1
|
Xu R, Martinez-Bosch N, Rivera-Hueto F, Mulens-Arias V, Rubio-Moscardo F, Javier Conesa J, Navarro P, Vicente R, Rivera-Gil P. Validation of ZIP4 as a tumour-associated antigen for nanotargeting. J Drug Target 2025; 33:143-155. [PMID: 39283041 DOI: 10.1080/1061186x.2024.2405711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024]
Abstract
Pancreatic ductal adenocarcinoma remains a highly aggressive and untreatable cancer. There is a need to develop a new PDAC-associated antigen-targeting drug delivery system to tackle this disease. We validated choosing ZIP4 as a putative target in PDAC theranostics. We developed a nanosystem composed of a fluorescent polystyrene core coated with gold nanoparticles onto which a ZIP4-specific polyclonal antibody is attached. The polystyrene core's fluorescence properties allow the nanosystem tracking by intravital imaging. We also developed two ZIP4-expressing cell lines by stably transfecting HEK293 and RWP1 cells with a ZIP4-coding plasmid that simultaneously provides cells with puromycin resistance. We studied the cell internalisation of the as-synthesised nanoparticles and demonstrated that ZIP4-expressing HEK293 and ZIP4-expressing RWP1 cells tended to take up more ZIP4-targeting nanoparticles. Moreover, we observed that ZIP4-targeting nanoparticles accumulated more in ZIP4-expressing HEK293 and RWP1 tumours when injected intravenously in a subcutaneous xenograft and an orthotopic in vivo model, respectively. Furthermore, the administration of these nanoparticles did not induce any significant systemic toxicity as determined by histological analysis of all organs. Altogether, these results provide the first evidence of the feasibility of using a ZIP4-targeting nanosystem further to design efficient therapeutic and diagnostic tools for PDAC.
Collapse
Affiliation(s)
- Ruixue Xu
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Neus Martinez-Bosch
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, Barcelona, Spain
| | | | - Vladimir Mulens-Arias
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Fanny Rubio-Moscardo
- Molecular Physiology Lab, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - J Javier Conesa
- Mistral Beamline, Experiment Division, ALBA Synchrotron (ALBA-CELLS), Barcelona, Spain
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB)-CSIC, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rubén Vicente
- Molecular Physiology Lab, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Pilar Rivera-Gil
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| |
Collapse
|
2
|
Wen B, Weng X, Zhu S, Wu X, Lin X, Chen H, He Y. Carbohydrate polymer-driven nanoparticle synthesis and functionalization in the brain tumor therapy: A review. Int J Biol Macromol 2024; 285:138194. [PMID: 39617244 DOI: 10.1016/j.ijbiomac.2024.138194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
The brain tumors have been characterized with aggressive and heterogeneous nature. The treatment of brain tumors has been challenging due to their sensitive location and also, presence of blood-brain barrier (BBB) that reduces the entrance of bioactive compounds to the brain tissue. Therefore, the new treatment strategies should be focused on improving the efficacy of conventional therapeutics, crossing over biological barriers and introducing new kinds of methods for brain tumor elimination. In the recent years, the application of carbohydrate polymers in the treatment of human cancers has been increased as they possess biocompatibility, biodegradability and selective targeting of tumor cells. Moreover, carbohydrate polymer-based nanoparticles demonstrate desirable drug loading and encapsulation, making them suitable for the delivery of bioactive compounds. Accordingly, the carbohydrate polymers and their nanoparticles have been developed to improve the drug and gene delivery to brain tumors. Moreover, these nanoparticles can increase sensitivity of chemotherapy and immunotherapy. In addition to providing combination therapy, the carbohydrate polymer-based nanoparticles can elevate the phototherapy-mediated tumor ablation. These nanocarriers have demonstrated desirable particle size, zeta potential and encapsulation efficiency that are beneficial for brain tumor therapy. Moreover, these nanoparticles have high biocompatibility that can be subsequently utilized in clinical studies.
Collapse
Affiliation(s)
- Baoquan Wen
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China
| | - Xiqing Weng
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China
| | - Shujun Zhu
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China
| | - Xiujuan Wu
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China
| | - Xiaofeng Lin
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China
| | - Hong Chen
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China.
| | - Yuqin He
- Encephalopathy Department, Shunde Hospital of GuangZhou University of Chinese Medicine, Foshan, China.
| |
Collapse
|
3
|
Willmann R, Almeida M, Stoppa E, Barbisan LF, Miranda JRA, Soares G. Evaluation and imaging of biodistribution of magnetic nanoparticles in a model of hepatic cirrhosis via alternating current biosusceptometry. Biomed Phys Eng Express 2024; 10:065024. [PMID: 39260388 DOI: 10.1088/2057-1976/ad795b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
In recent years, magnetic nanoparticles (MNPs) have exhibited theragnostic characteristics which confer a wide range of applications in the biomedical field. Consequently, through Alternating Current Biosusceptometry (ACB), magnetic nanoparticles can be used as tracers, allowing the study of healthy and cirrhotic livers and providing the ability to differentiate them through the reconstruction of quantitative images. The ACB system consists of a developing biomagnetic technique that has the ability to magnetize and measure the magnetic susceptibility of a material such as MNPs, thereby offering quantitative information about biological systems with magnetic tracers.
Collapse
Affiliation(s)
- Raffael Willmann
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, 18618-689, SP, Brazil
| | - Michael Almeida
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, 18618-689, SP, Brazil
| | - Erick Stoppa
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, 18618-689, SP, Brazil
| | - Luis F Barbisan
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, 18618-689, SP, Brazil
| | - Jose R A Miranda
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, 18618-689, SP, Brazil
| | - Guilherme Soares
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, 18618-689, SP, Brazil
| |
Collapse
|
4
|
Zhou J, Wan S, Wu Y, Hu H, Liu Y, Liao Z, Xu M, Wu J, Fan Q. Cancer cell membrane-camouflaged paclitaxel/PLGA nanoparticles for targeted therapy against lung cancer. Biomed Pharmacother 2024; 177:117102. [PMID: 38991303 DOI: 10.1016/j.biopha.2024.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024] Open
Abstract
Paclitaxel (PTX) is a first-line drug for the treatment of lung cancer, but its targeting and therapeutic effect are unsatisfactory. Herein, lung cancer cell (A549) membrane biomimetic PTX-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (AM@PTX-NPs) were constructed to eliminate the shortcomings of PTX. The AM@PTX-NPs were successfully prepared with a high drug loading efficiency (10.90±0.06 %). Moreover, transmission electron microscopy, SDS-PAGE, and western blotting proved that AM@PTX-NPs were spherical nanoparticles camouflaged by the A549 cell membrane. Both in vitro and in vivo assays revealed that the AM@PTX-NPs displayed outstanding targeting capacity due to A549 membrane modification. The cytotoxicity experiment showed that the developed biomimetic formulation was able to effectively reduce the proliferation of A549 cells. Moreover, AM@PTX-NPs exhibited a significant tumor growth inhibition rate (73.00 %) with good safety in the tumor-bearing mice, which was higher than that of the PTX-NPs without A549 membrane coating (37.39 %). Overall, the constructed bioinspired vector could provide a novel platform for the PTX delivery and demonstrated a promising strategy for the targeted cancer treatment.
Collapse
Affiliation(s)
- Jiahan Zhou
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengli Wan
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuesong Wu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haiyang Hu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yang Liu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zuyue Liao
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mengyao Xu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianming Wu
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Qingze Fan
- Department of Pharmacy, The Affiliated Hospital, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
5
|
Lei S, He J, Huang X, Hui H, An Y, Tian J. A Novel Local Magnetic Fluid Hyperthermia Based on High Gradient Field Guided by Magnetic Particle Imaging. IEEE Trans Biomed Eng 2024; 71:2528-2536. [PMID: 38498750 DOI: 10.1109/tbme.2024.3378650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Magnetic Particle Imaging (MPI)-guided Magnetic Fluid Hyperthermia (MFH) has the potential for widespread utilization, as it allows for the prediction of magnetothermal dosage, real-time visualization of the thermal therapy process, and precise localization of the lesion area. However, the existing MPI-guided MFH (MPI-MFH) method is insensitive to concentration gradients of magnetic nanoparticles (MNPs) and is susceptible to causing damage to normal tissues with high MNP concentrations during MFH treatment, while inadequately heating tumor tissues with lower MNP concentrations. In this work, we established a relationship between MNP concentration and heating efficiency through simulations and phantom measurements, enabling the optimal selection of MFH parameters guided by MPI. Based on these findings, we developed a high-gradient field MPI-MFH method using a field-free point (FFP) approach to achieve precise local heating. Phantom experiments and in vivo glioma model experiments were conducted to validate this proposed method. The results demonstrated that the proposed method of MPI-MFH can improve the MNP concentration gradient sensitivity to ±1 mg/ml, thereby enabling more effective lesion-site heating without damaging normal tissues. This method not only reduced glioma size effectively but also holds promise for application in various other types of cancers.
Collapse
|
6
|
Petcov TE, Straticiuc M, Iancu D, Mirea DA, Trușcă R, Mereuță PE, Savu DI, Mogoșanu GD, Mogoantă L, Popescu RC, Kopatz V, Jinga SI. Unveiling Nanoparticles: Recent Approaches in Studying the Internalization Pattern of Iron Oxide Nanoparticles in Mono- and Multicellular Biological Structures. J Funct Biomater 2024; 15:169. [PMID: 38921542 PMCID: PMC11204647 DOI: 10.3390/jfb15060169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Nanoparticle (NP)-based solutions for oncotherapy promise an improved efficiency of the anticancer response, as well as higher comfort for the patient. The current advancements in cancer treatment based on nanotechnology exploit the ability of these systems to pass biological barriers to target the tumor cell, as well as tumor cell organelles. In particular, iron oxide NPs are being clinically employed in oncological management due to this ability. When designing an efficient anti-cancer therapy based on NPs, it is important to know and to modulate the phenomena which take place during the interaction of the NPs with the tumor cells, as well as the normal tissues. In this regard, our review is focused on highlighting different approaches to studying the internalization patterns of iron oxide NPs in simple and complex 2D and 3D in vitro cell models, as well as in living tissues, in order to investigate the functionality of an NP-based treatment.
