1
|
Sollenberger CH, Qiu R, Sai H, Carrow JK, Fyrner T, Gao Z, Palmer LC, Stupp SI. Boosting chondrocyte bioactivity with ultra-sulfated glycopeptide supramolecular polymers. Acta Biomater 2024; 189:103-115. [PMID: 39362449 DOI: 10.1016/j.actbio.2024.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Although autologous chondrocyte transplantation can be effective in articular cartilage repair, negative side effects limit the utility of the treatment, such as long recovery times, poor engraftment or chondrogenic dedifferentiation, and cell leakage. Peptide-based supramolecular polymers have emerged as promising bioactive systems to promote tissue regeneration through cell signaling and dynamic behavior. We report here on the development of a series of glycopeptide amphiphile supramolecular nanofibers with chondrogenic bioactivity. These supramolecular polymers were found to have the ability to boost TGFβ-1 signaling by displaying galactosamine moieties with differing degrees of sulfation on their surfaces. We were also able to encapsulate chondrocytes with these nanostructures as single cells without affecting viability and proliferation. Among the monomers tested, assemblies of trisulfated glycopeptides led to elevated expression of chondrogenic markers relative to those with lower degrees of sulfation that mimic chondroitin sulfate repeating units. We hypothesize the enhanced bioactivity is rooted in specific interactions of the supramolecular assemblies with TGFβ-1 and its consequence on cell signaling, which may involve elevated levels of supramolecular motion as a result of high charge in trisulfated glycopeptide amphiphiles. Our findings suggest that supramolecular polymers formed by the ultra-sulfated glycopeptide amphiphiles could provide better outcomes in chondrocyte transplantation therapies for cartilage regeneration. STATEMENT OF SIGNIFICANCE: This study prepares glycopeptide amphiphiles conjugated at their termini with chondroitin sulfate mimetic residues with varying degrees of sulfation that self-assemble into supramolecular nanofibers in aqueous solution. These supramolecular polymers encapsulate chondrocytes as single cells through intimate contact with cell surface structures, forming artificial matrix that can localize the growth factor TGFβ-1 in the intercellular environment. A high degree of sulfation on the glycopeptide amphiphile is found to be critical in elevating chondrogenic cellular responses that supersede the efficacy of natural chondroitin sulfate. This work demonstrates that supramolecular assembly of a unique molecular structure designed to mimic chondroitin sulfate successfully boosts chondrocyte bioactivity by single cell encapsulation, suggesting a new avenue implementing chondrocyte transplantation with supramolecular nanomaterials for cartilage regeneration.
Collapse
Affiliation(s)
- Christopher H Sollenberger
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, United States
| | - Ruomeng Qiu
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States; Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Hiroaki Sai
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States; Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, United States
| | - James K Carrow
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States
| | - Timmy Fyrner
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States
| | - Zijun Gao
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States; Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States; Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, United States; Department of Chemistry, Northwestern University, Evanston, IL 60208, United States; Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, United States; Department of Medicine, Northwestern University, Chicago, IL 60611, United States.
| |
Collapse
|
2
|
Whitewolf J, Highley CB. Conformal encapsulation of mammalian stem cells using modified hyaluronic acid. J Mater Chem B 2024; 12:7122-7134. [PMID: 38946474 PMCID: PMC11268093 DOI: 10.1039/d4tb00223g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Micro- and nanoencapsulation of cells has been studied as a strategy to protect cells from environmental stress and promote survival during delivery. Hydrogels used in encapsulation can be modified to influence cell behaviors and direct assembly in their surroundings. Here, we report a system that conformally encapsulated stem cells using hyaluronic acid (HA). We successfully modified HA with lipid, thiol, and maleimide pendant groups to facilitate a hydrogel system in which HA was deposited onto cell plasma membranes and subsequently crosslinked through thiol-maleimide click chemistry. We demonstrated conformal encapsulation of both neural stem cells (NSCs) and mesenchymal stromal cells (MSCs), with viability of both cell types greater than 90% after encapsulation. Additional material could be added to the conformal hydrogel through alternating addition of thiol-modified and maleimide-modified HA in a layering process. After encapsulation, we tracked egress and viability of the cells over days and observed differential responses of cell types to conformal hydrogels both according to cell type and the amount of material deposited on the cell surfaces. Through the design of the conformal hydrogels, we showed that multicellular assembly could be created in suspension and that encapsulated cells could be immobilized on surfaces. In conjunction with photolithography, conformal hydrogels enabled rapid assembly of encapsulated cells on hydrogel substrates with resolution at the scale of 100 μm.
Collapse
Affiliation(s)
- Jack Whitewolf
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA.
| | - Christopher B Highley
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA.
