jbm.a.34665] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/05/2013] [Accepted: 02/14/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Jonathan M. Page
- Department of Chemical and Biomolecular Engineering; Vanderbilt University; Nashville Tennessee
- Center for Bone Biology; Department of Medicine; Vanderbilt University Medical Center; Nashville Tennessee
| | - Andrew J. Harmata
- Department of Chemical and Biomolecular Engineering; Vanderbilt University; Nashville Tennessee
- Center for Bone Biology; Department of Medicine; Vanderbilt University Medical Center; Nashville Tennessee
| | - Scott A. Guelcher
- Department of Chemical and Biomolecular Engineering; Vanderbilt University; Nashville Tennessee
- Center for Bone Biology; Department of Medicine; Vanderbilt University Medical Center; Nashville Tennessee
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee
| |
Collapse
|
31
|
|
32
|
Li Z, Cho S, Kwon IC, Janát-Amsbury MM, Huh KM. Preparation and characterization of glycol chitin as a new thermogelling polymer for biomedical applications. Carbohydr Polym 2013; 92:2267-75. [DOI: 10.1016/j.carbpol.2012.11.068] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/19/2012] [Accepted: 11/23/2012] [Indexed: 11/27/2022]
|
33
|
Lin G, Cosimbescu L, Karin NJ, Gutowska A, Tarasevich BJ. Injectable and thermogelling hydrogels of PCL-g-PEG: mechanisms, rheological and enzymatic degradation properties. J Mater Chem B 2013; 1:1249-1255. [DOI: 10.1039/c2tb00468b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Hadjipanayi E, Cheema U, Hopfner U, Bauer A, Machens HG, Schilling AF. Injectable system for spatio-temporally controlled delivery of hypoxia-induced angiogenic signalling. J Control Release 2012; 161:852-60. [PMID: 22634070 DOI: 10.1016/j.jconrel.2012.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 01/08/2023]
Abstract
While chronically ischaemic tissues are continuously exposed to hypoxia, the primary angiogenic stimulus, they fail to appropriately respond to it, as hypoxia-regulated angiogenic factor production gradually undergoes down-regulation, thus hindering adaptive angiogenesis. We have previously reported on two strategies for delivering on demand hypoxia-induced signalling (HIS) in vivo, namely, implanting living or non-viable hypoxic cell-matrix depots that actively produce factors or act as carriers of factors trapped within the matrix during in vitro pre-conditioning, respectively. This study aims to improve this approach through the development of a novel, injectable system for delivering cell-free matrix HIS-carriers. 3D spiral collagen constructs, comprising an inner cellular and outer acellular compartment, were cultured under hypoxia (5% O₂). Cell-produced angiogenic factors (e.g. VEGF, FGF, PLGF, IL-8) were trapped within the nano-porous matrix of the acellular compartment as they radially diffused through it. The acellular matrix was mechanically fragmented into micro-fractions and added into a low temperature (5 °C) thermo-responsive type I collagen solution, which underwent a collagen concentration-dependent solution-to-gel phase transition at 37 °C. Levels of VEGF and IL-8, delivered from matrix fractions into media by diffusion through collagen sol-gel, were up-regulated by day 4 of hypoxic culture, peaked at day 8, and gradually declined towards the baseline by day 20, while FGF levels were stable over this period. Factors captured within matrix fractions were bioactive after 3 months freeze storage, as shown by their ability to induce tubule formation in an in vitro angiogenesis assay. This system provides a minimally invasive, and repeatable, method for localised delivery of time-specific, cell-free HIS factor mixtures, as a tool for physiological induction of spatio-temporally controlled angiogenesis.
Collapse
Affiliation(s)
- E Hadjipanayi
- Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
|
37
|
Li Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev 2012; 41:2193-221. [PMID: 22116474 DOI: 10.1039/c1cs15203c] [Citation(s) in RCA: 972] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Injectable hydrogels with biodegradability have in situ formability which in vitro/in vivo allows an effective and homogeneous encapsulation of drugs/cells, and convenient in vivo surgical operation in a minimally invasive way, causing smaller scar size and less pain for patients. Therefore, they have found a variety of biomedical applications, such as drug delivery, cell encapsulation, and tissue engineering. This critical review systematically summarizes the recent progresses on biodegradable and injectable hydrogels fabricated from natural polymers (chitosan, hyaluronic acid, alginates, gelatin, heparin, chondroitin sulfate, etc.) and biodegradable synthetic polymers (polypeptides, polyesters, polyphosphazenes, etc.). The review includes the novel naturally based hydrogels with high potential for biomedical applications developed in the past five years which integrate the excellent biocompatibility of natural polymers/synthetic polypeptides with structural controllability via chemical modification. The gelation and biodegradation which are two key factors to affect the cell fate or drug delivery are highlighted. A brief outlook on the future of injectable and biodegradable hydrogels is also presented (326 references).
