1
|
Wang Z, Zhang J, Hu J, Yang G. Gene-activated titanium implants for gene delivery to enhance osseointegration. BIOMATERIALS ADVANCES 2022; 143:213176. [PMID: 36327825 DOI: 10.1016/j.bioadv.2022.213176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Osseointegration is the direct and intimate contact between mineralized tissue and titanium implant at the bone-implant interface. Early establishment and stable maintenance of osseointegration is the key to long-term implant success. However, in patients with compromised conditions such as osteoporosis and patients beginning early load-bearing activities such as walking, lower osseointegration around titanium implants is often observed, which might result in implant early failure. Gene-activated implants show an exciting prospect of combining gene delivery and biomedical implants to solve the problems of poor osseointegration formation, overcoming the shortcomings of protein therapy, including rapid degradation and overdose adverse effects. The conception of gene-activated titanium implants is based on "gene-activated matrix" (GAM), which means scaffolds using non-viral vectors for in situ gene delivery to achieve a long-term and efficient transfection of target cells. Current preclinical studies in animal models have shown that plasmid DNA (pDNA), microRNA (miRNA), and small interference RNA (siRNA) functionalized titanium implants can enhance osseointegration with safety and efficiency, leading to the expectation of applying this technique in dental and orthopedic clinical scenarios. This review aims to comprehensively summarize fabrication strategies, current applications, and futural outlooks of gene-activated implants, emphasizing nucleic acid targets, non-viral vectors, implant surface modification techniques, nucleic acid/vector complexes loading strategies.
Collapse
Affiliation(s)
- Zhikang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jing Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jinxing Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
2
|
Wang Y, Wang N, Yang Y, Chen Y, Zhang Z. Cellular nanomechanics derived from pattern-dependent focal adhesion and cytoskeleton to balance gene transfection of malignant osteosarcoma. J Nanobiotechnology 2022; 20:499. [DOI: 10.1186/s12951-022-01713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractGene transfection was supposed to be the most promising technology to overcome the vast majority of diseases and it has been popularly reported in clinical applications of gene therapy. In spite of the rapid development of novel transfection materials and methods, the influence of morphology-dependent nanomechanics of malignant osteosarcoma on gene transfection is still unsettled. In this study, cell spreading and adhesion area was adjusted by the prepared micropatterns to regulate focal adhesion (FA) formation and cytoskeletal organization in osteosarcoma cells. The micropattern-dependent FA and cytoskeleton could induce different cellular nanomechanics to affect cell functions. Our results indicated that transfection efficiency was improved with enlarging FA area and cell nanomechanics in micropatterned osteosarcoma. The difference of gene transfection in micropatterned cells was vigorously supported by cellular internalization capacity, Ki67 proliferation ability and YAP mechanotranduction through the regulation of focal adhesion and cytoskeletal mechanics. This study is an attempt to disclose the relationship of cell nanomechanics and gene transfection for efficient gene delivery and develop multifunctional nanomedicine biomaterials for accurate gene therapy in osteosarcoma cells.
Collapse
|
3
|
Puhl DL, Mohanraj D, Nelson DW, Gilbert RJ. Designing electrospun fiber platforms for efficient delivery of genetic material and genome editing tools. Adv Drug Deliv Rev 2022; 183:114161. [PMID: 35183657 PMCID: PMC9724629 DOI: 10.1016/j.addr.2022.114161] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023]
Abstract
Electrospun fibers are versatile biomaterial platforms with great potential to support regeneration. Electrospun fiber characteristics such as fiber diameter, degree of alignment, rate of degradation, and surface chemistry enable the creation of unique, tunable scaffolds for various drug or gene delivery applications. The delivery of genetic material and genome editing tools via viral and non-viral vectors are approaches to control cellular protein production. However, immunogenicity, off-target effects, and low delivery efficiencies slow the progression of gene delivery strategies to clinical settings. The delivery of genetic material from electrospun fibers overcomes such limitations by allowing for localized, tunable delivery of genetic material. However, the process of electrospinning is harsh, and care must be taken to retain genetic material bioactivity. This review presents an up-to-date summary of strategies to incorporate genetic material onto or within electrospun fiber platforms to improve delivery efficiency and enhance the regenerative potential of electrospun fibers for various tissue engineering applications.