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
3
|
Lee CE, Kim S, Park HW, Lee W, Jangid AK, Choi Y, Jeong WJ, Kim K. Tailoring tumor-recognizable hyaluronic acid-lipid conjugates to enhance anticancer efficacies of surface-engineered natural killer cells. NANO CONVERGENCE 2023; 10:56. [PMID: 38097911 PMCID: PMC10721593 DOI: 10.1186/s40580-023-00406-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023]
Abstract
Natural killer (NK) cells have clinical advantages in adoptive cell therapy owing to their inherent anticancer efficacy and their ability to identify and eliminate malignant tumors. However, insufficient cancer-targeting ligands on NK cell surfaces often inhibit their immunotherapeutic performance, especially in immunosuppressive tumor microenvironment. To facilitate tumor recognition and subsequent anticancer function of NK cells, we developed hyaluronic acid (HA, ligands to target CD44 overexpressed onto cancer cells)-poly(ethylene glycol) (PEG, cytoplasmic penetration blocker)-Lipid (molecular anchor for NK cell membrane decoration through hydrophobic interaction) conjugates for biomaterial-mediated ex vivo NK cell surface engineering. Among these major compartments (i.e., Lipid, PEG and HA), optimization of lipid anchors (in terms of chemical structure and intrinsic amphiphilicity) is the most important design parameter to modulate hydrophobic interaction with dynamic NK cell membranes. Here, three different lipid types including 1,2-dimyristoyl-sn-glycero-3-phosphati-dylethanolamine (C14:0), 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE, C18:0), and cholesterol were evaluated to maximize membrane coating efficacy and associated anticancer performance of surface-engineered NK cells (HALipid-NK cells). Our results demonstrated that NK cells coated with HA-PEG-DSPE conjugates exhibited significantly enhanced anticancer efficacies toward MDA-MB-231 breast cancer cells without an off-target effect on human fibroblasts specifically via increased NK cell membrane coating efficacy and prolonged surface duration of HA onto NK cell surfaces, thereby improving HA-CD44 recognition. These results suggest that our HALipid-NK cells with tumor-recognizable HA-PEG-DSPE conjugates could be further utilized in various cancer immunotherapies.
Collapse
Affiliation(s)
- Chae Eun Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hee Won Park
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Wonjeong Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yonghyun Choi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Kanagawa, 226-8501, Japan
| | - Woo-Jin Jeong
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
4
|
Yan H, Cheng Q, Si J, Wang S, Wan Y, Kong X, Wang T, Zheng W, Rafique M, Li X, He J, Midgley AC, Zhu Y, Wang K, Kong D. Functionalization of in vivo tissue-engineered living biotubes enhance patency and endothelization without the requirement of systemic anticoagulant administration. Bioact Mater 2023; 26:292-305. [PMID: 36950151 PMCID: PMC10027480 DOI: 10.1016/j.bioactmat.2023.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 03/18/2023] Open
Abstract
Vascular regeneration and patency maintenance, without anticoagulant administration, represent key developmental trends to enhance small-diameter vascular grafts (SDVG) performance. In vivo engineered autologous biotubes have emerged as SDVG candidates with pro-regenerative properties. However, mechanical failure coupled with thrombus formation hinder translational prospects of biotubes as SDVGs. Previously fabricated poly(ε-caprolactone) skeleton-reinforced biotubes (PBs) circumvented mechanical issues and achieved vascular regeneration, but orally administered anticoagulants were required. Here, highly efficient and biocompatible functional modifications were introduced to living cells on PB lumens. The 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-methoxy (DMPE)-PEG-conjugated anti-coagulant bivalirudin (DPB) and DMPE-PEG-conjugated endothelial progenitor cell (EPC)-binding TPS-peptide (DPT) modifications possessed functionality conducive to promoting vascular graft patency. Co-modification of DPB and DPT swiftly attained luminal saturation without influencing cell viability. DPB repellent of non-specific proteins, DPB inhibition of thrombus formation, and DPB protection against functional masking of DPT's EPC-capture by blood components, which promoted patency and rapid endothelialization in rat and canine artery implantation models without anticoagulant administration. This strategy offers a safe, facile, and fast technical approach to convey additional functionalization to living cells within tissue-engineered constructs.
Collapse
Affiliation(s)
- Hongyu Yan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Quhan Cheng
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianghua Si
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Songdi Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ye Wan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Wenting Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Muhammad Rafique
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaofeng Li
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Ju He
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Corresponding author.
| | - Yi Zhu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Corresponding author.
