1
|
Cho Y, Lee H, Jeong W, Jung KB, Lee SY, Park S, Yeun J, Kwon O, Son JG, Lee TG, Son MY, Im SG. Long-Term Culture of Human Pluripotent Stem Cells in Xeno-Free Condition Using Functional Polymer Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403952. [PMID: 39015054 DOI: 10.1002/adma.202403952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/13/2024] [Indexed: 07/18/2024]
Abstract
Human pluripotent stem cells (hPSCs), encompassing human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold immense potential in regenerative medicine, offering new opportunities for personalized cell therapies. However, their clinical translation is hindered by the inevitable reliance on xenogeneic components in culture environments. This study addresses this challenge by engineering a fully synthetic, xeno-free culture substrate, whose surface composition is tailored systematically for xeno-free culture of hPSCs. A functional polymer surface, pGC2 (poly(glycidyl methacrylate-grafting-guanidine-co-carboxylic acrylate)), offers excellent cell-adhesive properties as well as non-cytotoxicity, enabling robust hESCs and hiPSCs growth while presenting cost-competitiveness and scalability over Matrigel. This investigation includes comprehensive evaluations of pGC2 across diverse experimental conditions, demonstrating its wide adaptability with various pluripotent stem cell lines, culture media, and substrates. Crucially, pGC2 supports long-term hESCs and hiPSCs expansion, up to ten passages without compromising their stemness and pluripotency. Notably, this study is the first to confirm an identical proteomic profile after ten passages of xeno-free cultivation of hiPSCs on a polymeric substrate compared to Matrigel. The innovative substrate bridges the gap between laboratory research and clinical translation, offering a new promising avenue for advancing stem cell-based therapies.
Collapse
Affiliation(s)
- Younghak Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hana Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Wonji Jeong
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kwang Bo Jung
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sun Young Lee
- Korea Research Institute of Standards and Science (KRISS), Daejeon, 34141, Republic of Korea
| | - Seonghyeon Park
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jemin Yeun
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ohman Kwon
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jin Gyeong Son
- Korea Research Institute of Standards and Science (KRISS), Daejeon, 34141, Republic of Korea
| | - Tae Geol Lee
- Korea Research Institute of Standards and Science (KRISS), Daejeon, 34141, Republic of Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sung Gap Im
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Timilsina S, McCandliss KF, Trivedi E, Villa-Diaz LG. Enhanced Expansion of Human Pluripotent Stem Cells and Somatic Cell Reprogramming Using Defined and Xeno-Free Culture Conditions. Bioengineering (Basel) 2023; 10:999. [PMID: 37760101 PMCID: PMC10525589 DOI: 10.3390/bioengineering10090999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
Human embryonic stem cells and induced pluripotent stem cells (hPSC) have an unprecedented opportunity to revolutionize the fields of developmental biology as well as tissue engineering and regenerative medicine. However, their applications have been significantly limited by the lack of chemically defined and xeno-free culture conditions. The demand for the high-quality and scaled-up production of cells for use in both research and clinical studies underscores the need to develop tools that will simplify the in vitro culture process while reducing the variables. Here, we describe a systematic study to identify the optimal conditions for the initial cell attachment of hPSC to tissue culture dishes grafted with polymers of N-(3-Sulfopropyl)-N-Methacryloxyethyl-N, N-Dimethylammoniun Betaine (PMEDSAH) in combination with chemically defined and xeno-free culture media. After testing multiple supplements and chemicals, we identified that pre-conditioning of PMEDSAH grafted plates with 10% human serum (HS) supported the initial cell attachment, which allowed for the long-term culture and maintenance of hPSC compared to cells cultured on Matrigel-coated plates. Using this culture condition, a 2.1-fold increase in the expansion of hPSC was observed without chromosomal abnormalities. Furthermore, this culture condition supported a higher reprogramming efficiency (0.37% vs. 0.22%; p < 0.0068) of somatic cells into induced pluripotent stem cells compared to the non-defined culture conditions. This defined and xeno-free hPSC culture condition may be used in obtaining the large populations of hPSC and patient-derived iPSC required for many applications in regenerative and translational medicine.
Collapse
Affiliation(s)
- Suraj Timilsina
- Department of Biomarkers and Investigative Pathology Unit (BIPU), Charles River Laboratories, Mattawan, MI 49071, USA;
| | | | - Evan Trivedi
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA;
| | - Luis G. Villa-Diaz
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA;
- Department of Bioengineering, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
3
|
Abdal Dayem A, Lee SB, Lim KM, Kim A, Shin HJ, Vellingiri B, Kim YB, Cho SG. Bioactive peptides for boosting stem cell culture platform: Methods and applications. Biomed Pharmacother 2023; 160:114376. [PMID: 36764131 DOI: 10.1016/j.biopha.2023.114376] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Peptides, short protein fragments, can emulate the functions of their full-length native counterparts. Peptides are considered potent recombinant protein alternatives due to their specificity, high stability, low production cost, and ability to be easily tailored and immobilized. Stem cell proliferation and differentiation processes are orchestrated by an intricate interaction between numerous growth factors and proteins and their target receptors and ligands. Various growth factors, functional proteins, and cellular matrix-derived peptides efficiently enhance stem cell adhesion, proliferation, and directed differentiation. For that, peptides can be immobilized on a culture plate or conjugated to scaffolds, such as hydrogels or synthetic matrices. In this review, we assess the applications of a variety of peptides in stem cell adhesion, culture, organoid assembly, proliferation, and differentiation, describing the shortcomings of recombinant proteins and their full-length counterparts. Furthermore, we discuss the challenges of peptide applications in stem cell culture and materials design, as well as provide a brief outlook on future directions to advance peptide applications in boosting stem cell quality and scalability for clinical applications in tissue regeneration.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Jin Shin
- Department of Ophthalmology, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Young Bong Kim
- Department of Biomedical Science & Engineering, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
4
|
Wang T, Yu T, Tsai CY, Hong ZY, Chao WH, Su YS, Subbiah SK, Renuka RR, Hsu ST, Wu GJ, Higuchi A. Xeno-free culture and proliferation of hPSCs on 2D biomaterials. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:63-107. [PMID: 37678982 DOI: 10.1016/bs.pmbts.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Human pluripotent stem cells (human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs)) have unlimited proliferative potential, whereas adult stem cells such as bone marrow-derived stem cells and adipose-derived stem cells have problems with aging. When hPSCs are intended to be cultured on feeder-free or xeno-free conditions without utilizing mouse embryonic fibroblasts or human fibroblasts, they cannot be cultured on conventional tissue culture polystyrene dishes, as adult stem cells can be cultured but should be cultivated on material surfaces grafted or coated with (a) natural or recombinant extracellular matrix (ECM) proteins, (b) ECM protein-derived peptides and specific synthetic polymer surfaces in xeno-free and/or chemically defined conditions. This review describes current developing cell culture biomaterials for the proliferation of hPSCs while maintaining the pluripotency and differentiation potential of the cells into 3 germ layers. Biomaterials for the cultivation of hPSCs without utilizing a feeder layer are essential to decrease the risk of xenogenic molecules, which contributes to the potential clinical usage of hPSCs. ECM proteins such as human recombinant vitronectin, laminin-511 and laminin-521 have been utilized instead of Matrigel for the feeder-free cultivation of hPSCs. The following biomaterials are also discussed for hPSC cultivation: (a) decellularized ECM, (b) peptide-grafted biomaterials derived from ECM proteins, (c) recombinant E-cadherin-coated surface, (d) polysaccharide-immobilized surface, (e) synthetic polymer surfaces with and without bioactive sites, (f) thermoresponsive polymer surfaces with and without bioactive sites, and (g) synthetic microfibrous scaffolds.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Chang-Yen Tsai
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Zhao-Yu Hong
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Wen-Hui Chao
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Yi-Shuo Su
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Suresh Kumar Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Remya Rajan Renuka
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Shih-Tien Hsu
- Department of Internal Medicine, Landseed International Hospital, Pingjen City, Taoyuan, Taiwan
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
5
|
Love HD, Evans RC, Hunter K, Roy S, Fissell WH. Functionalizing Polyacrylamide Hydrogels for Renal Cell Culture Under Fluid Shear Stress. Tissue Eng Part A 2022; 28:845-854. [PMID: 36074946 DOI: 10.1089/ten.tea.2022.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A functional renal tubule bioreactor needs to reproduce the reabsorption and barrier functions of the renal tubule. Our prior work has demonstrated that primary human renal tubule cells respond favorably when cultured on substrates with elasticity similar to healthy tissue and when subjected to fluid shear stress. Polyacrylamide (PA) is widely used in industrial processes such as water purification because it is electrically neutral and chemically inert. PA is a versatile tool as the concentration and mechanical properties of the gel are easily adjusted by varying the proportions of monomer and crosslinker. Control of mechanical properties is attractive for preparing cell culture substrates with tunable stiffness, but PA's inert chemical properties require additional steps to prepare PA for cell attachment, such as chemical reactions to bind extracellular matrix proteins. Methods based on protein functionalization for cell attachment work well in the short term but fail to provide sufficient attachment to withstand the mechanical traction of fluid shear stress. In our present work, we tested the effects of subjecting primary renal tubule cells to fluid shear stress on an elastic substrate by developing a simple method of incorporating N-(3-Aminopropyl) methacrylamide (APMA) into polyacrylamide hydrogels. Integration of APMA into the polyacrylamide hydrogel formed a non-degradable elastic substrate promoting excellent long-term cell attachment despite the forces of fluid shear stress.
