1
|
Zimmer O, Goepferich A. On the uncertainty of the correlation between nanoparticle avidity and biodistribution. Eur J Pharm Biopharm 2024; 198:114240. [PMID: 38437906 DOI: 10.1016/j.ejpb.2024.114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
The specific delivery of a drug to its site of action also known as targeted drug delivery is a topic in the field of pharmaceutics studied for decades. One approach extensively investigated in this context is the use ligand functionalized nanoparticles. These particles are modified to carry receptor specific ligands, enabling them to accumulate at a desired target site. However, while this concept initially appears straightforward to implement, in-depth research has revealed several challenges hindering target site specific particle accumulation - some of which remain unresolved to this day. One of these challenges consists in the still incomplete understanding of how nanoparticles interact with biological systems. This knowledge gap significantly compromises the predictability of particle distribution in biological systems, which is critical for therapeutic efficacy. One of the most crucial steps in delivery is the attachment of nanoparticles to cells at the target site. This attachment occurs via the formation of multiple ligand receptor bonds. A process also referred to as multivalent interaction. While multivalency has been described extensively for individual molecules and macromolecules respectively, little is known on the multivalent binding of nanoparticles to cells. Here, we will specifically introduce the concept of avidity as a measure for favorable particle membrane interactions. Also, an overview about nanoparticle and membrane properties affecting avidity will be given. Thereafter, we provide a thorough review on literature investigating the correlation between nanoparticle avidity and success in targeted particle delivery. In particular, we want to analyze the currently uncertain data on the existence and nature of the correlation between particle avidity and biodistribution.
Collapse
Affiliation(s)
- Oliver Zimmer
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany.
| |
Collapse
|
2
|
Dhaliwal A, Ma J, Zheng M, Lyu Q, Rajora MA, Ma S, Oliva L, Ku A, Valic M, Wang B, Zheng G. Deep learning for automatic organ and tumor segmentation in nanomedicine pharmacokinetics. Theranostics 2024; 14:973-987. [PMID: 38250039 PMCID: PMC10797295 DOI: 10.7150/thno.90246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/17/2023] [Indexed: 01/23/2024] Open
Abstract
Rationale: Multimodal imaging provides important pharmacokinetic and dosimetry information during nanomedicine development and optimization. However, accurate quantitation is time-consuming, resource intensive, and requires anatomical expertise. Methods: We present NanoMASK: a 3D U-Net adapted deep learning tool capable of rapid, automatic organ segmentation of multimodal imaging data that can output key clinical dosimetry metrics without manual intervention. This model was trained on 355 manually-contoured PET/CT data volumes of mice injected with a variety of nanomaterials and imaged over 48 hours. Results: NanoMASK produced 3-dimensional contours of the heart, lungs, liver, spleen, kidneys, and tumor with high volumetric accuracy (pan-organ average %DSC of 92.5). Pharmacokinetic metrics including %ID/cc, %ID, and SUVmax achieved correlation coefficients exceeding R = 0.987 and relative mean errors below 0.2%. NanoMASK was applied to novel datasets of lipid nanoparticles and antibody-drug conjugates with a minimal drop in accuracy, illustrating its generalizability to different classes of nanomedicines. Furthermore, 20 additional auto-segmentation models were developed using training data subsets based on image modality, experimental imaging timepoint, and tumor status. These were used to explore the fundamental biases and dependencies of auto-segmentation models built on a 3D U-Net architecture, revealing significant differential impacts on organ segmentation accuracy. Conclusions: NanoMASK is an easy-to-use, adaptable tool for improving accuracy and throughput in imaging-based pharmacokinetic studies of nanomedicine. It has been made publicly available to all readers for automatic segmentation and pharmacokinetic analysis across a diverse array of nanoparticles, expediting agent development.
Collapse
Affiliation(s)
- Alex Dhaliwal
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, M5G 1L7, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, M5G 1L7, Ontario, Canada
| | - Jun Ma
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Ontario, Canada
- Peter Munk Cardiac Centre, University Health Network, 190 Elizabeth St, Toronto, M5G 2C4, Ontario, Canada
- Vector Institute for Artificial Intelligence, 661 University Avenue, Toronto, M4G 1M1, Ontario, Canada
| | - Mark Zheng
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, M5G 1L7, Ontario, Canada
| | - Qing Lyu
- Department of Computer Science, University of Toronto, 101 College Street, Toronto, M5G 1L7, Ontario, Canada
| | - Maneesha A. Rajora
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, M5G 1L7, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, 101 College Street, Toronto, M5G 1L7, Ontario, Canada
| | - Shihao Ma
- Department of Computer Science, University of Toronto, 101 College Street, Toronto, M5G 1L7, Ontario, Canada
- Vector Institute for Artificial Intelligence, 661 University Avenue, Toronto, M4G 1M1, Ontario, Canada
| | - Laura Oliva
- Techna Institute, University Health Network, 190 Elizabeth Street, Toronto, M5G 2C4, Ontario, Canada
| | - Anthony Ku
- Department of Radiology, Stanford University, 1201 Welch Road, Stanford, 94305-5484, California, United States of America
| | - Michael Valic
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, M5G 1L7, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, 101 College Street, Toronto, M5G 1L7, Ontario, Canada
| | - Bo Wang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Ontario, Canada
- Peter Munk Cardiac Centre, University Health Network, 190 Elizabeth St, Toronto, M5G 2C4, Ontario, Canada
- Department of Computer Science, University of Toronto, 101 College Street, Toronto, M5G 1L7, Ontario, Canada
- Vector Institute for Artificial Intelligence, 661 University Avenue, Toronto, M4G 1M1, Ontario, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, M5G 1L7, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, M5G 1L7, Ontario, Canada
- Peter Munk Cardiac Centre, University Health Network, 190 Elizabeth St, Toronto, M5G 2C4, Ontario, Canada
| |
Collapse
|
3
|
Xie Q, Hao Y, Li N, Song H, Chen X, Zhou Z, Wang J, Zhang Y, Li H, Han P, Wang X. Cellular Uptake of Engineered Extracellular Vesicles: Biomechanisms, Engineered Strategies, and Disease Treatment. Adv Healthc Mater 2024; 13:e2302280. [PMID: 37812035 DOI: 10.1002/adhm.202302280] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/17/2023] [Indexed: 10/10/2023]
Abstract
Extracellular vesicles (EVs), lipid-enclosed nanosized membrane vesicles, are regarded as new vehicles and therapeutic agents in intercellular communication. During internal circulation, if EVs are not effectively taken up by recipient cells, they will be cleared as "cellular waste" and unable to deliver therapeutic components. It can be seen that cells uptake EVs are the prerequisite premise for sharing intercellular biological information. However, natural EVs have a low rate of absorption by their recipient cells, off-target delivery, and rapid clearance from circulation, which seriously reduces the utilization rate. Affecting the uptake rate of EVs through engineering technologies is essential for therapeutic applications. Engineering strategies for customizing EV uptake can potentially overcome these limitations and enable desirable therapeutic uses of EVs. In this review, the mechanism and influencing factors of natural EV uptake will be described in detail. Targeting each EV uptake mechanism, the strategies of engineered EVs and their application in diseases will be emphatically discussed. Finally, the future challenges and perspectives of engineered EVs are presented multidimensionally.