Collapse
Affiliation(s)
- Devan L Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| | - Divya Mohanraj
- Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| | - Derek W Nelson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| |
Collapse
|
4
|
Bjørge IM, Correia CR, Mano JF. Hipster microcarriers: exploring geometrical and topographical cues of non-spherical microcarriers in biomedical applications. MATERIALS HORIZONS 2022; 9:908-933. [PMID: 34908074 DOI: 10.1039/d1mh01694f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Structure and organisation are key aspects of the native tissue environment, which ultimately condition cell fate via a myriad of processes, including the activation of mechanotransduction pathways. By modulating the formation of integrin-mediated adhesions and consequently impacting cell contractility, engineered geometrical and topographical cues may be introduced to activate downstream signalling and ultimately control cell morphology, proliferation, and differentiation. Microcarriers appear as attractive vehicles for cell-based tissue engineering strategies aiming to modulate this 3D environment, but also as vehicles for cell-free applications, given the ease in tuning their chemical and physical properties. In this review, geometry and topography are highlighted as two preponderant features in actively regulating interactions between cells and the extracellular matrix. While most studies focus on the 2D environment, we focus on how the incorporation of these strategies in 3D systems could be beneficial. The techniques applied to design 3D microcarriers with unique geometries and surface topographical cues are covered, as well as specific tissue engineering approaches employing these microcarriers. In fact, successfully achieving a functional histoarchitecture may depend on a combination of fine-tuned geometrically shaped microcarriers presenting intricately tailored topographical cues. Lastly, we pinpoint microcarrier geometry as a key player in cell-free biomaterial-based strategies, and its impact on drug release kinetics, the production of steerable microcarriers to target tumour cells, and as protein or antibody biosensors.
Collapse
Affiliation(s)
- Isabel M Bjørge
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| | - Clara R Correia
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
5
|
Liu W, Sun Q, Zheng ZL, Gao YT, Zhu GY, Wei Q, Xu JZ, Li ZM, Zhao CS. Topographic Cues Guiding Cell Polarization via Distinct Cellular Mechanosensing Pathways. SMALL 2021; 18:e2104328. [PMID: 34738726 DOI: 10.1002/smll.202104328] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/12/2021] [Indexed: 02/05/2023]
Abstract
Cell polarization exists in a variety of tissues to regulate cell behaviors and functions. Space constraint (spatially limiting cell extension) and adhesion induction (guiding adhesome growth) are two main ways to induce cell polarization according to the microenvironment topographies. However, the mechanism of cell polarization induced by these two ways and the downstream effects on cell functions are yet to be understood. Here, space constraint and adhesion induction guiding cell polarization are achieved by substrate groove arrays in micro and nano size, respectively. Although the morphology of polarized cells is similar on both structures, the signaling pathways to induce the cell polarization and the downstream functions are distinctly different. The adhesion induction (nano-groove) leads to the formation of focal adhesions and activates the RhoA/ROCK pathway to enhance the myosin-based intracellular force, while the space constraint (micro-groove) only activates the formation of pseudopodia. The enhanced intracellular force caused by adhesion induction inhibits the chromatin condensation, which promotes the osteogenic differentiation of stem cells. This study presents an overview of cell polarization and mechanosensing at biointerface to aid in the design of novel biomaterials.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qian Sun
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zi-Li Zheng
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ya-Ting Gao
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Guan-Yin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jia-Zhuang Xu
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhong-Ming Li
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chang-Sheng Zhao
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
6
|
Leclech C, Villard C. Cellular and Subcellular Contact Guidance on Microfabricated Substrates. Front Bioeng Biotechnol 2020; 8:551505. [PMID: 33195116 PMCID: PMC7642591 DOI: 10.3389/fbioe.2020.551505] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Topography of the extracellular environment is now recognized as a major biophysical regulator of cell behavior and function. The study of the influence of patterned substrates on cells, named contact guidance, has greatly benefited from the development of micro and nano-fabrication techniques, allowing the emergence of increasingly diverse and elaborate engineered platforms. The purpose of this review is to provide a comprehensive view of the process of contact guidance from cellular to subcellular scales. We first classify and illustrate the large diversity of topographies reported in the literature by focusing on generic cellular responses to diverse topographical cues. Subsequently, and in a complementary fashion, we adopt the opposite approach and highlight cell type-specific responses to classically used topographies (arrays of pillars or grooves). Finally, we discuss recent advances on the key subcellular and molecular players involved in topographical sensing. Throughout the review, we focus particularly on neuronal cells, whose unique morphology and behavior have inspired a large body of studies in the field of topographical sensing and revealed fascinating cellular mechanisms. We conclude by using the current understanding of the cell-topography interactions at different scales as a springboard for identifying future challenges in the field of contact guidance.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR 7646, Ecole Polytechnique, Palaiseau, France
| | - Catherine Villard
- Physico-Chimie Curie, CNRS UMR 168, Université PSL, Sorbonne Université, Paris, France
| |
Collapse
|
7
|
Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903862. [PMID: 31944430 PMCID: PMC7610849 DOI: 10.1002/adma.201903862] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Indexed: 04/14/2023]
Abstract
Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.