Collapse
Affiliation(s)
- Teodora Eliana Petcov
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (T.E.P.); (S.I.J.)
| | - Mihai Straticiuc
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Decebal Iancu
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Dragoș Alexandru Mirea
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Roxana Trușcă
- National Research Center for Micro and Nanomaterials, National University for Science and Technology Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Paul Emil Mereuță
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Diana Iulia Savu
- Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania
| | - George Dan Mogoșanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - Laurențiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - Roxana Cristina Popescu
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (T.E.P.); (S.I.J.)
- Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania
| | - Verena Kopatz
- Department of Radiation Oncology, Medical University of Vienna, 18–20 Waehringer Guertel Street, 1090 Vienna, Austria;
| | - Sorin Ion Jinga
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (T.E.P.); (S.I.J.)
| |
Collapse
|
7
|
Jungcharoen P, Panaampon J, Imemkamon T, Saengboonmee C. Magnetic nanoparticles: An emerging nanomedicine for cancer immunotherapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:183-214. [PMID: 39461752 DOI: 10.1016/bs.pmbts.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cancer immunotherapy is a revolutionised strategy that strikingly improves cancer treatment in recent years. However, like other therapeutic modalities, immunotherapy faces several challenges and limitations. Many methods have been developed to overcome those limitations; thus, nanomedicine is one of the emerging fields with a highly promising application. Magnetite nanoparticles (MNPs) have long been used for medical applications, for example, as a contrast medium, and are being investigated as a tool for boosting and synergizing the effects of immunotherapy. With known physicochemical properties and the interaction with the surroundings in biological systems, MNPs are used to improve the efficacy of immunotherapy in both cell-based and antibody-based treatment. This chapter reviews and discusses state-of-the-art MNPs as a tool to advance cancer immunotherapy as well as its limitations that need further investigation for a better therapeutic outcome in preclinical and clinical settings.
Collapse
Affiliation(s)
- Phoomipat Jungcharoen
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - Jutatip Panaampon
- Division of Hematologic Neoplasm, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection Kumamoto University, Kumamoto, Japan
| | - Thanit Imemkamon
- Division of Medical Oncology, Department of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
8
|
Abousalman-Rezvani Z, Refaat A, Dehghankelishadi P, Roghani-Mamaqani H, Esser L, Voelcker NH. Insights into Targeted and Stimulus-Responsive Nanocarriers for Brain Cancer Treatment. Adv Healthc Mater 2024; 13:e2302902. [PMID: 38199238 DOI: 10.1002/adhm.202302902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/10/2023] [Indexed: 01/12/2024]
Abstract
Brain cancers, especially glioblastoma multiforme, are associated with poor prognosis due to the limited efficacy of current therapies. Nanomedicine has emerged as a versatile technology to treat various diseases, including cancers, and has played an indispensable role in combatting the COVID-19 pandemic as evidenced by the role that lipid nanocarrier-based vaccines have played. The tunability of nanocarrier physicochemical properties -including size, shape, surface chemistry, and drug release kinetics- has resulted in the development of a wide range of nanocarriers for brain cancer treatment. These nanocarriers can improve the pharmacokinetics of drugs, increase blood-brain barrier transfer efficiency, and specifically target brain cancer cells. These unique features would potentially allow for more efficient treatment of brain cancer with fewer side effects and better therapeutic outcomes. This review provides an overview of brain cancers, current therapeutic options, and challenges to efficient brain cancer treatment. The latest advances in nanomedicine strategies are investigated with an emphasis on targeted and stimulus-responsive nanocarriers and their potential for clinical translation.
Collapse
Affiliation(s)
- Zahra Abousalman-Rezvani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Research Way, Melbourne, VIC 3168, Australia
| | - Ahmed Refaat
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
- Pharmaceutics Department, Faculty of Pharmacy - Alexandria University, 1 El-Khartoum Square, Alexandria, 21021, Egypt
| | - Pouya Dehghankelishadi
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, P.O. Box: 51335/1996, Iran
| | - Lars Esser
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Research Way, Melbourne, VIC 3168, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Rd, Melbourne, VIC 3168, Australia
- Department of Materials Science & Engineering, Faculty of Engineering, Monash University, 14 Alliance Ln, Melbourne, VIC 3168, Australia
| |
Collapse
|
9
|
Bui TD, Nguyen QL, Luong TB, Nguyen TP, Dang PH. Starch Assisted the ZnS Buffer Layer in Enhancing the Photoluminescence of ZnSe/ZnS:Mn/ZnS Quantum Dots for Detecting E. Coli and MRSA Bacteria Quickly. J Fluoresc 2023:10.1007/s10895-023-03493-9. [PMID: 37987981 DOI: 10.1007/s10895-023-03493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
In this study, we used a starch paste stabilizer to synthesize ZnSe: Mn/ZnS- Starch and ZnSe/ZnS: Mn/ZnS-starch quantum dot (QDs) in a non-toxic aqueous solvent. The -CH2-OH group of the starch paste promotes dispersibility and improves the compatibility of quantum dots with antibodies, its bonding is observed in the FTIR spectrum. Besides, the Mn-doped ZnS buffer shell with various concentrations (1, 3, 5, 7, and 9%) influence structure, optical, and photoluminescence of QDs properties were investigated in detail. The greatest luminescence intensity is achieved at a molar ratio of 3% Mn2+/Zn2+. Moreover, the ZnS: Mn buffer shell helps to enhance the fluorescence intensity and quantum yield (QY) of the ZnSe/ZnS: Mn/ZnS QDs, which are higher than ZnSe: Mn/ZnS-starch QDs. Through protein A and EDC bridging, ZnSe/ZnS:3%Mn/ZnS- Starch resulted in good signal and sensitivity, with no toxicity to E. coli O157:H7 and MRSA strains.
Collapse
Affiliation(s)
- Thi-Diem Bui
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 70000, Vietnam
| | - Quang-Liem Nguyen
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 100000, Vietnam
| | - Thi-Bich Luong
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Thanh Phuong Nguyen
- Printing Material Lab, Faculty of Graphic Arts and Media, HCMC University of Technology and Education, No. 1 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc District, Ho Chi Minh City, 700000, Vietnam
| | - Phuc Huu Dang
- Faculty of Fundamental Science, Industrial University of Ho Chi Minh City, No. 12 Nguyen Van Bao Street, Ward 4, Go Vap District, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
10
|
Hu D, Xia M, Wu L, Liu H, Chen Z, Xu H, He C, Wen J, Xu X. Challenges and advances for glioma therapy based on inorganic nanoparticles. Mater Today Bio 2023; 20:100673. [PMID: 37441136 PMCID: PMC10333687 DOI: 10.1016/j.mtbio.2023.100673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is one of the most serious central nervous system diseases, with high mortality and poor prognosis. Despite the continuous development of existing treatment methods, the median survival time of glioma patients is still only 15 months. The main treatment difficulties are the invasive growth of glioma and the obstruction of the blood-brain barrier (BBB) to drugs. With rapid advancements in nanotechnology, inorganic nanoparticles (INPs) have shown favourable application prospects in the diagnosis and treatment of glioma. Due to their extraordinary intrinsic features, INPs can be easily fabricated, while doping with other elements and surface modification by biological ligands can be used to enhance BBB penetration, targeted delivery and biocompatibility. Guided glioma theranostics with INPs can improve and enhance the efficacy of traditional methods such as chemotherapy, radiotherapy and gene therapy. New strategies, such as immunotherapy, photothermal and photodynamic therapy, magnetic hyperthermia therapy, and multifunctional inorganic nanoplatforms, have also been facilitated by INPs. This review emphasizes the current state of research and clinical applications of INPs, including glioma targeting and BBB penetration enhancement methods, in vivo and in vitro biocompatibility, and diagnostic and treatment strategies. As such, it provides insights for the development of novel glioma treatment strategies.
Collapse
Affiliation(s)
- Die Hu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Miao Xia
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Linxuan Wu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Hanmeng Liu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Zhigang Chen
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jian Wen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xiaoqian Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| |
Collapse
|
11
|
Lin M, Qi X. Advances and Challenges of Stimuli-Responsive Nucleic Acids Delivery System in Gene Therapy. Pharmaceutics 2023; 15:pharmaceutics15051450. [PMID: 37242692 DOI: 10.3390/pharmaceutics15051450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Gene therapy has emerged as a powerful tool to treat various diseases, such as cardiovascular diseases, neurological diseases, ocular diseases and cancer diseases. In 2018, the FDA approved Patisiran (the siRNA therapeutic) for treating amyloidosis. Compared with traditional drugs, gene therapy can directly correct the disease-related genes at the genetic level, which guarantees a sustained effect. However, nucleic acids are unstable in circulation and have short half-lives. They cannot pass through biological membranes due to their high molecular weight and massive negative charges. To facilitate the delivery of nucleic acids, it is crucial to develop a suitable delivery strategy. The rapid development of delivery systems has brought light to the gene delivery field, which can overcome multiple extracellular and intracellular barriers that prevent the efficient delivery of nucleic acids. Moreover, the emergence of stimuli-responsive delivery systems has made it possible to control the release of nucleic acids in an intelligent manner and to precisely guide the therapeutic nucleic acids to the target site. Considering the unique properties of stimuli-responsive delivery systems, various stimuli-responsive nanocarriers have been developed. For example, taking advantage of the physiological variations of a tumor (pH, redox and enzymes), various biostimuli- or endogenous stimuli-responsive delivery systems have been fabricated to control the gene delivery processes in an intelligent manner. In addition, other external stimuli, such as light, magnetic fields and ultrasound, have also been employed to construct stimuli-responsive nanocarriers. Nevertheless, most stimuli-responsive delivery systems are in the preclinical stage, and some critical issues remain to be solved for advancing the clinical translation of these nanocarriers, such as the unsatisfactory transfection efficiency, safety issues, complexity of manufacturing and off-target effects. The purpose of this review is to elaborate the principles of stimuli-responsive nanocarriers and to emphasize the most influential advances of stimuli-responsive gene delivery systems. Current challenges of their clinical translation and corresponding solutions will also be highlighted, which will accelerate the translation of stimuli-responsive nanocarriers and advance the development of gene therapy.