Collapse
Affiliation(s)
- Harold Dean Love
- Vanderbilt University Medical Center, Div of Nephrology, P435 - MRB4, 2215-B Garland Ave, Nashville, Tennessee, United States, 37232;
| | - Rachel Carly Evans
- Vanderbilt University Medical Center, Medicine, 1211 Medical Center Drive, Nashville, Tennessee, United States, 37212;
| | - Kuniko Hunter
- Vanderbilt University, Biomedical Engineering, Nashville, Tennessee, United States;
| | - Shuvo Roy
- University of California at San Francisco, Bioengineering and Therapeutic Sciences, San Francisco, California, United States;
| | - William Henry Fissell
- Vanderbilt University Medical Center, Medicine, 1161 21st Avenue South, S3223 MCN, Nashville, Tennessee, United States, 37232-2102;
| |
Collapse
|
6
|
Zhou P, Qin L, Ge Z, Xie B, Huang H, He F, Ma S, Ren L, Shi J, Pei S, Dong G, Qi Y, Lan F. Design of chemically defined synthetic substrate surfaces for the in vitro maintenance of human pluripotent stem cells: A review. J Biomed Mater Res B Appl Biomater 2022; 110:1968-1990. [PMID: 35226397 DOI: 10.1002/jbm.b.35034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/11/2022]
Abstract
Human pluripotent stem cells (hPSCs) have the potential of long-term self-renewal and differentiation into nearly all cell types in vitro. Prior to the downstream applications, the design of chemically defined synthetic substrates for the large-scale proliferation of quality-controlled hPSCs is critical. Although great achievements have been made, Matrigel and recombinant proteins are still widely used in the fundamental research and clinical applications. Therefore, much effort is still needed to improve the performance of synthetic substrates in the culture of hPSCs, realizing their commercial applications. In this review, we summarized the design of reported synthetic substrates and especially their limitations in terms of cell culture. Moreover, much attention was paid to the development of promising peptide displaying surfaces. Besides, the biophysical regulation of synthetic substrate surfaces as well as the three-dimensional culture systems were described.
Collapse
Affiliation(s)
- Ping Zhou
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Liying Qin
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhangjie Ge
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Biyao Xie
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Hongxin Huang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Fei He
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Shengqin Ma
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Lina Ren
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiamin Shi
- Department of Laboratory Animal Centre, Changzhi Medical College, Changzhi, China
| | - Suying Pei
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Genxi Dong
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yongmei Qi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Feng Lan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Shenzhen, China
| |
Collapse
|
7
|
Shimizu E, Iguchi H, Le MNT, Nakamura Y, Kobayashi D, Arai Y, Takakura K, Benno S, Yoshida N, Tsukahara M, Haneda S, Hasegawa K. A chemically-defined plastic scaffold for the xeno-free production of human pluripotent stem cells. Sci Rep 2022; 12:2516. [PMID: 35169157 PMCID: PMC8847402 DOI: 10.1038/s41598-022-06356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/25/2022] [Indexed: 11/09/2022] Open
Abstract
Clinical use of human pluripotent stem cells (hPSCs) is hampered by the technical limitations of their expansion. Here, we developed a chemically synthetic culture substrate for human pluripotent stem cell attachment and maintenance. The substrate comprises a hydrophobic polyvinyl butyral-based polymer (PVB) and a short peptide that enables easy and uniform coating of various types of cell culture ware. The coated ware exhibited thermotolerance, underwater stability and could be stored at room temperature. The substrate supported hPSC expansion in combination with most commercial culture media with an efficiency similar to that of commercial substrates. It supported not only the long-term expansion of examined iPS and ES cell lines with normal karyotypes during their undifferentiated state but also directed differentiation of three germ layers. This substrate resolves major concerns associated with currently used recombinant protein substrates and could be applied in large-scale automated manufacturing; it is suitable for affordable and stable production of clinical-grade hPSCs and hPSC-derived products.
Collapse
Affiliation(s)
- Eiko Shimizu
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- CiRA Foundation, Kyoto University, 53 Shogoin-Kawara-cho, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Hiroki Iguchi
- Sekisui Chemical Co., Ltd., 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka, 618-0021, Japan
| | - Minh Nguyen Tuyet Le
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuta Nakamura
- Sekisui Chemical Co., Ltd., 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka, 618-0021, Japan
| | - Daigo Kobayashi
- Sekisui Chemical Co., Ltd., 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka, 618-0021, Japan
| | - Yuhei Arai
- Sekisui Chemical Co., Ltd., 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka, 618-0021, Japan
| | - Kenta Takakura
- Sekisui Chemical Co., Ltd., 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka, 618-0021, Japan
| | - Seiko Benno
- Sekisui Chemical Co., Ltd., 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka, 618-0021, Japan
| | - Noriko Yoshida
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masayoshi Tsukahara
- CiRA Foundation, Kyoto University, 53 Shogoin-Kawara-cho, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Satoshi Haneda
- Sekisui Chemical Co., Ltd., 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka, 618-0021, Japan.
| | - Kouichi Hasegawa
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
8
|
Esfahani SN, Resto Irizarry AM, Xue X, Lee SBD, Shao Y, Fu J. Micro/nanoengineered technologies for human pluripotent stem cells maintenance and differentiation. NANO TODAY 2021; 41:101310. [PMID: 34745321 PMCID: PMC8570530 DOI: 10.1016/j.nantod.2021.101310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human pluripotent stem cells (hPSCs) are a promising source of cells for cell replacement-based therapies as well as modeling human development and diseases in vitro. However, achieving fate control of hPSC with a high yield and specificity remains challenging. The fate specification of hPSCs is regulated by biochemical and biomechanical cues in their environment. Driven by this knowledge, recent exciting advances in micro/nanoengineering have been leveraged to develop a broad range of tools for the generation of extracellular biomechanical and biochemical signals that determine the behavior of hPSCs. In this review, we summarize such micro/nanoengineered technologies for controlling hPSC fate and highlight the role of biochemical and biomechanical cues such as substrate rigidity, surface topography, and cellular confinement in the hPSC-based technologies that are on the horizon.
Collapse
Affiliation(s)
- Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samuel Byung-Deuk Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Shao
- Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Jiangping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Ramasubramanian A, Muckom R, Sugnaux C, Fuentes C, Ekerdt BL, Clark DS, Healy KE, Schaffer DV. High-Throughput Discovery of Targeted, Minimally Complex Peptide Surfaces for Human Pluripotent Stem Cell Culture. ACS Biomater Sci Eng 2021; 7:1344-1360. [PMID: 33750112 DOI: 10.1021/acsbiomaterials.0c01462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human pluripotent stem cells harbor an unlimited capacity to generate therapeutically relevant cells for applications in regenerative medicine. However, to utilize these cells in the clinic, scalable culture systems that activate defined receptors and signaling pathways to sustain stem cell self-renewal are required; and synthetic materials offer considerable promise to meet these needs. De novo development of materials that target novel pathways has been stymied by a limited understanding of critical receptor interactions maintaining pluripotency. Here, we identify peptide agonists for the human pluripotent stem cell (hPSC) laminin receptor and pluripotency regulator, α6-integrin, through unbiased, library-based panning strategies. Biophysical characterization of adhesion suggests that identified peptides bind hPSCs through α6-integrin with sub-μM dissociation constants similar to laminin. By harnessing a high-throughput microculture platform, we developed predictive guidelines for presenting these integrin-targeting peptides alongside canonical binding motifs at optimal stoichiometries to generate nascent culture surfaces. Finally, when presented as self-assembled monolayers, predicted peptide combinations supported hPSC expansion, highlighting how unbiased screens can accelerate the discovery of targeted biomaterials.
Collapse
Affiliation(s)
- Anusuya Ramasubramanian
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Riya Muckom
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Caroline Sugnaux
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Christina Fuentes
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Barbara L Ekerdt
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Kevin E Healy
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - David V Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Nasir A, Thorpe J, Burroughs L, Meurs J, Pijuan‐Galito S, Irvine DJ, Alexander MR, Denning C. Discovery of a Novel Polymer for Xeno-Free, Long-Term Culture of Human Pluripotent Stem Cell Expansion. Adv Healthc Mater 2021; 10:e2001448. [PMID: 33369242 PMCID: PMC11469126 DOI: 10.1002/adhm.202001448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/08/2020] [Indexed: 12/28/2022]
Abstract
Human pluripotent stem cells (hPSCs) can be expanded and differentiated in vitro into almost any adult tissue cell type, and thus have great potential as a source for cell therapies with biomedical application. In this study, a fully-defined polymer synthetic substrate is identified for hPSC culture in completely defined, xenogenic (xeno)-free conditions. This system can overcome the cost, scalability, and reproducibility limitations of current hPSC culture strategies, and facilitate large-scale production. A high-throughput, multi-generational polymer microarray platform approach is used to test over 600 unique polymers and rapidly assess hPSC-polymer interactions in combination with the fully defined xeno-free medium, Essential 8 (E8). This study identifies a novel nanoscale phase separated blend of poly(tricyclodecane-dimethanol diacrylate) and poly(butyl acrylate) (2:1 v/v), which supports long-term expansion of hPSCs and can be readily coated onto standard cultureware. Analysis of cell-polymer interface interactions through mass spectrometry and integrin blocking studies provides novel mechanistic insight into the role of the E8 proteins in promoting integrin-mediated hPSC attachment and maintaining hPSC signaling, including ability to undergo multi-lineage differentiation. This study therefore identifies a novel substrate for long-term serial passaging of hPSCs in serum-free, commercial chemically-defined E8, which provides a promising and economic hPSC expansion platform for clinical-scale application.
Collapse
Affiliation(s)
- Aishah Nasir
- Division of Cancer & Stem CellsBiodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| | - Jordan Thorpe
- Division of Cancer & Stem CellsBiodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| | | | - Joris Meurs
- School of PharmacyUniversity of NottinghamNottinghamNG7 2RDUK
| | - Sara Pijuan‐Galito
- Division of Cancer & Stem CellsBiodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| | - Derek J. Irvine
- Department of Chemical and Environmental EngineeringUniversity of NottinghamNottinghamNG7 2RDUK
| | | | - Chris Denning
- Division of Cancer & Stem CellsBiodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| |
Collapse
|
11
|
Verhoeff K, Henschke SJ, Marfil-Garza BA, Dadheech N, Shapiro AMJ. Inducible Pluripotent Stem Cells as a Potential Cure for Diabetes. Cells 2021; 10:cells10020278. [PMID: 33573247 PMCID: PMC7911560 DOI: 10.3390/cells10020278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last century, diabetes has been treated with subcutaneous insulin, a discovery that enabled patients to forego death from hyperglycemia. Despite novel insulin formulations, patients with diabetes continue to suffer morbidity and mortality with unsustainable costs to the health care system. Continuous glucose monitoring, wearable insulin pumps, and closed-loop artificial pancreas systems represent an advance, but still fail to recreate physiologic euglycemia and are not universally available. Islet cell transplantation has evolved into a successful modality for treating a subset of patients with ‘brittle’ diabetes but is limited by organ donor supply and immunosuppression requirements. A novel approach involves generating autologous or immune-protected islet cells for transplant from inducible pluripotent stem cells to eliminate detrimental immune responses and organ supply limitations. In this review, we briefly discuss novel mechanisms for subcutaneous insulin delivery and define their shortfalls. We describe embryological development and physiology of islets to better understand their role in glycemic control and, finally, discuss cell-based therapies for diabetes and barriers to widespread use. In response to these barriers, we present the promise of stem cell therapy, and review the current gaps requiring solutions to enable widespread use of stem cells as a potential cure for diabetes.
