1
|
Coronado S, Herrera J, Pino MG, Martín S, Ballesteros-Rueda L, Cea P. Advancements in Engineering Planar Model Cell Membranes: Current Techniques, Applications, and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1489. [PMID: 39330645 PMCID: PMC11434481 DOI: 10.3390/nano14181489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Cell membranes are crucial elements in living organisms, serving as protective barriers and providing structural support for cells. They regulate numerous exchange and communication processes between cells and their environment, including interactions with other cells, tissues, ions, xenobiotics, and drugs. However, the complexity and heterogeneity of cell membranes-comprising two asymmetric layers with varying compositions across different cell types and states (e.g., healthy vs. diseased)-along with the challenges of manipulating real cell membranes represent significant obstacles for in vivo studies. To address these challenges, researchers have developed various methodologies to create model cell membranes or membrane fragments, including mono- or bilayers organized in planar systems. These models facilitate fundamental studies on membrane component interactions as well as the interactions of membrane components with external agents, such as drugs, nanoparticles (NPs), or biomarkers. The applications of model cell membranes have extended beyond basic research, encompassing areas such as biosensing and nanoparticle camouflage to evade immune detection. In this review, we highlight advancements in the engineering of planar model cell membranes, focusing on the nanoarchitectonic tools used for their fabrication. We also discuss approaches for incorporating challenging materials, such as proteins and enzymes, into these models. Finally, we present our view on future perspectives in the field of planar model cell membranes.
Collapse
Affiliation(s)
- Sara Coronado
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - Johan Herrera
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - María Graciela Pino
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Santiago Martín
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Luz Ballesteros-Rueda
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigaciones en Catálisis (CICAT), Escuela de Ingeniería Química, Universidad Industrial de Santander, Parque Tecnológico de Guatiguará, Km 2 vía El Refugio, Piedecuesta, Santander 681911, Colombia
| | - Pilar Cea
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
2
|
Wu S, Lu L, Zhou J, Ran D, Wang S, Xu Q, Xu W, Wang J, Liu Y, Xie C, Luo Z, Lu W. All-stage targeted therapy for glioblastoma based on lipid membrane coated cabazitaxel nanocrystals. J Control Release 2022; 345:685-695. [PMID: 35346767 DOI: 10.1016/j.jconrel.2022.03.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/14/2023]
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor with poor prognosis and frequent recurrence. The blood-brain barrier (BBB), blood-brain tumor barrier (BBTB) hinder the entry of therapeutics into the glioma region. Vasculogenic mimicry (VM) formed by invasive glioma cells is also related to recurrence of GBM. VAP is a D-peptide ligand of GRP78 protein overexpressed on BBTB, VM, and glioma cells but not on normal tissues. Besides, p-hydroxybenzoic acid (pHA) can effectively traverse the BBB. Herein we developed an all-stage glioma-targeted cabazitaxel (CBZ) nanocrystal loaded liposome modified with a "Y" shaped targeting ligand composed of pHA and VAP (pV-Lip/cNC). The pure drug nanocrystal core provided high drug loading, while lipid membrane promoted the stability and circulation time. pV-Lip/cNC exhibited excellent glioma homing, barriers crossing, and tumor spheroid penetrating capability in vitro. Treatment of pV-Lip/cNC displayed enhanced CBZ accumulation in glioma and anti-glioma effect with a median survival time (53 days) significantly longer than that of cNC loaded liposomes modified with either single ligand (42 days for VAP and 45 days for pHA) in the murine orthotopic GBM model. These results indicated pV-Lip/cNC could traverse the BBB and BBTB, destruct VM, and finally kill glioma cells to realize all-stage glioma therapy.
Collapse
Affiliation(s)
- Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Linwei Lu
- The Department of Integrative Medicine, Huashan Hospital, Fudan University, and The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China
| | - Jianfen Zhou
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Danni Ran
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Songli Wang
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qianzhu Xu
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Weixia Xu
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Jun Wang
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zimiao Luo
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; The Department of Integrative Medicine, Huashan Hospital, Fudan University, and The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China; Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China; Minhang Branch, Zhongshan Hospital and Institute of Fudan-Minghang Academic Health System, Minghang Hospital, Fudan University, Shanghai 201199, China.
| |
Collapse
|
3
|
Cui J, Xu Y, Tu H, Zhao H, Wang H, Di L, Wang R. Gather wisdom to overcome barriers: Well-designed nano-drug delivery systems for treating gliomas. Acta Pharm Sin B 2022; 12:1100-1125. [PMID: 35530155 PMCID: PMC9069319 DOI: 10.1016/j.apsb.2021.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Due to the special physiological and pathological characteristics of gliomas, most therapeutic drugs are prevented from entering the brain. To improve the poor prognosis of existing therapies, researchers have been continuously developing non-invasive methods to overcome barriers to gliomas therapy. Although these strategies can be used clinically to overcome the blood‒brain barrier (BBB), the accurate delivery of drugs to the glioma lesions cannot be ensured. Nano-drug delivery systems (NDDS) have been widely used for precise drug delivery. In recent years, researchers have gathered their wisdom to overcome barriers, so many well-designed NDDS have performed prominently in preclinical studies. These meticulous designs mainly include cascade passing through BBB and targeting to glioma lesions, drug release in response to the glioma microenvironment, biomimetic delivery systems based on endogenous cells/extracellular vesicles/protein, and carriers created according to the active ingredients of traditional Chinese medicines. We reviewed these well-designed NDDS in detail. Furthermore, we discussed the current ongoing and completed clinical trials of NDDS for gliomas therapy, and analyzed the challenges and trends faced by clinical translation of these well-designed NDDS.
Collapse
Affiliation(s)
- Jiwei Cui
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Yuanxin Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Haiyan Tu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Huacong Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Honglan Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology, Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
- Corresponding author. Tel./fax: +86 15852937869.
| |
Collapse
|
4
|
Idlas P, Lepeltier E, Jaouen G, Passirani C. Ferrocifen Loaded Lipid Nanocapsules: A Promising Anticancer Medication against Multidrug Resistant Tumors. Cancers (Basel) 2021; 13:2291. [PMID: 34064748 PMCID: PMC8151583 DOI: 10.3390/cancers13102291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance of cancer cells to current chemotherapeutic drugs has obliged the scientific community to seek innovative compounds. Ferrocifens, lipophilic organometallic compounds composed of a tamoxifen scaffold covalently bound to a ferrocene moiety, have shown very interesting antiproliferative, cytotoxic and immunologic effects. The formation of ferrocenyl quinone methide plays a crucial role in the multifaceted activity of ferrocifens. Lipid nanocapsules (LNCs), meanwhile, are nanoparticles obtained by a free organic solvent process. LNCs consist of an oily core surrounded by amphiphilic surfactants and are perfectly adapted to encapsulate these hydrophobic compounds. The different in vitro and in vivo experiments performed with this ferrocifen-loaded nanocarrier have revealed promising results in several multidrug-resistant cancer cell lines such as glioblastoma, breast cancer and metastatic melanoma, alone or in combination with other therapies. This review provides an exhaustive summary of the use of ferrocifen-loaded LNCs as a promising nanomedicine, outlining the ferrocifen mechanisms of action on cancer cells, the nanocarrier formulation process and the in vivo results obtained over the last two decades.
Collapse
Affiliation(s)
- Pierre Idlas
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, 49000 Angers, France; (P.I.); (E.L.)
| | - Elise Lepeltier
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, 49000 Angers, France; (P.I.); (E.L.)
| | - Gérard Jaouen
- Sorbonne Universités, Université IPCM, Paris 6, UMR 8232, IPCM, 4 place Jussieu, 75005 Paris, France;
- PSL University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Catherine Passirani
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, 49000 Angers, France; (P.I.); (E.L.)
| |
Collapse
|
5
|
Lou S, Duan Y, Nie H, Cui X, Du J, Yao Y. Mesenchymal stem cells: Biological characteristics and application in disease therapy. Biochimie 2021; 185:9-21. [PMID: 33711361 DOI: 10.1016/j.biochi.2021.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells. In addition to the capacity for self-renewal and multipotential differentiation, MSCs also have the following characteristics. MSCs can exert immunomodulatory functions through interaction with innate or adaptive immune cells, MSCs with poor immunogenicity can be used for allogeneic transplantation, and MSCs can "home" to inflammation and tumour sites. Based on these biological properties, MSCs demonstrate broad clinical application prospects in the treatment of tissue injury, autoimmune diseases, transplantation, cancer and other inflammation-related diseases. In this review we describe the biological characteristics of MSCs and discuss the research advances of MSCs in regenerative medicine, immunomodulation, oncology, and COVID-19, to fully understand the range of diseases in which MSC therapy may be beneficial.
Collapse
Affiliation(s)
- Songyue Lou
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Henan, 450018, China.
| | - Huizong Nie
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Xujie Cui
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Jialing Du
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Henan, 450018, China; School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
6
|
Fang Q, Xu X, Yang L, Xue Y, Cheng X, Wang X, Tang R. Self-assembled 5-fluorouracil-cinnamaldehyde nanodrugs for greatly improved chemotherapy in vivo. J Biomater Appl 2021; 36:592-604. [PMID: 33593129 DOI: 10.1177/0885328221989539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The preferred cancer treatment is to achieve a high therapeutic effect as well as reduce side effects. In this study, we developed carrier-free nano drugs based on 5-fluorouracil (5FU) and cinnamaldehyde (CA) to meet the above goals. Two model drugs were spliced by acetal linkage and ester bond, which could self-assemble into nano drug particles (5FU-CA NPs) with a size of ∼170 nm. In vitro cell experiments showed 5FU-CA NPs were efficiently internalized by HepG2 cells. They then quickly exerted dual drug activities by the cleavage of acetal and ester bond, resulting in enhanced cell-killing efficacy and apoptosis. Synergistic mechanisms were achieved via the anti-metabolic effects mediated by 5FU-COOH and the oxidative damage induced by CA. In vivo anti-tumor evaluation further indicated that 5FU-CA NPs had higher tumor growth inhibition than 5FU-COOH/CA mixture (5FU-COOH + CA) and exhibited lower systemic toxicity under the same reducing dose of each drug. Overall, this is a successful synergistic anti-tumor attempt through rational self-assembly of drugs with different mechanisms and it can be extrapolated to other agents.