Collapse
Affiliation(s)
- Meng Lin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Xianrong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
12
|
Qiao R, Fu C, Forgham H, Javed I, Huang X, Zhu J, Whittaker AK, Davis TP. Magnetic Iron Oxide Nanoparticles for Brain Imaging and Drug Delivery. Adv Drug Deliv Rev 2023; 197:114822. [PMID: 37086918 DOI: 10.1016/j.addr.2023.114822] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/14/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Central nervous system (CNS) disorders affect as many as 1.5 billion people globally. The limited delivery of most imaging and therapeutic agents into the brain is a major challenge for treatment of CNS disorders. With the advent of nanotechnologies, controlled delivery of drugs with nanoparticles holds great promise in CNS disorders for overcoming the blood-brain barrier (BBB) and improving delivery efficacy. In recent years, magnetic iron oxide nanoparticles (MIONPs) have stood out as a promising theranostic nanoplatform for brain imaging and drug delivery as they possess unique physical properties and biodegradable characteristics. In this review, we summarize the recent advances in MIONP-based platforms as imaging and drug delivery agents for brain diseases. We firstly introduce the methods of synthesis and surface functionalization of MIONPs with emphasis on the inclusion of biocompatible polymers that allow for the addition of tailored physicochemical properties. We then discuss the recent advances in in vivo imaging and drug delivery applications using MIONPs. Finally, we present a perspective on the remaining challenges and possible future directions for MIONP-based brain delivery systems.
Collapse
Affiliation(s)
- Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Thomas P Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
13
|
Park T, Amatya R, Min KA, Shin MC. Liposomal Iron Oxide Nanoparticles Loaded with Doxorubicin for Combined Chemo-Photothermal Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15010292. [PMID: 36678921 PMCID: PMC9860715 DOI: 10.3390/pharmaceutics15010292] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Iron oxide nanoparticle (IONP) possesses unique advantages over other nanoparticles in the use of cancer imaging and therapy. Specifically, it has drawn great attention in the emerging research field of photothermal cancer therapy. Herein, we developed doxorubicin (DOX)-loaded liposomal IONP (Lipo-IONP/DOX) and evaluated in vitro and in vivo their applicability for combined chemo-photothermal cancer therapy. The Lipo-IONP was synthesized by the thin-film evaporation method. The prepared Lipo-IONP was observed as about a 240 nm-sized agglomerate of globular-shaped nanoparticles. The TEM and FT-IR data evidenced the successful formation of liposomal IONP. The superparamagnetic property of the Lipo-IONP was confirmed by the SQUID analysis. The DSC data showed a transition temperature of about 47-48 °C for the mixed lipids composing the Lipo IONP, and the DOX release studies revealed the feasibility of induced burst release of DOX by laser irradiation. The Lipo-IONP/DOX possessed a plasma half-life of 42 min, which could ensure sufficient circulation time for magnetic tumor targeting. The in vivo magnetic targeting enabled a significant increase (6.3-fold) in the tumor accumulation of Lipo-IONP/DOX, leading to greater photothermal effects. Finally, the preliminary efficacy study evidenced the applicability as well as the safety of the Lipo-IONP/DOX for use in combined chemo-photothermal cancer therapy. Overall, the study results demonstrated that the Lipo-IONP/DOX might serve as an effective and safe agent for combined chemo-photothermal cancer therapy.
Collapse
Affiliation(s)
- Taehoon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Gyeongnam, Republic of Korea
| | - Reeju Amatya
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Gyeongnam, Republic of Korea
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Republic of Korea
- Correspondence: (K.A.M.); (M.C.S.); Tel.: +82-55-320-3459 (K.A.M.); +82-55-772-2421 (M.C.S.)
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Gyeongnam, Republic of Korea
- Correspondence: (K.A.M.); (M.C.S.); Tel.: +82-55-320-3459 (K.A.M.); +82-55-772-2421 (M.C.S.)
| |
Collapse
|
14
|
Portilla Y, Fernández-Afonso Y, Pérez-Yagüe S, Mulens-Arias V, Morales MP, Gutiérrez L, Barber DF. Different coatings on magnetic nanoparticles dictate their degradation kinetics in vivo for 15 months after intravenous administration in mice. J Nanobiotechnology 2022; 20:543. [PMID: 36578018 PMCID: PMC9795732 DOI: 10.1186/s12951-022-01747-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The surface coating of iron oxide magnetic nanoparticle (MNPs) drives their intracellular trafficking and degradation in endolysosomes, as well as dictating other cellular outcomes. As such, we assessed whether MNP coatings might influence their biodistribution, their accumulation in certain organs and their turnover therein, processes that must be understood in vivo to optimize the design of nanoformulations for specific therapeutic/diagnostic needs. RESULTS In this study, three different MNP coatings were analyzed, each conferring the identical 12 nm iron oxide cores with different physicochemical characteristics: 3-aminopropyl-triethoxysilane (APS), dextran (DEX), and dimercaptosuccinic acid (DMSA). When the biodistribution of these MNPs was analyzed in C57BL/6 mice, they all mainly accumulated in the spleen and liver one week after administration. The coating influenced the proportion of the MNPs in each organ, with more APS-MNPs accumulating in the spleen and more DMSA-MNPs accumulating in the liver, remaining there until they were fully degraded. The changes in the physicochemical properties of the MNPs (core size and magnetic properties) was also assessed during their intracellular degradation when internalized by two murine macrophage cell lines. The decrease in the size of the MNPs iron core was influenced by their coating and the organ in which they accumulated. Finally, MNP degradation was analyzed in the liver and spleen of C57BL/6 mice from 7 days to 15 months after the last intravenous MNP administration. CONCLUSIONS The MNPs degraded at different rates depending on the organ and their coating, the former representing the feature that was fundamental in determining the time they persisted. In the liver, the rate of degradation was similar for all three coatings, and it was faster than in the spleen. This information regarding the influence of coatings on the in vivo degradation of MNPs will help to choose the best coating for each biomedical application depending on the specific clinical requirements.
Collapse
Affiliation(s)
- Yadileiny Portilla
- Department of Immunology and Oncology and the NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain
| | - Yilian Fernández-Afonso
- Departamento de Química Analítica, Instituto de Nanociencia Y Materiales de Aragón (INMA), Universidad de Zaragoza, CSIC and CIBER-BBN, 50018, Zaragoza, Spain
| | - Sonia Pérez-Yagüe
- Department of Immunology and Oncology and the NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain
| | - Vladimir Mulens-Arias
- Department of Immunology and Oncology and the NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain
- Integrative Biomedical Materials and Nanomedicine Laboratory, Department of Medicine and Life Sciences (MELIS), Pompeu Fabra University, Carrer Doctor Aiguader 88, 08003, Barcelona, Spain
| | - M Puerto Morales
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de La Cruz 3, 28049, Madrid, Spain
| | - Lucía Gutiérrez
- Departamento de Química Analítica, Instituto de Nanociencia Y Materiales de Aragón (INMA), Universidad de Zaragoza, CSIC and CIBER-BBN, 50018, Zaragoza, Spain.
| | - Domingo F Barber
- Department of Immunology and Oncology and the NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
15
|
Bassiony H, El-Ghor AA, Salaheldin TA, Sabet S, Mohamed MM. Tissue Distribution, Histopathological and Genotoxic Effects of Magnetite Nanoparticles on Ehrlich Solid Carcinoma. Biol Trace Elem Res 2022; 200:5145-5158. [PMID: 35032291 PMCID: PMC9560945 DOI: 10.1007/s12011-022-03102-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/02/2022] [Indexed: 11/26/2022]
Abstract
Nanoparticles can potentially cause adverse effects on cellular and molecular level. The present study aimed to investigate the histopathological changes and DNA damage effects of magnetite nanoparticles (MNPs) on female albino mice model with Ehrlich solid carcinoma (ESC). Magnetite nanoparticles coated with L-ascorbic acid (size ~ 25.0 nm) were synthesized and characterized. Mice were treated with MNPs day by day, intraperitoneally (IP), intramuscularly (IM), or intratumorally (IT). Autopsy samples were taken from the solid tumor, thigh muscle, liver, kidney, lung, spleen, and brain for assessment of iron content, histopathological examination, and genotoxicity using comet assay. The liver, spleen, lung, and heart had significantly higher iron content in groups treated IP. On the other hand, tumor, muscles, and the liver had significantly higher iron content in groups treated IT. MNPs induced a significant DNA damage in IT treated ESC. While a significant DNA damage was detected in the liver of the IP treated group, but no significant DNA damage could be detected in the brain. Histopathological findings in ESC revealed a marked tumor necrosis, 50% in group injected IT but 40% in group injected IP and 20% only in untreated tumors. Other findings include inflammatory cell infiltration, dilatation, and congestion of blood vessels of different organs of treated groups in addition to appearance of metastatic cancer cells in the liver of non-treated tumor group. MNPs could have an antitumor effect but it is recommended to be injected intratumorally to be directed to the tumor tissues and reduce its adverse effects on healthy tissues.
Collapse
Affiliation(s)
- Heba Bassiony
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Akmal A. El-Ghor
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Taher A. Salaheldin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY USA
| | - Salwa Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Mona M. Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613 Egypt
- Director of Biotechnology Program, Faculty of Science, Galala University, Suez, 43511 Egypt
| |
Collapse
|
16
|
Soares GA, Pereira GM, Romualdo GR, Biasotti GGA, Stoppa EG, Bakuzis AF, Baffa O, Barbisan LF, Miranda JRA. Biodistribution Profile of Magnetic Nanoparticles in Cirrhosis-Associated Hepatocarcinogenesis in Rats by AC Biosusceptometry. Pharmaceutics 2022; 14:pharmaceutics14091907. [PMID: 36145654 PMCID: PMC9504370 DOI: 10.3390/pharmaceutics14091907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Since magnetic nanoparticles (MNPs) have been used as multifunctional probes to diagnose and treat liver diseases in recent years, this study aimed to assess how the condition of cirrhosis-associated hepatocarcinogenesis alters the biodistribution of hepatic MNPs. Using a real-time image acquisition approach, the distribution profile of MNPs after intravenous administration was monitored using an AC biosusceptometry (ACB) assay. We assessed the biodistribution profile based on the ACB images obtained through selected regions of interest (ROIs) in the heart and liver position according to the anatomical references previously selected. The signals obtained allowed for the quantification of pharmacokinetic parameters, indicating that the uptake of hepatic MNPs is compromised during liver cirrhosis, since scar tissue reduces blood flow through the liver and slows its processing function. Since liver monocytes/macrophages remained constant during the cirrhotic stage, the increased intrahepatic vascular resistance associated with impaired hepatic sinusoidal circulation was considered the potential reason for the change in the distribution of MNPs.