Collapse
Affiliation(s)
- Kevin Verhoeff
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2B7, Canada;
- Correspondence: ; Tel.: +1-780-984-1836
| | - Sarah J. Henschke
- Department of Emergency Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada;
| | | | - Nidheesh Dadheech
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| | - Andrew Mark James Shapiro
- FRCS (Eng) FRCSC MSM FCAHS, Clinical Islet Transplant Program, Alberta Diabetes Institute, Department of Surgery, Canadian National Transplant Research Program, Edmonton, AB T6G 2B7, Canada;
| |
Collapse
|
12
|
Ireland RG, Kibschull M, Audet J, Ezzo M, Hinz B, Lye SJ, Simmons CA. Combinatorial extracellular matrix microarray identifies novel bioengineered substrates for xeno-free culture of human pluripotent stem cells. Biomaterials 2020; 248:120017. [PMID: 32283392 DOI: 10.1016/j.biomaterials.2020.120017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/09/2020] [Accepted: 03/27/2020] [Indexed: 11/24/2022]
Abstract
Stem cells in their microenvironment are exposed to a plethora of biochemical signals and biophysical forces. Interrogating the role of each factor in the cell microenvironment, however, remains difficult due to the inability to study microenvironmental cues and tease apart their interactions in high throughput. To address this need, we developed an extracellular matrix (ECM) microarray screening platform capable of tightly controlling substrate stiffness and ECM protein composition to screen the effects of these cues and their interactions on cell fate. We combined this platform with a design of experiments screening strategy to identify optimal conditions that can maintain human pluripotent stem cell (hPSC) pluripotency in chemically defined, xeno-free conditions. Combinations of ECM proteins (fibronectin, vitronectin, laminin-521, and collagen IV) were deposited on polydimethylsiloxane substrates with elastic moduli ranging from ~1 to 60 kPa using a high throughput protein plotter. Through our screening approach, we identified several non-intuitive protein-protein and protein-stiffness interactions and developed three novel culture substrates. hPSCs grown on these novel culture substrates displayed higher proliferation rates and pluripotency marker expression than current gold-standard culture substrates Geltrex- and vitronectin-coated plastic. This ECM microarray and screening approach is not limited to the factors studied here and can be broadly applied to other cell types to systematically screen microenvironmental conditions to optimally guide cell phenotype.
Collapse
Affiliation(s)
- Ronald G Ireland
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Mark Kibschull
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Julie Audet
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Maya Ezzo
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Boris Hinz
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Departments of Obstetrics & Gynaecology, Physiology, and Medicine, University of Toronto, Toronto, ON, Canada; Alliance for Human Development, Sinai Health System, Toronto, ON, Canada
| | - Craig A Simmons
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Le MNT, Hasegawa K. Expansion Culture of Human Pluripotent Stem Cells and Production of Cardiomyocytes. Bioengineering (Basel) 2019; 6:E48. [PMID: 31137703 PMCID: PMC6632060 DOI: 10.3390/bioengineering6020048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 12/25/2022] Open
Abstract
Transplantation of human pluripotent stem cell (hPSCs)-derived cardiomyocytes for the treatment of heart failure is a promising therapy. In order to implement this therapy requiring numerous cardiomyocytes, substantial production of hPSCs followed by cardiac differentiation seems practical. Conventional methods of culturing hPSCs involve using a 2D culture monolayer that hinders the expansion of hPSCs, thereby limiting their productivity. Advanced culture of hPSCs in 3D aggregates in the suspension overcomes the limitations of 2D culture and attracts immense attention. Although the hPSC production needs to be suitable for subsequent cardiac differentiation, many studies have independently focused on either expansion of hPSCs or cardiac differentiation protocols. In this review, we summarize the recent approaches to expand hPSCs in combination with cardiomyocyte differentiation. A comparison of various suspension culture methods and future prospects for dynamic culture of hPSCs are discussed in this study. Understanding hPSC characteristics in different models of dynamic culture helps to produce numerous cells that are useful for further clinical applications.
Collapse
Affiliation(s)
- Minh Nguyen Tuyet Le
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan.
| | - Kouichi Hasegawa
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
14
|
Gong J, Venkateswaran S, Tanner MG, Stone JM, Bradley M. Polymer Microarrays for the Discovery and Optimization of Robust Optical-Fiber-Based pH Sensors. ACS COMBINATORIAL SCIENCE 2019; 21:417-424. [PMID: 30973701 DOI: 10.1021/acscombsci.9b00031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polymer microarrays were utilized for the high-throughput screening and discovery of optimal polymeric substrates capable of trapping functional ratiometric fluorescence-based pH sensors. This led to the identification of poly(methyl methacrylate- co-2-(dimethylamino) ethyl acrylate) (PA101), which allowed, via dip coating, the attachment of fluorescent pH sensors onto the tips of optical fibers, resulting in robust, rapid, and reproducible sensing of physiological pHs.
Collapse
Affiliation(s)
- Jingjing Gong
- School of Chemsitry, EaStCHEM, University of Edinburgh, King’s Buildings, West Mains Road, Edinburgh EH9 3FJ, United Kingdom
- EPSRC Proteus Hub, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - Seshasailam Venkateswaran
- School of Chemsitry, EaStCHEM, University of Edinburgh, King’s Buildings, West Mains Road, Edinburgh EH9 3FJ, United Kingdom
| | - Michael G. Tanner
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
- EPSRC Proteus Hub, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - James M. Stone
- Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
- EPSRC Proteus Hub, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | - Mark Bradley
- School of Chemsitry, EaStCHEM, University of Edinburgh, King’s Buildings, West Mains Road, Edinburgh EH9 3FJ, United Kingdom
- EPSRC Proteus Hub, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
15
|
Chen LH, Sung TC, Lee HHC, Higuchi A, Su HC, Lin KJ, Huang YR, Ling QD, Kumar SS, Alarfaj AA, Munusamy MA, Nasu M, Chen DC, Hsu ST, Chang Y, Lee KF, Wang HC, Umezawa A. Xeno-free and feeder-free culture and differentiation of human embryonic stem cells on recombinant vitronectin-grafted hydrogels. Biomater Sci 2019; 7:4345-4362. [DOI: 10.1039/c9bm00418a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Xeno-free culture and cardiomyocyte differentiation of human embryonic stem cells on vitronectin-grafted hydrogels by adjusting surface charge and elasticity.
Collapse
|
16
|
Zhou P, Yin B, Zhang R, Xu Z, Liu Y, Yan Y, Zhang X, Zhang S, Li Y, Liu H, Yuan YA, Wei S. Molecular basis for RGD-containing peptides supporting adhesion and self-renewal of human pluripotent stem cells on synthetic surface. Colloids Surf B Biointerfaces 2018; 171:451-460. [DOI: 10.1016/j.colsurfb.2018.07.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/06/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
|
17
|
Hammad M, Rao W, Smith JGW, Anderson DG, Langer R, Young LE, Barrett DA, Davies MC, Denning C, Alexander MR. Identification of polymer surface adsorbed proteins implicated in pluripotent human embryonic stem cell expansion. Biomater Sci 2018; 4:1381-91. [PMID: 27466628 PMCID: PMC5038343 DOI: 10.1039/c6bm00214e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The discovery of heat shock proteins as candidates for human pluripotent stem cell culture using high throughput screening.
Improved biomaterials are required for application in regenerative medicine, biosensing, and as medical devices. The response of cells to the chemistry of polymers cultured in media is generally regarded as being dominated by proteins adsorbed to the surface. Here we use mass spectrometry to identify proteins adsorbed from a complex mouse embryonic fibroblast (MEF) conditioned medium found to support pluripotent human embryonic stem cell (hESC) expansion on a plasma etched tissue culture polystyrene surface. A total of 71 proteins were identified, of which 14 uniquely correlated with the surface on which pluripotent stem cell expansion was achieved. We have developed a microarray combinatorial protein spotting approach to test the potential of these 14 proteins to support expansion of a hESC cell line (HUES-7) and a human induced pluripotent stem cell line (ReBl-PAT) on a novel polymer (N-(4-Hydroxyphenyl) methacrylamide). These proteins were spotted to form a primary array yielding several protein mixture ‘hits’ that enhanced cell attachment to the polymer. A second array was generated to test the function of a refined set of protein mixtures. We found that a combination of heat shock protein 90 and heat shock protein-1 encourage elevated adherence of pluripotent stem cells at a level comparable to fibronectin pre-treatment.