Collapse
Affiliation(s)
- Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Na Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Haoyue Song
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiaohang Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Zilan Zhou
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Jia Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Huifei Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Pengcheng Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210000, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| |
Collapse
|
4
|
Deng Z, Gao W, Kohram F, Li E, Kalin TV, Shi D, Kalinichenko VV. Fluorinated amphiphilic Poly(β-Amino ester) nanoparticle for highly efficient and specific delivery of nucleic acids to the Lung capillary endothelium. Bioact Mater 2024; 31:1-17. [PMID: 37593494 PMCID: PMC10432146 DOI: 10.1016/j.bioactmat.2023.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
Endothelial cell dysfunction occurs in a variety of acute and chronic pulmonary diseases including pulmonary hypertension, viral and bacterial pneumonia, bronchopulmonary dysplasia, and congenital lung diseases such as alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). To correct endothelial dysfunction, there is a critical need for the development of nanoparticle systems that can deliver drugs and nucleic acids to endothelial cells with high efficiency and precision. While several nanoparticle delivery systems targeting endothelial cells have been recently developed, none of them are specific to lung endothelial cells without targeting other organs in the body. In the present study, we successfully solved this problem by developing non-toxic poly(β-amino) ester (PBAE) nanoparticles with specific structure design and fluorinated modification for high efficiency and specific delivery of nucleic acids to the pulmonary endothelial cells. After intravenous administration, the PBAE nanoparticles were capable of delivering non-integrating DNA plasmids to lung microvascular endothelial cells but not to other lung cell types. IVIS whole body imaging and flow cytometry demonstrated that DNA plasmid were functional in the lung endothelial cells but not in endothelial cells of other organs. Fluorination of PBAE was required for lung endothelial cell-specific targeting. Hematologic analysis and liver and kidney metabolic panels demonstrated the lack of toxicity in experimental mice. Thus, fluorinated PBAE nanoparticles can be an ideal vehicle for gene therapy targeting lung microvascular endothelium in pulmonary vascular disorders.
Collapse
Affiliation(s)
- Zicheng Deng
- Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Wen Gao
- Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Fatemeh Kohram
- Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Enhong Li
- Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Tanya V. Kalin
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Vladimir V. Kalinichenko
- Phoenix Children's Health Research Institute, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, AZ, 85016, USA
| |
Collapse
|
5
|
Ahmadi M, Emzhik M, Mosayebnia M. Nanoparticles labeled with gamma-emitting radioisotopes: an attractive approach for in vivo tracking using SPECT imaging. Drug Deliv Transl Res 2023; 13:1546-1583. [PMID: 36811810 DOI: 10.1007/s13346-023-01291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/24/2023]
Abstract
Providing accurate molecular imaging of the body and biological process is critical for diagnosing disease and personalizing treatment with the minimum side effects. Recently, diagnostic radiopharmaceuticals have gained more attention in precise molecular imaging due to their high sensitivity and appropriate tissue penetration depth. The fate of these radiopharmaceuticals throughout the body can be traced using nuclear imaging systems, including single-photon emission computed tomography (SPECT) and positron emission tomography (PET) modalities. In this regard, nanoparticles are attractive platforms for delivering radionuclides into targets because they can directly interfere with the cell membranes and subcellular organelles. Moreover, applying radiolabeled nanomaterials can decrease their toxicity concerns because radiopharmaceuticals are usually administrated at low doses. Therefore, incorporating gamma-emitting radionuclides into nanomaterials can provide imaging probes with valuable additional properties compared to the other carriers. Herein, we aim to review (1) the gamma-emitting radionuclides used for labeling different nanomaterials, (2) the approaches and conditions adopted for their radiolabeling, and (3) their application. This study can help researchers to compare different radiolabeling methods in terms of stability and efficiency and choose the best way for each nanosystem.