Collapse
Affiliation(s)
- Guilherme A. Soares
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
- Correspondence:
| | - Gabriele M. Pereira
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Guilherme R. Romualdo
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
- Department of Strucutral and Functional Biology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Gabriel G. A. Biasotti
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Erick G. Stoppa
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Andris F. Bakuzis
- Institute of Physics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Oswaldo Baffa
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Luis F. Barbisan
- Department of Strucutral and Functional Biology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Jose R. A. Miranda
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| |
Collapse
|
17
|
Influence of Polymer Shell Molecular Weight on Functionalized Iron Oxide Nanoparticles Morphology and In Vivo Biodistribution. Pharmaceutics 2022; 14:pharmaceutics14091877. [PMID: 36145625 PMCID: PMC9501806 DOI: 10.3390/pharmaceutics14091877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Iron oxide nanoparticles (IONPs) have been extensively used in different biomedical applications due to their biocompatibility and magnetic properties. However, different functionalization approaches have been developed to improve their time-life in the systemic circulation. Here, we have synthesized IONPs using a modified Massart method and functionalized them in situ with polyethylene glycol with different molecular weights (20 K and 35 K). The resulting nanoparticles were characterized in terms of morphology, structure, and composition using transmission electron microscopy (TEM) and selected area electron diffraction (SAED). In vivo biodistribution was evaluated in Balb/c mice, the presence of IONP being evidenced through histopathological investigations. IONP morphological characterization showed a change in shape (from spherical to rhombic) and size with molecular weight, while structural characterization proved the obtaining of highly crystalline samples of spinel structured cubic face-centered magnetite. In vivo biodistribution in a mice model proved the biocompatibility of all of the IONP samples. All NPs were cleared through the liver, spleen, and lungs, while bare IONPs were also evidenced in kidneys.
Collapse
|
18
|
Nowak-Jary J, Machnicka B. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J Nanobiotechnology 2022; 20:305. [PMID: 35761279 PMCID: PMC9235206 DOI: 10.1186/s12951-022-01510-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Magnetic iron oxide nanoparticles (MNPs) have been under intense investigation for at least the last five decades as they show enormous potential for many biomedical applications, such as biomolecule separation, MRI imaging and hyperthermia. Moreover, a large area of research on these nanostructures is concerned with their use as carriers of drugs, nucleic acids, peptides and other biologically active compounds, often leading to the development of targeted therapies. The uniqueness of MNPs is due to their nanometric size and unique magnetic properties. In addition, iron ions, which, along with oxygen, are a part of the MNPs, belong to the trace elements in the body. Therefore, after digesting MNPs in lysosomes, iron ions are incorporated into the natural circulation of this element in the body, which reduces the risk of excessive storage of nanoparticles. Still, one of the key issues for the therapeutic applications of magnetic nanoparticles is their pharmacokinetics which is reflected in the circulation time of MNPs in the bloodstream. These characteristics depend on many factors, such as the size and charge of MNPs, the nature of the polymers and any molecules attached to their surface, and other. Since the pharmacokinetics depends on the resultant of the physicochemical properties of nanoparticles, research should be carried out individually for all the nanostructures designed. Almost every year there are new reports on the results of studies on the pharmacokinetics of specific magnetic nanoparticles, thus it is very important to follow the achievements on this matter. This paper reviews the latest findings in this field. The mechanism of action of the mononuclear phagocytic system and the half-lives of a wide range of nanostructures are presented. Moreover, factors affecting clearance such as hydrodynamic and core size, core morphology and coatings molecules, surface charge and technical aspects have been described.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland.
| | - Beata Machnicka
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland
| |
Collapse
|
19
|
Li C, Li T, Niu K, Xiao Z, Huang J, Pan X, Sun Y, Wang Y, Ma D, Xie P, Shuai X, Meng X. Mild phototherapy mediated by manganese dioxide-loaded mesoporous polydopamine enhances immunotherapy against colorectal cancer. Biomater Sci 2022; 10:3647-3656. [PMID: 35670464 DOI: 10.1039/d2bm00505k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the main challenges in applying the immune checkpoint blockade to treat colorectal cancer (CRC) is the immunosuppressive tumor microenvironment. Owing to its excellent cancer cell killing ability and immune activation, mild photothermal therapy (PTT) has shown bright promise to sensitize tumors to immune checkpoint inhibition through turning the immunologically "cold" tumors into "hot" ones. Herein, a mild photothermal effect-assisted theragnostic nanodrug (MnO2@MPDA-PEG NPs) is developed by incorporating MnO2 into PEGylated-mesoporous polydopamine nanoparticles (MPDA-PEG NPs). The presence of PEG endows the theragnostic nanodrug with high biostability. After accumulation in colorectal tumor, the theragnostic nanodrug responds to the tumor microenvironment, leading to the simultaneous release of Mn2+ which serves as a magnetic resonance imaging (MRI) contrast agent for tumor imaging. The released Mn2+ could also promote mild photothermal treatment-induced immune response, including the maturation of BMDC cells. In vivo antitumor studies on a CT26 model demonstrate that MnO2@MPDA-PEG NPs could be a promising dual-imaging theragnostic nanodrug to potentiate the systemic antitumor immunities.
Collapse
Affiliation(s)
- Caiying Li
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
| | - Tan Li
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Kexin Niu
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
| | - Zecong Xiao
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Jing Huang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Ximin Pan
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
| | - Yi Sun
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
| | - Yongchen Wang
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
| | - Decai Ma
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
| | - Peiyi Xie
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Xiaochun Meng
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
20
|
Chen Z, Zeng Y, Chen N, Zhang M, Wang Y, Pan Z, Yuan J, Ye Z, Li X, Bian W, Li H, Zhang K, He Y, Liu X. A Facile and Universal Method for Preparing Polyethylene Glycol-Metal Hybrid Nanoparticles and Their Application in Tumor Theranostics. Adv Healthc Mater 2022; 11:e2200044. [PMID: 35192244 DOI: 10.1002/adhm.202200044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Indexed: 12/19/2022]
Abstract
Metal ions are of widespread interest owing to their brilliant biomedical functions. However, a simple and universal nanoplatform designed for assembling a range of functional metal ions has not been explored. In this study, a concept of polyethylene glycol (PEG)-mediated transport of metal ions is proposed. 31 types of PEG-metal hybrid nanoparticles (P-MNPs) are successfully synthesized through anionic ring-opening polymerization (ROP), "thiol-ene" click reaction, and subsequent incorporation with multiple metal ions. Compared with other methods, the facile method proposed in this study can provide a feasible approach to design MNPs (mostly <200 nm) containing different metal ions and thus to explore their potential for cancer theranostics. As a proof-of-concept demonstration, four types P-MNPs, i.e., PEG-metal hybrid copper nanoparticles (PEG-Cu NPs), ruthenium nanoparticles (PEG-Ru NPs), and manganese nanoparticles (PEG-Mn NPs) or gadolinium nanoparticles (PEG-Gd NPs), are proven to be tailored for chemodynamic therapy, photothermal therapy, and magnetic resonance imaging of tumors, respectively. Overall, this study provides several metal ions-based nanomaterials with versatile functions for broad applications in cancer theranostics. Furthermore, it offers a promising tool that can be utilized for processing other metal-based nanoparticles and exploring their potential in the biomedical field.
Collapse
Affiliation(s)
- Zefeng Chen
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Yaoxun Zeng
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Niping Chen
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Mingxia Zhang
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Yakun Wang
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Zhenxing Pan
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Jiongpeng Yuan
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Zhaoyi Ye
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Xiaojing Li
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Wangqing Bian
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Haihong Li
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Kun Zhang
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Yan He
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Xujie Liu
- Conney Laboratory for Anticancer Research School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou Guangdong 510006 P. R. China
| |
Collapse
|
21
|
Jiao W, Zhang T, Peng M, Yi J, He Y, Fan H. Design of Magnetic Nanoplatforms for Cancer Theranostics. BIOSENSORS 2022; 12:38. [PMID: 35049666 PMCID: PMC8774163 DOI: 10.3390/bios12010038] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 05/04/2023]
Abstract
Cancer is the top cause of death globally. Developing smart nanomedicines that are capable of diagnosis and therapy (theranostics) in one-nanoparticle systems are highly desirable for improving cancer treatment outcomes. The magnetic nanoplatforms are the ideal system for cancer theranostics, because of their diverse physiochemical properties and biological effects. In particular, a biocompatible iron oxide nanoparticle based magnetic nanoplatform can exhibit multiple magnetic-responsive behaviors under an external magnetic field and realize the integration of diagnosis (magnetic resonance imaging, ultrasonic imaging, photoacoustic imaging, etc.) and therapy (magnetic hyperthermia, photothermal therapy, controlled drug delivery and release, etc.) in vivo. Furthermore, due to considerable variation among tumors and individual patients, it is a requirement to design iron oxide nanoplatforms by the coordination of diverse functionalities for efficient and individualized theranostics. In this article, we will present an up-to-date overview on iron oxide nanoplatforms, including both iron oxide nanomaterials and those that can respond to an externally applied magnetic field, with an emphasis on their applications in cancer theranostics.
Collapse
Affiliation(s)
- Wangbo Jiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (W.J.); (T.Z.); (M.P.)
| | - Tingbin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (W.J.); (T.Z.); (M.P.)
| | - Mingli Peng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (W.J.); (T.Z.); (M.P.)
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Newcastle, NSW 2308, Australia;
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (W.J.); (T.Z.); (M.P.)