Collapse
Affiliation(s)
- Moamen Hammad
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK. morgan.alexander.nottingham.ac.uk
| | - Wei Rao
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - James G W Smith
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), University of Nottingham, Nottingham NG7 2RD, UK
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lorraine E Young
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), University of Nottingham, Nottingham NG7 2RD, UK
| | - David A Barrett
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Martyn C Davies
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK. morgan.alexander.nottingham.ac.uk
| | - Chris Denning
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), University of Nottingham, Nottingham NG7 2RD, UK
| | - Morgan R Alexander
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK. morgan.alexander.nottingham.ac.uk
| |
Collapse
|
18
|
Abdal Dayem A, Lee S, Y. Choi H, Cho SG. The Impact of Adhesion Molecules on the In Vitro Culture and Differentiation of Stem Cells. Biotechnol J 2018; 13:1700575. [DOI: 10.1002/biot.201700575] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology; Incurable Disease Animal Model and Stem Cell Institute (IDASI); Konkuk University; 120 Neungdong-ro Gwangjin-gu 05029 Seoul Republic of Korea
| | - Soobin Lee
- Department of Stem Cell and Regenerative Biotechnology; Incurable Disease Animal Model and Stem Cell Institute (IDASI); Konkuk University; 120 Neungdong-ro Gwangjin-gu 05029 Seoul Republic of Korea
| | - Hye Y. Choi
- Department of Stem Cell and Regenerative Biotechnology; Incurable Disease Animal Model and Stem Cell Institute (IDASI); Konkuk University; 120 Neungdong-ro Gwangjin-gu 05029 Seoul Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology; Incurable Disease Animal Model and Stem Cell Institute (IDASI); Konkuk University; 120 Neungdong-ro Gwangjin-gu 05029 Seoul Republic of Korea
| |
Collapse
|
19
|
Narayanan K, Mishra S, Singh S, Pei M, Gulyas B, Padmanabhan P. Engineering Concepts in Stem Cell Research. Biotechnol J 2017; 12. [PMID: 28901712 DOI: 10.1002/biot.201700066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/07/2017] [Indexed: 12/15/2022]
Abstract
The field of regenerative medicine integrates advancements made in stem cells, molecular biology, engineering, and clinical methodologies. Stem cells serve as a fundamental ingredient for therapeutic application in regenerative medicine. Apart from stem cells, engineering concepts have equally contributed to the success of stem cell based applications in improving human health. The purpose of various engineering methodologies is to develop regenerative and preventive medicine to combat various diseases and deformities. Explosion of stem cell discoveries and their implementation in clinical setting warrants new engineering concepts and new biomaterials. Biomaterials, microfluidics, and nanotechnology are the major engineering concepts used for the implementation of stem cells in regenerative medicine. Many of these engineering technologies target the specific niche of the cell for better functional capability. Controlling the niche is the key for various developmental activities leading to organogenesis and tissue homeostasis. Biomimetic understanding not only helped to improve the design of the matrices or scaffolds by incorporating suitable biological and physical components, but also ultimately aided adoption of designs that helped these materials/devices have better function. Adoption of engineering concepts in stem cell research improved overall achievement, however, several important issues such as long-term effects with respect to systems biology needs to be addressed. Here, in this review the authors will highlight some interesting breakthroughs in stem cell biology that use engineering methodologies.
Collapse
Affiliation(s)
- Karthikeyan Narayanan
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, PO Box 9196, One Medical Center Drive, 2 Morgantown, WV 26505-9196, USA
| | - Sachin Mishra
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Satnam Singh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, PO Box 9196, One Medical Center Drive, 2 Morgantown, WV 26505-9196, USA
| | - Balazs Gulyas
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
20
|
Muduli S, Chen LH, Li MP, Heish ZW, Liu CH, Kumar S, Alarfaj AA, Munusamy MA, Benelli G, Murugan K, Wang HC, Chen DC, Hsu ST, Chang SC, Higuchi A. Stem cell culture on polyvinyl alcohol hydrogels having different elasticity and immobilized with ECM-derived oligopeptides. JOURNAL OF POLYMER ENGINEERING 2017; 37:647-660. [DOI: 10.1515/polyeng-2016-0193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The physical characteristics of cell culture materials, such as their elasticity, affect stem cell fate with respect to cell proliferation and differentiation. We systematically investigated the morphologies and characteristics of several stem cell types, including human amniotic-derived stem cells, human hematopoietic stem cells, human induced pluripotent stem (iPS) cells, and embryonic stem (ES) cells on poly(vinyl alcohol) (PVA) hydrogels immobilized with and without extracellular matrix-derived oligopeptide. Human ES cells did not adhere well to soft PVA hydrogels immobilized with oligovitronectin, whereas they did adhere well to PVA hydrogel dishes with elasticities greater than 15 kPa. These results indicate that biomaterials such as PVA hydrogels should be designed to possess minimum elasticity to facilitate human ES cell attachment. PVA hydrogels immobilized with and without extracellular matrix-derived oligopeptides are excellent candidates of cell culture biomaterials for investigations into how cell culture biomaterial elasticity affects stem cell culture and differentiation.
Collapse
Affiliation(s)
- Saradaprasan Muduli
- Department of Chemical and Materials Engineering , National Central University , No. 300, Jhongda Rd., Jhongli, Taoyuan 32001 , Taiwan
| | - Li-Hua Chen
- Department of Chemical and Materials Engineering , National Central University , No. 300, Jhongda Rd., Jhongli, Taoyuan 32001 , Taiwan
| | - Meng-Pei Li
- Department of Chemical and Materials Engineering , National Central University , No. 300, Jhongda Rd., Jhongli, Taoyuan 32001 , Taiwan
| | - Zhao-wen Heish
- Department of Chemical and Materials Engineering , National Central University , No. 300, Jhongda Rd., Jhongli, Taoyuan 32001 , Taiwan
| | - Cheng-Hui Liu
- Department of Chemical and Materials Engineering , National Central University , No. 300, Jhongda Rd., Jhongli, Taoyuan 32001 , Taiwan
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology , Universiti Putra Malaysia , Serdang 43400 , Slangor, Malaysia
| | - Abdullah A. Alarfaj
- Department of Botany and Microbiology , King Saud University , Riyadh 11451 , Saudi Arabia
| | - Murugan A. Munusamy
- Department of Botany and Microbiology , King Saud University , Riyadh 11451 , Saudi Arabia
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment , University of Pisa , via del Borghetto 80, Pisa 56124 , Italy
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences , Bharathiar University , Coimbatore , Tamil Nadu 641046, India
| | - Han-Chow Wang
- Hungchi Women and Children’s Hospital , No. 233, Yuanhua Rd., Jhongli , Taoyuan 320 , Taiwan
| | - Da-Chung Chen
- Department of Obstetrics and Gynecology , Taiwan Landseed Hospital, 77, Kuangtai Road, Pingjen City , Taoyuan 32405, Taiwan
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital , 77, Kuangtai Road , Pingjen City , Taoyuan 32405, Taiwan
| | - Shih-Chang Chang
- Department of Surgery, Cathay General Hospital , No.280, Sec. 4, Ren’ai Rd., Da’an Dist. , Taipei 10693 , Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering , National Central University , No. 300, Jhongda Rd., Jhongli, Taoyuan 32001 , Taiwan
- Department of Botany and Microbiology , King Saud University , Riyadh 11451 , Saudi Arabia
- Nano Medical Engineering Laboratory , RIKEN, 2-1, Hirosawa, Wako , Saitama 351-0198 , Japan
| |
Collapse
|
21
|
Chen YM, Chen LH, Li MP, Li HF, Higuchi A, Kumar SS, Ling QD, Alarfaj AA, Munusamy MA, Chang Y, Benelli G, Murugan K, Umezawa A. Xeno-free culture of human pluripotent stem cells on oligopeptide-grafted hydrogels with various molecular designs. Sci Rep 2017; 7:45146. [PMID: 28332572 PMCID: PMC5362828 DOI: 10.1038/srep45146] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/16/2017] [Indexed: 01/15/2023] Open
Abstract
Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepared them in formations of single chain, single chain with joint segment, dual chain with joint segment, and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain, which has a storage modulus of 25 kPa, supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells.
Collapse
Affiliation(s)
- Yen-Ming Chen
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan
| | - Li-Hua Chen
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan
| | - Meng-Pei Li
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan
| | - Hsing-Fen Li
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan.,Department of Reproduction, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 Serdang, Slangor, Malaysia
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei, 221, Taiwan.,Graduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Murugan A Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yung Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, 200, Chung-Bei Rd., Chungli, Taoyuan, 320, Taiwan
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India.,Department of Zoology, Thiruvalluvar University, Serkkadu, Vellore 632 115, India
| | - Akihiro Umezawa
- Department of Reproduction, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
22
|
Wang PY, Thissen H, Kingshott P. Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: A review. Acta Biomater 2016; 45:31-59. [PMID: 27596488 DOI: 10.1016/j.actbio.2016.08.054] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/30/2016] [Accepted: 08/30/2016] [Indexed: 02/08/2023]
Abstract
The ability to control the interactions of stem cells with synthetic surfaces is proving to be effective and essential for the quality of passaged stem cells and ultimately the success of regenerative medicine. The stem cell niche is crucial for stem cell self-renewal and differentiation. Thus, mimicking the stem cell niche, and here in particular the extracellular matrix (ECM), in vitro is an important goal for the expansion of stem cells and their applications. Here, surface nanotopographies and surface-immobilised biosignals have been identified as major factors that control stem cell responses. The development of tailored surfaces having an optimum nanotopography and displaying suitable biosignals is proposed to be essential for future stem cell culture, cell therapy and regenerative medicine applications. While early research in the field has been restricted by the limited availability of micro- and nanofabrication techniques, new approaches involving the use of advanced fabrication and surface immobilisation methods are starting to emerge. In addition, new cell types such as induced pluripotent stem cells (iPSCs) have become available in the last decade, but have not been fully understood. This review summarises significant advances in the area and focuses on the approaches that are aimed at controlling the behavior of human stem cells including maintenance of their self-renewal ability and improvement of their lineage commitment using nanotopographies and biosignals. More specifically, we discuss developments in biointerface science that are an important driving force for new biomedical materials and advances in bioengineering aiming at improving stem cell culture protocols and 3D scaffolds for clinical applications. Cellular responses revolve around the interplay between the surface properties of the cell culture substrate and the biomolecular composition of the cell culture medium. Determination of the precise role played by each factor, as well as the synergistic effects amongst the factors, all of which influence stem cell responses is essential for future developments. This review provides an overview of the current state-of-the-art in the design of complex material surfaces aimed at being the next generation of tools tailored for applications in cell culture and regenerative medicine. STATEMENT OF SIGNIFICANCE This review focuses on the effect of surface nanotopographies and surface-bound biosignals on human stem cells. Recently, stem cell research attracts much attention especially the induced pluripotent stem cells (iPSCs) and direct lineage reprogramming. The fast advance of stem cell research benefits disease treatment and cell therapy. On the other hand, surface property of cell adhered materials has been demonstrated very important for in vitro cell culture and regenerative medicine. Modulation of cell behavior using surfaces is costeffective and more defined. Thus, we summarise the recent progress of modulation of human stem cells using surface science. We believe that this review will capture a broad audience interested in topographical and chemical patterning aimed at understanding complex cellular responses to biomaterials.