Collapse
Affiliation(s)
- Stuart G. Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Hyejeong Seong
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julia E. Sero
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
8
|
Ueda M, Jo JI, Gao JQ, Tabata Y. Effect of lipopolysaccharide addition on the gene transfection of spermine-introduced pullulan-plasmid DNA complexes for human mesenchymal stem cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1542-1558. [PMID: 31354063 DOI: 10.1080/09205063.2019.1650240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The objective of this study is to investigate the effect of lipopolysaccharide (LPS) addition on the gene transfection of human mesenchymal stem cells (hMSC). hMSC were treated with the LPS at different concentrations and the complex of spermine-introduced pullulan and luciferase plasmid DNA for 3 h. The maximum level of gene expression was observed for hMSC treated with a certain concentration range of LPS. In addition, the cytotoxicity, cellular internalization of complexes, and cell cycle after LPS treatment were investigated. The cytotoxicity increased with an increase in the LPS concentration treated. On the other hand, the cellular internalization of complexes increased with the increased LPS concentration, although the internalization was sharply reduced at the high concentration. The LPS treatment increased the actin polymerization of cells to allow to spread more. The enhanced cells spreading would enhance the cellular internalization of complexes. In addition, the LPS treatment increased the rate of cell cycle. It is possible that the balance of cytotoxicity, cellular internalization, and cell cycle caused by the LPS addition results in the enhanced gene transfection at a certain LPS concentration. It is concluded that LPS treatment positively modified the cellular internalization and the cell cycle, resulting in the enhanced gene transfection.
Collapse
Affiliation(s)
- Masumi Ueda
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University , Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University , Japan
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University , P. R. China
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University , Japan
| |
Collapse
|
9
|
Mantz A, Pannier AK. Biomaterial substrate modifications that influence cell-material interactions to prime cellular responses to nonviral gene delivery. Exp Biol Med (Maywood) 2019; 244:100-113. [PMID: 30621454 PMCID: PMC6405826 DOI: 10.1177/1535370218821060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
IMPACT STATEMENT This review summarizes how biomaterial substrate modifications (e.g. chemical modifications like natural coatings, ligands, or functional side groups, and/or physical modifications such as topography or stiffness) can prime the cellular response to nonviral gene delivery (e.g. affecting integrin binding and focal adhesion formation, cytoskeletal remodeling, endocytic mechanisms, and intracellular trafficking), to aid in improving gene delivery for applications where a cell-material interface might exist (e.g. tissue engineering scaffolds, medical implants and devices, sensors and diagnostics, wound dressings).
Collapse
Affiliation(s)
- Amy Mantz
- Department of Biological Systems Engineering,
University
of Nebraska-Lincoln, Lincoln, NE 68583,
USA
| | - Angela K Pannier
- Department of Biological Systems Engineering,
University
of Nebraska-Lincoln, Lincoln, NE 68583,
USA
| |
Collapse
|
10
|
Jin Y, Seo J, Lee JS, Shin S, Park HJ, Min S, Cheong E, Lee T, Cho SW. Triboelectric Nanogenerator Accelerates Highly Efficient Nonviral Direct Conversion and In Vivo Reprogramming of Fibroblasts to Functional Neuronal Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:7365-7374. [PMID: 27302900 DOI: 10.1002/adma.201601900] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/14/2016] [Indexed: 06/06/2023]
Abstract
Triboelectric nanogenerators (TENGs) can be an effective cell reprogramming platform for producing functional neuronal cells for therapeutic applications. Triboelectric stimulation accelerates nonviral direct conversion of functional induced neuronal cells from fibroblasts, increases the conversion efficiency, and induces highly matured neuronal phenotypes with improved electrophysiological functionalities. TENG devices may also be used for biomedical in vivo reprogramming.
Collapse
Affiliation(s)
- Yoonhee Jin
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Jungmok Seo
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Jung Seung Lee
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Sera Shin
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Hyun-Ji Park
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Sungjin Min
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Eunji Cheong
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Taeyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 120-750, Republic of Korea.