Collapse
Affiliation(s)
- Qin Fang
- School of Life Science, 12487Anhui University, Hefei, China
| | - Xiaoxiao Xu
- School of Life Science, 12487Anhui University, Hefei, China
| | - Longshun Yang
- School of Life Science, 12487Anhui University, Hefei, China
| | - Yanbing Xue
- School of Life Science, 12487Anhui University, Hefei, China
| | - Xu Cheng
- School of Life Science, 12487Anhui University, Hefei, China
| | - Xin Wang
- School of Life Science, 12487Anhui University, Hefei, China
| | - Rupei Tang
- School of Life Science, 12487Anhui University, Hefei, China
| |
Collapse
|
7
|
Clavreul A, Menei P. Mesenchymal Stromal-Like Cells in the Glioma Microenvironment: What Are These Cells? Cancers (Basel) 2020; 12:E2628. [PMID: 32942567 PMCID: PMC7565954 DOI: 10.3390/cancers12092628] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022] Open
Abstract
The glioma microenvironment is a critical regulator of tumor progression. It contains different cellular components such as blood vessels, immune cells, and neuroglial cells. It also contains non-cellular components, such as the extracellular matrix, extracellular vesicles, and cytokines, and has certain physicochemical properties, such as low pH, hypoxia, elevated interstitial pressure, and impaired perfusion. This review focuses on a particular type of cells recently identified in the glioma microenvironment: glioma-associated stromal cells (GASCs). This is just one of a number of names given to these mesenchymal stromal-like cells, which have phenotypic and functional properties similar to those of mesenchymal stem cells and cancer-associated fibroblasts. Their close proximity to blood vessels may provide a permissive environment, facilitating angiogenesis, invasion, and tumor growth. Additional studies are required to characterize these cells further and to analyze their role in tumor resistance and recurrence.
Collapse
Affiliation(s)
- Anne Clavreul
- Département de Neurochirurgie, CHU, 49933 Angers, France;
- Université d’Angers, CHU d’Angers, CRCINA, F-49000 Angers, France
| | - Philippe Menei
- Département de Neurochirurgie, CHU, 49933 Angers, France;
- Université d’Angers, CHU d’Angers, CRCINA, F-49000 Angers, France
| |
Collapse
|
8
|
Shi H, Sun S, Xu H, Zhao Z, Han Z, Jia J, Wu D, Lu J, Liu H, Yu R. Combined Delivery of Temozolomide and siPLK1 Using Targeted Nanoparticles to Enhance Temozolomide Sensitivity in Glioma. Int J Nanomedicine 2020; 15:3347-3362. [PMID: 32494134 PMCID: PMC7229804 DOI: 10.2147/ijn.s243878] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Temozolomide (TMZ) is the first-line chemotherapeutic option to treat glioma; however, its efficacy and clinical application are limited by its drug resistance properties. Polo-like kinase 1 (PLK1)-targeted therapy causes G2/M arrest and increases the sensitivity of glioma to TMZ. Therefore, to limit TMZ resistance in glioma, an angiopep-2 (A2)-modified polymeric micelle (A2PEC) embedded with TMZ and a small interfering RNA (siRNA) targeting PLK1 (siPLK1) was developed (TMZ-A2PEC/siPLK). MATERIALS AND METHODS TMZ was encapsulated by A2-PEG-PEI-PCL (A2PEC) through the hydrophobic interaction, and siPLK1 was complexed with the TMZ-A2PEC through electrostatic interaction. Then, an angiopep-2 (A2) modified polymeric micelle (A2PEC) embedding TMZ and siRNA targeting polo-like kinase 1 (siPLK1) was developed (TMZ-A2PEC/siPLK). RESULTS In vitro experiments indicated that TMZ-A2PEC/siPLK effectively enhanced the cellular uptake of TMZ and siPLK1 and resulted in significant cell apoptosis and cytotoxicity of glioma cells. In vivo experiments showed that glioma growth was inhibited, and the survival time of the animals was prolonged remarkably after TMZ-A2PEC/siPLK1 was injected via their tail vein. DISCUSSION The results demonstrate that the combination of TMZ and siPLK1 in A2PEC could enhance the efficacy of TMZ in treating glioma.
Collapse
Affiliation(s)
- Hui Shi
- Clinical Medical College, Nanjing Medical University, Nanjing, People’s Republic of China
- The Second People’s Hospital of Lianyungang, Lianyungang, People’s Republic of China
| | - Shuo Sun
- Clinical Medical College, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Haoyue Xu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Zongren Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Zhengzhong Han
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jun Jia
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Dongmei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People’s Republic of China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People’s Republic of China
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Rutong Yu
- Clinical Medical College, Nanjing Medical University, Nanjing, People’s Republic of China
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| |
Collapse
|
9
|
Clavreul A, Roger E, Pourbaghi-Masouleh M, Lemaire L, Tétaud C, Menei P. Development and characterization of sorafenib-loaded lipid nanocapsules for the treatment of glioblastoma. Drug Deliv 2019; 25:1756-1765. [PMID: 30338715 PMCID: PMC6225440 DOI: 10.1080/10717544.2018.1507061] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Anticancer agents that target both tumor cells and angiogenesis are of potential interest for glioblastoma (GB) therapy. One such agent is sorafenib (SFN), a tyrosine kinase inhibitor. However, poor aqueous solubility and undesirable side effects limit its clinical application, including local treatment. We encapsulated SFN in lipid nanocapsules (LNCs) to overcome these drawbacks. LNCs are nanocarriers formulated according to a solvent-free process, using only components that have received regulatory approval. SFN-LNCs had a diameter of 54 ± 1 nm, high encapsulation efficiency (>90%), and a drug payload of 2.11 ± 0.03 mg/g of LNC dispersion. They inhibited in vitro angiogenesis and decreased human U87MG GB cell viability similarly to free SFN. In vivo studies showed that the intratumoral administration of SFN-LNCs or free SFN in nude mice bearing an orthotopic U87MG human GB xenograft decreased the proportion of proliferating cells in the tumor relative to control groups. SFN-LNCs were more effective than free SFN for inducing early tumor vascular normalization, characterized by increases in tumor blood flow and decreases in tumor vessel area. These results highlight the potential of LNCs as delivery systems for SFN. The vascular normalization induced by SFN-LNCs could be used to improve the efficacy of chemotherapy or radiotherapy for treating GB.
Collapse
Affiliation(s)
- Anne Clavreul
- a Département de Neurochirurgie , CHU , Angers , France.,b CRCINA, INSERM , Université de Nantes, Université d'Angers , Angers , France
| | - Emilie Roger
- c MINT, INSERM 1066, CNRS 6021 , Université d'Angers, UNIV Angers , Angers , France
| | - Milad Pourbaghi-Masouleh
- b CRCINA, INSERM , Université de Nantes, Université d'Angers , Angers , France.,d Division of Drug Delivery and Tissue Engineering, School of Pharmacy , University of Nottingham , Nottingham , UK
| | - Laurent Lemaire
- c MINT, INSERM 1066, CNRS 6021 , Université d'Angers, UNIV Angers , Angers , France.,e PRISM-IRM , UNIV Angers , Angers , France
| | - Clément Tétaud
- b CRCINA, INSERM , Université de Nantes, Université d'Angers , Angers , France
| | - Philippe Menei
- a Département de Neurochirurgie , CHU , Angers , France.,b CRCINA, INSERM , Université de Nantes, Université d'Angers , Angers , France
| |
Collapse
|
10
|
Zheng Y, Lv X, Xu Y, Cheng X, Wang X, Tang R. pH-sensitive and pluronic-modified pullulan nanogels for greatly improved antitumor in vivo. Int J Biol Macromol 2019; 139:277-289. [PMID: 31377289 DOI: 10.1016/j.ijbiomac.2019.07.220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 02/08/2023]
Abstract
It remains a crucial challenge to achieve efficient cellular uptake in tumor cells for nanoscale drug delivery systems. This work described that two multi-functional pullulan nanogels were prepared by co-polymerization between methacrylated pullulan (Pullulan-M) and different crosslink agents, an acid-labile ortho ester-modified pluronic (L61-MOE) or non-acid-sensitive methacrylated pluronic (L61-M). The prepared nanogels showed a regular spherical structure with the size about 200 nm measured by dynamic light scattering and transmission electron microscopy (TEM). Doxorubicin as a model drug was successfully encapsulated into nanogels. As expected, Pul-L61-MOE showed pH-dependent DOX release, and 25% of DOX was released at pH 7.4 while 84.48% of DOX was released at pH 5.0. In vitro cellular uptake and MTT results indicated that pH-sensitive nanogels (Pul-L61-MOE) displayed higher cellular internalization and cytotoxicity than acid-insensitive nanogels (Pul-L61-M) and free DOX. Flow cytometry assay suggested these nanogels remarkably increased intracellular reactive oxygen species (ROS) level and induced more cell apoptosis by the function of pluronic. Finally, in vivo antitumor results indicated that the multi-functional nanogels exhibit supreme antitumor efficiency, and the tumor growth inhibition (TGI) was 83.37%. Therefore, the pH-sensitive pullulan nanogels can be potential nano-carriers for drug delivery in tumor treatment.