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Zheng J, Hu X, Zeng Y, Zhang B, Sun Z, Liu X, Zheng W, Chai Y. Review of the advances in lipid anchors-based biosensors for the isolation and detection of exosomes. Anal Chim Acta 2023; 1263:341319. [PMID: 37225343 DOI: 10.1016/j.aca.2023.341319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023]
Abstract
Exosomes are nanoparticles with a bilayer lipid structure that carry cargo from their cells of origin. These vesicles are vital to disease diagnosis and therapeutics; however, conventional isolation and detection techniques are generally complicated, time-consuming, and costly, thus hampering the clinical applications of exosomes. Meanwhile, sandwich-structured immunoassays for exosome isolation and detection rely on the specific binding of membrane surface biomarkers, which may be limited by the type and amount of target protein present. Recently, lipid anchors inserted into the membranes of vesicles through hydrophobic interactions have been adopted as a new strategy for extracellular vesicle manipulation. By combining nonspecific and specific binding, the performance of biosensors can be improved variously. This review presents the reaction mechanisms and properties of lipid anchors/probes, as well as advances in the development of biosensors. The combination of signal amplification methods with lipid anchors is discussed in detail to provide insights into the design of convenient and sensitive detection techniques. Finally, the advantages, challenges, and future directions of lipid anchor-based exosome isolation and detection methods are highlighted from the perspectives of research, clinical use, and commercialization.
Collapse
Affiliation(s)
- Junyuan Zheng
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| | - Xiaoxiang Hu
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| | - Yuping Zeng
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| | - Binmao Zhang
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| | - Zhonghao Sun
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| | - Xiaowei Liu
- Department of Management, Shenzhen University, Shenzhen, 518055, China.
| | - Weidong Zheng
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen, 518055, China.
| | - Yujuan Chai
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Jangid AK, Kim S, Kim K. Polymeric biomaterial-inspired cell surface modulation for the development of novel anticancer therapeutics. Biomater Res 2023; 27:59. [PMID: 37344853 DOI: 10.1186/s40824-023-00404-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Immune cell-based therapies are a rapidly emerging class of new medicines that directly treat and prevent targeted cancer. However multiple biological barriers impede the activity of live immune cells, and therefore necessitate the use of surface-modified immune cells for cancer prevention. Synthetic and/or natural biomaterials represent the leading approach for immune cell surface modulation. Different types of biomaterials can be applied to cell surface membranes through hydrophobic insertion, layer-by-layer attachment, and covalent conjugations to acquire surface modification in mammalian cells. These biomaterials generate reciprocity to enable cell-cell interactions. In this review, we highlight the different biomaterials (lipidic and polymeric)-based advanced applications for cell-surface modulation, a few cell recognition moieties, and how their interplay in cell-cell interaction. We discuss the cancer-killing efficacy of NK cells, followed by their surface engineering for cancer treatment. Ultimately, this review connects biomaterials and biologically active NK cells that play key roles in cancer immunotherapy applications.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
7
|
Kim S, Kim K. Lipid-mediated ex vivo cell surface engineering for augmented cellular functionalities. BIOMATERIALS ADVANCES 2022; 140:213059. [PMID: 35961186 DOI: 10.1016/j.bioadv.2022.213059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Once administrated, intercellular adhesion to recognize and/or arrest target cells is essential for specific treatments, especially for cancer or tumor. However, immune cells administrated into the tumor-microenvironment could lose their intrinsic functionalities such as target recognition ability, resulting in an ineffective cancer immunotherapy. Various manipulation techniques for decorating functional moieties onto cell surface and enhancing target recognition have been developed. A hydrophobic interaction-mediated ex-vivo cell surface engineering using lipid-based biomaterials could be a state-of-the-art engineering technique that could achieve high-efficiency cell surface modification by a single method without disturbance of intrinsic characteristics of cells. In this regard, this review provides design principles for the development of lipid-based biomaterials with a linear structure of lipid, polyethylene glycol, and functional group, strategies for the synthesis process, and their practical applications in biomedical engineering. Especially, we provide new insights into the development of a novel surface coating techniques for natural killer (NK) cells with engineering decoration of cancer targeting moieties on their cell surfaces. Among immune cells, NK cells are interesting cell population for substituting T cells because of their excellent safety and independent anticancer efficacy. Thus, optimal strategies to select cancer-type-specific targeting moieties and present them onto the surface of immune cells (especially, NK cells) using lipid-based biomaterials could provide additional tools to capture cancer cells for developing novel immune cell therapy products. Enhanced anticancer efficacies by surface-engineered NK cells have been demonstrated both in vitro and in vivo. Therefore, it could be speculated that recent progresses in cell surface modification technology via lipid-based biomaterials could strengthen immune surveillance and immune synapses for utilization in a next-generation cancer immunotherapy, beyond currently available genetic engineering tool such as chimeric antigen receptor-mediated immune cell modulation.