Collapse
|
23
|
Biological Effects of Culture Substrates on Human Pluripotent Stem Cells. Stem Cells Int 2016; 2016:5380560. [PMID: 27656216 PMCID: PMC5021488 DOI: 10.1155/2016/5380560] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/04/2016] [Indexed: 01/03/2023] Open
Abstract
In recent years, as human pluripotent stem cells (hPSCs) have been commonly cultured in feeder-free conditions, a number of cell culture substrates have been applied or developed. However, the functional roles of these substrates in maintaining hPSC self-renewal remain unclear. Here in this review, we summarize the types of these substrates and their effect on maintaining hPSC self-renewal. Endogenous extracellular matrix (ECM) protein expression has been shown to be crucial in maintaining hPSC self-renewal. These ECM molecules interact with integrin cell-surface receptors and transmit their cellular signaling. We discuss the possible effect of integrin-mediated signaling pathways on maintaining hPSC self-renewal. Activation of integrin-linked kinase (ILK), which transmits ECM-integrin signaling to AKT (also known as protein kinase B), has been shown to be critical in maintaining hPSC self-renewal. Also, since naïve pluripotency has been widely recognized as an alternative pluripotent state of hPSCs, we discuss the possible effects of culture substrates and integrin signaling on naïve hPSCs based on the studies of mouse embryonic stem cells. Understanding the role of culture substrates in hPSC self-renewal and differentiation enables us to control hPSC behavior precisely and to establish scalable or microfabricated culture technologies for regenerative medicine and drug development.
Collapse
|
24
|
Dzobo K, Turnley T, Wishart A, Rowe A, Kallmeyer K, van Vollenstee FA, Thomford NE, Dandara C, Chopera D, Pepper MS, Parker MI. Fibroblast-Derived Extracellular Matrix Induces Chondrogenic Differentiation in Human Adipose-Derived Mesenchymal Stromal/Stem Cells in Vitro. Int J Mol Sci 2016; 17:E1259. [PMID: 27527147 PMCID: PMC5000657 DOI: 10.3390/ijms17081259] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/17/2016] [Accepted: 07/25/2016] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell-matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs) in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment. The fibroblast-derived extracellular matrix (fd-ECM) did not affect ad-MSC morphology, but reduced ad-MSC proliferation. Ad-MSCs cultured on fd-ECM displayed decreased expression of integrins α2 and β1 and subsequently lost their multipotency over time, as shown by the decrease in CD44, Octamer-binding transcription factor 4 (OCT4), SOX2, and NANOG gene expression. The fd-ECM induced chondrogenic differentiation in ad-MSCs compared to control ad-MSCs. Loss of function studies, through the use of siRNA and a mutant Notch1 construct, revealed that ECM-mediated ad-MSCs chondrogenesis requires Notch1 and β-catenin signaling. The fd-ECM also showed anti-senescence effects on ad-MSCs. The fd-ECM is a promising approach for inducing chondrogenesis in ad-MSCs and chondrogenic differentiated ad-MSCs could be used in stem cell therapy procedures.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Taegyn Turnley
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Andrew Wishart
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Arielle Rowe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Karlien Kallmeyer
- Department of Immunology, Institute for Cellular and Molecular Medicine, South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Fiona A van Vollenstee
- Department of Immunology, Institute for Cellular and Molecular Medicine, South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Nicholas E Thomford
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Denis Chopera
- Division of Immunology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Michael S Pepper
- Department of Immunology, Institute for Cellular and Molecular Medicine, South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - M Iqbal Parker
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| |
Collapse
|
25
|
Dzobo K, Vogelsang M, Parker MI. Wnt/β-Catenin and MEK-ERK Signaling are Required for Fibroblast-Derived Extracellular Matrix-Mediated Endoderm Differentiation of Embryonic Stem Cells. Stem Cell Rev Rep 2016; 11:761-73. [PMID: 26022506 DOI: 10.1007/s12015-015-9598-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human embryonic stem cells (hESCs) have the potential to differentiate into all cells of the three germ layers, thus making them an attractive source of cells for use in regenerative medicine. The greatest challenge lies in regulating the differentiation of hESCs into specific cell lineages by both intrinsic and extrinsic factors. In this study we determined the effect of a fibroblast-derived extracellular matrix (fd-ECM) on hESCs differentiation. We demonstrate that growth of hESCs on fd-ECM results in hESCs losing their stemness and proliferation potential. As the stem cells differentiate they attain gene expression profiles similar to the primitive streak of the in vivo embryo. The activation of both the MEK-ERK and Wnt/β-catenin signaling pathways is required for the fd-ECM-mediated differentiation of hESCs towards the endoderm and involves integrins α1, α2, α3 and β1. This study illustrates the importance of the cellular microenvironment in directing stem cell fate and that the nature and composition of the extracellular matrix is a crucial determining factor.
Collapse
Affiliation(s)
- Kevin Dzobo
- Cape Town Component, Wernher and Beit Building (South), UCT Campus, International Centre for Genetic Engineering and Biotechnology (ICGEB), Anzio Road, Observatory, 7925, Cape Town, South Africa
| | | | | |
Collapse
|
26
|
Lucendo-Villarin B, Rashidi H, Cameron K, Hay DC. Pluripotent stem cell derived hepatocytes: using materials to define cellular differentiation and tissue engineering. J Mater Chem B 2016; 4:3433-3442. [PMID: 27746914 PMCID: PMC5024673 DOI: 10.1039/c6tb00331a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/14/2016] [Indexed: 12/16/2022]
Abstract
Pluripotent stem cell derived liver cells (hepatocytes) represent a promising alternative to primary tissue for biological and clinical applications. To date, most hepatocyte maintenance and differentiation systems have relied upon the use of animal derived components. This serves as a significant barrier to large scale production and application of stem cell derived hepatocytes. Recently, the use of defined biologics has overcome those limitations in two-dimensional monolayer culture. In order to improve the cell phenotype further, three-dimensional culture systems have been employed to better mimic the in vivo situation, drawing upon materials chemistry, engineering and biology. In this review we discuss efforts in the field, to differentiate pluripotent stem cells towards hepatocytes under defined conditions.
Collapse
Affiliation(s)
- B Lucendo-Villarin
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| | - H Rashidi
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| | - K Cameron
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| | - D C Hay
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| |
Collapse
|
27
|
Zhou P, Wu F, Zhou T, Cai X, Zhang S, Zhang X, Li Q, Li Y, Zheng Y, Wang M, Lan F, Pan G, Pei D, Wei S. Simple and versatile synthetic polydopamine-based surface supports reprogramming of human somatic cells and long-term self-renewal of human pluripotent stem cells under defined conditions. Biomaterials 2016; 87:1-17. [PMID: 26897536 DOI: 10.1016/j.biomaterials.2016.02.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 01/03/2023]
|
28
|
Seale NM, Varghese S. Biomaterials for pluripotent stem cell engineering: From fate determination to vascularization. J Mater Chem B 2016; 4:3454-3463. [PMID: 27446588 DOI: 10.1039/c5tb02658j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent advancements in material science and engineering may hold the key to overcoming reproducibility and scalability limitations currently hindering the clinical translation of stem cell therapies. Biomaterial assisted differentiation commitment of stem cells and modulation of their in vivo function could have significant impact in stem cell-centred regenerative medicine approaches and next gen technological platforms. Synthetic biomaterials are of particular interest as they provide a consistent, chemically defined, and tunable way of mimicking the physical and chemical properties of the natural tissue or cell environment. Combining emerging biomaterial and biofabrication advancements may finally give researchers the tools to modulate spatiotemporal complexity and engineer more hierarchically complex, physiologically relevant tissue mimics. In this review we highlight recent research advancements in biomaterial assisted pluripotent stem cell (PSC) expansion and three dimensional (3D) tissue formation strategies. Furthermore, since vascularization is a major challenge affecting the in vivo function of engineered tissues, we discuss recent developments in vascularization strategies and assess their ability to produce perfusable and functional vasculature that can be integrated with the host tissue.
Collapse
Affiliation(s)
- Nailah M Seale
- Department of Bioengineering, University of California-San Diego, La Jolla, USA
| | - Shyni Varghese
- Department of Bioengineering, University of California-San Diego, La Jolla, USA
| |
Collapse
|
29
|
Abstract
Stem cells have the ability to self-renew and differentiate into specialized cell types, and, in the human body, they reside in specialized microenvironments called "stem cell niches." Although several niches have been described and studied in vivo, their functional replication in vitro is still incomplete. The in vitro culture of pluripotent stem cells may represent one of the most advanced examples in the effort to create an artificial or synthetic stem cell niche. A focus has been placed on the development of human stem cell microenvironments due to their significant clinical implications, in addition to the potential differences between animal and human cells. In this concise review we describe the advances in human pluripotent stem cell culture, and explore the idea that the knowledge gained from this model could be replicated to create synthetic niches for other human stem cell populations, which have proven difficult to maintain in vitro.
Collapse
|
30
|
Kleinberger RM, Burke NAD, Zhou C, Stöver HDH. Synthetic polycations with controlled charge density and molecular weight as building blocks for biomaterials. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:351-69. [PMID: 26754568 DOI: 10.1080/09205063.2015.1130407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A series of polycations prepared by RAFT copolymerization of N-(3-aminopropyl)methacrylamide hydrochloride (APM) and N-(2-hydroxypropyl)methacrylamide, with molecular weights of 15 and 40 kDa, and APM content of 10-75 mol%, were tested as building blocks for electrostatically assembled hydrogels such as those used for cell encapsulation. Complexation and distribution of these copolymers within anionic calcium alginate gels, as well as cytotoxicity, cell attachment, and cell proliferation on surfaces grafted with the copolymers were found to depend on composition and molecular weight. Copolymers with lower cationic charge density and lower molecular weight showed less cytotoxicity and cell adhesion, and were more mobile within alginate gels. These findings aid in designing improved polyelectrolyte complexes for use as biomaterials.
Collapse
Affiliation(s)
- Rachelle M Kleinberger
- a Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Canada
| | - Nicholas A D Burke
- a Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Canada
| | - Christal Zhou
- a Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Canada
| | - Harald D H Stöver
- a Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Canada
| |
Collapse
|
31
|
Higuchi A, Kao SH, Ling QD, Chen YM, Li HF, Alarfaj AA, Munusamy MA, Murugan K, Chang SC, Lee HC, Hsu ST, Kumar SS, Umezawa A. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci Rep 2015; 5:18136. [PMID: 26656754 PMCID: PMC4677349 DOI: 10.1038/srep18136] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/13/2015] [Indexed: 12/18/2022] Open
Abstract
The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.