Collapse
Affiliation(s)
- Yan Zheng
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - XiaoDong Lv
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Yong Xu
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Xu Cheng
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China.
| |
Collapse
|
11
|
Xu DH, Chi GN, Zhao CH, Li DY. Retracted: Long noncoding RNA MEG3 inhibits proliferation and migration but induces autophagy by regulation of Sirt7 and PI3K/AKT/mTOR pathway in glioma cells. J Cell Biochem 2019; 120:7516-7526. [PMID: 30417553 DOI: 10.1002/jcb.28026] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 10/15/2018] [Indexed: 02/02/2023]
Abstract
Glioma is a common primary brain tumor with high mortality rate and poor prognosis. Long noncoding RNA maternally expressed gene 3 (MEG3) is a tumor suppressor in diverse cancer types. However, the role of MEG3 in glioma remains unclear. We aimed to explore the effects of MEG3 on U251 cells as well as the underlying mechanisms. U251 cells were stably transfected with different recombined plasmids to overexpress or silence MEG3. Effects of aberrantly expressed MEG3 on cell viability, migration, apoptosis, expressions of apoptosis-associated and autophagy-associated proteins, and phosphorylated levels of key kinases in the PI3K/AKT/mTOR pathway were all evaluated. Then, messenger RNA (mRNA) and protein expression of Sirt7 in cells abnormally expressing MEG3 were estimated. In addition, effects of abnormally expressed MEG3 and Sirt7 on U251 cells were determined to reveal the underlying mechanism of MEG3-associated modulation. Cell viability and migration were significantly reduced by MEG3 overexpression whereas cell apoptosis as well as Bax and cleaved caspase-3/-9 proteins were obviously induced. Beclin-1 and LC3-II/LC3-I were upregulated and p62 was downregulated in MEG3 overexpressed cells. In addition, the autophagy pharmacological inhibitor (3-methyladenine, 3-MA) affected the effect of MEG3 overexpression on cell proliferation. Furthermore, the phosphorylated levels of key kinases in the PI3K/AKT/mTOR pathway were all reduced by MEG3 overexpression. Sirt7 was positively regulated by MEG3 expression, and effects of MEG3 overexpression on U251 cells were ameliorated by Sirt7 silence. MEG3 suppressed cell proliferation and migration but promoted autophagy in U251 cells through positively regulating Sirt7, involving in the inhibition of the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Dong-Hui Xu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Guo-Nan Chi
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Cong-Hai Zhao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Dong-Yuan Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Clavreul A, Pourbaghi-Masouleh M, Roger E, Menei P. Nanocarriers and nonviral methods for delivering antiangiogenic factors for glioblastoma therapy: the story so far. Int J Nanomedicine 2019; 14:2497-2513. [PMID: 31040671 PMCID: PMC6461002 DOI: 10.2147/ijn.s194858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, is an essential component of glioblastoma (GB) progression. The development of angiogenesis inhibitor therapy, including treatments targeting vascular endothelial growth factor (VEGF) in particular, raised new hopes for the treatment of GB, but no Phase III clinical trial to date has reported survival benefits relative to standard treatment. There are several possible reasons for this limited efficacy, including VEGF-independent angiogenesis, induction of tumor invasion, and inefficient antiangiogenic factor delivery to the tumor. Efforts have been made to overcome these limitations by identifying new angiogenesis inhibitors that target angiogenesis through different mechanisms of action without inducing tumor invasion, and through the development of viral and nonviral delivery methods to improve antiangiogenic activity. Herein, we describe the nonviral methods, including convection-enhanced delivery devices, implantable polymer devices, nanocarriers, and cellular vehicles, to deliver antiangiogenic factors. We focus on those evaluated in intracranial (orthotopic) animal models of GB, the most relevant models of this disease, as they reproduce the clinical scenario of tumor progression and therapy response encountered in GB patients.
Collapse
Affiliation(s)
- Anne Clavreul
- Department of Neurosurgery, CHU, Angers, France, .,CRCINA, INSERM, University of Nantes, University of Angers, Angers, France,
| | - Milad Pourbaghi-Masouleh
- CRCINA, INSERM, University of Nantes, University of Angers, Angers, France, .,Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Emilie Roger
- MINT, INSERM 1066, CNRS 6021, University of Angers, Angers, France
| | - Philippe Menei
- Department of Neurosurgery, CHU, Angers, France, .,CRCINA, INSERM, University of Nantes, University of Angers, Angers, France,
| |
Collapse
|
13
|
Kutova OM, Guryev EL, Sokolova EA, Alzeibak R, Balalaeva IV. Targeted Delivery to Tumors: Multidirectional Strategies to Improve Treatment Efficiency. Cancers (Basel) 2019; 11:E68. [PMID: 30634580 PMCID: PMC6356537 DOI: 10.3390/cancers11010068] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Malignant tumors are characterized by structural and molecular peculiarities providing a possibility to directionally deliver antitumor drugs with minimal impact on healthy tissues and reduced side effects. Newly formed blood vessels in malignant lesions exhibit chaotic growth, disordered structure, irregular shape and diameter, protrusions, and blind ends, resulting in immature vasculature; the newly formed lymphatic vessels also have aberrant structure. Structural features of the tumor vasculature determine relatively easy penetration of large molecules as well as nanometer-sized particles through a blood⁻tissue barrier and their accumulation in a tumor tissue. Also, malignant cells have altered molecular profile due to significant changes in tumor cell metabolism at every level from the genome to metabolome. Recently, the tumor interaction with cells of immune system becomes the focus of particular attention, that among others findings resulted in extensive study of cells with preferential tropism to tumor. In this review we summarize the information on the diversity of currently existing approaches to targeted drug delivery to tumor, including (i) passive targeting based on the specific features of tumor vasculature, (ii) active targeting which implies a specific binding of the antitumor agent with its molecular target, and (iii) cell-mediated tumor targeting.
Collapse
Affiliation(s)
- Olga M Kutova
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Evgenii L Guryev
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Evgeniya A Sokolova
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Razan Alzeibak
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Irina V Balalaeva
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
- The Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya str., Moscow 119991, Russia.
| |
Collapse
|
14
|
Pinho S, Macedo MH, Rebelo C, Sarmento B, Ferreira L. Stem cells as vehicles and targets of nanoparticles. Drug Discov Today 2018; 23:1071-1078. [DOI: 10.1016/j.drudis.2018.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/22/2017] [Accepted: 01/07/2018] [Indexed: 12/16/2022]
|
15
|
Xu HL, Yang JJ, ZhuGe DL, Lin MT, Zhu QY, Jin BH, Tong MQ, Shen BX, Xiao J, Zhao YZ. Glioma-Targeted Delivery of a Theranostic Liposome Integrated with Quantum Dots, Superparamagnetic Iron Oxide, and Cilengitide for Dual-Imaging Guiding Cancer Surgery. Adv Healthc Mater 2018; 7:e1701130. [PMID: 29350498 DOI: 10.1002/adhm.201701130] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/20/2017] [Indexed: 01/14/2023]
Abstract
Herein, a theranostic liposome (QSC-Lip) integrated with superparamagnetic iron oxide nanoparticles (SPIONs) and quantum dots (QDs) and cilengitide (CGT) into one platform is constructed to target glioma under magnetic targeting (MT) for guiding surgical resection of glioma. Transmission electron microscopy and X-ray photoelectron spectroscopy confirm the complete coencapsulation of SPIONs and QDs in liposome. Besides, CGT is also effectively encapsulated into the liposome with an encapsulation efficiency of ∼88.9%. QSC-Lip exhibits a diameter of 100 ± 1.24 nm, zeta potential of -17.10 ± 0.11 mV, and good stability in several mediums. Moreover, each cargo shows a biphasic release pattern from QSC-Lip, a rapid initial release within initial 10 h followed by a sustained release. Cellular uptake of QSC-Lip is significantly enhanced by C6 cells under MT. In vivo dual-imaging studies show that QSC-Lip not only produces an obvious negative-contrast enhancement effect on glioma by magnetic resonance imaging but also makes tumor emitting fluorescence under MT. The dual-imaging of QSC-Lip guides the accurate resection of glioma by surgery. Besides, CGT is also specifically distributed to glioma after administration of QSC-Lip under MT, resulting in an effective inhibition of tumors. The integrated liposome may be a potential carrier for theranostics of tumor.
Collapse
Affiliation(s)
- He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Jing-Jing Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - De-Li ZhuGe
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Meng-Ting Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Qun-Yan Zhu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Bing-Hui Jin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Meng-Qi Tong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Bi-Xin Shen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Jian Xiao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| |
Collapse
|
16
|
Haynes MT, Huang L. Multistage Delivery Technologies: Multifunctional, Interdisciplinary Approaches to Nanomedicine. Mol Ther 2017; 24:849-51. [PMID: 27198852 DOI: 10.1038/mt.2016.75] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Matthew T Haynes
- The Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leaf Huang
- The Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
17
|
Pang L, Zhang C, Qin J, Han L, Li R, Hong C, He H, Wang J. A novel strategy to achieve effective drug delivery: exploit cells as carrier combined with nanoparticles. Drug Deliv 2017; 24:83-91. [PMID: 28155538 PMCID: PMC8241159 DOI: 10.1080/10717544.2016.1230903] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/23/2016] [Accepted: 08/28/2016] [Indexed: 12/21/2022] Open
Abstract
Cell-mediated drug delivery systems employ specific cells as drug vehicles to deliver drugs to targeted sites. Therapeutics or imaging agents are loaded into these cells and then released in diseased sites. These specific cells mainly include red blood cells, leukocytes, stem cells and so on. The cell acts as a Trojan horse to transfer the drug from circulating blood to the diseased tissue. In such a system, these cells keep their original properties, which allow them to mimic the migration behavior of specific cells to carry drug to the targeted site after in vivo administration. This strategy elegantly combines the advantages of both carriers, i.e. the adjustability of nanoparticles (NPs) and the natural functions of active cells, which therefore provides a new perspective to challenge current obstacles in drug delivery. This review will describe a fundamental understanding of these cell-based drug delivery systems, and discuss the great potential of combinational application of cell carrier and NPs.