Collapse
Affiliation(s)
- Yulin Li
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada 9020-105 Funchal, Portugal.
| | | | | |
Collapse
|
38
|
Abstract
All living creatures respond to external stimuli. Similarly, some polymers undergo conformational changes in response to changes in temperature, pH, magnetic field, electrical field, or the wavelength of light. In one type of stimuli-responsive polymer, thermogel polymers, the polymer aqueous solution undergoes sol-to-gel transition as the temperature increases. Drugs or cells can be mixed into the polymer aqueous solution when it is in its lower viscosity solution state. After injection of the solution into a target site, heating prompts the formation of a hydrogel depot in situ, which can then act as a drug releasing system or a cell growing matrix. In this Account, we describe key materials developed in our laboratory for the construction of biodegradable thermogels. We particularly emphasize recently developed polypeptide-based materials where the secondary structure and nanoassembly play an important role in the determining the material properties. This Account will provide insights for controlling parameters, such as the sol-gel transition temperature, gel modulus, critical gel concentration, and degradability of the polymer, when designing a new thermogel system for a specific biomedical application. By varying the stereochemistry of amino acids in polypeptides, the molecular weight of hydrophobic/hydrophilic blocks, the composition of the polypeptides, the hydrophobic end-capping of the polypeptides, and the microsequences of a block copolymer, we have controlled the thermosensitivity and nanoassembly patterns of the polymers. We have investigated a series of thermogel biodegradable polymers. Polymers such as poly(lactic acid-co-glycolic acid), polycaprolactone, poly(trimethylene carbonate), polycyanoacrylate, sebacic ester, polypeptide were used as hydrophobic blocks, and poly(ethylene glycol) and poly(vinyl pyrrolidone) were used as hydrophilic blocks. To prepare a polymer sensitive to pH and temperature, carboxylic acid or amine groups were introduced along the polymer backbone. The sol-gel transition mechanism involves changes in the secondary structures of the hydrophobic polypeptide and in the conformation of the hydrophilic block. The polypeptide copolymers were stable in the phosphate buffered saline, but the presence of proteolytic enzymes such as elastase, cathepsin B, cathepsin C, and matrix metallopreoteinase accelerated their degradation. We also describe several biomedical applications of biogradable thermogel polymers. One subcutaneous injection of the insulin formulation of thermogel polypeptide copolymers in diabetic rats provided hypoglycemic efficacy for more than 16 days. The thermogels also provided a compatible microenvironment for chondrocytes, and these cells produced biomarkers for articular cartilage such as sulfated glucoaminoglycan (sGAG) and type II collagen. The thermogels were also used as a fixing agent for in situ cell imaging, and cellular activities such as endocytosis were observed by live cell microscopy.
Collapse
Affiliation(s)
- Min Hee Park
- Department of Bioinspired Science (WCU), Department of Chemistry and Nano Science, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| | - Min Kyung Joo
- Department of Bioinspired Science (WCU), Department of Chemistry and Nano Science, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| | - Bo Gyu Choi
- Department of Bioinspired Science (WCU), Department of Chemistry and Nano Science, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| | - Byeongmoon Jeong
- Department of Bioinspired Science (WCU), Department of Chemistry and Nano Science, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| |
Collapse
|
39
|
Moon HJ, Ko DY, Park MH, Joo MK, Jeong B. Temperature-responsive compounds as in situ gelling biomedical materials. Chem Soc Rev 2012; 41:4860-83. [DOI: 10.1039/c2cs35078e] [Citation(s) in RCA: 334] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Ni PY, Fan M, Qian ZY, Luo JC, Gong CY, Fu SZ, Shi S, Luo F, Yang ZM. Synthesis and characterization of injectable, thermosensitive, and biocompatible acellular bone matrix/poly(ethylene glycol)-poly (ε-caprolactone)-poly(ethylene glycol) hydrogel composite. J Biomed Mater Res A 2011; 100:171-9. [PMID: 22009709 DOI: 10.1002/jbm.a.33262] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 02/05/2023]
Abstract
In orthopedic tissue engineering, the extensively applied acellular bone matrix (ABM) can seldom be prefabricated just right to mold the cavity of the diverse defects, might induce severe inflammation on account of the migration of small granules and usually bring the patients great pain in the treatment. In this study, a new injectable thermosensitive ABM/PECE composite with good biocompatibility was designed and prepared by adding the ABM granules into the triblock copolymer poly(ethylene eglycol)-poly(ε-caprolactone)-poly(ethylene eglycol) (PEG-PCL-PEG, PECE). The PECE was synthesized by ring-opening copolymerization and characterized by ¹H NMR. The ABM was prepared by acellular treatment of natural bone and ground to fine granules. The obtained ABM/PECE composite showed the most important absorption bands of ABM and PECE copolymer in FT-IR spectroscopy and underwent sol-gel phage transition from solution to nonflowing hydrogel at 37°C. SEM results indicated that the ABM/PECE composite with different ABM contents all presented similar porous 3D structure. ABM/PECE composite presented mild cytotoxicity to rat MSCs in vitro and good biocompatibility in the BALB/c mice subcutis up to 4 weeks. In conclusion, all the results confirmed that the injectable thermosensitive ABM/PECE composite was a promising candidate for orthopedic tissue engineering in a minimally-invasive way.