Collapse
Affiliation(s)
- Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan, 32001 Taiwan.,Department of Reproduction, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.,Nano Medical Engineering Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shih-Hsuan Kao
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan, 32001 Taiwan
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei, 221, Taiwan.,Graduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan
| | - Yen-Ming Chen
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan, 32001 Taiwan
| | - Hsing-Fen Li
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan, 32001 Taiwan
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Murugan A Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Shih-Chang Chang
- Department of Surgery, Cathay General Hospital, No.280, Sec. 4, Ren'ai Rd., Da'an Dist., Taipei, 10693, Taiwan
| | - Hsin-Chung Lee
- Department of Surgery, Cathay General Hospital, No.280, Sec. 4, Ren'ai Rd., Da'an Dist., Taipei, 10693, Taiwan.,Graduate Institute of Translational and Interdisciplinary Medicine, College of Health Science and Technology, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital, 77, Kuangtai Road, Pingjen City, Taoyuan 32405, Taiwan
| | - S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universities Putra Malaysia, Serdang 43400, Slangor, Malaysia
| | - Akihiro Umezawa
- Department of Reproduction, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
32
|
Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: progress and challenges. Stem Cell Rev Rep 2015; 11:96-109. [PMID: 25077810 DOI: 10.1007/s12015-014-9544-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent advances on human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have brought us closer to the realization of their clinical potential. Nonetheless, tissue engineering and regenerative medicine applications will require the generation of hPSC products well beyond the laboratory scale. This also mandates the production of hPSC therapeutics in fully-defined, xeno-free systems and in a reproducible manner. Toward this goal, we summarize current developments in defined media free of animal-derived components for hPSC culture. Bioinspired and synthetic extracellular matrices for the attachment, growth and differentiation of hPSCs are also reviewed. Given that most progress in xeno-free medium and substrate development has been demonstrated in two-dimensional rather than three dimensional culture systems, translation from the former to the latter poses unique difficulties. These challenges are discussed in the context of cultivation platforms of hPSCs as aggregates, on microcarriers or after encapsulation in biocompatible scaffolds.
Collapse
|
33
|
Kumar D, Dale TP, Yang Y, Forsyth NR. Self-renewal of human embryonic stem cells on defined synthetic electrospun nanofibers. Biomed Mater 2015; 10:065017. [DOI: 10.1088/1748-6041/10/6/065017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Jaggy M, Zhang P, Greiner AM, Autenrieth TJ, Nedashkivska V, Efremov AN, Blattner C, Bastmeyer M, Levkin PA. Hierarchical Micro-Nano Surface Topography Promotes Long-Term Maintenance of Undifferentiated Mouse Embryonic Stem Cells. NANO LETTERS 2015; 15:7146-54. [PMID: 26351257 DOI: 10.1021/acs.nanolett.5b03359] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Understanding of stem cell-surface interactions and, in particular, long-term maintenance of stem cell pluripotency on well-defined synthetic surfaces is crucial for fundamental research and biomedical applications of stem cells. Here, we show that synthetic surfaces possessing hierarchical micro-nano roughness (MN-surfaces) promote long-term self-renewal (>3 weeks) of mouse embryonic stem cells (mESCs) as monitored by the expression levels of the pluripotency markers octamer-binding transcription factor 4 (Oct4), Nanog, and alkaline phosphatase. On the contrary, culturing of mESCs on either smooth (S-) or nanorough polymer surfaces (N-surfaces) leads to their fast differentiation. Moreover, we show that regular passaging of mESCs on the hierarchical MN-polymer surface leads to an increased homogeneity and percentage of Oct4-positive stem cell colonies as compared to mESCs grown on fibroblast feeder cells. Immunostaining revealed the absence of focal adhesion markers on all polymer substrates studied. However, only the MN-surfaces elicited the formation of actin-positive cell protrusions, indicating an alternative anchorage mechanism involved in the maintenance of mESC stemness.
Collapse
Affiliation(s)
- Mona Jaggy
- Karlsruhe Institute of Technology (KIT) , Department of Cell- and Neurobiology, Zoological Institute, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
- Karlsruhe Institute of Technology (KIT) , Institute of Functional Interfaces (IFG), PO Box 3640, 76021 Karlsruhe, Germany
| | - Ping Zhang
- Karlsruhe Institute of Technology (KIT) , Institute of Toxicology and Genetics (ITG), PO Box 3640, 76021 Karlsruhe, Germany
| | - Alexandra M Greiner
- Karlsruhe Institute of Technology (KIT) , Department of Cell- and Neurobiology, Zoological Institute, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Tatjana J Autenrieth
- Karlsruhe Institute of Technology (KIT) , Department of Cell- and Neurobiology, Zoological Institute, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
- Karlsruhe Institute of Technology (KIT) , Institute of Functional Interfaces (IFG), PO Box 3640, 76021 Karlsruhe, Germany
| | - Victoria Nedashkivska
- Karlsruhe Institute of Technology (KIT) , Institute of Toxicology and Genetics (ITG), PO Box 3640, 76021 Karlsruhe, Germany
| | - Alexander N Efremov
- Karlsruhe Institute of Technology (KIT) , Institute of Toxicology and Genetics (ITG), PO Box 3640, 76021 Karlsruhe, Germany
| | - Christine Blattner
- Karlsruhe Institute of Technology (KIT) , Institute of Toxicology and Genetics (ITG), PO Box 3640, 76021 Karlsruhe, Germany
| | - Martin Bastmeyer
- Karlsruhe Institute of Technology (KIT) , Department of Cell- and Neurobiology, Zoological Institute, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
- Karlsruhe Institute of Technology (KIT) , Institute of Functional Interfaces (IFG), PO Box 3640, 76021 Karlsruhe, Germany
| | - Pavel A Levkin
- Karlsruhe Institute of Technology (KIT) , Institute of Toxicology and Genetics (ITG), PO Box 3640, 76021 Karlsruhe, Germany
- Karlsruhe Institute of Technology (KIT) , Institute of Organic Chemistry, PO Box 3640, 76021 Karlsruhe, Germany
| |
Collapse
|
35
|
Preferential adsorption of cell adhesive proteins from complex media on self-assembled monolayers and its effect on subsequent cell adhesion. Acta Biomater 2015; 26:72-81. [PMID: 26306676 DOI: 10.1016/j.actbio.2015.08.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/30/2015] [Accepted: 08/21/2015] [Indexed: 11/21/2022]
Abstract
We examined the effect of surface chemistry on adsorption of fibronectin (Fn) and vitronectin (Vn) and subsequent cell adhesion, employing self-assembled monolayers (SAMs) of alkanethiols carrying terminal methyl (CH3), hydroxyl groups (OH), carboxylic acid (COOH), and amine (NH2). More Fn and Vn adsorbed to COOH- and NH2-SAMs than to CH3- and OH-SAMs from a mixture with bovine serum albumin (BSA) and from 2% fetal bovine serum. Adhesion of human umbilical vein endothelial cells (HUVECs) on CH3- and OH-SAMs preadsorbed with Fn and BSA decreased with decreasing adsorbed Fn; however, HUVECs adhered to COOH- and NH2-SAMs even in the presence of BSA at 1000-fold more than Fn in a mixture because of the preferential adsorption of Fn and/or displacement of preadsorbed BSA with Fn and Vn in a serum-containing medium. SAMs coated with a mixture of Vn and BSA exhibited adhesion of HUVECs regardless of surface functional groups. A well-organized focal adhesion complex and actin stress fibers were observed only for COOH- and NH2-SAMs when SAMs were preadsorbed with Vn and BSA. These results suggest that COOH- and NH2-SAMs allow for both cell adhesion and cell spreading because of the high density of cell-binding domains derived from adsorbed Vn. STATEMENT OF SIGNIFICANCE Adsorption of cell adhesive proteins including fibronectin (Fn) and vitronectin (Vn) plays an important role in cell adhesion to artificial materials. However, for the development of biomaterials that contact with biological fluids, it is important to understand adsorption of Fn and Vn in complex media containing many kinds of proteins. Here, we focused on adsorption of Fn and Vn from complex media including mixed solution with albumin and fetal bovine serum, and its role on cell adhesion using self-assembled monolayers (SAMs). Our result demonstrates that SAMs carrying carboxylic acid or amine allow for both cell adhesion and cell spreading because of preferentially adsorbed Vn. The result provides insights into surface design of cell culture substrates and tissue engineering scaffolds.
Collapse
|
36
|
Lou YR, Kanninen L, Kaehr B, Townson JL, Niklander J, Harjumäki R, Jeffrey Brinker C, Yliperttula M. Silica bioreplication preserves three-dimensional spheroid structures of human pluripotent stem cells and HepG2 cells. Sci Rep 2015; 5:13635. [PMID: 26323570 PMCID: PMC4555166 DOI: 10.1038/srep13635] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/30/2015] [Indexed: 11/19/2022] Open
Abstract
Three-dimensional (3D) cell cultures produce more in vivo-like multicellular structures such as spheroids that cannot be obtained in two-dimensional (2D) cell cultures. Thus, they are increasingly employed as models for cancer and drug research, as well as tissue engineering. It has proven challenging to stabilize spheroid architectures for detailed morphological examination. Here we overcome this issue using a silica bioreplication (SBR) process employed on spheroids formed from human pluripotent stem cells (hPSCs) and hepatocellular carcinoma HepG2 cells cultured in the nanofibrillar cellulose (NFC) hydrogel. The cells in the spheroids are more round and tightly interacting with each other than those in 2D cultures, and they develop microvilli-like structures on the cell membranes as seen in 2D cultures. Furthermore, SBR preserves extracellular matrix-like materials and cellular proteins. These findings provide the first evidence of intact hPSC spheroid architectures and similar fine structures to 2D-cultured cells, providing a pathway to enable our understanding of morphogenesis in 3D cultures.