Collapse
Affiliation(s)
- Liang Pang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China and
| | - Chun Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China and
| | - Jing Qin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China and
| | - Limei Han
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China and
| | - Ruixiang Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China and
| | - Chao Hong
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China and
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Jianxin Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China and
| |
Collapse
|
18
|
Clavreul A, Pourbaghi-Masouleh M, Roger E, Lautram N, Montero-Menei CN, Menei P. Human mesenchymal stromal cells as cellular drug-delivery vectors for glioblastoma therapy: a good deal? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:135. [PMID: 28962658 PMCID: PMC5622550 DOI: 10.1186/s13046-017-0605-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Background Glioblastoma (GB) is the most malignant brain tumor in adults. It is characterized by angiogenesis and a high proliferative and invasive capacity. Standard therapy (surgery, radiotherapy and chemotherapy with temozolomide) is of limited efficacy. Innovative anticancer drugs targeting both tumor cells and angiogenesis are urgently required, together with effective systems for their delivery to the brain. We assessed the ability of human mesenchymal stromal cells (MSCs) to uptake the multikinase inhibitor, sorafenib (SFN), and to carry this drug to a brain tumor following intranasal administration. Method MSCs were primed with SFN and drug content and release were quantified by analytical chemistry techniques. The ability of SFN-primed MSCs to inhibit the survival of the human U87MG GB cell line and endothelial cells was assessed in in vitro assays. These cells were then administered intranasally to nude mice bearing intracerebral U87MG xenografts. Their effect on tumor growth and angiogenesis was evaluated by magnetic resonance imaging and immunofluorescence analyses, and was compared with the intranasal administration of unprimed MSCs or SFN alone. Results MSCs took up about 9 pg SFN per cell, with no effect on viability, and were able to release 60% of the primed drug. The cytostatic activity of the released SFN was entirely conserved, resulting in a significant inhibition of U87MG and endothelial cell survival in vitro. Two intranasal administrations of SFN-primed MSCs in U87MG-bearing mice resulted in lower levels of tumor angiogenesis than the injection of unprimed MSCs or SFN alone, but had no effect on tumor volume. We also observed an increase in the proportion of small intratumoral vessels in animals treated with unprimed MSCs; this effect being abolished if the MSCs were primed with SFN. Conclusion We show the potential of MSCs to carry SFN to brain tumors following an intranasal administration. However, the therapeutic effect is modest probably due to the pro-tumorigenic properties of MSCs, which may limit the action of the released SFN. This calls into question the suitability of MSCs for use in GB therapy and renders it necessary to find methods guaranteeing the safety of this cellular vector after drug delivery.
Collapse
Affiliation(s)
- Anne Clavreul
- Département de Neurochirurgie, CHU, Angers, France. .,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.
| | - Milad Pourbaghi-Masouleh
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Emilie Roger
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France
| | - Nolwenn Lautram
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France
| | | | - Philippe Menei
- Département de Neurochirurgie, CHU, Angers, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| |
Collapse
|
19
|
Tiet P, Berlin JM. Exploiting homing abilities of cell carriers: Targeted delivery of nanoparticles for cancer therapy. Biochem Pharmacol 2017; 145:18-26. [PMID: 28941937 DOI: 10.1016/j.bcp.2017.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
Off target toxicities is one of the hallmarks of conventional chemotherapy as only a tiny percentage of the injected dose actually reaches the tumor(s). Numerous strategies have been employed in attempts to achieve targeted therapeutic delivery to tumors. One strategy that has received immense attention has been the packaging of these chemotherapeutics into nanoparticles and relying on the enhanced permeation and retention (EPR) effect for targeting. However, few, if any, nanoformulations have been used clinically that actually show enhanced drug delivery to tumors. There are a number of biological barriers to successful targeted delivery and nanoparticles large enough to theoretically benefit from the EPR effect predominantly accumulate in the liver and spleen after systemic administration. Nanoparticles that do reach the tumor will experience challenges such as difficulty penetrating deeply into tumors and rapid uptake by macrophages rather than tumor cells. In order to overcome this, researchers are investigating a new drug delivery system by utilizing T-cells, macrophages, or stem cells (Mesenchymal/Neural Stem Cells) and loading them with therapeutic nanoparticles for targeted delivery due to either their organotropic or tumor tropic migratory capabilities. By exploiting the migration and motility of these particular cells, researchers have delivered drug-loaded nanoparticles as well as nanoparticles for use in thermal ablation and magnetic field treatments, with the goals of decreasing off-target toxicities and increasing intratumoral distribution of the therapeutic payload. This is an inherently complex drug delivery system that requires optimization of multiple parameters - including cell type, payload, cell loading, release rate from nanoparticle and more - for success. Here we review recent advances and upcoming challenges for the field.
Collapse
Affiliation(s)
- Pamela Tiet
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, 11500 East Duarte Road, Duarte, CA 91010, United States.
| | - Jacob M Berlin
- Department of Molecular Medicine, Beckman Research Institute at City of Hope, 11500 East Duarte Road, Duarte, CA 91010, United States.
| |
Collapse
|
20
|
Huang L, Hu J, Huang S, Wang B, Siaw-Debrah F, Nyanzu M, Zhang Y, Zhuge Q. Nanomaterial applications for neurological diseases and central nervous system injury. Prog Neurobiol 2017; 157:29-48. [PMID: 28743465 DOI: 10.1016/j.pneurobio.2017.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
The effectiveness of noninvasive treatment for neurological disease is generally limited by the poor entry of therapeutic agents into the central nervous system (CNS). Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier thus, overcoming this problem has become one of the most significant challenges in the development of neurological therapeutics. Nanotechnology has emerged as an innovative alternative for treating neurological diseases. In fact, rapid advances in nanotechnology have provided promising solutions to this challenge. This review highlights the applications of nanomaterials in the developing neurological field and discusses the evidence for their efficacies.
Collapse
Affiliation(s)
- Lijie Huang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Jiangnan Hu
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Shengwei Huang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Brian Wang
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Felix Siaw-Debrah
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Mark Nyanzu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Yu Zhang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Qichuan Zhuge
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China.
| |
Collapse
|
21
|
Abstract
Glioblastoma multiforme (GBM) are extremely lethal and still poorly treated primary brain tumors, characterized by the presence of highly tumorigenic cancer stem cell (CSC) subpopulations, considered responsible for tumor relapse. In order to successfully eradicate GBM growth and recurrence, new anti-cancer strategies selectively targeting CSCs should be designed. CSCs might be eradicated by targeting some of their cell surface markers and transporters, inducing their differentiation, impacting their hyper-glycolytic metabolism, inhibiting CSC-related signaling pathways and/or by targeting their microenvironmental niche. In this regard, phytocompounds such as curcumin, isothiocyanates, resveratrol and epigallocatechin-3-gallate have been shown to prevent or reverse cancer-related epigenetic dysfunctions, reducing tumorigenesis, preventing metastasis and/or increasing chemotherapy and radiotherapy efficacy. However, the actual bioavailability and metabolic processing of phytocompounds is generally unknown, and the presence of the blood brain barrier often represents a limitation to glioma treatments. Nowadays, nanoparticles (NPs) can be loaded with therapeutic compounds such as phytochemicals, improving their bioavailability and their targeted delivery within the GBM tumor bulk. Moreover, NPs can be designed to increase their tropism and specificity toward CSCs by conjugating their surface with antibodies specific for CSC antigens, with ligands or with glucose analogues. Here we discuss the use of phytochemicals as anti-glioma agents and the applicability of phytochemical-loaded NPs as drug delivery systems to target GBM. Additionally, we provide some examples on how NPs can be specifically formulated to improve CSC targeting.
Collapse
|
22
|
Amiri A, Le PU, Moquin A, Machkalyan G, Petrecca K, Gillard JW, Yoganathan N, Maysinger D. Inhibition of carbonic anhydrase IX in glioblastoma multiforme. Eur J Pharm Biopharm 2016; 109:81-92. [PMID: 27702686 DOI: 10.1016/j.ejpb.2016.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/06/2016] [Accepted: 09/28/2016] [Indexed: 11/25/2022]
Abstract
Carbonic anhydrase IX (CAIX) is a transmembrane enzyme upregulated in several types of tumors including glioblastoma multiforme (GBM). GBM is among the most aggressive tumors among gliomas. Temozolomide (TMZ) therapy combined with surgical or radiation approaches is the standard treatment but not effective in long term. In this study we tested the treatment with acetazolamide (ATZ), an inhibitor of CAIX, alone or combined with TMZ. The experiments were performed in 2D and 3D cultures (spheroids) using glioblastoma U251N and human brain tumor stem cells (BTSCs). Several proteins implicated in tumor cell death were also investigated. The key results from these studies suggest the following: (1) Cell death of human glioblastoma spheroids and BTSC is significantly increased with combined treatment after 7 days, and (2) the effectiveness of ATZ is significantly enhanced against BTSC and U251N when incorporated into nano-carriers. Collectively, these results point toward the usefulness of nano-delivery of CAIX inhibitors and their combination with chemotherapeutics for glioblastoma treatment.