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China; (W.J.); (T.Z.); (M.P.)
| |
Collapse
|
22
|
Moonshi SS, Wu Y, Ta HT. Visualizing stem cells in vivo using magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1760. [PMID: 34651465 DOI: 10.1002/wnan.1760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022]
Abstract
Stem cell (SC) therapies displayed encouraging efficacy and clinical outcome in various disorders. Despite this huge hype, clinical translation of SC therapy has been disheartening due to contradictory results from clinical trials. The ability to monitor migration and engraftment of cells in vivo represents an ideal strategy in cell therapy. Therefore, suitable imaging approach to track MSCs would allow understanding of migratory and homing efficiency, optimal route of delivery and engraftment of cells at targeted location. Hence, longitudinal tracking of SCs is crucial for the optimization of treatment parameters, leading to improved clinical outcome and translation. Magnetic resonance imaging (MRI) represents a suitable imaging modality to observe cells non-invasively and repeatedly. Tracking is achieved when cells are incubated prior to implantation with appropriate contrast agents (CA) or tracers which can then be detected in an MRI scan. This review explores and emphasizes the importance of monitoring the distribution and fate of SCs post-implantation using current contrast agents, such as positive CAs including paramagnetic metals (gadolinium), negative contrast agents such as superparamagnetic iron oxides and 19 F containing tracers, specifically for the in vivo tracking of MSCs using MRI. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Shehzahdi Shebbrin Moonshi
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia
| | - Yuao Wu
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia
| | - Hang Thu Ta
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia.,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
23
|
Nanocarriers as a Tool for the Treatment of Colorectal Cancer. Pharmaceutics 2021; 13:pharmaceutics13081321. [PMID: 34452282 PMCID: PMC8399070 DOI: 10.3390/pharmaceutics13081321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is a promising tool for the treatment of cancer. In the past decades, major steps have been made to bring nanotechnology into the clinic in the form of nanoparticle-based drug delivery systems. The great hope of drug delivery systems is to reduce the side effects of chemotherapeutics while simultaneously increasing the efficiency of the therapy. An increased treatment efficiency would greatly benefit the quality of life as well as the life expectancy of cancer patients. However, besides its many advantages, nanomedicines have to face several challenges and hurdles before they can be used for the effective treatment of tumors. Here, we give an overview of the hallmarks of cancer, especially colorectal cancer, and discuss biological barriers as well as how drug delivery systems can be utilized for the effective treatment of tumors and metastases.
Collapse
|
24
|
Song JW, Nam HS, Ahn JW, Park HS, Kang DO, Kim HJ, Kim YH, Han J, Choi JY, Lee SY, Kim S, Oh WY, Yoo H, Park K, Kim JW. Macrophage targeted theranostic strategy for accurate detection and rapid stabilization of the inflamed high-risk plaque. Theranostics 2021; 11:8874-8893. [PMID: 34522216 PMCID: PMC8419038 DOI: 10.7150/thno.59759] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Rationale: Inflammation plays a pivotal role in the pathogenesis of the acute coronary syndrome. Detecting plaques with high inflammatory activity and specifically treating those lesions can be crucial to prevent life-threatening cardiovascular events. Methods: Here, we developed a macrophage mannose receptor (MMR)-targeted theranostic nanodrug (mannose-polyethylene glycol-glycol chitosan-deoxycholic acid-cyanine 7-lobeglitazone; MMR-Lobe-Cy) designed to identify inflammatory activity as well as to deliver peroxisome proliferator-activated gamma (PPARγ) agonist, lobeglitazone, specifically to high-risk plaques based on the high mannose receptor specificity. The MMR-Lobe-Cy was intravenously injected into balloon-injured atheromatous rabbits and serial in vivo optical coherence tomography (OCT)-near-infrared fluorescence (NIRF) structural-molecular imaging was performed. Results: One week after MMR-Lobe-Cy administration, the inflammatory NIRF signals in the plaques notably decreased compared to the baseline whereas the signals in saline controls even increased over time. In accordance with in vivo imaging findings, ex vivo NIRF signals on fluorescence reflectance imaging (FRI) and plaque inflammation by immunostainings significantly decreased compared to oral lobeglitazone group or saline controls. The anti-inflammatory effect of MMR-Lobe-Cy was mediated by inhibition of TLR4/NF-κB pathway. Furthermore, acute resolution of inflammation altered the inflamed plaque into a stable phenotype with less macrophages and collagen-rich matrix. Conclusion: Macrophage targeted PPARγ activator labeled with NIRF rapidly stabilized the inflamed plaques in coronary sized artery, which could be quantitatively assessed using intravascular OCT-NIRF imaging. This novel theranostic approach provides a promising theranostic strategy for high-risk coronary plaques.
Collapse
Affiliation(s)
- Joon Woo Song
- Multimodal Imaging and Theranostic Lab., Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Hyeong Soo Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jae Won Ahn
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Hyun-Sang Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Dong Oh Kang
- Multimodal Imaging and Theranostic Lab., Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Hyun Jung Kim
- Multimodal Imaging and Theranostic Lab., Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Yeon Hoon Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jeongmoo Han
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jah Yeon Choi
- Multimodal Imaging and Theranostic Lab., Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Seung-Yul Lee
- Multimodal Imaging and Theranostic Lab., Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Sunwon Kim
- Multimodal Imaging and Theranostic Lab., Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hongki Yoo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Jin Won Kim
- Multimodal Imaging and Theranostic Lab., Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| |
Collapse
|
25
|
Nanotechnological interventions for treatment of trypanosomiasis in humans and animals. Drug Deliv Transl Res 2021; 10:945-961. [PMID: 32383004 DOI: 10.1007/s13346-020-00764-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Trypanosomiasis is a parasitic infection caused by Trypanosoma. It is one of the major causes of deaths in underprivileged, rural areas of Africa, America and Asia. Depending on the parasite species responsible for the disease, it can take two forms namely African trypanosomiasis (sleeping sickness) and American trypanosomiasis (Chagas disease). The complete life-cycle stages of trypanosomes span between insect vector (tsetse fly, triatomine bug) and mammalian host (humans, animals). Only few drugs have been approved for the treatment of trypanosomiasis. Moreover, current trypanocidal therapy has major limitations of poor efficacy, serious side effects and drug resistance. Due to the lack of economic gains from tropical parasitic infection, it has always been neglected by the researchers and drug manufacturers. There is an immense need of more effective innovative strategies to decrease the deaths associated with this diseases. Nanotechnological approaches for delivery of existing drugs have shown significant improvement in efficacy with many-fold decrease in their dose. The review emphasizes on nanotechnological interventions in the treatment of trypanosomiasis in both humans and animals. Current trypanocidal therapy and their limitations have also been discussed briefly. Graphical abstract.
Collapse
|
26
|
Salmanian G, Hassanzadeh-Tabrizi SA, Koupaei N. Magnetic chitosan nanocomposites for simultaneous hyperthermia and drug delivery applications: A review. Int J Biol Macromol 2021; 184:618-635. [PMID: 34166696 DOI: 10.1016/j.ijbiomac.2021.06.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
Cancer is one of the major causes of death worldwide, and its prevalence is rising every day. New methods and materials with multifunctional tasks such as simultaneous hyperthermia treatment and drug release with minimum side effects are highly demanded. Magnetic chitosan nanocomposites can be utilized for localized tumor heating under magnetic field and have a controlled anticancer drug release due to unique functional groups of chitosan with the least complications. Combining different types of magnetic cores and engineered chitosan shells can create unique characteristics such as biocompatibility, the least toxic effects, long-term circulation in the body, controlled drug released, and the ability to carry various medicines. Recent advances in the synthesis, development, and applications of magnetic chitosan nanocomposites for hyperthermia and drug delivery are summarized in this review. The structure and different heating and drug release mechanisms of this magnetic system are discussed.
Collapse
Affiliation(s)
- Ghazaleh Salmanian
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - S A Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Narjes Koupaei
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
27
|
Recent advances in iron oxide nanoparticles for brain cancer theranostics: from in vitro to clinical applications. Expert Opin Drug Deliv 2021; 18:949-977. [PMID: 33567919 DOI: 10.1080/17425247.2021.1888926] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Today, the development of multifunctional nanoplatforms is more seriously considered in the field of cancer theranostics.Areas covered: In this respect, nanoparticles provide several advantages over the routine, conventional diagnostic methods, and treatments. Due to the expedient properties of iron oxide nanoparticles, such as being readily modified, great payload potential, intrinsic magnetic qualification, considerable biocompatibility, and overwhelming response to targeting strategies, these nanoparticles can be considered good candidates for application as diagnostic contrast agents and drug/gene delivery vehicles, while also being incorporated into hyperthermia-based approaches. Interestingly, these agents are detectable with routine imaging modalities such as magnetic resonance imaging.Expert opinion: Therefore, combining the traditional diagnostics and therapies with nanotechnological approaches may leave a positive impact on the survival rate of patients with cancer. This review summarizes the application of magnetic iron oxide nanoparticles in both in vitro and in vivo models of brain tumors.