| |
Collapse
|
11
|
Wang K, Bruce A, Mezan R, Kadiyala A, Wang L, Dawson J, Rojanasakul Y, Yang Y. Nanotopographical Modulation of Cell Function through Nuclear Deformation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5082-92. [PMID: 26844365 PMCID: PMC4804753 DOI: 10.1021/acsami.5b10531] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Although nanotopography has been shown to be a potent modulator of cell behavior, it is unclear how the nanotopographical cue, through focal adhesions, affects the nucleus, eventually influencing cell phenotype and function. Thus, current methods to apply nanotopography to regulate cell behavior are basically empirical. We, herein, engineered nanotopographies of various shapes (gratings and pillars) and dimensions (feature size, spacing and height), and thoroughly investigated cell spreading, focal adhesion organization and nuclear deformation of human primary fibroblasts as the model cell grown on the nanotopographies. We examined the correlation between nuclear deformation and cell functions such as cell proliferation, transfection and extracellular matrix protein type I collagen production. It was found that the nanoscale gratings and pillars could facilitate focal adhesion elongation by providing anchoring sites, and the nanogratings could orient focal adhesions and nuclei along the nanograting direction, depending on not only the feature size but also the spacing of the nanogratings. Compared with continuous nanogratings, discrete nanopillars tended to disrupt the formation and growth of focal adhesions and thus had less profound effects on nuclear deformation. Notably, nuclear volume could be effectively modulated by the height of nanotopography. Further, we demonstrated that cell proliferation, transfection, and type I collagen production were strongly associated with the nuclear volume, indicating that the nucleus serves as a critical mechanosensor for cell regulation. Our study delineated the relationships between focal adhesions, nucleus and cell function and highlighted that the nanotopography could regulate cell phenotype and function by modulating nuclear deformation. This study provides insight into the rational design of nanotopography for new biomaterials and the cell-substrate interfaces of implants and medical devices.
Collapse
Affiliation(s)
- Kai Wang
- Department of Chemical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Allison Bruce
- Department of Chemical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ryan Mezan
- Department of Chemical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Anand Kadiyala
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Liying Wang
- Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Jeremy Dawson
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Yon Rojanasakul
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Yong Yang
- Department of Chemical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
- Corresponding Author Y. Yang.
| |
Collapse
|
12
|
Garg P, Pandey S, Kim HN, Seonwoo H, Park S, Choi KS, Jang KJ, Hyun H, Choung PH, Kim J, Chung JH. Synergistic effects of hyperosmotic polymannitol based non-viral vectors and nanotopographical cues for enhanced gene delivery. RSC Adv 2016. [DOI: 10.1039/c6ra09348e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we report the synergistic effects of hyperosmotic and nanotopographical cues designed using non-viral vectors and nanopatterned matrices for gene delivery.
Collapse
|
13
|
Wu Y, Gallego-Perez D, Lee LJ. Microwell array-mediated delivery of lipoplexes containing nucleic acids for enhanced therapeutic efficacy. Methods Mol Biol 2015; 1218:131-42. [PMID: 25319649 DOI: 10.1007/978-1-4939-1538-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Many delivery methods have been developed to improve the therapeutic efficacy and facilitate the clinical translation of nucleic acids-based therapeutics. We present a facile microwell array to mediate the delivery of nucleic acids carried by lipoplexes, which combines the advantages of lipoplexes as an efficient carrier system, the surface mediated delivery, and the control of surface topography. This method shows much higher transfection efficiency than conventional transfection method for oligodeoxynucleotides and microRNAs, and thus significantly reduces the effective therapeutic dosages. Microwell array is also a very flexible platform. Multifunctional lipoplexes containing both nucleic acid therapeutics and imaging reagents can be easily prepared in the microwell array and efficiently delivered to cells, demonstrating its potential applications in theranostic medicine.
Collapse
Affiliation(s)
- Yun Wu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, 332 Bonner Hall, Buffalo, NY, 14260, USA,
| | | | | |
Collapse
|
14
|
Zhang L, Wu K, Song W, Xu H, An R, Zhao L, Liu B, Zhang Y. Chitosan/siCkip-1 biofunctionalized titanium implant for improved osseointegration in the osteoporotic condition. Sci Rep 2015; 5:10860. [PMID: 26040545 PMCID: PMC4455222 DOI: 10.1038/srep10860] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/05/2015] [Indexed: 12/18/2022] Open
Abstract
Biofunctionalization with siRNA targeting the key negative modulators of bone turnover involved in the molecular mechanism of osteoporosis, such as casein kinase-2 interacting protein-1 (Ckip-1), may lead to enhanced Ti osseointegration in the osteoporotic condition. In this study, even siRNA loading was accomplished by the thermal alkali (TA) treatment to make the Ti ultrahydrophilic and negatively charged to facilitate the physical adsorption of the positively charged CS/siR complex, designated as TA-CS/siR. The intracellular uptake of the CS/siR complex and the gene knockdown efficiency were assessed with bone marrow mesenchymal stem cells (MSCs) as well as the green fluorescent protein (GFP) expressing H1299 cells. In vitro osteogenic activity of TA-CS/siCkip-1 targeting Ckip-1 was assessed with MSCs. In vivo osseointegration of TA-CS/siCkip-1 was assessed in the osteoporotic rat model. TA-CS/siR showed excellent siRNA delivery efficiency and gene silencing effect. TA-CS/siCkip-1 significantly improved the in vitro osteogenic differentiation of MSCs in terms of the enhanced alkaline phosphatase and collagen product and extracellular matrix mineralization, and led to dramatically enhanced in vivo osseointegration in the osteoporostic rat model, showing promising clinical potential for the osteoporotic condition application. TA-CS/siR may constitute a general approach for developing the advanced Ti implants targeting specific molecular mechanism.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi’an 710032, China