Collapse
Affiliation(s)
- Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Encapsulation Strategies for Pancreatic Islet Transplantation without Immune Suppression. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Abstract
Systematically dissecting the molecular basis of the cell surface as well as its related biological activities is considered as one of the most cutting-edge fields in fundamental sciences. The advent of various advanced cell imaging techniques allows us to gain a glimpse of how the cell surface is structured and coordinated with other cellular components to respond to intracellular signals and environmental stimuli. Nowadays, cell surface-related studies have entered a new era featured by a redirected aim of not just understanding but artificially manipulating/remodeling the cell surface properties. To meet this goal, biologists and chemists are intensely engaged in developing more maneuverable cell surface labeling strategies by exploiting the cell's intrinsic biosynthetic machinery or direct chemical/physical binding methods for imaging, sensing, and biomedical applications. In this review, we summarize the recent advances that focus on the visualization of various cell surface structures/dynamics and accurate monitoring of the microenvironment of the cell surface. Future challenges and opportunities in these fields are discussed, and the importance of cell surface-based studies is highlighted.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | | | | | | |
Collapse
|
10
|
Sortase-A mediated chemoenzymatic lipidation of single-domain antibodies for cell membrane engineering. Eur J Pharm Biopharm 2020; 153:121-129. [DOI: 10.1016/j.ejpb.2020.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022]
|
11
|
Yoshihara A, Watanabe S, Goel I, Ishihara K, Ekdahl KN, Nilsson B, Teramura Y. Promotion of cell membrane fusion by cell-cell attachment through cell surface modification with functional peptide-PEG-lipids. Biomaterials 2020; 253:120113. [PMID: 32438114 DOI: 10.1016/j.biomaterials.2020.120113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
Cell fusion is a fundamental event in various biological processes and has been applied to a number of biotechnologies. However, cell fusion efficiency is still low and strongly depends on cell lines and skills, though some improvements have been made. Our hypothesis is that two distinct cell membranes need to be brought together for cell membrane fusion, which is important for mimicking cell fusion in vitro. Here, we aimed to improve the homogeneous and heterogeneous cell fusion efficiency using a cell-cell attachment technique. We modified cellular membranes with two distinctive poly(ethylene glycol)-lipids (PEG-lipids) carrying oligopeptide, three repeated units of the EIAALEK and KIAALKE sequences (fuE3 and fuK3, respectively), which induce cell-cell attachment. The ratio and area of cell-cell attachment can be controlled through surface modification with fuE3-and fuK3-PEG-lipids by changing the number of each incorporated peptide. By combining this technique with the PEG-induced method, the cell fusion efficiency was significantly improved for homogeneous and heterogeneous cell fusion compared to conventional PEG-induced methods. For homogeneous CCRF-CEM cell fusion, the efficiency increased up to 64% from the 8.4% with the PEG-induced method. In addition, for heterogeneous cell fusion of myeloma cells and splenocytes, the efficiency increased up to 18% from almost zero. Thus, cell membrane fusion could be promoted effectively between closely contacted cell membranes induced by the cell-cell attachment technique.
Collapse
Affiliation(s)
- Akifumi Yoshihara
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Sayumi Watanabe
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Isha Goel
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuhiko Ishihara
- Department of Material Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kristina N Ekdahl
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, SE-391 82, Kalmar, Sweden; Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds Väg 20, SE-751 85, Uppsala, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds Väg 20, SE-751 85, Uppsala, Sweden
| | - Yuji Teramura
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds Väg 20, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
12
|
Pathak S, Pham TT, Jeong JH, Byun Y. Immunoisolation of pancreatic islets via thin-layer surface modification. J Control Release 2019; 305:176-193. [DOI: 10.1016/j.jconrel.2019.04.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
|
13
|
Dong D, Zhu L, Hu J, Pang DW, Zhang ZL. Simple and rapid extracellular vesicles quantification via membrane biotinylation strategy coupled with fluorescent nanospheres-based lateral flow assay. Talanta 2019; 200:408-414. [PMID: 31036202 DOI: 10.1016/j.talanta.2019.03.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/11/2019] [Accepted: 03/16/2019] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are cell-excreted membrane particles existing in a variety of biological fluids. As potential noninvasive biomarkers, EVs have received wide attention in recent years. However, usual EVs assays are complex, time-consuming and costly, thus limiting their clinical utility. Simple and rapid EVs quantification within biological fluids remains challenging. Here, we developed a simple, rapid strategy for EVs quantification, which combined with lateral flow assay and membrane biotinylation strategy. By utilizing biotin-functionalized phosphatidylethanolamine (DSPE-PEG-Biotin), the membrane of EVs could be successfully modified with biotin under strong hydrophobic interactions. Subsequently, based on the high affinity between streptavidin and biotin, quantification assay was achieved by lateral flow assay with fluorescent nanospheres (FNs) as a reporter. Biotinylation of biogenic EVs could be reached to 85%. This proposed method enables sensitive detection of 2.0 × 103 particles/μL. The whole procedure time was within 1 h. Furthermore, this approach was used to detect EVs in biological samples, demonstrating potential clinical applications.