Collapse
Affiliation(s)
- Abdolali Amiri
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Phuong Uyen Le
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Alexandre Moquin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Gayane Machkalyan
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - John W Gillard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada; Kalgene Pharmaceuticals, Innovation Park at Queens University, Kingston K7L 3N6, Ontario, Canada
| | - Nathan Yoganathan
- Kalgene Pharmaceuticals, Innovation Park at Queens University, Kingston K7L 3N6, Ontario, Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
23
|
Lemée JM, Clavreul A, Menei P. Intratumoral heterogeneity in glioblastoma: don't forget the peritumoral brain zone. Neuro Oncol 2015. [PMID: 26203067 DOI: 10.1093/neuonc/nov119] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GB) is the most frequent and aggressive primary tumor of the central nervous system. Prognosis remains poor despite ongoing progress. In cases where the gadolinium-enhanced portion of the GB is completely resected, 90% of recurrences occur at the margin of surgical resection in the macroscopically normal peritumoral brain zone (PBZ). Intratumoral heterogeneity in GB is currently a hot topic in neuro-oncology, and the GB PBZ may be involved in this phenomenon. Indeed, this region, which possesses specific properties, has been less studied than the core of the GB tumor. The high rate of local recurrence in the PBZ and the limited success of targeted therapies against GB demonstrate the need for a better understanding of the PBZ. We present here a review of the literature on the GB PBZ, focusing on its radiological, cellular, and molecular characteristics. We discuss how intraoperative analysis of the PBZ is important for the optimization of surgical resection and the development of targeted therapies against GB.
Collapse
Affiliation(s)
- Jean-Michel Lemée
- Department of Neurosurgery, University Hospital of Angers, Angers, France (J.-M.L., A.C., P.M.); INSERM U1066, "Micro- et nano-médecine biomimétiques", Angers, France (J.-M.L., A.C., P.M.)
| | - Anne Clavreul
- Department of Neurosurgery, University Hospital of Angers, Angers, France (J.-M.L., A.C., P.M.); INSERM U1066, "Micro- et nano-médecine biomimétiques", Angers, France (J.-M.L., A.C., P.M.)
| | - Philippe Menei
- Department of Neurosurgery, University Hospital of Angers, Angers, France (J.-M.L., A.C., P.M.); INSERM U1066, "Micro- et nano-médecine biomimétiques", Angers, France (J.-M.L., A.C., P.M.)
| |
Collapse
|
24
|
Kim C, Tonga GY, Yan B, Kim CS, Kim ST, Park MH, Zhu Z, Duncan B, Creran B, Rotello VM. Regulating exocytosis of nanoparticles via host-guest chemistry. Org Biomol Chem 2015; 13:2474-2479. [PMID: 25569869 PMCID: PMC4323993 DOI: 10.1039/c4ob02433h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Prolonged retention of internalized nanoparticulate systems inside cells improves their efficacy in imaging, drug delivery, and theranostic applications. Especially, regulating exocytosis of the nanoparticles is a key factor in the fabrication of effective nanocarriers for chemotherapeutic treatments but orthogonal control of exocytosis in the cellular environment is a major challenge. Herein, we present the first example of regulating exocytosis of gold nanoparticles (AuNPs), a model drug carrier, by using a simple host-guest supramolecular system. AuNPs featuring quaternary amine head groups were internalized into the cells through endocytosis. Subsequent in situ treatment of a complementary cucurbit[7]uril (CB[7]) to the amine head groups resulted in the AuNP-CB[7] complexation inside cells, rendering particle assembly. This complexation induced larger particle assemblies that remained sequestered in the endosomes, inhibiting exocytosis of the particles without any observed cytotoxicity.
Collapse
Affiliation(s)
- Chaekyu Kim
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Gulen Yesilbag Tonga
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Bo Yan
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Chang Soo Kim
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Sung Tae Kim
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Myoung-Hwan Park
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Zhengjiang Zhu
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Bradley Duncan
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Brian Creran
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
25
|
Chiarelli PA, Kievit FM, Zhang M, Ellenbogen RG. Bionanotechnology and the future of glioma. Surg Neurol Int 2015; 6:S45-58. [PMID: 25722933 PMCID: PMC4338483 DOI: 10.4103/2152-7806.151334] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 01/01/2023] Open
Abstract
Designer nanoscaled materials have the potential to revolutionize diagnosis and treatment for glioma. This review summarizes current progress in nanoparticle-based therapies for glioma treatment including targeting, drug delivery, gene delivery, and direct tumor ablation. Preclinical and current human clinical trials are discussed. Although progress in the field has been significant over the past decade, many successful strategies demonstrated in the laboratory have yet to be implemented in human clinical trials. Looking forward, we provide examples of combined treatment strategies, which harness the potential for nanoparticles to interact with their biochemical environment, and simultaneously with externally applied photons or magnetic fields. We present our notion of the "ideal" nanoparticle for glioma, a concept that may soon be realized.
Collapse
Affiliation(s)
- Peter A Chiarelli
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| | - Forrest M Kievit
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| | - Miqin Zhang
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA ; Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
26
|
Clavreul A, Montagu A, Lainé AL, Tétaud C, Lautram N, Franconi F, Passirani C, Vessières A, Montero-Menei CN, Menei P. Targeting and treatment of glioblastomas with human mesenchymal stem cells carrying ferrociphenol lipid nanocapsules. Int J Nanomedicine 2015; 10:1259-71. [PMID: 25709447 PMCID: PMC4335613 DOI: 10.2147/ijn.s69175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recently developed drug delivery nanosystems, such as lipid nanocapsules (LNCs), hold great promise for the treatment of glioblastomas (GBs). In this study, we used a subpopulation of human mesenchymal stem cells, “marrow-isolated adult multilineage inducible” (MIAMI) cells, which have endogenous tumor-homing activity, to deliver LNCs containing an organometallic complex (ferrociphenol or Fc-diOH), in the orthotopic U87MG GB model. We determined the optimal dose of Fc-diOH-LNCs that can be carried by MIAMI cells and compared the efficacy of Fc-diOH-LNC-loaded MIAMI cells with that of the free-standing Fc-diOH-LNC system. We showed that MIAMI cells entrapped an optimal dose of about 20 pg Fc-diOH per cell, with no effect on cell viability or migration capacity. The survival of U87MG-bearing mice was longer after the intratumoral injection of Fc-diOH-LNC-loaded MIAMI cells than after the injection of Fc-diOH-LNCs alone. The greater effect of the Fc-diOH-LNC-loaded MIAMI cells may be accounted for by their peritumoral distribution and a longer residence time of the drug within the tumor. These results confirm the potential of combinations of stem cell therapy and nanotechnology to improve the local tissue distribution of anticancer drugs in GB.
Collapse
Affiliation(s)
- Anne Clavreul
- Département de Neurochirurgie, Centre Hospitalier Universitaire, Angers, France
| | - Angélique Montagu
- INSERM UMR-S 1066, Université d'Angers, LUNAM Université, Angers, France
| | - Anne-Laure Lainé
- INSERM UMR-S 1066, Université d'Angers, LUNAM Université, Angers, France
| | - Clément Tétaud
- INSERM UMR-S 1066, Université d'Angers, LUNAM Université, Angers, France
| | - Nolwenn Lautram
- INSERM UMR-S 1066, Université d'Angers, LUNAM Université, Angers, France
| | | | | | | | | | - Philippe Menei
- Département de Neurochirurgie, Centre Hospitalier Universitaire, Angers, France
| |
Collapse
|
27
|
Skin cancer and new treatment perspectives: A review. Cancer Lett 2015; 357:8-42. [DOI: 10.1016/j.canlet.2014.11.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 12/25/2022]
|
28
|
Miao ZL, Deng YJ, DU HY, Suo XB, Wang XY, Wang X, Wang L, Cui LJ, Duan N. Preparation of a liposomal delivery system and its in vitro release of rapamycin. Exp Ther Med 2015; 9:941-946. [PMID: 25667657 PMCID: PMC4316897 DOI: 10.3892/etm.2015.2201] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 12/16/2014] [Indexed: 01/16/2023] Open
Abstract
The aim of this study was to prepare a liposomal delivery system for rapamycin and study its in vitro release characteristics. The results may provide a foundation for the further development of a liposomal delivery system for rapamycin and the establishment of a new active treatment method targeted towards the cellular components of atherosclerotic plaques. The ethanol injection method was used to prepare rapamycin-containing liposomes. The formulation was optimized by orthogonal design, and the degree of rapamycin release by the liposomes was measured by the reverse dialysis method. Orthogonal testing showed that the optimum formulation had a phospholipid concentration of 4%, a phospholipid-cholesterol mass ratio of 8:1, a drug-lipid mass ratio of 1:20 and an aqueous phase pH of 7.4. Rapamycin-containing liposomes with an encapsulation efficiency of 82.11±2.13% were prepared, and the in vitro release of rapamycin from the liposomes complied with a first-order kinetic equation. In conclusion, the formulation was optimized, the prepared liposomes had a high rapamycin encapsulation rate and good reproducibility, and their in vitro release had a certain delayed-release effect.