| | - Kaimin Wu
- Department of Stomatology, 401 Military Hospital, Qingdao 266071, China
| | - Wen Song
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi’an 710032, China
| | - Haiyan Xu
- State Key Laboratory of Military Stomatology, Laboratory Animal Center, School of Stomatology, the Fourth Military Medical University, No. 145 West Changle Road, Xi’an 710032, China
| | - Ran An
- State Key Laboratory of Military Stomatology, Laboratory Animal Center, School of Stomatology, the Fourth Military Medical University, No. 145 West Changle Road, Xi’an 710032, China
| | - Lingzhou Zhao
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi’an 710032, China
| | - Bin Liu
- State Key Laboratory of Military Stomatology, Laboratory Animal Center, School of Stomatology, the Fourth Military Medical University, No. 145 West Changle Road, Xi’an 710032, China
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi’an 710032, China
| |
Collapse
|
15
|
Huang NC, Ji Q, Yamazaki T, Nakanishi W, Hanagata N, Ariga K, Hsu SH. Gene transfer on inorganic/organic hybrid silica nanosheets. Phys Chem Chem Phys 2015; 17:25455-62. [DOI: 10.1039/c5cp03483c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanosheets with a high aspect ratio can transfer the naked plasmid into stem cells without any transfection reagent. The transfection efficiency and cell mobility are associated with the activation level of integrin β3 on different nanosheets.
Collapse
Affiliation(s)
- Nien-Chi Huang
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei 10617
- Republic of China
| | - Qingmin Ji
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Tomohiko Yamazaki
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Waka Nakanishi
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Nobutaka Hanagata
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
- Japan Science and Technology Agency
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei 10617
- Republic of China
- Research and Development Center for Medical Devices
| |
Collapse
|
16
|
Yu X, Murphy WL. 3-D Scaffold Platform for Optimized Non-viral Transfection of Multipotent Stem Cells. J Mater Chem B 2014; 2:8186-8193. [PMID: 25541592 PMCID: PMC4273581 DOI: 10.1039/c4tb00957f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Optimization of non-viral gene delivery from biomaterials is of critical importance, as several material parameters are known to influence non-viral transfection efficiency. A series of previous studies have achieved screening of gene delivery vectors on two dimensional (2D) substrates, which have direct relevance to cell culture applications. There is an additional need to create screening systems that are 3-dimensional (3D), and can thus be applied to emerging tissue engineering applications. Here, we report an enhanced throughput, 3D scaffold platform to screen for the influence of mineral coating properties on stem cell transfection. Mineral coatings with a range of physicochemical properties were formed on the scaffolds within a 96-well plate format, while maintaining an interconnected macroporous scaffold structure. A series of general gene delivery parameters, including plasmid amount, N/P ratio, and cell density, were efficiently screened in scaffolds using a luciferase-encoding plasmid as a reporter. In addition, human mesenchymal stem cell (hMSC) transfection with a plasmid encoding bone morphogenetic protein-2 (BMP-2) was successfully optimized by screening a library of mineral coatings, resulting in over 5-fold increases in BMP-2 production when compared to standard techniques. Notably, the majority of BMP-2 was incorporated into the mineral coating following secretion from the cells. The 3D mineral coated scaffold platform described here may accelerate gene delivery optimization and improve the predictability of the screening systems, which could facilitate translation of gene delivery to clinical applications.
Collapse
Affiliation(s)
- Xiaohua Yu
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA
| | - W. L. Murphy
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI 53705, USA
- AO Foundation Collaborative Research Center, Davos, Switzerland
| |
Collapse
|
17
|
Yau WWY, Long H, Gauthier NC, Chan JKY, Chew SY. The effects of nanofiber diameter and orientation on siRNA uptake and gene silencing. Biomaterials 2014; 37:94-106. [PMID: 25453941 DOI: 10.1016/j.biomaterials.2014.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/02/2014] [Indexed: 02/07/2023]
Abstract
While substrate topography influences cell behavior, RNA interference (RNAi) has also emerged as a potent method for understanding and directing cell fate. However, the effects of substrate topography on RNAi remain poorly understood. Here, we report the influence of nanofiber architecture on siRNA-mediated gene-silencing in human somatic and stem cells. The respective model cells, human dermal fibroblasts (HDFs) and mesenchymal stem cells (MSCs), were cultured onto aligned or randomly oriented electrospun poly(ε-caprolactone) fibers of different average diameters (300 nm, 700 nm and 1.3 μm). In HDFs, decreasing fiber diameter from 1.3 μm to 300 nm improved Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and Collagen-I silencing efficiencies by ∼ 3.8 and ∼4.4 folds respectively (p < 0.05) while the effective siRNA uptake pathway was altered from clathrin-dependent endocytosis to macropinocytosis. In MSCs, aligned fibers generated significantly higher level of gene silencing of RE-1 silencing transcription factor (REST) and green fluorescent protein (GFP) (∼1.6 and ∼1.5 folds respectively, p < 0.05), than randomly-oriented fibers. Aligned fiber topography facilitated functional siRNA uptake through clathrin-mediated endocytosis and membrane fusion. Taken together, our results demonstrated a promising role of three-dimensional fibrous scaffolds in modulating siRNA-mediated gene-silencing and established the critical synergistic role of these substrates in modulating cellular behavior by RNAi.