Collapse
Affiliation(s)
- Di Dong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Lian Zhu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jiao Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
14
|
Ohgaki R, Teramura Y, Hayashi D, Quan L, Okuda S, Nagamori S, Takai M, Kanai Y. Ratiometric fluorescence imaging of cell surface pH by poly(ethylene glycol)-phospholipid conjugated with fluorescein isothiocyanate. Sci Rep 2017; 7:17484. [PMID: 29235482 PMCID: PMC5727509 DOI: 10.1038/s41598-017-17459-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/26/2017] [Indexed: 11/09/2022] Open
Abstract
Various physiological and pathological processes are accompanied with the alteration of pH at extracellular juxtamembrane region. Accordingly, the methods to analyze the cell surface pH have been demanded in biological and medical sciences. In this study, we have established a novel methodology for cell surface pH imaging using poly(ethylene glycol)-phospholipid (PEG-lipid) as a core structure of ratiometric fluorescent probes. PEG-lipid is a synthetic amphiphilic polymer originally developed for the cell surface modification in transplantation therapy. Via its hydrophobic alkyl chains of the phospholipid moiety, PEG-lipid is, when applied extracellularly, spontaneously inserted into the plasma membrane and retained at the surface of the cells. We have demonstrated that the PEG-lipid conjugated with fluorescein isothiocyanate (FITC-PEG-lipid) can be used as a sensitive and reversible cell-surface-anchored pH probe between weakly alkaline and acidic pH with an excellent spatiotemporal resolution. The remarkably simple procedure for cell-surface labeling with FITC-PEG-lipid would also be advantageous when considering its application to high-throughput in vitro assay. This study further indicates that various probes useful for the investigation of juxtamembrane environments could also be developed by using PEG-lipid as the core structure for bio-membrane anchoring.
Collapse
Affiliation(s)
- Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Teramura
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Daichi Hayashi
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Lili Quan
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Suguru Okuda
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shushi Nagamori
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Madoka Takai
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
He F, Liu H, Guo X, Yin BC, Ye BC. Direct Exosome Quantification via Bivalent-Cholesterol-Labeled DNA Anchor for Signal Amplification. Anal Chem 2017; 89:12968-12975. [PMID: 29139297 DOI: 10.1021/acs.analchem.7b03919] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fang He
- Lab
of Biosystem and Microanalysis, State Key Laboratory of Bioreactor
Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Liu
- The
Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Xinggang Guo
- The
Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Bin-Cheng Yin
- Lab
of Biosystem and Microanalysis, State Key Laboratory of Bioreactor
Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab
of Biosystem and Microanalysis, State Key Laboratory of Bioreactor
Engineering, East China University of Science and Technology, Shanghai 200237, China
- Collaborative
Innovation Center of Yangtze River Delta Region Green Pharmaceuticals,
College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
16
|
Tatsumi K, Okano T. Hepatocyte Transplantation: Cell Sheet Technology for Liver Cell Transplantation. CURRENT TRANSPLANTATION REPORTS 2017; 4:184-192. [PMID: 28932649 PMCID: PMC5577064 DOI: 10.1007/s40472-017-0156-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose of Review We will review the recent developments of cell sheet technology as a feasible tissue engineering approach. Specifically, we will focus on the technological advancement for engineering functional liver tissue using cell sheet technology, and the associated therapeutic effect of cell sheets for liver diseases, highlighting hemophilia. Recent Findings Cell-based therapies using hepatocytes have recently been explored as a new therapeutic modality for patients with many forms of liver disease. We have developed a cell sheet technology, which allows cells to be harvested in a monolithic layer format. We have succeeded in fabricating functional liver tissues in mice by stacking the cell sheets composed of primary hepatocytes. As a curative measure for hemophilia, we have also succeeded in treating hemophilia mice by transplanting of cells sheets composed of genetically modified autologous cells. Summary Tissue engineering using cell sheet technology provides the opportunity to create new therapeutic options for patients with various types of liver diseases.