Collapse
Affiliation(s)
- Mahnaz Ahmadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Emzhik
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Mosayebnia
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Niayesh Junction, Vali-E-Asr Ave, Tehran, 14155-6153, Iran.
| |
Collapse
|
6
|
Bentivoglio V, Varani M, Lauri C, Ranieri D, Signore A. Methods for Radiolabelling Nanoparticles: PET Use (Part 2). Biomolecules 2022; 12:1517. [PMID: 36291726 PMCID: PMC9599877 DOI: 10.3390/biom12101517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 08/27/2023] Open
Abstract
The use of radiolabelled nanoparticles (NPs) is a promising nuclear medicine tool for diagnostic and therapeutic purposes. Thanks to the heterogeneity of their material (organic or inorganic) and their unique physical and chemical characteristics, they are highly versatile for their use in several medical applications. In particular, they have shown interesting results as radiolabelled probes for positron emission tomography (PET) imaging. The high variability of NP types and the possibility to use several isotopes in the radiolabelling process implies different radiolabelling methods that have been applied over the previous years. In this review, we compare and summarize the different methods for NP radiolabelling with the most frequently used PET isotopes.
Collapse
Affiliation(s)
- Valeria Bentivoglio
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Michela Varani
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Chiara Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Danilo Ranieri
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy
| |
Collapse
|
7
|
Aljohani FS, Rezki N, Aouad MR, Hagar M, Bakr BA, Shaaban MM, Elwakil BH. Novel 1,2,3-Triazole-sulphadiazine-ZnO Hybrids as Potent Antimicrobial Agents against Carbapenem Resistant Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11070916. [PMID: 35884170 PMCID: PMC9312158 DOI: 10.3390/antibiotics11070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Bacterial pneumonia is considered one of the most virulent diseases with high morbidity and mortality rates, especially in hospitalized patients. Moreover, bacterial resistance increased over the last decades which limited the therapy options to carbapenem antibiotics. Hence, the metallo-β-lactamase-producing bacteria were deliberated as the most deadly and ferocious infectious agents. Sulphadiazine-ZnO hybrids biological activity was explored in vitro and in vivo against metallo-β-lactamases (MBLs) producing Klebsiella pneumoniae. Docking studies against NDM-1 and IMP-1 MBLs revealed the superior activity of the 3a compound in inhibiting both MBLs enzymes in a valid reliable docking approach. The MBLs inhibition enzyme assay revealed the remarkable sulphadiazine-ZnO hybrids inhibitory effect against NDM-1 and IMP-1 MBLs. The tested compounds inhibited the enzymes both competitively and noncompetitively. Compound 3b-ZnO showed the highest antibacterial activity against the tested metallo-β-lactamase producers with an inhibition zone (IZ) diameter reaching 43 mm and a minimum inhibitory concentration (MIC) reaching 2 µg/mL. Sulphadiazine-ZnO hybrids were tested for their in vitro cytotoxicity in a normal lung cell line (BEAS-2Bs cell line). Higher cell viability was observed with 3b-ZnO. Biodistribution of the sulphadiazine-ZnO hybrids in the lungs of uninfected rats revealed that both [124I]3a-ZnO and [124I]3b-ZnO hybrids remained detectable within the rats’ lungs after 24 h of endotracheal aerosolization. Moreover, the residence duration in the lungs of [124I]3b-ZnO (t1/2 4.91 h) was 85.3%. The histopathological investigations confirmed that compound 3b-ZnO has significant activity in controlling bacterial pneumonia infection in rats.
Collapse
Affiliation(s)
- Faizah S. Aljohani
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (N.R.); (M.R.A.)
- Correspondence: (F.S.A.); (B.H.E.)
| | - Nadjet Rezki
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (N.R.); (M.R.A.)
| | - Mohamed R. Aouad
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (N.R.); (M.R.A.)
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt;
| | - Basant A. Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt;
| | - Marwa M. Shaaban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt;
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21311, Egypt
- Correspondence: (F.S.A.); (B.H.E.)
| |
Collapse
|
8
|
Milošević N, Rütter M, David A. Endothelial Cell Adhesion Molecules- (un)Attainable Targets for Nanomedicines. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:846065. [PMID: 35463298 PMCID: PMC9021548 DOI: 10.3389/fmedt.2022.846065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/15/2022] [Indexed: 01/21/2023] Open
Abstract
Endothelial cell adhesion molecules have long been proposed as promising targets in many pathologies. Despite promising preclinical data, several efforts to develop small molecule inhibitors or monoclonal antibodies (mAbs) against cell adhesion molecules (CAMs) ended in clinical-stage failure. In parallel, many well-validated approaches for targeting CAMs with nanomedicine (NM) were reported over the years. A wide range of potential applications has been demonstrated in various preclinical studies, from drug delivery to the tumor vasculature, imaging of the inflamed endothelium, or blocking immune cells infiltration. However, no NM drug candidate emerged further into clinical development. In this review, we will summarize the most advanced examples of CAM-targeted NMs and juxtapose them with known traditional drugs against CAMs, in an attempt to identify important translational hurdles. Most importantly, we will summarize the proposed strategies to enhance endothelial CAM targeting by NMs, in an attempt to offer a catalog of tools for further development.