Collapse
|
28
|
Singh S, Chawla H, Chandra A, Garg S. Magnetic hybrid nanoparticles for drug delivery. MAGNETIC NANOPARTICLE-BASED HYBRID MATERIALS 2021:319-342. [DOI: 10.1016/b978-0-12-823688-8.00034-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
29
|
Zakarial Ansar FH, Latifah SY, Wan Kamal WHB, Khong KC, Ng Y, Foong JN, Gopalsamy B, Ng WK, How CW, Ong YS, Abdullah R, Aziz MY. Pharmacokinetics and Biodistribution of Thymoquinone-loaded Nanostructured Lipid Carrier After Oral and Intravenous Administration into Rats. Int J Nanomedicine 2020; 15:7703-7717. [PMID: 33116496 PMCID: PMC7553255 DOI: 10.2147/ijn.s262395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
Background Thymoquinone (TQ), an active compound isolated from Nigella sativa, has been proven to exhibit various biological properties such as antioxidant. Although oral delivery of TQ is valuable, it is limited by poor oral bioavailability and low solubility. Recently, TQ-loaded nanostructured lipid carrier (TQ-NLC) was formulated with the aim of overcoming the limitations. TQ-NLC was successfully synthesized by the high-pressure homogenization method with remarkable physiochemical properties whereby the particle size is less than 100 nm, improved encapsulation efficiency and is stable up to 24 months of storage. Nevertheless, the pharmacokinetics and biodistribution of TQ-NLC have not been studied. This study determined the bioavailability of oral and intravenous administration of thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) in rats and its distribution to organs. Materials and Methods TQ-NLC was radiolabeled with technetium-99m before the administration to the rats. The biodistribution and pharmacokinetics parameters were then evaluated at various time points. The rats were imaged at time intervals and the percentage of the injected dose/gram (%ID/g) in blood and each organ was analyzed. Results Oral administration of TQ-NLC exhibited greater relative bioavailability compared to intravenous administration. It is postulated that the movement of TQ-NLC through the intestinal lymphatic system bypasses the first metabolism and therefore enhances the relative bioavailability. However, oral administration has a slower absorption rate compared to intravenous administration where the AUC0-∞ was 4.539 times lower than the latter. Conclusion TQ-NLC had better absorption when administered intravenously compared to oral administration. However, oral administration showed greater bioavailability compared to the intravenous route. This study provides the pharmacokinetics and biodistribution profile of TQ-NLC in vivo which is useful to assist researchers in clinical use.
Collapse
Affiliation(s)
- Fatin Hannani Zakarial Ansar
- Laboratory of Molecular Medicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Saiful Yazan Latifah
- Laboratory of Molecular Medicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wan Hamirul Bahrin Wan Kamal
- Laboratory of Preclinical Study, Block 24, Medical Technology Division, Malaysian Nuclear Agency, Kajang, Selangor, Malaysia
| | - Khei Choong Khong
- Laboratory of Preclinical Study, Block 24, Medical Technology Division, Malaysian Nuclear Agency, Kajang, Selangor, Malaysia
| | - Yen Ng
- Laboratory of Preclinical Study, Block 24, Medical Technology Division, Malaysian Nuclear Agency, Kajang, Selangor, Malaysia
| | - Jia Ning Foong
- Laboratory of Molecular Medicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Banulata Gopalsamy
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wei Keat Ng
- Laboratory of Molecular Medicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chee Wun How
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yong Sze Ong
- Laboratory of Molecular Medicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rasedee Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Yusmaidie Aziz
- Advanced Medical and Dental Institute, University of Science Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
30
|
Malhotra N, Lee JS, Liman RAD, Ruallo JMS, Villaflores OB, Ger TR, Hsiao CD. Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review. Molecules 2020; 25:E3159. [PMID: 32664325 PMCID: PMC7397295 DOI: 10.3390/molecules25143159] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/25/2022] Open
Abstract
The noteworthy intensification in the development of nanotechnology has led to the development of various types of nanoparticles. The diverse applications of these nanoparticles make them desirable candidate for areas such as drug delivery, coasmetics, medicine, electronics, and contrast agents for magnetic resonance imaging (MRI) and so on. Iron oxide magnetic nanoparticles are a branch of nanoparticles which is specifically being considered as a contrast agent for MRI as well as targeted drug delivery vehicles, angiogenic therapy and chemotherapy as small size gives them advantage to travel intravascular or intracavity actively for drug delivery. Besides the mentioned advantages, the toxicity of the iron oxide magnetic nanoparticles is still less explored. For in vivo applications magnetic nanoparticles should be nontoxic and compatible with the body fluids. These particles tend to degrade in the body hence there is a need to understand the toxicity of the particles as whole and degraded products interacting within the body. Some nanoparticles have demonstrated toxic effects such inflammation, ulceration, and decreases in growth rate, decline in viability and triggering of neurobehavioral alterations in plants and cell lines as well as in animal models. The cause of nanoparticles' toxicity is attributed to their specific characteristics of great surface to volume ratio, chemical composition, size, and dosage, retention in body, immunogenicity, organ specific toxicity, breakdown and elimination from the body. In the current review paper, we aim to sum up the current knowledge on the toxic effects of different magnetic nanoparticles on cell lines, marine organisms and rodents. We believe that the comprehensive data can provide significant study parameters and recent developments in the field. Thereafter, collecting profound knowledge on the background of the subject matter, will contribute to drive research in this field in a new sustainable direction.
Collapse
Affiliation(s)
- Nemi Malhotra
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Jiann-Shing Lee
- Department of Applied Physics, National Pingtung University, Pingtung 90007, Taiwan
| | | | | | - Oliver B Villaflores
- Department of Biochemistry, Faculty of Pharmacy and Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
31
|
Zhou J, Hou J, Rao J, Zhou C, Liu Y, Gao W. Magnetically Directed Enzyme/Prodrug Prostate Cancer Therapy Based on β-Glucosidase/Amygdalin. Int J Nanomedicine 2020; 15:4639-4657. [PMID: 32636623 PMCID: PMC7334483 DOI: 10.2147/ijn.s242359] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 06/09/2020] [Indexed: 12/27/2022] Open
Abstract
Background β-Glucosidase (β-Glu) can activate amygdalin to kill prostate cancer cells, but the poor specificity of this killing effect may cause severe general toxicity in vivo, limiting the practical clinical application of this approach. Materials and Methods In this study, starch-coated magnetic nanoparticles (MNPs) were successively conjugated with β-Glu and polyethylene glycol (PEG) by chemical coupling methods. Cell experiments were used to confirm the effects of immobilized β-Glu on amygdalin-mediated prostate cancer cell death in vitro. Subcutaneous xenograft models were used to carry out the targeting experiment and magnetically directed enzyme/prodrug therapy (MDEPT) experiment in vivo. Results Immobilized β-Glu activated amygdalin-mediated prostate cancer cell death. Tumor-targeting studies showed that PEG modification increased the accumulation of β-Glu-loaded nanoparticles in targeted tumor tissue subjected to an external magnetic field and decreased the accumulation of the nanoparticles in the liver and spleen. Based on an enzyme activity of up to 134.89 ± 14.18mU/g tissue in the targeted tumor tissue, PEG-β-Glu-MNP/amygdalin combination therapy achieved targeted activation of amygdalin and tumor growth inhibition in C57BL/6 mice bearing RM1 xenografts. Safety evaluations showed that this strategy had some impact on liver and heart function but did not cause obvious organ damage. Conclusion All findings indicate that this magnetically directed enzyme/prodrug therapy strategy has the potential to become a promising new approach for targeted therapy of prostate cancer.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, People's Republic of China.,Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Jing Hou
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, People's Republic of China.,Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Jun Rao
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, People's Republic of China.,Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Conghui Zhou
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, People's Republic of China.,Department of Pharmaceutical Sciences, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Yunlong Liu
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wenxi Gao
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, People's Republic of China.,Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
32
|
Han L, Xu Y, Guo X, Yuan C, Mu D, Xiao Y. Cancer cell membrane-coated biomimetic platform for targeted therapy of breast cancer in an orthotopic mouse model. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1538-1551. [PMID: 32362234 DOI: 10.1080/09205063.2020.1764163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ling Han
- Department of Nursing Platform for Bone and Joint and Sports Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yan Xu
- Department of Nursing Platform for Bone and Joint and Sports Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xianmin Guo
- Department of Operation Room, The First Hospital of Jilin University, Changchun, China
| | - Chuanyu Yuan
- Department of Operation Room, The First Hospital of Jilin University, Changchun, China
| | - Degong Mu
- Department of Operation Room, The First Hospital of Jilin University, Changchun, China
| | - Ying Xiao
- Department of Operation Room, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Partain BD, Unni M, Rinaldi C, Allen KD. The clearance and biodistribution of magnetic composite nanoparticles in healthy and osteoarthritic rat knees. J Control Release 2020; 321:259-271. [PMID: 32004585 PMCID: PMC7942179 DOI: 10.1016/j.jconrel.2020.01.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/22/2022]
Abstract
Intra-articular injections are the most direct route for administering osteoarthritis (OA) therapies, yet how drug carriers distribute within the joint remains understudied. To this end, we developed a magnetic composite nanoparticle that can be tracked with fluorescence in vivo via an in vivo imaging system (IVIS), and quantified ex vivo via electron paramagnetic resonance (EPR) spectroscopy. Using this particle, the effects of age and OA pathogenesis on particle clearance and distribution were evaluated in the medial meniscus transection model of OA (5-, 10-, and 15-month old male Lewis rats). At 9 weeks after meniscus transection, composite nanoparticles were injected and joint clearance was assessed via IVIS. At 2 weeks after injection, animals were euthanized and particle distribution was quantified ex vivo via EPR spectroscopy. IVIS and EPR spectroscopy data indicate a predominant amount of particles remained in the joint after 14 days. EPR spectroscopy data suggests particles cleared more slowly from OA knees than from the contralateral control, with particles clearing more slowly from 15-month old rats than from 5- and 10-month old rats. This study demonstrates the importance of including both age and OA as factors when evaluating nanoparticles for intra-articular drug delivery.
Collapse
Affiliation(s)
- Brittany D Partain
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Mythreyi Unni
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Chemical Engineering, University of Florida, Gainesville, FL, USA.
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
34
|
Abstract
Magnetic targeting (MT) has been an emerging technology which is used to improve the delivery and retention of transplanted therapeutic cells in target site over the past 20 years. Meanwhile, stem cells have also been a research hotspot in cell therapy in recent years. Several researchers have combined the MT technology with Stem cell therapy in order to improve the efficacy. However, Different types of Magnetic Nano particles (MNPs) have presented different effects, and how to choose a proper MNPs became a question. This article aims to introduce the preparation method and application field of different types of magnetic Nanoparticles, discuss the pros and cons of different types of MNPs in stem cell therapy and make a prospect of MT technology in Stem cell therapy.