Collapse
Affiliation(s)
- Winifred Wing Yiu Yau
- Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hongyan Long
- Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Nils C Gauthier
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jerry Kok Yen Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore; Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Sing Yian Chew
- Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
18
|
Li Y, Huang G, Zhang X, Wang L, Du Y, Lu TJ, Xu F. Engineering cell alignment in vitro. Biotechnol Adv 2014; 32:347-65. [DOI: 10.1016/j.biotechadv.2013.11.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 11/16/2013] [Accepted: 11/17/2013] [Indexed: 01/03/2023]
|
19
|
Inorganic coatings for optimized non-viral transfection of stem cells. Sci Rep 2013; 3:1567. [PMID: 23535735 PMCID: PMC3610100 DOI: 10.1038/srep01567] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/06/2013] [Indexed: 12/14/2022] Open
Abstract
“Biomimetic” approaches for heterogeneous growth of inorganic coatings have become particularly widespread in biomedical applications, where calcium phosphate (CaP) mineral coatings are used to improve biomedical implants. Changes in coating properties can influence the effects of mineral coatings on adjacent cells, but to date it has not been practical to systematically vary inorganic coating properties to optimize specific cell behaviors. Here, we present an approach to grow CaP mineral coatings in an enhanced throughput format to identify unprecedented capabilities in non-viral gene delivery. Subtle changes in coating properties resulted in widely variable transfection, and optimized coatings led to greater than 10-fold increases in transgene expression by multiple target cell types when compared to standard techniques. The enhanced transfection observed here is substrate-mediated, and related to the characteristics of the local environment near the surface of dissolving mineral coatings. These findings may be particularly translatable to medical device applications.
Collapse
|
20
|
Wu Y, Terp MC, Kwak KJ, Gallego-Perez D, Nana-Sinkam SP, Lee LJ. Surface-mediated nucleic acid delivery by lipoplexes prepared in microwell arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2358-67. [PMID: 23471869 PMCID: PMC4114522 DOI: 10.1002/smll.201202258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/06/2012] [Indexed: 05/27/2023]
Abstract
Many delivery methods have been developed to improve the therapeutic efficacy and facilitate the clinical translation of nucleic acid-based therapeutics. A facile surface-mediated nucleic acid delivery by lipoplexes is prepared in a microwell array, which combines the advantages of lipoplexes as an efficient carrier system, surface-mediated delivery, and the control of surface topography. Uniform disc-like lipoplexes containing nucleic acids are formed in the microwell array with a diameter of ∼818 nm and thickness of ∼195 nm. The microwell array-mediated delivery of lipoplexes containing FAM-oligodeoxynucleotides is ∼18.6 and ∼10.6 times more efficient than the conventional transfection method in an adherent cell line (A549 non-small cell lung cancer cells) and a suspension cell line (KG-1a acute myelogenous leukemia cells), respectively. MicroRNA-29b is then used as a model nucleic acid to investigate the therapeutic efficacy of lipoplexes delivered by the microwell array. Compared to conventional transfection methods, the effective therapeutic dosage of microRNA-29b is reduced from the microgram level to the nanogram level by lipoplexes prepared in the microwell array. The microwell array is also a very flexible platform. Both nucleic acid therapeutics and imaging reagents are incorporated in lipoplexes and successfully delivered to A549 cells, demonstrating its potential applications in theranostic medicine.