Collapse
|
9
|
Khursheed R, Paudel KR, Gulati M, Vishwas S, Jha NK, Hansbro PM, Oliver BG, Dua K, Singh SK. Expanding the arsenal against pulmonary diseases using surface-functionalized polymeric micelles: breakthroughs and bottlenecks. Nanomedicine (Lond) 2022; 17:881-911. [PMID: 35332783 DOI: 10.2217/nnm-2021-0451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pulmonary diseases such as lung cancer, asthma and tuberculosis have remained one of the common challenges globally. Polymeric micelles (PMs) have emerged as an effective technique for achieving targeted drug delivery for a local as well as a systemic effect. These PMs encapsulate and protect hydrophobic drugs, increase pulmonary targeting, decrease side effects and enhance drug efficacy through the inhalation route. In the current review, emphasis has been placed on the different barriers encountered by the drugs given via the pulmonary route and the mechanism of PMs in achieving drug targeting. The applications of PMs in different pulmonary diseases have also been discussed in detail.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Keshav R Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III Greater Noida, Uttar Pradesh, 201310, India
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, 2007, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
10
|
Wu S, Helal-Neto E, Matos APDS, Jafari A, Kozempel J, Silva YJDA, Serrano-Larrea C, Alves Junior S, Ricci-Junior E, Alexis F, Santos-Oliveira R. Radioactive polymeric nanoparticles for biomedical application. Drug Deliv 2021; 27:1544-1561. [PMID: 33118416 PMCID: PMC7599028 DOI: 10.1080/10717544.2020.1837296] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nowadays, emerging radiolabeled nanosystems are revolutionizing medicine in terms of diagnostics, treatment, and theranostics. These radionuclides include polymeric nanoparticles (NPs), liposomal carriers, dendrimers, magnetic iron oxide NPs, silica NPs, carbon nanotubes, and inorganic metal-based nanoformulations. Between these nano-platforms, polymeric NPs have gained attention in the biomedical field due to their excellent properties, such as their surface to mass ratio, quantum properties, biodegradability, low toxicity, and ability to absorb and carry other molecules. In addition, NPs are capable of carrying high payloads of radionuclides which can be used for diagnostic, treatment, and theranostics depending on the radioactive material linked. The radiolabeling process of nanoparticles can be performed by direct or indirect labeling process. In both cases, the most appropriate must be selected in order to keep the targeting properties as preserved as possible. In addition, radionuclide therapy has the advantage of delivering a highly concentrated absorbed dose to the targeted tissue while sparing the surrounding healthy tissues. Said another way, radioactive polymeric NPs represent a promising prospect in the treatment and diagnostics of cardiovascular diseases such as cardiac ischemia, infectious diseases such as tuberculosis, and other type of cancer cells or tumors.
Collapse
Affiliation(s)
- Shentian Wu
- Department of Radiotherapy Center, Maoming People's Hospital, Maoming City, China
| | - Edward Helal-Neto
- Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro, Brazil
| | | | - Amir Jafari
- Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro, Brazil.,Department of Medical Nanotechnology in the Faculty of Advanced Technology in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ján Kozempel
- Faculty of Nuclear Sciences and Physical Engineering (FJFI), Czech Technical University in Prague (ČVUT), Prague, Czech Republic
| | | | | | - Severino Alves Junior
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, Brazil
| | - Eduardo Ricci-Junior
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| | - Ralph Santos-Oliveira
- Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro, Brazil.,Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Liu Z, Liang G, Zhan W. In situ Activatable Peptide-based Nanoprobes for Tumor Imaging. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Ferris T, Carroll L, Jenner S, Aboagye EO. Use of radioiodine in nuclear medicine-A brief overview. J Labelled Comp Radiopharm 2021; 64:92-108. [PMID: 33091159 DOI: 10.1002/jlcr.3891] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/06/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
Radioiodines have a long history in nuclear medicine. Herein, we discuss the production, properties and applications of these versatile iodine-based imaging and theragnostic agents. There are 38 isotopes of iodine (I) including one stable form (127 I). The most common radionuclides used in medical imaging and treatment, including Iodine-123 (123 I), Iodine-124 (124 I), Iodine-125 (125 I) and Iodine-131 (131 I), are discussed in this review.
Collapse
Affiliation(s)
- Trevor Ferris
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, London, UK
| | - Laurence Carroll
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery and Cancer, Imperial College, Hammersmith Campus, London, UK
| |
Collapse
|
13
|
Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021; 50:3355-3423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials offer unique physical, chemical and biological properties of interest for medical imaging and therapy. Over the last two decades, there has been an increasing effort to translate nanomaterial-based medicinal products (so-called nanomedicines) into clinical practice and, although multiple nanoparticle-based formulations are clinically available, there is still a disparity between the number of pre-clinical products and those that reach clinical approval. To facilitate the efficient clinical translation of nanomedicinal-drugs, it is important to study their whole-body biodistribution and pharmacokinetics from the early stages of their development. Integrating this knowledge with that of their therapeutic profile and/or toxicity should provide a powerful combination to efficiently inform nanomedicine trials and allow early selection of the most promising candidates. In this context, radiolabelling nanomaterials allows whole-body and non-invasive in vivo tracking by the sensitive clinical imaging techniques positron emission tomography (PET), and single photon emission computed tomography (SPECT). Furthermore, certain radionuclides with specific nuclear emissions can elicit therapeutic effects by themselves, leading to radionuclide-based therapy. To ensure robust information during the development of nanomaterials for PET/SPECT imaging and/or radionuclide therapy, selection of the most appropriate radiolabelling method and knowledge of its limitations are critical. Different radiolabelling strategies are available depending on the type of material, the radionuclide and/or the final application. In this review we describe the different radiolabelling strategies currently available, with a critical vision over their advantages and disadvantages. The final aim is to review the most relevant and up-to-date knowledge available in this field, and support the efficient clinical translation of future nanomedicinal products for in vivo imaging and/or therapy.