Collapse
Affiliation(s)
- Zhi-Lin Miao
- Heart Center, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Ying-Jie Deng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Hong-Yang DU
- Dalian Medical University Graduate School, Dalian, Liaoning 116044, P.R. China
| | - Xu-Bin Suo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xiao-Yu Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xiao Wang
- Dalian Medical University Graduate School, Dalian, Liaoning 116044, P.R. China
| | - Li Wang
- Heart Center, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Li-Jie Cui
- Heart Center, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Na Duan
- Heart Center, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
29
|
Young JS, Kim JW, Ahmed AU, Lesniak MS. Therapeutic cell carriers: a potential road to cure glioma. Expert Rev Neurother 2015; 14:651-60. [PMID: 24852229 DOI: 10.1586/14737175.2014.917964] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many different experimental molecular therapeutic approaches have been evaluated in an attempt to treat brain cancer. However, despite the success of these experimental molecular therapies, research has shown that the specific and efficient delivery of therapeutic agents to tumor cells is a limitation. In this regard, cell carrier systems have garnered significant attraction due to their capacity to be loaded with therapeutic agents and carry them specifically to tumor sites. Furthermore, cell carriers can be genetically modified to express therapeutic agents that can directly eradicate cancerous cells or can modulate tumor microenvironments. This review describes the current state of cell carriers, their use as vehicles for the delivery of therapeutic agents to brain tumors, and future directions that will help overcome the present obstacles to cell carrier mediated therapy for brain cancer.
Collapse
Affiliation(s)
- Jacob S Young
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
30
|
Zhang X, Yao S, Liu C, Jiang Y. Tumor tropic delivery of doxorubicin-polymer conjugates using mesenchymal stem cells for glioma therapy. Biomaterials 2015; 39:269-81. [DOI: 10.1016/j.biomaterials.2014.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/21/2014] [Accepted: 11/03/2014] [Indexed: 12/30/2022]
|
31
|
Zong T, Mei L, Gao H, Shi K, Chen J, Wang Y, Zhang Q, Yang Y, He Q. Enhanced Glioma Targeting and Penetration by Dual-Targeting Liposome Co-modified with T7 and TAT. J Pharm Sci 2014; 103:3891-3901. [DOI: 10.1002/jps.24186] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 11/09/2022]
|
32
|
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. BIOMED RESEARCH INTERNATIONAL 2014; 2014:869269. [PMID: 25136634 PMCID: PMC4127280 DOI: 10.1155/2014/869269] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/31/2014] [Accepted: 06/05/2014] [Indexed: 12/12/2022]
Abstract
Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- Department of Zoology, DDU Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|
33
|
Young JS, Morshed RA, Kim JW, Balyasnikova IV, Ahmed AU, Lesniak MS. Advances in stem cells, induced pluripotent stem cells, and engineered cells: delivery vehicles for anti-glioma therapy. Expert Opin Drug Deliv 2014; 11:1733-46. [PMID: 25005767 DOI: 10.1517/17425247.2014.937420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION A limitation of small molecule inhibitors, nanoparticles (NPs) and therapeutic adenoviruses is their incomplete distribution within the entirety of solid tumors such as malignant gliomas. Currently, cell-based carriers are making their way into the clinical setting as they offer the potential to selectively deliver many types of therapies to cancer cells. AREAS COVERED Here, we review the properties of stem cells, induced pluripotent stem cells and engineered cells that possess the tumor-tropic behavior necessary to serve as cell carriers. We also report on the different types of therapeutic agents that have been delivered to tumors by these cell carriers, including: i) therapeutic genes; ii) oncolytic viruses; iii) NPs; and iv) antibodies. The current challenges and future promises of cell-based drug delivery are also discussed. EXPERT OPINION While the emergence of stem cell-mediated therapy has resulted in promising preclinical results and a human clinical trial utilizing this approach is currently underway, there is still a need to optimize these delivery platforms. By improving the loading of therapeutic agents into stem cells and enhancing their migratory ability and persistence, significant improvements in targeted cancer therapy may be achieved.
Collapse
Affiliation(s)
- Jacob S Young
- The University of Chicago Pritzker School of Medicine , 5841 South Maryland Ave., M/C 3026, Chicago, IL 60637 , USA
| | | | | | | | | | | |
Collapse
|
34
|
Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides 2014; 57:78-94. [PMID: 24795041 DOI: 10.1016/j.peptides.2014.04.015] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/19/2014] [Accepted: 04/19/2014] [Indexed: 01/24/2023]
Abstract
Efficient delivery of therapeutic and diagnostic molecules to the cells and tissues is a difficult challenge. The cellular membrane is very effective in its role as a selectively permeable barrier. While it is essential for cell survival and function, also presents a major barrier for intracellular delivery of cargo such as therapeutic and diagnostic agents. In recent years, cell-penetrating peptides (CPPs), that are relatively short cationic and/or amphipathic peptides, received great attention as efficient cellular delivery vectors due to their intrinsic ability to enter cells and mediate uptake of a wide range of macromolecular cargo such as plasmid DNA (pDNA), small interfering RNA (siRNAs), drugs, and nanoparticulate pharmaceutical carriers. This review discusses the various uptake mechanisms of these peptides. Furthermore, we discuss recent advances in the use of CPP for the efficient delivery of nanoparticles, nanocarriers, DNA, siRNA, and anticancer drugs to the cells. In addition, we have been highlighting new results for improving endosomal escape of CPP-cargo molecules. Finally, pH-responsive and activable CPPs for tumor-targeting therapy have been described.
Collapse
Affiliation(s)
- Samad Mussa Farkhani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Alireza Valizadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran.
| | - Hadi Karami
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Sardasht, 38481 Arak, Iran.
| | - Samane Mohammadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran.
| | - Nasrin Sohrabi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran.
| | - Fariba Badrzadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, 51664 Tabriz, Iran.
| |
Collapse
|
35
|
Saenz del Burgo L, Hernández RM, Orive G, Pedraz JL. Nanotherapeutic approaches for brain cancer management. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:905-19. [DOI: 10.1016/j.nano.2013.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/10/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
|
36
|
Zhang B, Shen S, Liao Z, Shi W, Wang Y, Zhao J, Hu Y, Yang J, Chen J, Mei H, Hu Y, Pang Z, Jiang X. Targeting fibronectins of glioma extracellular matrix by CLT1 peptide-conjugated nanoparticles. Biomaterials 2014; 35:4088-98. [PMID: 24513320 DOI: 10.1016/j.biomaterials.2014.01.046] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/19/2014] [Indexed: 01/14/2023]
Abstract
The abundant extracellular matrix (ECM) in the glioma microenvironment play a critical role in the maintenance of glioma morphology, glioma cells differentiation and proliferation, but little has been done to understand the feasibility of ECM as the therapeutic target for glioma therapy. In this study, a drug delivery system targeting fibronectins (FNs), a prevailing component in the ECM of many solid tumors, was constructed for glioma therapy based on the interaction between the abundant FNs in glioma tissues and the FNs-targeting moiety CLT1 peptide. CLT1 peptide was successfully conjugated to PEG-PLA nanoparticles (CNP). FNs were demonstrated to be highly expressed in the ECM of glioma spheroids in vitro and glioma tissues in vivo. CLT1 modification favored targeting nanoparticles penetration into the core of glioma spheroids and consequently induced more severe inhibitive effects on glioma spheroids growth than traditional NP. In vivo imaging, ex vivo imaging and glioma tissue slides showed that CNP enhanced nanoparticles retention in glioma site, distributed more extensively and more deeply into glioma tissues than that of conventional NP, and mainly located in glioma cells rather than in extracellular matrix as conventional NP. Pharmacodynamics outcomes revealed that the median survival time of glioma-bearing mice models treated with paclitaxel-loaded CNP (CNP-PTX) was significantly prolonged when compared with that of any other group. TUNEL assay demonstrated that more extensive cell apoptosis was induced by CNP-PTX treatment compared with other treatments. Altogether, these promising results indicated that this ECM-targeting drug delivery system enhanced retention and glioma cell uptake of nanoparticles and might have a great potential for glioma therapy in clinical applications.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, PR China
| | - Shun Shen
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Ziwei Liao
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, PR China
| | - Yu Wang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Jingjing Zhao
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Yue Hu
- College of Pharmacy, Jiamusi University, Jiamusi 154007, PR China
| | - Jiarong Yang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, PR China
| | - Jun Chen
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, PR China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, PR China.
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, PR China.
| | - Xinguo Jiang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, PR China
| |
Collapse
|
37
|
Cheng Y, Morshed R, Cheng SH, Tobias A, Auffinger B, Wainwright DA, Zhang L, Yunis C, Han Y, Chen CT, Lo LW, Aboody KS, Ahmed AU, Lesniak MS. Nanoparticle-programmed self-destructive neural stem cells for glioblastoma targeting and therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:4123-9. [PMID: 23873826 PMCID: PMC3879136 DOI: 10.1002/smll.201301111] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/29/2013] [Indexed: 05/18/2023]
Abstract
A 3-step glioblastoma-tropic delivery and therapy method using nanoparticle programmed self-destructive neural stem cells (NSCs) is demonstrated in vivo: 1) FDA-approved NSCs for clinical trials are loaded with pH-sensitive MSN-Dox; 2) the nanoparticle conjugates provide a delayed drug-releasing mechanism and allow for NSC migration towards a distant tumor site; 3) NSCs eventually undergo cell death and release impregnated MSN-Dox, which subsequently induces toxicity towards surrounding glioma cells.