Collapse
|
35
|
Du J, Wu Q, Li Y, Liu P, Han X, Wang L, Yuan J, Meng X, Xiao Y. Preparation and characterization of Keratin-PEG conjugate-based micelles as a tumor microenvironment-responsive drug delivery system. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1163-1178. [DOI: 10.1080/09205063.2020.1747044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jinsong Du
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yanmei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Pengcheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yinghong Xiao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, P. R. China
| |
Collapse
|
36
|
PEG modification enhances the in vivo stability of bioactive proteins immobilized on magnetic nanoparticles. Biotechnol Lett 2020; 42:1407-1418. [PMID: 32200524 DOI: 10.1007/s10529-020-02867-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/14/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To increase the in vivo stability of bioactive proteins via optimized loading methods. RESULTS β-Glucosidase (β-Glu), as a model protein, was immobilized on magnetic nanoparticles(denoted as MNP-β-Glu) by chemical coupling methods and was further modified by poly(ethylene glycol) (PEG) molecules (denoted as MNP-β-Glu-PEG) to increase its stability. The physicochemical properties of the as-prepared nanohybrids, including the particle size, zeta potential, and enzyme activity, were well characterized. The proper MNP/β-Glu feed ratio was important for optimizing the particle size. Analysis of enzyme activity showed that the stability of immobilized β-Glu compared with free β-Glu was lower in deionized water and higher in blood serum at 37 °C. MNP-β-Glu-PEG retained 77.9% of the initial activity within 30 days at 4 °C, whereas the free enzyme retained only 58.2%. Pharmacokinetic studies of Sprague-Dawley (SD) rats showed that the MNP-β-Glu-PEG group retained a higher enzyme activity in vivo (41.46% after 50 min) than the MNP-β-Glu group (0.03% after 50 min) and the β-Glu group (0.37% after 50 min). Moreover, in contrast to the MNP-β-Glu group, the enzyme activity was not fully synchronous with the decrease in the Fe concentration in the MNP-β-Glu-PEG group. CONCLUSIONS All findings indicated that the method of immobilization on magnetic nanoparticles and PEG modification is promising for the application of bioactive proteins in vivo.
Collapse
|
37
|
Salinomycin-Loaded Iron Oxide Nanoparticles for Glioblastoma Therapy. NANOMATERIALS 2020; 10:nano10030477. [PMID: 32155938 PMCID: PMC7153627 DOI: 10.3390/nano10030477] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Salinomycin is an antibiotic introduced recently as a new and effective anticancer drug. In this study, magnetic iron oxide nanoparticles (IONPs) were utilized as a drug carrier for salinomycin for potential use in glioblastoma (GBM) chemotherapy. The biocompatible polyethylenimine (PEI)-polyethylene glycol (PEG)-IONPs (PEI-PEG-IONPs) exhibited an efficient uptake in both mouse brain-derived microvessel endothelial (bEnd.3) and human U251 GBM cell lines. The salinomycin (Sali)-loaded PEI-PEG-IONPs (Sali-PEI-PEG-IONPs) released salinomycin over 4 days, with an initial release of 44% ± 3% that increased to 66% ± 5% in acidic pH. The Sali-IONPs inhibited U251 cell proliferation and decreased their viability (by approximately 70% within 48 h), and the nanoparticles were found to be effective in reactive oxygen species-mediated GBM cell death. Gene studies revealed significant activation of caspases in U251 cells upon treatment with Sali-IONPs. Furthermore, the upregulation of tumor suppressors (i.e., p53, Rbl2, Gas5) was observed, while TopII, Ku70, CyclinD1, and Wnt1 were concomitantly downregulated. When examined in an in vitro blood–brain barrier (BBB)-GBM co-culture model, Sali-IONPs had limited penetration (1.0% ± 0.08%) through the bEnd.3 monolayer and resulted in 60% viability of U251 cells. However, hyperosmotic disruption coupled with an applied external magnetic field significantly enhanced the permeability of Sali-IONPs across bEnd.3 monolayers (3.2% ± 0.1%) and reduced the viability of U251 cells to 38%. These findings suggest that Sali-IONPs combined with penetration enhancers, such as hyperosmotic mannitol and external magnetic fields, can potentially provide effective and site-specific magnetic targeting for GBM chemotherapy.
Collapse
|
38
|
PEGylation of graphene/iron oxide nanocomposite: assessment of release of doxorubicin, magnetically targeted drug delivery and photothermal therapy. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01255-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Mastrotto F, Brazzale C, Bellato F, De Martin S, Grange G, Mahmoudzadeh M, Magarkar A, Bunker A, Salmaso S, Caliceti P. In Vitro and in Vivo Behavior of Liposomes Decorated with PEGs with Different Chemical Features. Mol Pharm 2020; 17:472-487. [PMID: 31789523 DOI: 10.1021/acs.molpharmaceut.9b00887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The colloidal stability, in vitro toxicity, cell association, and in vivo pharmacokinetic behavior of liposomes decorated with monomethoxy-poly(ethylene glycol)-lipids (mPEG-lipids) with different chemical features were comparatively investigated. Structural differences of the mPEG-lipids used in the study included: (a) surface-anchoring moiety [1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), cholesterol (Chol), and cholane (Chln)]; (b) mPEG molecular weight (2 kDa mPEG45 and 5 kDa mPEG114); and (c) mPEG shape (linear and branched PEG). In vitro results demonstrated that branched (mPEG114)2-DSPE confers the highest stealth properties to liposomes (∼31-fold lower cell association than naked liposomes) with respect to all PEGylating agents tested. However, the pharmacokinetic studies showed that the use of cholesterol as anchoring group yields PEGylated liposomes with longer permeance in the circulation and higher systemic bioavailability among the tested formulations. Liposomes decorated with mPEG114-Chol had 3.2- and ∼2.1-fold higher area under curve (AUC) than naked liposomes and branched (mPEG114)2-DSPE-coated liposomes, respectively, which reflects the high stability of this coating agent. By comparing the PEGylating agents with same size, namely, linear 5 kDa PEG derivatives, linear mPEG114-DSPE yielded coated liposomes with the best in vitro stealth performance. Nevertheless, the in vivo AUC of liposomes decorated with linear mPEG114-DSPE was lower than that obtained with liposomes decorated with linear mPEG114-Chol. Computational molecular dynamics modeling provided additional insights that complement the experimental results.
Collapse
Affiliation(s)
- Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , via F. Marzolo 5 , 35131 Padova , Italy
| | - Chiara Brazzale
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , via F. Marzolo 5 , 35131 Padova , Italy
| | - Federica Bellato
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , via F. Marzolo 5 , 35131 Padova , Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , via F. Marzolo 5 , 35131 Padova , Italy
| | - Guillaume Grange
- Drug Research Program, Faculty of Pharmacy , University of Helsinki , 00014 Helsinki , Finland
| | - Mohamad Mahmoudzadeh
- Drug Research Program, Faculty of Pharmacy , University of Helsinki , 00014 Helsinki , Finland
| | - Aniket Magarkar
- Institute of Organic Chemistry and Biochemistry , Academy of the Sciences of the Czech Republic , 166 10 Prague , Czech Republic
| | - Alex Bunker
- Drug Research Program, Faculty of Pharmacy , University of Helsinki , 00014 Helsinki , Finland
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , via F. Marzolo 5 , 35131 Padova , Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , via F. Marzolo 5 , 35131 Padova , Italy
| |
Collapse
|
40
|
Chen X, Zhang Y, Zhao P, Chen Y, Zhou Y, Wang S, Yin L. Preparation and evaluation of PEGylated asiatic acid nanostructured lipid carriers on anti-fibrosis effects. Drug Dev Ind Pharm 2020; 46:57-69. [DOI: 10.1080/03639045.2019.1701002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Xiaoxiao Chen
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
- Institute of Materia Medica, Zhejiang Academy of Medical Science, Hangzhou, China
| | - Yawen Zhang
- Institute of Materia Medica, Zhejiang Academy of Medical Science, Hangzhou, China
| | - Pengfei Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
- Institute of Materia Medica, Zhejiang Academy of Medical Science, Hangzhou, China
| | - Yunli Zhou
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
- Institute of Materia Medica, Zhejiang Academy of Medical Science, Hangzhou, China
| | - Shenghao Wang
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
- Institute of Materia Medica, Zhejiang Academy of Medical Science, Hangzhou, China
| | - Lina Yin
- Institute of Materia Medica, Zhejiang Academy of Medical Science, Hangzhou, China
| |
Collapse
|
41
|
Cristofolini T, Dalmina M, Sierra JA, Silva AH, Pasa AA, Pittella F, Creczynski-Pasa TB. Multifunctional hybrid nanoparticles as magnetic delivery systems for siRNA targeting the HER2 gene in breast cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110555. [PMID: 32228895 DOI: 10.1016/j.msec.2019.110555] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/04/2019] [Accepted: 12/12/2019] [Indexed: 12/30/2022]
Abstract
Breast cancer is a major cause of death among women worldwide. Resistance to conventional therapies has been observed in HER2-positive breast cancer patients, indicating the need for more effective treatments. Small interfering RNA (siRNA) therapy is an attractive strategy against HER2-positive tumors, but its success depends largely on the efficient delivery of agents to target tissues. In this study, we prepared a magnetic hybrid nanostructure composed of iron oxide nanoparticles coated with caffeic acid and stabilized by layers of calcium phosphate and PEG-polyanion block copolymer for incorporation of siRNA. Transmission electron microscopy images showed monodisperse, neutrally charged compact spheres sized <100 nm. Dynamic light scattering and nanoparticle tracking analysis revealed that the nanostructure had an average hydrodynamic diameter of 130 nm. Nanoparticle suspensions remained stable over 42 days of storage at 4 and 25 °C. Unloaded caffeic acid-magnetic calcium phosphate (Caf-MCaP) nanoparticles were not cytotoxic, and loaded nanoparticles were successfully taken up by the HER2-positive breast cancer cell line HCC1954, even more so under magnetic guidance. Nanoparticles escaped endosomal degradation and delivered siRNA into the cytoplasm, inducing HER2 gene silencing.