Collapse
Affiliation(s)
- Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| | | | | |
Collapse
|
14
|
Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021; 92:241-269. [PMID: 32900582 DOI: 10.1016/j.nucmedbio.2020.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Positron-emission-tomography (PET) has become an indispensable diagnostic tool in modern nuclear medicine. Its outstanding molecular imaging features allow repetitive studies on one individual and with high sensitivity, though no interference. Rather few positron-emitters with near favourable physical properties, i.e. carbon-11 and fluorine-18, furnished most studies in the beginning, preferably if covalently bound as isotopic label of small molecules. With the advancement of PET-devices the scope of in vivo research in life sciences and especially that of medical applications expanded, and other than "standard" PET-nuclides received increasing significance, like the radiometals copper-64 and gallium-68. Especially during the last decades, positron-emitters of other chemical elements have gotten into the focus of interest, concomitant with the technical advancements in imaging and radionuclide production. With known nuclear imaging properties and main production methods of emerging positron-emitters their usefulness for medical application is promising and even proven for several ones already. Unfortunate decay properties could be corrected for, and β+-emitters, especially with a longer half-life, provided new possibilities for application where slower processes are of importance. Further on, (bio)chemical features of positron-emitters of other elements, among there many metals, not only expanded the field of classical clinical investigations, but also opened up new fields of application. Appropriately labelled peptides, proteins and nanoparticles lend itself as newer probes for PET-imaging, e.g. in theragnostic or PET/MR hybrid imaging. Furthermore, the potential of non-destructive in-vivo imaging with positron-emission-tomography directs the view on further areas of life sciences. Thus, exploiting the excellent methodology for basic research on molecular biochemical functions and processes is increasingly encouraged as well in areas outside of health, such as plant and environmental sciences.
Collapse
Affiliation(s)
- Heinz H Coenen
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
15
|
Ju Y, Guo H, Edman M, Hamm-Alvarez SF. Application of advances in endocytosis and membrane trafficking to drug delivery. Adv Drug Deliv Rev 2020; 157:118-141. [PMID: 32758615 PMCID: PMC7853512 DOI: 10.1016/j.addr.2020.07.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Multidisciplinary research efforts in the field of drug delivery have led to the development of a variety of drug delivery systems (DDS) designed for site-specific delivery of diagnostic and therapeutic agents. Since efficient uptake of drug carriers into target cells is central to effective drug delivery, a comprehensive understanding of the biological pathways for cellular internalization of DDS can facilitate the development of DDS capable of precise tissue targeting and enhanced therapeutic outcomes. Diverse methods have been applied to study the internalization mechanisms responsible for endocytotic uptake of extracellular materials, which are also the principal pathways exploited by many DDS. Chemical inhibitors remain the most commonly used method to explore endocytotic internalization mechanisms, although genetic methods are increasingly accessible and may constitute more specific approaches. This review highlights the molecular basis of internalization pathways most relevant to internalization of DDS, and the principal methods used to study each route. This review also showcases examples of DDS that are internalized by each route, and reviews the general effects of biophysical properties of DDS on the internalization efficiency. Finally, options for intracellular trafficking and targeting of internalized DDS are briefly reviewed, representing an additional opportunity for multi-level targeting to achieve further specificity and therapeutic efficacy.
Collapse
Affiliation(s)
- Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Maria Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA.
| |
Collapse
|
16
|
Hu B, Boakye‐Yiadom KO, Yu W, Yuan Z, Ho W, Xu X, Zhang X. Nanomedicine Approaches for Advanced Diagnosis and Treatment of Atherosclerosis and Related Ischemic Diseases. Adv Healthc Mater 2020; 9:e2000336. [PMID: 32597562 DOI: 10.1002/adhm.202000336] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) remain one of the major causes of mortality worldwide. In response to this and other worldwide health epidemics, nanomedicine has emerged as a rapidly evolving discipline that involves the development of innovative nanomaterials and nanotechnologies and their applications in therapy and diagnosis. Nanomedicine presents unique advantages over conventional medicines due to the superior properties intrinsic to nanoscopic therapies. Once used mainly for cancer therapies, recently, tremendous progress has been made in nanomedicine that has led to an overall improvement in the treatment and diagnosis of CVDs. This review elucidates the pathophysiology and potential targets of atherosclerosis and associated ischemic diseases. It may be fruitful to pursue future work in the nanomedicine-mediated treatment of CVDs based on these targets. A comprehensive overview is then provided featuring the latest preclinical and clinical outcomes in cardiovascular imaging, biomarker detection, tissue engineering, and nanoscale delivery, with specific emphasis on nanoparticles, nanostructured scaffolds, and nanosensors. Finally, the challenges and opportunities regarding the future development and clinical translation of nanomedicine in related fields are discussed. Overall, this review aims to provide a deep and thorough understanding of the design, application, and future development of nanomedicine for atherosclerosis and related ischemic diseases.
Collapse
Affiliation(s)
- Bin Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Kofi Oti Boakye‐Yiadom
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Wei Yu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zi‐Wei Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - William Ho
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xiaoyang Xu
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
17
|
Glassman PM, Myerson JW, Ferguson LT, Kiseleva RY, Shuvaev VV, Brenner JS, Muzykantov VR. Targeting drug delivery in the vascular system: Focus on endothelium. Adv Drug Deliv Rev 2020; 157:96-117. [PMID: 32579890 PMCID: PMC7306214 DOI: 10.1016/j.addr.2020.06.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
Abstract
The bloodstream is the main transporting pathway for drug delivery systems (DDS) from the site of administration to the intended site of action. In many cases, components of the vascular system represent therapeutic targets. Endothelial cells, which line the luminal surface of the vasculature, play a tripartite role of the key target, barrier, or victim of nanomedicines in the bloodstream. Circulating DDS may accumulate in the vascular areas of interest and in off-target areas via mechanisms bypassing specific molecular recognition, but using ligands of specific vascular determinant molecules enables a degree of precision, efficacy, and specificity of delivery unattainable by non-affinity DDS. Three decades of research efforts have focused on specific vascular targeting, which have yielded a multitude of DDS, many of which are currently undergoing a translational phase of development for biomedical applications, including interventions in the cardiovascular, pulmonary, and central nervous systems, regulation of endothelial functions, host defense, and permeation of vascular barriers. We discuss the design of endothelial-targeted nanocarriers, factors underlying their interactions with cells and tissues, and describe examples of their investigational use in models of acute vascular inflammation with an eye on translational challenges.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| | - Jacob W Myerson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Laura T Ferguson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Raisa Y Kiseleva
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
18
|
Datta P, Ray S. Nanoparticulate formulations of radiopharmaceuticals: Strategy to improve targeting and biodistribution properties. J Labelled Comp Radiopharm 2020; 63:333-355. [PMID: 32220029 DOI: 10.1002/jlcr.3839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023]
Abstract
Application of nanotechnology principles in drug delivery has created opportunities for treatment of several diseases. Nanotechnology offers the advantage of overcoming the adverse biopharmaceutics or pharmacokinetic properties of drug molecules, to be determined by the transport properties of the particles themselves. Through the manipulation of size, shape, charge, and type of nanoparticle delivery system, variety of distribution profiles may be obtained. However, there still exists greater need to derive and standardize definitive structure property relationships for the distribution profiles of the delivery system. When applied to radiopharmaceuticals, the delivery systems assume greater significance. For the safety and efficacy of both diagnostics and therapeutic radiopharmaceuticals, selective localization in target tissue is even more important. At the same time, the synthesis and fabrication reactions of radiolabelled nanoparticles need to be completed in much shorter time. Moreover, the extensive understanding of the several interesting optical and magnetic properties of materials in nanoscale provides for achieving multiple objectives in nuclear medicine. This review discusses the various nanoparticle systems, which are applied for radionuclides and analyses the important bottlenecks that are required to be overcome for their more widespread clinical adaptation.