Collapse
Affiliation(s)
- Yan-Ru Lou
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, the University of Helsinki, Helsinki 00014, Finland
| | - Liisa Kanninen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, the University of Helsinki, Helsinki 00014, Finland
| | - Bryan Kaehr
- Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.,Department of Chemical and Biomolecular Engineering, the University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Jason L Townson
- Division of Molecular Medicine, Department of Internal Medicine, the University of New Mexico, Albuquerque, New Mexico 87131, USA.,Center for Micro-Engineered Materials, the University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Johanna Niklander
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, the University of Helsinki, Helsinki 00014, Finland
| | - Riina Harjumäki
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, the University of Helsinki, Helsinki 00014, Finland
| | - C Jeffrey Brinker
- Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.,Department of Chemical and Biomolecular Engineering, the University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Marjo Yliperttula
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, the University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
37
|
Abstract
The cellular microenvironment is extremely complex, and a plethora of materials and methods have been employed to mimic its properties in vitro. In particular, scientists and engineers have taken an interdisciplinary approach in their creation of synthetic biointerfaces that replicate chemical and physical aspects of the cellular microenvironment. Here the focus is on the use of synthetic materials or a combination of synthetic and biological ligands to recapitulate the defined surface chemistries, microstructure, and function of the cellular microenvironment for a myriad of biomedical applications. Specifically, strategies for altering the surface of these environments using self-assembled monolayers, polymer coatings, and their combination with patterned biological ligands are explored. Furthermore, methods for augmenting an important physical property of the cellular microenvironment, topography, are highlighted, and the advantages and disadvantages of these approaches are discussed. Finally, the progress of materials for prolonged stem cell culture, a key component in the translation of stem cell therapeutics for clinical use, is featured.
Collapse
Affiliation(s)
- A.M. Ross
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - J. Lahann
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Biointerfaces Institute,
- Department of Chemical Engineering,
- Department of Materials Science and Engineering, and
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
38
|
Celiz AD, Smith JGW, Patel AK, Hook AL, Rajamohan D, George VT, Flatt L, Patel MJ, Epa VC, Singh T, Langer R, Anderson DG, Allen ND, Hay DC, Winkler DA, Barrett DA, Davies MC, Young LE, Denning C, Alexander MR. Discovery of a Novel Polymer for Human Pluripotent Stem Cell Expansion and Multilineage Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:4006-12. [PMID: 26033422 PMCID: PMC4862031 DOI: 10.1002/adma.201501351] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/23/2015] [Indexed: 05/20/2023]
Abstract
A scalable and cost-effective synthetic polymer substrate that supports robust expansion and subsequent multilineage differentiation of human pluripotent stem cells (hPSCs) with defined commercial media is presented. This substrate can be applied to common cultureware and used off-the-shelf after long-term storage. Expansion and differentiation of hPSCs are performed entirely on the polymeric surface, enabling the clinical potential of hPSC-derived cells to be realized.
Collapse
Affiliation(s)
- Adam D Celiz
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - James G W Smith
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Asha K Patel
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew L Hook
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Divya Rajamohan
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Vinoj T George
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Luke Flatt
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Minal J Patel
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Vidana C Epa
- CSIRO Manufacturing Flagship, 343 Royal Parade, Parkville, 3052, Australia
| | - Taranjit Singh
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nicholas D Allen
- Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine SCRM Building, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - David A Winkler
- CSIRO Manufacturing Flagship, Bayview Avenue, Clayton, 3168, Australia
- Monash Institute of Pharmaceutical Sciences, 399 Royal Parade, Parkville, 3052, Australia
- Latrobe Institute for Molecular Science, Latrobe University, Bundoora, 3086, Australia
| | - David A Barrett
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Martyn C Davies
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Lorraine E Young
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Chris Denning
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Morgan R Alexander
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
39
|
Goujon LJ, Hariharan S, Sayyar B, Burke NAD, Cranston ED, Andrews DW, Stöver HDH. Tunable hydrogel thin films from reactive synthetic polymers as potential two-dimensional cell scaffolds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5623-5632. [PMID: 25907892 DOI: 10.1021/acs.langmuir.5b00376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This article describes the formation of cross-linked 10-200-nm-thick polymer hydrogel films by alternating the spin-coating of two mutually reactive polymers from organic solutions, followed by hydrolysis of the resulting multilayer film in aqueous buffer. Poly(methyl vinyl ether-alt-maleic anhydride) (PMM) was deposited from acetonitrile solution, and poly(N-3-aminopropylmethacrylamide-co-N-2-hydroxypropylmethacrylamide) (PAPMx, where x corresponds to the 3-aminopropylmethacrylamide content ranging from 10 to 100%) was deposited from methanol. Multilayer films were formed in up to 20 deposition cycles. The films cross-linked during formation by reaction between the amine groups of PAPMx and the anhydride groups of PMM. The resulting multilayer films were covalently postfunctionalized by exposure to fluoresceinamine, decylamine, d-glucamine, or fluorescently labeled PAPMx solutions prior to the hydrolysis of residual anhydride in aqueous PBS buffer. This allowed tuning the hydrophobicity of the film to give static water contact angles ranging from about 5 to 90°. Increasing the APM content in PAPMx from 10 to 100% led to apparent Young's moduli from 300 to 700 kPa while retaining sufficient anhydride groups to allow postfunctionalization of the films. This allowed the resulting (PMM/PAPMx) multilayer films to be turned into adhesion-promoting or antifouling surfaces for C2C12 mouse myoblasts and MCF 10A premalignant human mammary epithelial cells.
Collapse
Affiliation(s)
- Laurent J Goujon
- †Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Santosh Hariharan
- ‡Biological Sciences, Sunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Bahareh Sayyar
- †Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Nicholas A D Burke
- †Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Emily D Cranston
- §Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - David W Andrews
- ‡Biological Sciences, Sunnybrook Research Institute and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Harald D H Stöver
- †Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
40
|
Patel AK, Celiz AD, Rajamohan D, Anderson DG, Langer R, Davies MC, Alexander MR, Denning C. A defined synthetic substrate for serum-free culture of human stem cell derived cardiomyocytes with improved functional maturity identified using combinatorial materials microarrays. Biomaterials 2015; 61:257-65. [PMID: 26005764 PMCID: PMC4780257 DOI: 10.1016/j.biomaterials.2015.05.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/06/2015] [Accepted: 05/14/2015] [Indexed: 01/15/2023]
Abstract
Cardiomyocytes from human stem cells have applications in regenerative medicine and can provide models for heart disease and toxicity screening. Soluble components of the culture system such as growth factors within serum and insoluble components such as the substrate on which cells adhere to are important variables controlling the biological activity of cells. Using a combinatorial materials approach we develop a synthetic, chemically defined cellular niche for the support of functional cardiomyocytes derived from human embryonic stem cells (hESC-CMs) in a serum-free fully defined culture system. Almost 700 polymers were synthesized and evaluated for their utility as growth substrates. From this group, 20 polymers were identified that supported cardiomyocyte adhesion and spreading. The most promising 3 polymers were scaled up for extended culture of hESC-CMs for 15 days and were characterized using patch clamp electrophysiology and myofibril analysis to find that functional and structural phenotype was maintained on these synthetic substrates without the need for coating with extracellular matrix protein. In addition, we found that hESC-CMs cultured on a co-polymer of isobornyl methacrylate and tert-butylamino-ethyl methacrylate exhibited significantly longer sarcomeres relative to gelatin control. The potential utility of increased structural integrity was demonstrated in an in vitro toxicity assay that found an increase in detection sensitivity of myofibril disruption by the anti-cancer drug doxorubicin at a concentration of 0.05 µM in cardiomyocytes cultured on the co-polymer compared to 0.5 µM on gelatin. The chemical moieties identified in this large-scale screen provide chemically defined conditions for the culture and manipulation of hESC-CMs, as well as a framework for the rational design of superior biomaterials.
Collapse
Affiliation(s)
- Asha K Patel
- Wolfson Centre for Stem Cells, Tissue Engineering and Modeling, University of Nottingham, Nottingham, NG7 2RD, UK; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Adam D Celiz
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Divya Rajamohan
- Wolfson Centre for Stem Cells, Tissue Engineering and Modeling, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Martyn C Davies
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Morgan R Alexander
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Chris Denning
- Wolfson Centre for Stem Cells, Tissue Engineering and Modeling, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
41
|
Enam S, Jin S. Substrates for clinical applicability of stem cells. World J Stem Cells 2015; 7:243-252. [PMID: 25815112 PMCID: PMC4369484 DOI: 10.4252/wjsc.v7.i2.243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/23/2014] [Accepted: 12/19/2014] [Indexed: 02/06/2023] Open
Abstract
The capability of human pluripotent stem cells (hPSCs) to differentiate into a variety of cells in the human body holds great promise for regenerative medicine. Many substrates exist on which hPSCs can be self-renewed, maintained and expanded to further the goal of clinical application of stem cells. In this review, we highlight numerous extracellular matrix proteins, peptide and polymer based substrates, scaffolds and hydrogels that have been pioneered. We discuss their benefits and shortcomings and offer future directions as well as emphasize commercially available synthetic peptides as a type of substrate that can bring the benefits of regenerative medicine to clinical settings.
Collapse
|
42
|
Desai N, Rambhia P, Gishto A. Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems. Reprod Biol Endocrinol 2015; 13:9. [PMID: 25890180 PMCID: PMC4351689 DOI: 10.1186/s12958-015-0005-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/09/2015] [Indexed: 01/23/2023] Open
Abstract
Human embryonic stem cells (hESC) have emerged as attractive candidates for cell-based therapies that are capable of restoring lost cell and tissue function. These unique cells are able to self-renew indefinitely and have the capacity to differentiate in to all three germ layers (ectoderm, endoderm and mesoderm). Harnessing the power of these pluripotent stem cells could potentially offer new therapeutic treatment options for a variety of medical conditions. Since the initial derivation of hESC lines in 1998, tremendous headway has been made in better understanding stem cell biology and culture requirements for maintenance of pluripotency. The approval of the first clinical trials of hESC cells for treatment of spinal cord injury and macular degeneration in 2010 marked the beginning of a new era in regenerative medicine. Yet it was clearly recognized that the clinical utility of hESC transplantation was still limited by several challenges. One of the most immediate issues has been the exposure of stem cells to animal pathogens, during hESC derivation and during in vitro propagation. Initial culture protocols used co-culture with inactivated mouse fibroblast feeder (MEF) or human feeder layers with fetal bovine serum or alternatively serum replacement proteins to support stem cell proliferation. Most hESC lines currently in use have been exposed to animal products, thus carrying the risk of xeno-transmitted infections and immune reaction. This mini review provides a historic perspective on human embryonic stem cell culture and the evolution of new culture models. We highlight the challenges and advances being made towards the development of xeno-free culture systems suitable for therapeutic applications.