Collapse
Affiliation(s)
- Tatiane Cristofolini
- GEIMM, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Milene Dalmina
- GEIMM, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Jelver A Sierra
- GEIMM, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil; PGMAT, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Adny H Silva
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - André A Pasa
- LFFS, Department of Physics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Frederico Pittella
- GEIMM, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil; Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Tânia B Creczynski-Pasa
- GEIMM, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
42
|
Wang Y, Song S, Lu T, Cheng Y, Song Y, Wang S, Tan F, Li J, Li N. Oxygen-supplementing mesoporous polydopamine nanosponges with WS2 QDs-embedded for CT/MSOT/MR imaging and thermoradiotherapy of hypoxic cancer. Biomaterials 2019; 220:119405. [DOI: 10.1016/j.biomaterials.2019.119405] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022]
|
43
|
Zhang ZQ, Kim YM, Song SC. Injectable and Quadruple-Functional Hydrogel as an Alternative to Intravenous Delivery for Enhanced Tumor Targeting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34634-34644. [PMID: 31475516 DOI: 10.1021/acsami.9b10182] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intravenous (IV) route is the most commonly used drug-delivery approach. However, the targeting efficiency to tumor through IV delivery is usually less than 10%. To address this limitation, we report a new systemic delivery method utilizing injectable and quadruple-functional hydrogels to improve targeting efficiency through passive, active, and magnetic targeting, and hydrogel-controlled sustained release. The hydrogels consist of a folate/polyethylenimine-conjugated poly(organophosphazene) polymer, which encapsulates small interfering RNA (siRNA) and Au-Fe3O4 nanoparticles to form a nanocapsule (NC) structure by a simple mixing. The hydrogels are localized as a long-term "drug-release depot" after a single subcutaneous injection and sol-gel phase transition. NCs released from the hydrogels enter the circulatory systems and then target the tumor through enhanced permeability and retention/folate/magnetism triple-targeting, over the course of circulation, itself prolonged by the controlled release. In vivo experiments show that 12% of NCs are successfully delivered to the tumor, which is a considerable improvement compared to most results through IV delivery. The sustained targeting of gold to tumor enables two cycles of photothermal therapy, resulting in an enhanced silencing effect of siRNA and considerable reduction of tumor volume, which we are unable to achieve via simple intravenous injection.
Collapse
MESH Headings
- Administration, Intravenous
- Animals
- Cell Line, Tumor
- Delayed-Action Preparations/chemistry
- Delayed-Action Preparations/pharmacology
- Female
- Ferrosoferric Oxide/chemistry
- Ferrosoferric Oxide/pharmacology
- Gold/chemistry
- Gold/pharmacology
- Humans
- Hydrogels/chemistry
- Hydrogels/pharmacology
- Hyperthermia, Induced
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Nanoparticles/chemistry
- Nanoparticles/therapeutic use
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Phototherapy
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Zhi-Qiang Zhang
- Center for Biomaterials , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Young-Min Kim
- Center for Biomaterials , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | - Soo-Chang Song
- Center for Biomaterials , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
- Department of Biomolecular Science , University of Science and Technology (UST) , Daejeon 305-350 , Republic of Korea
| |
Collapse
|
44
|
Fathy MM, Fahmy HM, Balah AMM, Mohamed FF, Elshemey WM. Magnetic nanoparticles-loaded liposomes as a novel treatment agent for iron deficiency anemia: In vivo study. Life Sci 2019; 234:116787. [PMID: 31445028 DOI: 10.1016/j.lfs.2019.116787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022]
Abstract
Iron deficiency anemia (IDA) is a major worldwide public health problem. This is due to its prevalence among infants, children, adolescents, pregnant and reproductive age women. Ferrous sulfate (FeSO4) is the first line therapy for iron IDA. Unfortunately, it is reported that FeSO4 suffers from low absorption rate in the body and itself exhibits severe side effects. Herein, iron oxide magnetic nanoparticles-loaded liposomes (LMNPs) are prepared, characterized and evaluated as a treatment regimen for IDA in Wistar rats (as an animal model). Iron oxide magnetic nanoparticles (MNPs) are prepared and loaded into liposomes using the thin film hydration method. The size of the prepared formulations is in the range 10-100 nm, thus it can avoid the reticular endothelial system (RES), and increased their blood circulation time. For in vivo assessment, thirty-five Wistar rats are divided into 5 groups (n = 7): negative control group, positive control group, and three groups treated with different iron formulations (FeSO4, MNPs and LMNPs). Anemia is induced in the anemic groups by the bleeding method and then treatment started with different iron compounds administrated orally for 13 days. Hematological parameters are followed up during the treatment period. Results indicate that, in the LMNPs group, the hematological parameters turn to normal values and the histopathological structures of the liver, spleen and kidney remain normal. This proves that liposome increases the bioavailability of MNPs. In conclusion, LMNPs demonstrate superiority as a therapeutic regimen for the treatment of IDA among the tested iron formulations.
Collapse
Affiliation(s)
- Mohamed M Fathy
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Asmaa M M Balah
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Faten F Mohamed
- Pathology Department, Faculty of Veterinary Medicine, Giza 12211, Egypt
| | - Wael M Elshemey
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Department of Physics, Faculty of Science, Islamic University in Madinah, Saudi Arabia
| |
Collapse
|
45
|
Targeted magnetic iron oxide nanoparticles: Preparation, functionalization and biomedical application. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Xie M, Liu S, Butch CJ, Liu S, Wang Z, Wang J, Zhang X, Nie S, Lu Q, Wang Y. Succinylated heparin monolayer coating vastly increases superparamagnetic iron oxide nanoparticle T 2 proton relaxivity. NANOSCALE 2019; 11:12905-12914. [PMID: 31250871 DOI: 10.1039/c9nr03965a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have a history of clinical use as contrast agents in T2 weighted MRI, though relatively low T2 relaxivity has caused them to fall out of favor as new faster MRI techniques have gained prominence. We demonstrate that SPIONs coated with a monolayer of succinylated heparin (Su-HP-SPIONs) exhibit over four-fold increased T2 relaxivity (460 mM-1 s-1) as compared to the clinically approved SPION-based contrast agent Feridex (98.3 mM-1 s-1) due to greatly increased water interaction from increased hydrophilicity and thinner coating as supported by our proposed parametric model. In vivo, the performance increase of the Su-HP-SPIONs in T2 MRI imaging of xenograft tumors is ten-fold that of our in-house synthesized Feridex analogue, due to better tumor localization from the smaller size imparted by the thinner coating. In addition to these significantly improved magnetic properties, the succinylated heparin coating also exhibits favorable synthetic reproducibility, solution stability, and biocompatibility. These findings demonstrate the untapped potential of SPIONs as possible high performance clinical T2 contrast agents.
Collapse
Affiliation(s)
- Manman Xie
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| | - Shijia Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China. and Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Christopher J Butch
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| | - Shaowei Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Ziyang Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| | - Jianquan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| | - Xudong Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| | - Shuming Nie
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China. and Department of Biomedical Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qian Lu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
47
|
Hadjianfar M, Semnani D, Varshosaz J. An investigation on polycaprolactone/chitosan/Fe
3
O
4
nanofibrous composite used for hyperthermia. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mehdi Hadjianfar
- Department of Textile EngineeringIsfahan University of Technology Isfahan Iran
| | - Dariush Semnani
- Department of Textile EngineeringIsfahan University of Technology Isfahan Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research CenterIsfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
48
|
Dalmina M, Pittella F, Sierra JA, Souza GRR, Silva AH, Pasa AA, Creczynski-Pasa TB. Magnetically responsive hybrid nanoparticles for in vitro siRNA delivery to breast cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1182-1190. [DOI: 10.1016/j.msec.2019.02.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/25/2019] [Accepted: 02/08/2019] [Indexed: 11/29/2022]
|
49
|
Thorat ND, Townely H, Brennan G, Parchur AK, Silien C, Bauer J, Tofail SA. Progress in Remotely Triggered Hybrid Nanostructures for Next-Generation Brain Cancer Theranostics. ACS Biomater Sci Eng 2019; 5:2669-2687. [DOI: 10.1021/acsbiomaterials.8b01173] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nanasaheb D. Thorat
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, wybrzeże Stanisława Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Helen Townely
- Nuffield Department of Obstetrics and Gynaecology, Medical Science Division, John Radcliffe Hospital University of Oxford, Oxford OX3 9DU United Kingdom
| | - Grace Brennan
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Abdul K. Parchur
- Department of Radiology, Medical College of Wisconsin, 9200 W Wisconsin Avenue, Milwaukee, Wisconsin 53226, United States
| | - Christophe Silien
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Joanna Bauer
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, wybrzeże Stanisława Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Syed A.M. Tofail
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| |
Collapse
|
50
|
Ramezani Farani M, Khadive Parsi P, Riazi G, Shafiee Ardestani M, Saligeh Rad H. Extending the application of a magnetic PEG three-part drug release device on a graphene substrate for the removal of Gram-positive and Gram-negative bacteria and cancerous and pathologic cells. Drug Des Devel Ther 2019; 13:1581-1591. [PMID: 31190738 PMCID: PMC6512786 DOI: 10.2147/dddt.s181090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective In this study, novel graphene oxide (GO)-based nanocomposites are presented. In fact, we have tried to replace the carboxyl groups on the surface of GO with amine groups to allow the biocompatible poly(ethylene glycol) bis(carboxymethyl) ether (average Mn 600) polymer to bond through an amide bond. Materials and methods The synthesis was conducted accurately according to final characterization experiments (Raman, X-ray diffraction [XRD], atomic force microscopy [AFM], X-ray photoelectron spectroscopy [XPS], thermogravimetric analysis [TGA], etc). The antimicrobial property of this nanocomposite was examined in Escherichia coli (ATCC 25922) as Gram-negative and Staphylococcus aureus (ATCC 25923) as Gram-positive bacterial species. Besides, curcumin (CUR) was added to the produced nanocomposite both as a promising anticancer drug and an antioxidant, the toxicity of which was then assessed on cellular-based HepG2 and pC12. Results An intense increase in toxicity was detected by MTT assay. Conclusion It can mainly be concluded that the nanocomposite synthesized in this study is capable of delivering drugs with antibacterial properties.
Collapse
Affiliation(s)
- M Ramezani Farani
- School of Chemical Engineering, University College of Engineering, University of Tehran, Tehran 4563-11155, Iran,
| | - P Khadive Parsi
- School of Chemical Engineering, University College of Engineering, University of Tehran, Tehran 4563-11155, Iran,
| | - Gh Riazi
- Institute of Biophysics and Biochemistry, University of Tehran, Tehran 1417614411, Iran
| | - M Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - H Saligeh Rad
- Quantitative Medical Imaging Systems Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.,Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|