Collapse
Affiliation(s)
- Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, India
| | | |
Collapse
|
19
|
Pérez-Medina C, Teunissen AJ, Kluza E, Mulder WJ, van der Meel R. Nuclear imaging approaches facilitating nanomedicine translation. Adv Drug Deliv Rev 2020; 154-155:123-141. [PMID: 32721459 DOI: 10.1016/j.addr.2020.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Nanomedicine approaches can effectively modulate the biodistribution and bioavailability of therapeutic agents, improving their therapeutic index. However, despite the ever-increasing amount of literature reporting on preclinical nanomedicine, the number of nanotherapeutics receiving FDA approval remains relatively low. Several barriers exist that hamper the effective preclinical evaluation and clinical translation of nanotherapeutics. Key barriers include insufficient understanding of nanomedicines' in vivo behavior, inadequate translation from murine models to larger animals, and a lack of patient stratification strategies. Integrating quantitative non-invasive imaging techniques in nanomedicine development offers attractive possibilities to address these issues. Among the available imaging techniques, nuclear imaging by positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are highly attractive in this context owing to their quantitative nature and uncontested sensitivity. In basic and translational research, nuclear imaging techniques can provide critical quantitative information about pharmacokinetic parameters, biodistribution profiles or target site accumulation of nanocarriers and their associated payload. During clinical evaluation, nuclear imaging can be used to select patients amenable to nanomedicine treatment. Here, we review how nuclear imaging-based approaches are increasingly being integrated into nanomedicine development and discuss future developments that will accelerate their clinical translation.
Collapse
|
20
|
Myerson JW, McPherson O, DeFrates KG, Towslee JH, Marcos-Contreras OA, Shuvaev VV, Braender B, Composto RJ, Muzykantov VR, Eckmann DM. Cross-linker-Modulated Nanogel Flexibility Correlates with Tunable Targeting to a Sterically Impeded Endothelial Marker. ACS NANO 2019; 13:11409-11421. [PMID: 31600053 PMCID: PMC7393972 DOI: 10.1021/acsnano.9b04789] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Deformability of injectable nanocarriers impacts rheological behavior, drug loading, and affinity target adhesion. Here, we present atomic force microscopy (AFM) and spectroscopy measurements of nanocarrier Young's moduli, tune the moduli of deformable nanocarriers with cross-linkers, and demonstrate vascular targeting behavior that correlates with Young's modulus. Homobifunctional cross-linkers were introduced into lysozyme-dextran nanogels (NGs). Single particle-scale AFM measurements determined NG moduli varying from ∼50-150 kPa for unmodified NGs or NGs with a short hydrophilic cross-linker (2,2'-(ethylenedioxy)bis(ethylamine), EOD) to ∼350 kPa for NGs modified with a longer hydrophilic cross-linker (4,9-dioxa-1,12-dodecanediamine, DODD) to ∼10 MPa for NGs modified with a longer hydrophobic cross-linker (1,12-diaminododecane, DAD). Cross-linked NGs were conjugated to antibodies for plasmalemma vesicle associated protein (PLVAP), a caveolar endothelial marker that cannot be accessed by rigid particles larger than ∼100 nm. In previous work, 150 nm NGs effectively targeted PLVAP, where rigid particles of similar diameter did not. EOD-modified NGs targeted PLVAP less effectively than unmodified NGs, but more effectively than DODD or DAD modified NGs, which both yielded low levels of targeting, resembling results previously obtained with polystyrene particles. Cross-linked NGs were also conjugated to antibodies against intracellular adhesion molecule-1 (ICAM-1), an endothelial marker accessible to large rigid particles. Cross-linked NGs and unmodified NGs targeted uniformly to ICAM-1. We thus demonstrate cross-linker modification of NGs, AFM determination of NG mechanical properties varying with cross-linker, and tuning of specific sterically constrained vascular targeting behavior in correlation with cross-linker-modified NG mechanical properties.