Collapse
Affiliation(s)
- Yun Wu
- Nanoscale Science and Engineering Center for Affordable Nanoengineering The Ohio State University 174 W 18th Avenue, Room 1012, Columbus, Ohio 43210, USA
| | - Megan Cavanaugh Terp
- Nanoscale Science and Engineering Center for Affordable Nanoengineering The Ohio State University 174 W 18th Avenue, Room 1012, Columbus, Ohio 43210, USA
- William G. Lowrie Department of Chemical and Bimolecular Engineering The Ohio State University 140 W 19th Avenue, Room 125A Columbus, Ohio 43210, USA
| | - Kwang Joo Kwak
- Nanoscale Science and Engineering Center for Affordable Nanoengineering The Ohio State University 174 W 18th Avenue, Room 1012, Columbus, Ohio 43210, USA
| | - Daniel Gallego-Perez
- Nanoscale Science and Engineering Center for Affordable Nanoengineering The Ohio State University 174 W 18th Avenue, Room 1012, Columbus, Ohio 43210, USA
| | - Serge P. Nana-Sinkam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine DHLRI, 473 W 12th Avenue Room 201, Columbus, Ohio 43210, USA
| | - L. James Lee
- Nanoscale Science and Engineering Center for Affordable Nanoengineering The Ohio State University 174 W 18th Avenue, Room 1012, Columbus, Ohio 43210, USA
- William G. Lowrie Department of Chemical and Bimolecular Engineering The Ohio State University 140 W 19th Avenue, Room 125A Columbus, Ohio 43210, USA
| |
Collapse
|
21
|
López-Bosque MJ, Tejeda-Montes E, Cazorla M, Linacero J, Atienza Y, Smith KH, Lladó A, Colombelli J, Engel E, Mata A. Fabrication of hierarchical micro-nanotopographies for cell attachment studies. NANOTECHNOLOGY 2013; 24:255305. [PMID: 23727615 DOI: 10.1088/0957-4484/24/25/255305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report on the development of micro/nanofabrication processes to create hierarchical surface topographies that expand from 50 nm to microns in size on different materials. Three different approaches (named FIB1, FIB2, and EBL) that combine a variety of techniques such as photolithography, reactive ion etching, focused ion beam lithography, electron beam lithography, and soft lithography were developed, each one providing different advantages and disadvantages. The EBL approach was employed to fabricate substrates comprising channels with features between 200 nm and 10 μm in size on polymethylmethacrylate (PMMA), which were then used to investigate the independent or competitive effects of micro- and nanotopographies on cell adhesion and morphology. Rat mesenchymal stem cells (rMSCs) were cultured on four different substrates including 10 μm wide and 500 nm deep channels separated by 10 μm distances (MICRO), 200 nm wide and 100 nm deep nanochannels separated by 200 nm distances (NANO), their combination in parallel (PARAL), and in a perpendicular direction (PERP). Rat MSCs behaved differently on all tested substrates with a high degree of alignment (as measured by both number of aligned cells and average angle) on both NANO and MICRO. Furthermore, cells exhibited the highest level of alignment on PARAL, suggesting a synergetic effect of the two scales of topographies. On the other hand, cells on PERP exhibited the lowest alignment and a consistent change in morphology over time that seemed to be the result of interactions with both micro- and nanochannels positioned in the perpendicular direction, also suggesting a competitive effect of the topographies.
Collapse
Affiliation(s)
- M J López-Bosque
- The Nanotechnology Platform, Parc Científic Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wu K, Song W, Zhao L, Liu M, Yan J, Andersen MØ, Kjems J, Gao S, Zhang Y. MicroRNA functionalized microporous titanium oxide surface by lyophilization with enhanced osteogenic activity. ACS APPLIED MATERIALS & INTERFACES 2013; 5:2733-2744. [PMID: 23459382 DOI: 10.1021/am400374c] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Developing biomedical titanium (Ti) implants with high osteogenic ability and consequent rigid osseointegration is a constant requirement from the clinic. In this study, we fabricate novel miRNA functionalized microporous Ti implants by lyophilizing miRNA lipoplexes onto a microporous titanium oxide surface formed by microarc oxidation (MAO). The microporous titanium oxide surface provides a larger surface area for miRNA loading and enables spatial retention of the miRNAs within the pores until cellular delivery. The loading of lipoplexes into the micropores on the MAO Ti surface is facilitated by the superhydrophilicity and Ti-OH groups gathering of the MAO surface after UV irradiation followed by lyophilization. A high miRNA transfection efficiency was observed in mesenchymal stem cells (MSCs) seeded onto the miRNA functionalized surface with no apparent cytotoxicity. When functionalizing the Ti surface with miR-29b that enhances osteogenic activity and antimiR-138 that inhibits miR-138 inhibition of endogenous osteogenesis, clear stimulation of MSC osteogenic differentiation was observed, in terms of up-regulating osteogenic expression and enhancing alkaline phosphatase production, collagen secretion and ECM mineralization. The novel miRNA functionalized Ti implants with enhanced osteogenic activity promisingly lead to more rapid and robust osseointegration of a clinical bone implant interface. Our study implies that lyophilization may constitute a versatile method for miRNA loading to other biomaterials with the aim of controlling cellular function.