Collapse
Affiliation(s)
- Kohei Tatsumi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511 Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan.,Cell Sheet Tissue Engineering Center and Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
17
|
Mao AS, Shin JW, Utech S, Wang H, Uzun O, Li W, Cooper M, Hu Y, Zhang L, Weitz DA, Mooney DJ. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. NATURE MATERIALS 2017; 16:236-243. [PMID: 27798621 PMCID: PMC5372217 DOI: 10.1038/nmat4781] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 09/22/2016] [Indexed: 05/06/2023]
Abstract
Existing techniques to encapsulate cells into microscale hydrogels generally yield high polymer-to-cell ratios and lack control over the hydrogel's mechanical properties. Here, we report a microfluidic-based method for encapsulating single cells in an approximately six-micrometre layer of alginate that increases the proportion of cell-containing microgels by a factor of ten, with encapsulation efficiencies over 90%. We show that in vitro cell viability was maintained over a three-day period, that the microgels are mechanically tractable, and that, for microscale cell assemblages of encapsulated marrow stromal cells cultured in microwells, osteogenic differentiation of encapsulated cells depends on gel stiffness and cell density. We also show that intravenous injection of singly encapsulated marrow stromal cells into mice delays clearance kinetics and sustains donor-derived soluble factors in vivo. The encapsulation of single cells in tunable hydrogels should find use in a variety of tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Angelo S Mao
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Cambridge, Massachusetts 02138, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jae-Won Shin
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Cambridge, Massachusetts 02138, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Pharmacology and Department of Bioengineering, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | - Stefanie Utech
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Huanan Wang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Biomaterials and Tissue Engineering Laboratory, School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Oktay Uzun
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Cambridge, Massachusetts 02138, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Weiwei Li
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Cambridge, Massachusetts 02138, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Madeline Cooper
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Yuebi Hu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Liyuan Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - David A Weitz
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Cambridge, Massachusetts 02138, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Cambridge, Massachusetts 02138, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
18
|
Chen X, Zhang X, Wang HY, Chen Z, Wu FG. Subcellular Fate of a Fluorescent Cholesterol-Poly(ethylene glycol) Conjugate: An Excellent Plasma Membrane Imaging Reagent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10126-10135. [PMID: 27597442 DOI: 10.1021/acs.langmuir.6b02288] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cholesterol-containing molecules or nanoparticles play a significant role in achieving favorable plasma membrane imaging and efficient cellular uptake of drugs by the excellent membrane anchoring capability of the cholesterol moiety. By linking cholesterol to a water-soluble component (such as poly(ethylene glycol), PEG), the resulting cholesterol-PEG conjugate can form micelles in aqueous solution through self-assembly, and such a micellar structure represents an important drug delivery vehicle in which hydrophobic drugs can be encapsulated. However, the understanding of the subcellular fate and cytotoxicity of cholesterol-PEG conjugates themselves remains elusive. Herein, by using cholesterol-PEG2000-fluorescein isothiocyanate (Chol-PEG-FITC) as a model system, we found that the Chol-PEG-FITC molecules could attach to the plasma membranes of mammalian cells within 10 min and such a firm membrane attachment could last at least 1 h, displaying excellent plasma membrane staining performance that surpassed that of commonly used commercial membrane dyes such as DiD and CellMask. Besides, we systematically studied the endocytosis pathway and intracellular distribution of Chol-PEG-FITC and found that the cell surface adsorption and endocytosis processes of Chol-PEG-FITC molecules were lipid-raft-dependent. After internalization, the Chol-PEG-FITC molecules gradually reached many organelles with membrane structures. At 5 h, they were mainly distributed in lysosomes and the Golgi apparatus, with some in the endoplasmic reticulum (ER) and very few in the mitochondrion. At 12 h, the Chol-PEG-FITC molecules mostly aggregated in the Golgi apparatus and ER close to the nucleus. Finally, we demonstrated that Chol-PEG-FITC was toxic to mammalian cells only at concentrations above 50 μM. In summary, Chol-PEG-FITC can be a promising plasma membrane imaging reagent to avoid the fast cellular internalization and quick membrane detachment problems faced by commercial membrane dyes. We believe that the investigation of the dynamic subcellular fate of Chol-PEG-FITC can provide important knowledge to facilitate the use of cholesterol-PEG conjugates in fields such as cell surface engineering and drug delivery.
Collapse
Affiliation(s)
- Xiaokai Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
| | - Hong-Yin Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
| | - Zhan Chen
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109 United States
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, PR China
| |
Collapse
|
19
|
Moll G, Le Blanc K. Engineering more efficient multipotent mesenchymal stromal (stem) cells for systemic delivery as cellular therapy. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/voxs.12133] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- G. Moll
- Division of Clinical Immunology and Transfusion Medicine; Department of Laboratory Medicine; Karolinska Institutet; Stockholm Sweden
- Hematology and Regenerative Medicine Centre at Karolinska University Hospital Huddinge; Stockholm Sweden
| | - K. Le Blanc
- Division of Clinical Immunology and Transfusion Medicine; Department of Laboratory Medicine; Karolinska Institutet; Stockholm Sweden
- Hematology and Regenerative Medicine Centre at Karolinska University Hospital Huddinge; Stockholm Sweden
| |
Collapse
|
20
|
Swee LK, Lourido S, Bell GW, Ingram JR, Ploegh HL. One-step enzymatic modification of the cell surface redirects cellular cytotoxicity and parasite tropism. ACS Chem Biol 2015; 10:460-5. [PMID: 25360987 PMCID: PMC4478597 DOI: 10.1021/cb500462t] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Surface display of engineered proteins
has many useful applications.