Collapse
Affiliation(s)
- Jacob Wheatley Myerson
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Olivia McPherson
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kelsey G. DeFrates
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jenna H. Towslee
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Oscar A. Marcos-Contreras
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vladimir V. Shuvaev
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bruce Braender
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Russell J. Composto
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vladimir R. Muzykantov
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Corresponding Author:
| | - David M. Eckmann
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
21
|
Ge J, Zhang Q, Zeng J, Gu Z, Gao M. Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis. Biomaterials 2019; 228:119553. [PMID: 31689672 DOI: 10.1016/j.biomaterials.2019.119553] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
Abstract
Nuclear medicine imaging has been developed as a powerful diagnostic approach for cancers by detecting gamma rays directly or indirectly from radionuclides to construct images with beneficial characteristics of high sensitivity, infinite penetration depth and quantitative capability. Current nuclear medicine imaging modalities mainly include single-photon emission computed tomography (SPECT) and positron emission tomography (PET) that require administration of radioactive tracers. In recent years, a vast number of radioactive tracers have been designed and constructed to improve nuclear medicine imaging performance toward early and accurate diagnosis of cancers. This review will discuss recent progress of nuclear medicine imaging tracers and associated biomedical imaging applications. Radiolabeling nanomaterials for rational development of tracers will be comprehensively reviewed with highlights on radiolabeling approaches (surface coupling, inner incorporation and interface engineering), providing profound understanding on radiolabeling chemistry and the associated imaging functionalities. The applications of radiolabeled nanomaterials in nuclear medicine imaging-related multimodality imaging will also be summarized with typical paradigms described. Finally, key challenges and new directions for future research will be discussed to guide further advancement and practical use of radiolabeled nanomaterials for imaging of cancers.
Collapse
Affiliation(s)
- Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Qianyi Zhang
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China; Institute of Chemistry, Chinese Academy of Sciences/School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
22
|
Glassman PM, Muzykantov VR. Pharmacokinetic and Pharmacodynamic Properties of Drug Delivery Systems. J Pharmacol Exp Ther 2019; 370:570-580. [PMID: 30837281 PMCID: PMC6806371 DOI: 10.1124/jpet.119.257113] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022] Open
Abstract
The use of drug delivery systems (DDS) is an attractive approach to facilitate uptake of therapeutic agents at the desired site of action, particularly when free drug has poor pharmacokinetics/biodistribution (PK/BD) or significant off-site toxicities. Successful translation of DDS into the clinic is dependent on a thorough understanding of the in vivo behavior of the carrier, which has, for the most part, been an elusive goal. This is, at least in part, due to significant differences in the mechanisms controlling pharmacokinetics for classic drugs and DDSs. In this review, we summarize the key physiologic mechanisms controlling the in vivo behavior of DDS, compare and contrast this with classic drugs, and describe engineering strategies designed to improve DDS PK/BD. In addition, we describe quantitative approaches that could be useful for describing PK/BD of DDS, as well as critical steps between tissue uptake and pharmacologic effect.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Gu X, Wei Y, Fan Q, Sun H, Cheng R, Zhong Z, Deng C. cRGD-decorated biodegradable polytyrosine nanoparticles for robust encapsulation and targeted delivery of doxorubicin to colorectal cancer in vivo. J Control Release 2019; 301:110-118. [PMID: 30898610 DOI: 10.1016/j.jconrel.2019.03.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
The clinical success of nanomedicines demands on the development of simple biodegradable nanocarriers that can efficiently and stably encapsulate chemotherapeutics while quickly release the payloads into target cancer cells. Herein, we report that cRGD-decorated biodegradable polytyrosine nanoparticles (cRGD-PTN) boost encapsulation and targeted delivery of doxorubicin (DOX) to colorectal cancer in vivo. The co-assembly of poly(ethylene glycol)-poly(L-tyrosine) (PEG-PTyr) and cRGD-functionalized PEG-PTyr (mol/mol, 80/20) yielded small-sized cRGD-PTN of 70 nm. Interestingly, cRGD-PTN exhibited an ultra-high DOX encapsulation with drug loading contents ranging from 18.5 to 54.1 wt%. DOX-loaded cRGD-PTN (cRGD-PTN-DOX) was highly stable against dilution, serum, and Triton X-100 surfactant, while quickly released DOX in HCT-116 cancer cells, likely resulting from enzymatic degradation of PTyr. Flow cytometry, confocal microscopy and MTT assays displayed that cRGD-PTN-DOX was efficiently internalized into αvβ5 overexpressing HCT-116 colorectal cancer cells, rapidly released DOX into the nuclei, and induced several folds better antitumor activity than non-targeted PTN-DOX and clinically used liposomal DOX (Lipo-DOX). SPECT/CT imaging revealed strong tumor accumulation of 125I-labeled cRGD-PTN, which was 2.8-fold higher than 125I-labeled PTN. Notably, cRGD-PTN-DOX exhibited over 5 times better toleration than Lipo-DOX and significantly more effective inhibition of HCT-116 colorectal tumor than non-targeted PTN-DOX control, affording markedly improved survival rate in HCT-116 tumor-bearing mice with depleting side effects at 6 or 12 mg DOX equiv./kg. cRGD-PTN-DOX with great simplicity, robust drug encapsulation and efficient nucleic drug release appears promising for targeted chemotherapy of colorectal tumor.
Collapse
Affiliation(s)
- Xiaolei Gu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yaohua Wei
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Qianyi Fan
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Ru Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| |
Collapse
|
24
|
Targeted drug delivery via caveolae-associated protein PV1 improves lung fibrosis. Commun Biol 2019; 2:92. [PMID: 30854484 PMCID: PMC6405929 DOI: 10.1038/s42003-019-0337-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 02/05/2019] [Indexed: 01/14/2023] Open
Abstract
Systemic administration of bio-therapeutics can result in only a fraction of drug reaching targeted tissues, with the majority of drug being distributed to tissues irrelevant to the drug's site of action. Targeted delivery to specific organs may allow for greater accumulation, better efficacy, and improved safety. We investigated how targeting plasmalemma vesicle-associated protein (PV1), a protein found in the endothelial caveolae of lungs and kidneys, can promote accumulation in these organs. Using ex vivo fluorescence imaging, we show that intravenously administered αPV1 antibodies localize to mouse lungs and kidneys. In a bleomycin-induced idiopathic pulmonary fibrosis (IPF) mouse model, αPV1 conjugated to Prostaglandin E2 (PGE2), a known anti-fibrotic agent, significantly reduced collagen content and fibrosis whereas a non-targeted PGE2 antibody conjugate failed to slow fibrosis progression. Our results demonstrate that PV1 targeting can be utilized to deliver therapeutics to lungs and this approach is potentially applicable for various lung diseases.