Collapse
Affiliation(s)
- Nina Desai
- Department of Obstetrics and Gynecology, Cleveland Clinic, Beachwood, OH, USA.
| | - Pooja Rambhia
- Department of Obstetrics and Gynecology, Cleveland Clinic, Beachwood, OH, USA.
| | - Arsela Gishto
- Department of Obstetrics and Gynecology, Cleveland Clinic, Beachwood, OH, USA.
| |
Collapse
|
43
|
On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology. Biomaterials 2015; 52:26-43. [PMID: 25818411 DOI: 10.1016/j.biomaterials.2015.01.078] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 12/24/2014] [Accepted: 01/28/2015] [Indexed: 12/11/2022]
Abstract
Human pluripotent stem cells (hPSCs) provide promising resources for regenerating tissues and organs and modeling development and diseases in vitro. To fulfill their promise, the fate, function, and organization of hPSCs need to be precisely regulated in a three-dimensional (3D) environment to mimic cellular structures and functions of native tissues and organs. In the past decade, innovations in 3D culture systems with functional biomaterials have enabled efficient and versatile control of hPSC fate at the cellular level. However, we are just at the beginning of bringing hPSC-based regeneration and development and disease modeling to the tissue and organ levels. In this review, we summarize existing bioengineered culture platforms for controlling hPSC fate and function by regulating inductive mechanical and biochemical cues coexisting in the synthetic cell microenvironment. We highlight recent excitements in developing 3D hPSC-based in vitro tissue and organ models with in vivo-like cellular structures, interactions, and functions. We further discuss an emerging multifaceted mechanotransductive signaling network--with transcriptional coactivators YAP and TAZ at the center stage--that regulate fates and behaviors of mammalian cells, including hPSCs. Future development of 3D biomaterial systems should incorporate dynamically modulated mechanical and chemical properties targeting specific intracellular signaling events leading to desirable hPSC fate patterning and functional tissue formation in 3D.
Collapse
|
44
|
Signals from the surface modulate differentiation of human pluripotent stem cells through glycosaminoglycans and integrins. Proc Natl Acad Sci U S A 2014; 111:18126-31. [PMID: 25422477 DOI: 10.1073/pnas.1409525111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The fate decisions of human pluripotent stem (hPS) cells are governed by soluble and insoluble signals from the microenvironment. Many hPS cell differentiation protocols use Matrigel, a complex and undefined substrate that engages multiple adhesion and signaling receptors. Using defined surfaces programmed to engage specific cell-surface ligands (i.e., glycosaminoglycans and integrins), the contribution of specific matrix signals can be dissected. For ectoderm and motor neuron differentiation, peptide-modified surfaces that can engage both glycosaminoglycans and integrins are effective. In contrast, surfaces that interact selectively with glycosaminoglycans are superior to Matrigel in promoting hPS cell differentiation to definitive endoderm and mesoderm. The modular surfaces were used to elucidate the signaling pathways underlying these differences. Matrigel promotes integrin signaling, which in turn inhibits mesendoderm differentiation. The data indicate that integrin-activating surfaces stimulate Akt signaling via integrin-linked kinase (ILK), which is antagonistic to endoderm differentiation. The ability to attribute cellular responses to specific interactions between the cell and the substrate offers new opportunities for revealing and controlling the pathways governing cell fate.
Collapse
|
45
|
Atkinson SP, Lako M, Armstrong L. Potential for pharmacological manipulation of human embryonic stem cells. Br J Pharmacol 2014; 169:269-89. [PMID: 22515554 DOI: 10.1111/j.1476-5381.2012.01978.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The therapeutic potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is vast, allowing disease modelling, drug discovery and testing and perhaps most importantly regenerative therapies. However, problems abound; techniques for cultivating self-renewing hESCs tend to give a heterogeneous population of self-renewing and partially differentiated cells and general include animal-derived products that can be cost-prohibitive for large-scale production, and effective lineage-specific differentiation protocols also still remain relatively undefined and are inefficient at producing large amounts of cells for therapeutic use. Furthermore, the mechanisms and signalling pathways that mediate pluripotency and differentiation are still to be fully appreciated. However, over the recent years, the development/discovery of a range of effective small molecule inhibitors/activators has had a huge impact in hESC biology. Large-scale screening techniques, coupled with greater knowledge of the pathways involved, have generated pharmacological agents that can boost hESC pluripotency/self-renewal and survival and has greatly increased the efficiency of various differentiation protocols, while also aiding the delineation of several important signalling pathways. Within this review, we hope to describe the current uses of small molecule inhibitors/activators in hESC biology and their potential uses in the future.
Collapse
|
46
|
Ruggeri RR, Bressan FF, Siqueira NM, Meirelles F, Frantz N, Watanabe YF, Soares RMD, Bos-Mikich A. Derivation and culture of putative parthenogenetic embryonic stem cells in new gelatin substrates modified with galactomannan. Macromol Res 2014. [DOI: 10.1007/s13233-014-2151-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Qian X, Villa-Diaz LG, Kumar R, Lahann J, Krebsbach PH. Enhancement of the propagation of human embryonic stem cells by modifications in the gel architecture of PMEDSAH polymer coatings. Biomaterials 2014; 35:9581-90. [PMID: 25189518 DOI: 10.1016/j.biomaterials.2014.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/08/2014] [Indexed: 01/08/2023]
Abstract
Well-defined culture conditions are essential for realizing the full potential of human embryonic stem cells (hESCs) in regenerative medicine where large numbers of cells are required. Synthetic polymers such as poly[2-(methacryloyloxy) ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide] (PMEDSAH), offer multiple advantages over mouse embryonic fibroblasts (MEFs) and Matrigel™ for hESC culture and expansion. However, there is limited understanding of the mechanisms by which hESCs are propagated on synthetic polymers coatings. Here, the effects of PMEDSAH gel architecture on hESC self-renewal were determined. By increasing the atom transfer radical polymerization (ATRP) reaction time, the thickness of PMEDSAH was increased and its internal hydrogel architecture was modified, while maintaining its overall chemical structure. A 105 nm thick ATRP PMEDSAH coating showed a significant increase in the expansion rate of hESCs. Theoretical calculations suggested that 20,000 hESCs cultured on this substrate could be expanded up to 4.7 × 10(9) undifferentiated cells in five weeks. In addition, hESCs grown on ATRP PMEDSAH coatings retained pluripotency and displayed a normal karyotype after long-term culture. These data demonstrate the importance of polymer physical properties in hESC expansion. This modification of PMEDSAH coatings may be used to obtain large populations of hESCs required for many applications in regenerative medicine.
Collapse
Affiliation(s)
- Xu Qian
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Luis G Villa-Diaz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ramya Kumar
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Joerg Lahann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Paul H Krebsbach
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
48
|
Higuchi A, Ling QD, Kumar SS, Munusamy M, Alarfajj AA, Umezawa A, Wu GJ. Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Celiz AD, Smith JGW, Langer R, Anderson DG, Winkler DA, Barrett DA, Davies MC, Young LE, Denning C, Alexander MR. Materials for stem cell factories of the future. NATURE MATERIALS 2014; 13:570-9. [PMID: 24845996 DOI: 10.1038/nmat3972] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 03/31/2014] [Indexed: 05/10/2023]
Abstract
Polymeric substrates are being identified that could permit translation of human pluripotent stem cells from laboratory-based research to industrial-scale biomedicine. Well-defined materials are required to allow cell banking and to provide the raw material for reproducible differentiation into lineages for large-scale drug-screening programs and clinical use. Yet more than 1 billion cells for each patient are needed to replace losses during heart attack, multiple sclerosis and diabetes. Producing this number of cells is challenging, and a rethink of the current predominant cell-derived substrates is needed to provide technology that can be scaled to meet the needs of millions of patients a year. In this Review, we consider the role of materials discovery, an emerging area of materials chemistry that is in large part driven by the challenges posed by biologists to materials scientists.
Collapse
Affiliation(s)
- Adam D Celiz
- 1] Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK [2] Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - James G W Smith
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David A Winkler
- 1] CSIRO Materials Science and Engineering, Bag 10, Clayton South MDC 3169, Australia [2] Monash Institute of Pharmaceutical Sciences, 399 Royal Parade, Parkville 3052, Australia
| | - David A Barrett
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Martyn C Davies
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lorraine E Young
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chris Denning
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Morgan R Alexander
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
50
|
Hansen A, Mjoseng HK, Zhang R, Kalloudis M, Koutsos V, de Sousa PA, Bradley M. High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth. Adv Healthc Mater 2014; 3:848-53. [PMID: 24353271 DOI: 10.1002/adhm.201300489] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/21/2013] [Indexed: 01/22/2023]
Abstract
The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance.
Collapse
Affiliation(s)
- Anne Hansen
- School of Chemistry; University of Edinburgh, King's Buildings; West Mains Road Edinburgh EH9 3JJ UK
| | - Heidi K. Mjoseng
- MRC Centre for Regenerative Medicine; SCRM Building, The University of Edinburgh, Edinburgh bioQuarter; 5 Little France Drive Edinburgh EH16 4UU UK
| | - Rong Zhang
- School of Materials Science and Engineering; Changzhou University; Jiangsu Province 213164 China
| | - Michail Kalloudis
- School of Engineering; University of Edinburgh; King's Buildings Edinburgh EH9 3JL UK
| | - Vasileios Koutsos
- School of Engineering; University of Edinburgh; King's Buildings Edinburgh EH9 3JL UK
| | - Paul A. de Sousa
- MRC Centre for Regenerative Medicine; SCRM Building, The University of Edinburgh, Edinburgh bioQuarter; 5 Little France Drive Edinburgh EH16 4UU UK
| | - Mark Bradley
- School of Chemistry; University of Edinburgh, King's Buildings; West Mains Road Edinburgh EH9 3JJ UK
| |
Collapse
|