Collapse
Affiliation(s)
- Yu Cheng
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Ramin Morshed
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Shih-Hsun Cheng
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | - Alex Tobias
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Brenda Auffinger
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | | | - Lingjiao Zhang
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Catherine Yunis
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Yu Han
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | - Leu-Wei Lo
- Division of Medical Engineering, National Health Research Institute, Taiwan
| | - Karen S. Aboody
- Department of Neuroscience, City of Hope National Medical Center and Beckman Research Institute Duarte, California, USA
| | - Atique U. Ahmed
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Maciej S. Lesniak
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
38
|
Auffinger B, Morshed R, Tobias A, Cheng Y, Ahmed AU, Lesniak MS. Drug-loaded nanoparticle systems and adult stem cells: a potential marriage for the treatment of malignant glioma? Oncotarget 2013; 4:378-96. [PMID: 23594406 PMCID: PMC3717302 DOI: 10.18632/oncotarget.937] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite all recent advances in malignant glioma research, only modest progress has been achieved in improving patient prognosis and quality of life. Such a clinical scenario underscores the importance of investing in new therapeutic approaches that, when combined with conventional therapies, are able to effectively eradicate glioma infiltration and target distant tumor foci. Nanoparticle-loaded delivery systems have recently arisen as an exciting alternative to improve targeted anti-glioma drug delivery. As drug carriers, they are able to efficiently protect the therapeutic agent and allow for sustained drug release. In addition, their surface can be easily manipulated with the addition of special ligands, which are responsible for enhancing tumor-specific nanoparticle permeability. However, their inefficient intratumoral distribution and failure to target disseminated tumor burden still pose a big challenge for their implementation as a therapeutic option in the clinical setting. Stem cell-based delivery of drug-loaded nanoparticles offers an interesting option to overcome such issues. Their ability to incorporate nanoparticles and migrate throughout interstitial barriers, together with their inherent tumor-tropic properties and synergistic anti-tumor effects make these stem cell carriers a good fit for such combined therapy. In this review, we will describe the main nanoparticle delivery systems that are presently available in preclinical and clinical studies. We will discuss their mechanisms of targeting, current delivery methods, attractive features and pitfalls. We will also debate the potential applications of stem cell carriers loaded with therapeutic nanoparticles in anticancer therapy and why such an attractive combined approach has not yet reached clinical trials.
Collapse
Affiliation(s)
- Brenda Auffinger
- Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
39
|
Hu Q, Gao X, Gu G, Kang T, Tu Y, Liu Z, Song Q, Yao L, Pang Z, Jiang X, Chen H, Chen J. Glioma therapy using tumor homing and penetrating peptide-functionalized PEG-PLA nanoparticles loaded with paclitaxel. Biomaterials 2013; 34:5640-50. [PMID: 23639530 DOI: 10.1016/j.biomaterials.2013.04.025] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/10/2013] [Indexed: 02/05/2023]
Abstract
By taking advantage of the excessively upregulated expression of neuropilin (NRP) on the surface of both glioma cells and endothelial cells of angiogenic blood vessels, the ligand of NRP with high affinity - tLyp-1 peptide, which also contains a CendR motif ((R/K)XX(R/K)), was functionalized to the surface of PEG-PLA nanoparticles (tLyp-1-NP) to mediate its tumor homing, vascular extravasation and deep penetration into the glioma parenchyma. The tLyp-1-NP was prepared via a maleimide-thiol coupling reaction with uniformly spherical shape under TEM and particle size of 111.30 ± 15.64 nm. tLyp-1-NP exhibited enhanced cellular uptake in both human umbilical vein endothelial cells and Rat C6 glioma cells, increased cytotoxicity of the loaded PTX, and improved penetration and growth inhibition in avascular C6 glioma spheroids. Selective accumulation and deep penetration of tLyp-1-NP at the glioma site was confirmed by in vivo imaging and glioma distribution analysis. The longest survival was achieved by those mice bearing intracranial C6 glioma treated with PTX-loaded tLyp-1-NP. The findings here strongly indicate that tLyp-1 peptide-functionalized nanoparticulate DDS could significantly improve the efficacy of paclitaxel glioma therapy.
Collapse
Affiliation(s)
- Quanyin Hu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ramm Sander P, Hau P, Koch S, Schütze K, Bogdahn U, Kalbitzer HR, Aigner L. Stem cell metabolic and spectroscopic profiling. Trends Biotechnol 2013; 31:204-13. [PMID: 23384506 DOI: 10.1016/j.tibtech.2013.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/21/2012] [Accepted: 01/09/2013] [Indexed: 12/14/2022]
Abstract
Stem cells offer great potential for regenerative medicine because they regenerate damaged tissue by cell replacement and/or by stimulating endogenous repair mechanisms. Although stem cells are defined by their functional properties, such as the potential to proliferate, to self-renew, and to differentiate into specific cell types, their identification based on the expression of specific markers remains vague. Here, profiles of stem cell metabolism might highlight stem cell function more than the expression of single genes/markers. Thus, systematic approaches including spectroscopy might yield insight into stem cell function, identity, and stemness. We review the findings gained by means of metabolic and spectroscopic profiling methodologies, for example, nuclear magnetic resonance spectroscopy (NMRS), mass spectrometry (MS), and Raman spectroscopy (RS), with a focus on neural stem cells and neurogenesis.
Collapse
Affiliation(s)
- Paul Ramm Sander
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
F3 peptide-functionalized PEG-PLA nanoparticles co-administrated with tLyp-1 peptide for anti-glioma drug delivery. Biomaterials 2013; 34:1135-45. [DOI: 10.1016/j.biomaterials.2012.10.048] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 10/20/2012] [Indexed: 01/23/2023]
|
42
|
Daneman R. The blood-brain barrier in health and disease. Ann Neurol 2012; 72:648-72. [DOI: 10.1002/ana.23648] [Citation(s) in RCA: 482] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 12/12/2022]
|
43
|
Auffinger B, Thaci B, Nigam P, Rincon E, Cheng Y, Lesniak MS. New therapeutic approaches for malignant glioma: in search of the Rosetta stone. F1000 MEDICINE REPORTS 2012; 4:18. [PMID: 22991580 PMCID: PMC3438652 DOI: 10.3410/m4-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Malignant gliomas are heterogeneous, diffuse and highly infiltrating by nature. Despite wide surgical resection and improvements in radio- and chemotherapies, the prognosis of patients with glioblastoma multiforme remains extremely poor, with a median survival time of only 14.5 months from diagnosis to death. Particular challenges for glioblastoma multiforme therapy are posed by limitations in the extent of feasible surgical resections, distinct tumor heterogeneity, difficulties in drug delivery across the blood-brain barrier and low drug distribution within the tumor. Therefore, new paradigms permitting tumor-specific targeting and extensive intratumoral distribution must be developed to allow an efficient therapeutic delivery. This review highlights the latest advances in the treatment of glioblastoma multiforme and the recent developments that have resulted from the interchange between preclinical and clinical efforts. We also summarize and discuss novel therapies for malignant glioma, focusing on advances in the following main topics of glioblastoma multiforme therapy: immunotherapy, gene therapy, stem cell-based therapies and nanotechnology. We discuss strategies and outcomes of emerging therapeutic approaches in these fields, and the main challenges associated with the integration of discoveries that occur in the laboratory into clinical practice.
Collapse
Affiliation(s)
- Brenda Auffinger
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine5841 South Maryland Ave, M/C 3026, Chicago, IL 60637
| | - Bart Thaci
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine5841 South Maryland Ave, M/C 3026, Chicago, IL 60637
| | - Pragati Nigam
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine5841 South Maryland Ave, M/C 3026, Chicago, IL 60637
| | - Esther Rincon
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine5841 South Maryland Ave, M/C 3026, Chicago, IL 60637
| | - Yu Cheng
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine5841 South Maryland Ave, M/C 3026, Chicago, IL 60637
| | - Maciej S. Lesniak
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine5841 South Maryland Ave, M/C 3026, Chicago, IL 60637
| |
Collapse
|
44
|
Roger M, Clavreul A, Sindji L, Chassevent A, Schiller PC, Montero-Menei CN, Menei P. In vitro and in vivo interactions between glioma and marrow-isolated adult multilineage inducible (MIAMI) cells. Brain Res 2012; 1473:193-203. [PMID: 22819930 DOI: 10.1016/j.brainres.2012.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/04/2012] [Accepted: 07/16/2012] [Indexed: 12/14/2022]
Abstract
The prognosis of patients with malignant glioma remains extremely poor despite surgery and improvements in radio- and chemo-therapies. We recently showed that marrow-isolated adult mutilineage inducible (MIAMI) cells, a subpopulation of human mesenchymal stromal cells (MSCs), can serve as cellular carriers of drug-loaded nanoparticles to brain tumors. However, the safety of MIAMI cells as cellular treatment vectors in glioma therapy must be evaluated, in particular their effect on glioma growth and their fate in a tumor environment. In this study, we showed that MIAMI cells were able to specifically migrate toward the orthotopic U87MG tumor model and did not influence its growth. In this model, MIAMI cells did not give rise to cells resembling endothelial cells, pericytes, cancer-associated fibroblasts (CAFs), or astrocytes. Despite these encouraging results, the effects of MIAMI cells may be glioma-dependent. MIAMI cells did not migrate toward the orthotopic Lab1 GB and they can induce the proliferation of other glioma cell lines in vitro. Furthermore, a fraction of MIAMI cells was found to be in a state of proliferation in the U87MG tumor environment. These findings indicate that the use of MIAMI cells as cellular treatment vectors for malignant tumors must be controlled. These cells may be used as "suicide vectors": vectors for killing not only tumor cells but themselves.