The expression of a synthetic chimeric antigen receptor composed of
an extracellular tumor-specific antibody fragment linked to a cytosolic
activating motif in engineered T cells is now considered a viable
approach for the treatment of leukemias. The risk of de novo tumor development, inherent in the transfer of genetically engineered
cells, calls for alternative approaches for the functionalization
of the lymphocyte plasma membrane. We demonstrate the conjugation
of LPXTG-tagged probes and LPXTG-bearing proteins to endogenous acceptors
at the plasma membrane in a single step using sortase A. We successfully
conjugated biotin probes not only to mouse hematopoietic cells but
also to yeast cells, 293T cells, and Toxoplasma gondii. Installation of single domain antibodies on activated CD8 T cell
redirects cell-specific cytotoxicity to cells that bear the relevant
antigen. Likewise, conjugation of Toxoplasma gondii with single domain antibodies targets the pathogen to cells that
express the antigen recognized by these single domain antibodies.
This simple and robust enzymatic approach enables engineering of the
plasma membrane for research or therapy under physiological reaction
conditions that ensure the viability of the modified cells.
Collapse
Affiliation(s)
- Lee Kim Swee
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| | - Sebastian Lourido
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| | - George W. Bell
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| | - Jessica R. Ingram
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| | - Hidde L. Ploegh
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
21
|
Takeo M, Li C, Matsuda M, Nagai H, Hatanaka W, Yamamoto T, Kishimura A, Mori T, Katayama Y. Optimum design of amphiphilic polymers bearing hydrophobic groups for both cell surface ligand presentation and intercellular cross-linking. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:353-68. [PMID: 25597323 DOI: 10.1080/09205063.2015.1007414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Amphiphilic polymers bearing hydrophobic alkyl groups are expected to be applicable for both ligand presentation on the cell surface and intercellular crosslinking. To explore the optimum design for each application, we synthesized eight different acyl-modified dextrans with varying molecular weight, alkyl length, and alkyl modification degree. We found that the behenate-modified polymers retained on the cell surface longer than the palmitate-modified ones. Since the polymers were also modified with biotin, streptavidin can be presented on the cell surface through biotin-streptavidin recognition. The duration of streptavidin on the cell surface is longer in the behenate-modified polymer than the palmitate-modified one. As for the intercellular crosslinking, the palmitate-modified polymers were more efficient than the behenate-modified polymers. The findings in this research will be helpful to design the acyl-modified polymers for the cell surface engineering.
Collapse
Affiliation(s)
- Masafumi Takeo
- a Graduate School of System Life Science , Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395 , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Krishnan R, Alexander M, Robles L, Foster CE, Lakey JRT. Islet and stem cell encapsulation for clinical transplantation. Rev Diabet Stud 2014; 11:84-101. [PMID: 25148368 DOI: 10.1900/rds.2014.11.84] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Over the last decade, improvements in islet isolation techniques have made islet transplantation an option for a certain subset of patients with long-standing diabetes. Although islet transplants have shown improved graft function, adequate function beyond the second year has not yet been demonstrated, and patients still require immunosuppression to prevent rejection. Since allogeneic islet transplants have experienced some success, the next step is to improve graft function while eliminating the need for systemic immunosuppressive therapy. Biomaterial encapsulation offers a strategy to avoid the need for toxic immunosuppression while increasing the chances of graft function and survival. Encapsulation entails coating cells or tissue in a semipermeable biocompatible material that allows for the passage of nutrients, oxygen, and hormones while blocking immune cells and regulatory substances from recognizing and destroying the cell, thus avoiding the need for systemic immunosuppressive therapy. Despite advances in encapsulation technology, these developments have not yet been meaningfully translated into clinical islet transplantation, for which several factors are to blame, including graft hypoxia, host inflammatory response, fibrosis, improper choice of biomaterial type, lack of standard guidelines, and post-transplantation device failure. Several new approaches, such as the use of porcine islets, stem cells, development of prevascularized implants, islet nanocoating, and multilayer encapsulation, continue to generate intense scientific interest in this rapidly expanding field. This review provides a comprehensive update on islet and stem cell encapsulation as a treatment modality in type 1 diabetes, including a historical outlook as well as current and future research avenues.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Lourdes Robles
- Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Clarence E Foster
- Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| |
Collapse
|
23
|
Abstract
Disease and injury have resulted in a large, unmet need for functional tissue replacements. Polymeric scaffolds can be used to deliver cells and bioactive signals to address this need for regenerating damaged tissue. Phosphorous-containing polymers have been implemented to improve and accelerate the formation of native tissue both by mimicking the native role of phosphorous groups in the body and by attachment of other bioactive molecules. This manuscript reviews the synthesis, properties, and performance of phosphorous-containing polymers that can be useful in regenerative medicine applications.