Collapse
Affiliation(s)
- Pei-Yan Ni
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Seo BB, Park MR, Chun C, Lee JY, Song SC. The biological efficiency and bioavailability of human growth hormone delivered using injectable, ionic, thermosensitive poly(organophosphazene)-polyethylenimine conjugate hydrogels. Biomaterials 2011; 32:8271-80. [PMID: 21839508 DOI: 10.1016/j.biomaterials.2011.07.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/11/2011] [Indexed: 11/24/2022]
Abstract
We have endeavored to develop injectable, thermosensitive, biodegradable hydrogels that prolong human growth hormone (hGH) release, improving bioavailability through introducing balanced ionic interactions. Cationic poly(organophosphazene)-polyethylenimine (PEI, 1.8 kDa) conjugate hydrogels were synthesized as those hydrogels for sustained delivery of anionic hGH with proper ionic strength of association/dissociation. We have additionally prepared different chain lengths of α-amino-ω-methoxy-poly(ethylene glycol) (AMPEG550 and AMPEG750) for the synthesis of conjugates as a means to control hydrogel degradation rates. All Aqueous solutions of PEI-conjugates became hydrogels hydrolyzable in proportion to AMPEG molecular weight at body temperature; these PEI-conjugates complexed with hGH and extended hGH release in vitro. In pharmacokinetic studies of hGH behavior in SD rats, hydrogels of PEI-conjugate/hGH complexes could suppress the initial burst-phase, and extend the duration, of release, as well as increasing of area under the curve (AUC) compared to controls including hGH solution or non-ionic hydrogel. In a hypophysectomized rat model, the biological efficacy of hGH delivered from PEI-conjugate/hGH complex hydrogels was equivalent to that from daily administration over four days based on body weight gain and width of the tibial growth plate. These results suggest that ionic, thermosensitive, poly(organophosphazene)-PEI-conjugate hydrogel demonstrates potential as an injectable depot for sustained delivery of bioavailable hGH.
Collapse
Affiliation(s)
- Bo-Bae Seo
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | |
Collapse
|
42
|
Lee JH, Lee CK, Bae SH, Yoon JH, Choi EJ, Oh KT, Lee ES, Lee KC, Youn YS. Preparation and Characterization of Self-assembled Glycol Chitosan Hydrogels Containing Palmityl-acylated Exendin-4 for Extended Hypoglycemic Action. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2011. [DOI: 10.4333/kps.2011.41.3.173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Potta T, Chun C, Song SC. Design of Polyphosphazene Hydrogels with Improved Structural Properties by Use of Star-Shaped Multithiol Crosslinkers. Macromol Biosci 2011; 11:689-99. [DOI: 10.1002/mabi.201000438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 01/03/2011] [Indexed: 11/10/2022]
|
44
|
Moon HJ, Choi BG, Park MH, Joo MK, Jeong B. Enzymatically Degradable Thermogelling Poly(alanine-co-leucine)-poloxamer-poly(alanine-co-leucine). Biomacromolecules 2011; 12:1234-42. [DOI: 10.1021/bm101518c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hyo Jung Moon
- Department of Chemistry and Nano Science, Department of Bioinspired Science (WCU), Ewha Womans University, Daehyun-Dong, Seodaemun-Ku, Seoul, 120-750, Korea
| | - Bo Gyu Choi
- Department of Chemistry and Nano Science, Department of Bioinspired Science (WCU), Ewha Womans University, Daehyun-Dong, Seodaemun-Ku, Seoul, 120-750, Korea
| | - Min Hee Park
- Department of Chemistry and Nano Science, Department of Bioinspired Science (WCU), Ewha Womans University, Daehyun-Dong, Seodaemun-Ku, Seoul, 120-750, Korea
| | - Min Kyung Joo
- Department of Chemistry and Nano Science, Department of Bioinspired Science (WCU), Ewha Womans University, Daehyun-Dong, Seodaemun-Ku, Seoul, 120-750, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nano Science, Department of Bioinspired Science (WCU), Ewha Womans University, Daehyun-Dong, Seodaemun-Ku, Seoul, 120-750, Korea
| |
Collapse
|
45
|
Liu W, Huang X, Wei H, Chen K, Gao J, Tang X. Facile preparation of hollow crosslinked polyphosphazene submicrospheres with mesoporous shells. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11802a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|