Collapse
Affiliation(s)
- Kaimin Wu
- Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chong SF, Smith AAA, Zelikin AN. Microstructured, functional PVA hydrogels through bioconjugation with oligopeptides under physiological conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:942-950. [PMID: 23208951 DOI: 10.1002/smll.201201774] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Indexed: 05/25/2023]
Abstract
In this work, bioconjugation techniques are developed to achieve peptide functionalization of poly(vinyl alcohol), PVA, as both a polymer in solution and within microstructured physical hydrogels, in both cases under physiological conditions. PVA is unique in that it is one of very few polymers with excellent biocompatibility and safety and has FDA approval for clinical uses in humans. However, decades of development have documented only scant opportunities in bioconjugation with PVA. As such, materials derived thereof fail to answer the call for functional biomaterials for advanced cell culture and tissue engineering applications. To address these limitations, PVA is synthesized with terminal thiol groups and conjugated with thiolated peptides using PVA in solution. Further, microstructured, surface-adhered PVA physical hydrogels are assembled, the available conjugation sites within the hydrogels are quantified, and quantitative kinetic data are collected on peptide conjugation to the hydrogels. The success of bioconjugation in the gel phase is quantified through the use of a cell-adhesive peptide and visualization of cell adhesion on PVA hydrogels as cell culture substrates. Taken together, the presented data establish a novel paradigm in bioconjugation and functionalization of PVA physical hydrogels. Coupled with an excellent safety profile of PVA, these results deliver a superior biomaterial for diverse biomedical applications.
Collapse
Affiliation(s)
- Siow-Feng Chong
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | | | | |
Collapse
|
24
|
Purcell EK, Naim Y, Yang A, Leach MK, Velkey JM, Duncan RK, Corey JM. Combining topographical and genetic cues to promote neuronal fate specification in stem cells. Biomacromolecules 2012; 13:3427-38. [PMID: 23098293 PMCID: PMC3992984 DOI: 10.1021/bm301220k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is little remedy for the devastating effects resulting from neuronal loss caused by neural injury or neurodegenerative disease. Reconstruction of damaged neural circuitry with stem cell-derived neurons is a promising approach to repair these defects, but controlling differentiation and guiding synaptic integration with existing neurons remain significant unmet challenges. Biomaterial surfaces can present nanoscale topographical cues that influence neuronal differentiation and process outgrowth. By combining these scaffolds with additional molecular biology strategies, synergistic control over cell fate can be achieved. Here, we review recent progress in promoting neuronal fate using techniques at the interface of biomaterial science and genetic engineering. New data demonstrates that combining nanofiber topography with an induced genetic program enhances neuritogenesis in a synergistic fashion. We propose combining patterned biomaterial surface cues with prescribed genetic programs to achieve neuronal cell fates with the desired sublineage specification, neurochemical profile, targeted integration, and electrophysiological properties.
Collapse
Affiliation(s)
- Erin K Purcell
- University of Michigan, 1150 W. Medical Center Drive, 5323A Med Sci I, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Physical non-viral gene delivery methods for tissue engineering. Ann Biomed Eng 2012; 41:446-68. [PMID: 23099792 DOI: 10.1007/s10439-012-0678-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/08/2012] [Indexed: 12/12/2022]
Abstract
The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that "fits-all" cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications.
Collapse
|
26
|
Cao H, Marcy G, Goh ELK, Wang F, Wang J, Chew SY. The Effects of Nanofiber Topography on Astrocyte Behavior and Gene Silencing Efficiency. Macromol Biosci 2012; 12:666-74. [DOI: 10.1002/mabi.201100436] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/08/2012] [Indexed: 01/10/2023]
|
27
|
Ni M, Zimmermann PK, Kandasamy K, Lai W, Li Y, Leong MF, Wan AC, Zink D. The use of a library of industrial materials to determine the nature of substrate-dependent performance of primary adherent human cells. Biomaterials 2012; 33:353-64. [DOI: 10.1016/j.biomaterials.2011.09.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/23/2011] [Indexed: 12/30/2022]
|
28
|
Teo BK, Goh SH, Kustandi TS, Loh WW, Low HY, Yim EK. The effect of micro and nanotopography on endocytosis in drug and gene delivery systems. Biomaterials 2011; 32:9866-75. [DOI: 10.1016/j.biomaterials.2011.08.088] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
|
29
|
Le DM, Kulangara K, Adler AF, Leong KW, Ashby VS. Dynamic topographical control of mesenchymal stem cells by culture on responsive poly(ε-caprolactone) surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:3278-83. [PMID: 21626577 PMCID: PMC3972817 DOI: 10.1002/adma.201100821] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/22/2011] [Indexed: 05/21/2023]
Affiliation(s)
- Duy M. Le
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599 (USA)
| | - Karina Kulangara
- Department of Biomedical Engineering, Duke University, Durham, NC 27710 (USA)
| | - Andrew F. Adler
- Department of Biomedical Engineering, Duke University, Durham, NC 27710 (USA)
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, Durham, NC 27710 (USA)
| | | |
Collapse
|