Collapse
Affiliation(s)
- Mathilde Roger
- LUNAM Université, INSERM UMR-1066, Micro- et Nanomédecines Biomimétiques, 4 rue Larrey, 49933 ANGERS cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Lima FRS, Kahn SA, Soletti RC, Biasoli D, Alves T, da Fonseca ACC, Garcia C, Romão L, Brito J, Holanda-Afonso R, Faria J, Borges H, Moura-Neto V. Glioblastoma: therapeutic challenges, what lies ahead. Biochim Biophys Acta Rev Cancer 2012; 1826:338-49. [PMID: 22677165 DOI: 10.1016/j.bbcan.2012.05.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/25/2012] [Accepted: 05/26/2012] [Indexed: 12/17/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive human cancers. Despite current advances in multimodality therapies, such as surgery, radiotherapy and chemotherapy, the outcome for patients with high grade glioma remains fatal. The knowledge of how glioma cells develop and depend on the tumor environment might open opportunities for new therapies. There is now a growing awareness that the main limitations in understanding and successfully treating GBM might be bypassed by the identification of a distinct cell type that has defining properties of somatic stem cells, as well as cancer-initiating capacity - brain tumor stem cells, which could represent a therapeutic target. In addition, experimental studies have demonstrated that the combination of antiangiogenic therapy, based on the disruption of tumor blood vessels, with conventional chemotherapy generates encouraging results. Emerging reports have also shown that microglial cells can be used as therapeutic vectors to transport genes and/or substances to the tumor site, which opens up new perspectives for the development of GBM therapies targeting microglial cells. Finally, recent studies have shown that natural toxins can be conjugated to drugs that bind to overexpressed receptors in cancer cells, generating targeted-toxins to selectively kill cancer cells. These targeted-toxins are highly effective against radiation- and chemotherapy-resistant cancer cells, making them good candidates for clinical trials in GBM patients. In this review, we discuss recent studies that reveal new possibilities of GBM treatment taking into account cancer stem cells, angiogenesis, microglial cells and drug delivery in the development of new targeted-therapies.
Collapse
Affiliation(s)
- Flavia R S Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Perán M, García MA, López-Ruiz E, Bustamante M, Jiménez G, Madeddu R, Marchal JA. Functionalized nanostructures with application in regenerative medicine. Int J Mol Sci 2012; 13:3847-3886. [PMID: 22489186 PMCID: PMC3317746 DOI: 10.3390/ijms13033847] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/03/2012] [Accepted: 03/06/2012] [Indexed: 12/16/2022] Open
Abstract
In the last decade, both regenerative medicine and nanotechnology have been broadly developed leading important advances in biomedical research as well as in clinical practice. The manipulation on the molecular level and the use of several functionalized nanoscaled materials has application in various fields of regenerative medicine including tissue engineering, cell therapy, diagnosis and drug and gene delivery. The themes covered in this review include nanoparticle systems for tracking transplanted stem cells, self-assembling peptides, nanoparticles for gene delivery into stem cells and biomimetic scaffolds useful for 2D and 3D tissue cell cultures, transplantation and clinical application.
Collapse
Affiliation(s)
- Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén E-23071, Spain; E-Mails: (M.P.); (E.L.-R.)
| | - María A. García
- Research Unit, Hospital Universitario Virgen de las Nieves, Granada E-18014, Spain; E-Mail:
| | - Elena López-Ruiz
- Department of Health Sciences, University of Jaén, Jaén E-23071, Spain; E-Mails: (M.P.); (E.L.-R.)
| | - Milán Bustamante
- Biosciences Institute, University College Cork, Cork, Ireland; E-Mail:
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Biomedical Research Centre, University of Granada, Granada E-18100, Spain; E-Mail:
| | - Roberto Madeddu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; E-Mail:
| | - Juan A. Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Biomedical Research Centre, University of Granada, Granada E-18100, Spain; E-Mail:
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada E-18012, Spain
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-958-249-321; Fax: +34-958-246-296
| |
Collapse
|
47
|
Omidi Y, Barar J. Impacts of blood-brain barrier in drug delivery and targeting of brain tumors. BIOIMPACTS : BI 2012; 2:5-22. [PMID: 23678437 DOI: 10.5681/bi.2012.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 11/26/2011] [Accepted: 12/20/2011] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Entry of blood circulating agents into the brain is highly selectively con-trolled by specific transport machineries at the blood brain barrier (BBB), whose excellent barrier restrictiveness make brain drug delivery and targeting very challenging. METHODS Essential information on BBB cellular microenvironment were reviewed and discussed towards impacts of BBB on brain drug delivery and targeting. RESULTS Brain capillary endothelial cells (BCECs) form unique biological structure and architecture in association with astrocytes and pericytes, in which microenvironment the BCECs express restrictive tight junctional complexes that block the paracellular inward/outward traverse of biomolecules/compounds. These cells selectively/specifically control the transportation process through carrier and/or receptor mediated transport machineries that can also be exploited for the delivery of pharmaceuticals into the brain. Intelligent molecular therapies should be designed using such transport machineries for the efficient delivery of designated drugs into the brain. For better clinical outcomes, these smart pharmaceuticals should be engineered as seamless nanosystems to provide simultaneous imaging and therapy (multimodal theranostics). CONCLUSION The exceptional functional presence of BBB selectively controls inward and outward transportation mechanisms, thus advanced smart multifunctional nanomedicines are needed for the effective brain drug delivery and targeting. Fully understanding the biofunctions of BBB appears to be a central step for engineering of intelligent seamless therapeutics consisting of homing device for targeting, imaging moiety for detecting, and stimuli responsive device for on-demand liberation of therapeutic agent.
Collapse
Affiliation(s)
- Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran ; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
48
|
Abstract
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium into the basal and the apical (adluminal) compartments. Meiosis I and II, spermiogenesis, and spermiation all take place in a specialized microenvironment behind the BTB in the apical compartment, but spermatogonial renewal and differentiation and cell cycle progression up to the preleptotene spermatocyte stage take place outside of the BTB in the basal compartment of the epithelium. However, the BTB is not a static ultrastructure. Instead, it undergoes extensive restructuring during the seminiferous epithelial cycle of spermatogenesis at stage VIII to allow the transit of preleptotene spermatocytes at the BTB. Yet the immunological barrier conferred by the BTB cannot be compromised, even transiently, during the epithelial cycle to avoid the production of antibodies against meiotic and postmeiotic germ cells. Studies have demonstrated that some unlikely partners, namely adhesion protein complexes (e.g., occludin-ZO-1, N-cadherin-β-catenin, claudin-5-ZO-1), steroids (e.g., testosterone, estradiol-17β), nonreceptor protein kinases (e.g., focal adhesion kinase, c-Src, c-Yes), polarity proteins (e.g., PAR6, Cdc42, 14-3-3), endocytic vesicle proteins (e.g., clathrin, caveolin, dynamin 2), and actin regulatory proteins (e.g., Eps8, Arp2/3 complex), are working together, apparently under the overall influence of cytokines (e.g., transforming growth factor-β3, tumor necrosis factor-α, interleukin-1α). In short, a "new" BTB is created behind spermatocytes in transit while the "old" BTB above transiting cells undergoes timely degeneration, so that the immunological barrier can be maintained while spermatocytes are traversing the BTB. We also discuss recent findings regarding the molecular mechanisms by which environmental toxicants (e.g., cadmium, bisphenol A) induce testicular injury via their initial actions at the BTB to elicit subsequent damage to germ-cell adhesion, thereby leading to germ-cell loss, reduced sperm count, and male infertility or subfertility. Moreover, we also critically evaluate findings in the field regarding studies on drug transporters in the testis and discuss how these influx and efflux pumps regulate the entry of potential nonhormonal male contraceptives to the apical compartment to exert their effects. Collectively, these findings illustrate multiple potential targets are present at the BTB for innovative contraceptive development and for better delivery of drugs to alleviate toxicant-induced reproductive dysfunction in men.
Collapse
Affiliation(s)
- C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
49
|
Cao X, Geng J, Su S, Zhang L, Xu Q, Zhang L, Xie Y, Wu S, Sun Y, Gao Z. Doxorubicin-Loaded Zein in Situ Gel for Interstitial Chemotherapy. Chem Pharm Bull (Tokyo) 2012; 60:1227-33. [DOI: 10.1248/cpb.c12-00270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaoying Cao
- Department of Pharmacy, Hebei University of Science and Technology
| | - Jianning Geng
- Department of Pharmacy, Hebei University of Science and Technology
| | - Suwen Su
- Department of Pharmacology, Hebei Medical University
| | - Linan Zhang
- Department of Pharmacy, Hebei University of Science and Technology
| | - Qian Xu
- Department of CT, The Forth Hospital of Hebei Medical University
| | - Li Zhang
- Department of Pharmaceutics, New Drug Research and Development Center, North China Pharmaceutical Group Corporation
| | - Yinghua Xie
- Department of Pharmacy, Hebei University of Science and Technology
| | - Shaomei Wu
- Department of Pharmacy, Hebei University of Science and Technology
| | - Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology
| |
Collapse
|
50
|
Li L, Guan Y, Liu H, Hao N, Liu T, Meng X, Fu C, Li Y, Qu Q, Zhang Y, Ji S, Chen L, Chen D, Tang F. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS NANO 2011; 5:7462-70. [PMID: 21854047 DOI: 10.1021/nn202399w] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Low targeting efficiency is one of the biggest limitations for nanoparticulate drug delivery system-based cancer therapy. In this study, an efficient approach for tumor-targeted drug delivery was developed with mesenchymal stem cells as the targeting vehicle and a silica nanorattle as the drug carrier. A silica nanorattle-doxorubicin drug delivery system was efficiently anchored to mesenchymal stem cells (MSCs) by specific antibody-antigen recognitions at the cytomembrane interface without any cell preconditioning. Up to 1500 nanoparticles were uploaded to each MSC cell with high cell viability and tumor-tropic ability. The intracellular retention time of the silica nanorattle was no less than 48 h, which is sufficient for cell-directed tumor-tropic delivery. In vivo experiments proved that the burdened MSCs can track down the U251 glioma tumor cells more efficiently and deliver doxorubicin with wider distribution and longer retention lifetime in tumor tissues compared with free DOX and silica nanorattle-encapsulated DOX. The increased and prolonged DOX intratumoral distribution further contributed to significantly enhanced tumor-cell apoptosis. This strategy has potential to be developed as a robust and generalizable method for targeted tumor therapy with high efficiency and low systematic toxicity.
Collapse
Affiliation(s)
- Linlin Li
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|