Collapse
Affiliation(s)
- Brendan M. Watson
- Department of Bioengineering, Rice University 6500 Main Street, Houston, Texas 77030, USA
| | - F. Kurtis Kasper
- Department of Bioengineering, Rice University 6500 Main Street, Houston, Texas 77030, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University 6500 Main Street, Houston, Texas 77030, USA
| |
Collapse
|
24
|
Ohashi K, Okano T. Functional Tissue Engineering of the Liver and Islets. Anat Rec (Hoboken) 2013; 297:73-82. [DOI: 10.1002/ar.22810] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Kazuo Ohashi
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Shinjyuku-ku Tokyo Japan
- Department of Gastroenterological Surgery; Tokyo Women's Medical University; Shinjyuku-ku Tokyo Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; Shinjyuku-ku Tokyo Japan
| |
Collapse
|
25
|
Personalized nanomedicine advancements for stem cell tracking. Adv Drug Deliv Rev 2012; 64:1488-507. [PMID: 22820528 DOI: 10.1016/j.addr.2012.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022]
Abstract
Recent technological developments in biomedicine have facilitated the generation of data on the anatomical, physiological and molecular level for individual patients and thus introduces opportunity for therapy to be personalized in an unprecedented fashion. Generation of patient-specific stem cells exemplifies the efforts toward this new approach. Cell-based therapy is a highly promising treatment paradigm; however, due to the lack of consistent and unbiased data about the fate of stem cells in vivo, interpretation of therapeutic effects remains challenging hampering the progress in this field. The advent of nanotechnology with a wide palette of inorganic and organic nanostructures has expanded the arsenal of methods for tracking transplanted stem cells. The diversity of nanomaterials has revolutionized personalized nanomedicine and enables individualized tailoring of stem cell labeling materials for the specific needs of each patient. The successful implementation of stem cell tracking will likely be a significant driving force that will contribute to the further development of nanotheranostics. The purpose of this review is to emphasize the role of cell tracking using currently available nanoparticles.
Collapse
|
26
|
Zhi ZL, Kerby A, King AJF, Jones PM, Pickup JC. Nano-scale encapsulation enhances allograft survival and function of islets transplanted in a mouse model of diabetes. Diabetologia 2012; 55:1081-90. [PMID: 22246376 DOI: 10.1007/s00125-011-2431-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 11/30/2011] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS The success of islet transplantation as a treatment for type 1 diabetes is currently hampered by post-transplantation loss of functional islets through adverse immune and non-immune reactions. We aimed to test whether early islet loss can be limited and transplant survival improved by the application of conformal nano-coating layers to islets. METHODS Our novel coating protocol used alternate layers of phosphorylcholine-derived polysaccharides (chitosan or chondroitin-4-sulphate) and alginate as coating materials, with the binding based on electrostatic complexation. The in vitro function of encapsulated mouse islets was studied by analysing islet secretory function and cell viability. The in vivo function was evaluated using syngeneic and allogeneic transplantation in the streptozotocin-induced mouse model of diabetes. RESULTS Nano-scale encapsulated islets retained appropriate islet secretory function in vitro and were less susceptible to complement- and cytokine-induced apoptosis than non-encapsulated control islets. In in vivo experiments using a syngeneic mouse transplantation model, no deleterious responses to the coatings were observed in host animals, and the encapsulated islet grafts were effective in reversing hyperglycaemia. Allo-transplantation of the nano-coated islets resulted in preserved islet function post-implantation in five of seven mice throughout the 1 month monitoring period. CONCLUSIONS/INTERPRETATION Nano-scale encapsulation offers localised immune protection for implanted islets, and may be able to limit early allograft loss and extend survival of transplanted islets. This versatile coating scheme has the potential to be integrated with tolerance induction mechanisms, thereby achieving long-term success in islet transplantation.
Collapse
Affiliation(s)
- Z-L Zhi
- King's College London School of Medicine, London, UK.
| | | | | | | | | |
Collapse
|