Collapse
|
25
|
Wang X, Sheng J, Yang M. Melanin-based nanoparticles in biomedical applications: From molecular imaging to treatment of diseases. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Han X, Xu K, Taratula O, Farsad K. Applications of nanoparticles in biomedical imaging. NANOSCALE 2019; 11:799-819. [PMID: 30603750 PMCID: PMC8112886 DOI: 10.1039/c8nr07769j] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An urgent need for early detection and diagnosis of diseases continuously pushes the advancements of imaging modalities and contrast agents. Current challenges remain for fast and detailed imaging of tissue microstructures and lesion characterization that could be achieved via development of nontoxic contrast agents with longer circulation time. Nanoparticle technology offers this possibility. Here, we review nanoparticle-based contrast agents employed in most common biomedical imaging modalities, including fluorescence imaging, MRI, CT, US, PET and SPECT, addressing their structure related features, advantages and limitations. Furthermore, their applications in each imaging modality are also reviewed using commonly studied examples. Future research will investigate multifunctional nanoplatforms to address safety, efficacy and theranostic capabilities. Nanoparticles as imaging contrast agents have promise to greatly benefit clinical practice.
Collapse
Affiliation(s)
- Xiangjun Han
- Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning, 110001 P. R. China.
| | | | | | | |
Collapse
|
27
|
Shuvaev VV, Khoshnejad M, Pulsipher KW, Kiseleva RY, Arguiri E, Cheung-Lau JC, LeFort KM, Christofidou-Solomidou M, Stan RV, Dmochowski IJ, Muzykantov VR. Spatially controlled assembly of affinity ligand and enzyme cargo enables targeting ferritin nanocarriers to caveolae. Biomaterials 2018; 185:348-359. [PMID: 30273834 PMCID: PMC6487198 DOI: 10.1016/j.biomaterials.2018.09.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
One of the goals of nanomedicine is targeted delivery of therapeutic enzymes to the sub-cellular compartments where their action is needed. Endothelial caveolae-derived endosomes represent an important yet challenging destination for targeting, in part due to smaller size of the entry aperture of caveolae (ca. 30-50 nm). Here, we designed modular, multi-molecular, ferritin-based nanocarriers with uniform size (20 nm diameter) for easy drug-loading and targeted delivery of enzymatic cargo to these specific vesicles. These nanocarriers targeted to caveolar Plasmalemmal Vesicle-Associated Protein (Plvap) deliver superoxide dismutase (SOD) into endosomes in endothelial cells, the specific site of influx of superoxide mediating by such pro-inflammatory signaling as some cytokines and lipopolysaccharide (LPS). Cell studies showed efficient internalization of Plvap-targeted SOD-loaded nanocarriers followed by dissociation from caveolin-containing vesicles and intracellular transport to endosomes. The nanocarriers had a profound protective anti-inflammatory effect in an animal model of LPS-induced inflammation, in agreement with the characteristics of their endothelial uptake and intracellular transport, indicating that these novel, targeted nanocarriers provide an advantageous platform for caveolae-dependent delivery of biotherapeutics.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Makan Khoshnejad
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Katherine W Pulsipher
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Raisa Yu Kiseleva
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Evguenia Arguiri
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Jasmina C Cheung-Lau
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Kathleen M LeFort
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Melpo Christofidou-Solomidou
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Radu V Stan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Vladimir R Muzykantov
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
28
|
Farzin L, Sheibani S, Moassesi ME, Shamsipur M. An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions. J Biomed Mater Res A 2018; 107:251-285. [PMID: 30358098 DOI: 10.1002/jbm.a.36550] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/08/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023]
Abstract
Recent advances in the field of nanotechnology applications in nuclear medicine offer the promise of better diagnostic and therapeutic options. In recent years, increasing efforts have been focused on developing nanoconstructs that can be used as core platforms for attaching medical radionuclides with different strategies for the purposes of molecular imaging and targeted drug delivery. This review article presents an introduction to some commonly used nanomaterials with zero-dimensional, one-dimensional, two-dimensional, and three-dimensional structures, describes the various methods applied to radiolabeling of nanomaterials, and provides illustrative examples of application of the nanoscale radionuclides or radiolabeled nanocarriers in nuclear nanomedicine. Especially, the passive and active nanotargeting delivery of radionuclides with illustrating examples for tumor imaging and therapy was reviewed and summarized. The accurate and early diagnosis of cancer can lead to increased survival rates for different types of this disease. Although, the conventional single-modality diagnostic methods such as positron emission tomography/single photon emission computed tomography or MRI used for such purposes are powerful means; most of these are limited by sensitivity or resolution. By integrating complementary signal reporters into a single nanoparticulate contrast agent, multimodal molecular imaging can be performed as scalable images with high sensitivity, resolution, and specificity. The advent of radiolabeled nanocarriers or radioisotope-loaded nanomaterials with magnetic, plasmonic, or fluorescent properties has stimulated growing interest in the developing multimodality imaging probes. These new developments in nuclear nanomedicine are expected to introduce a paradigm shift in multimodal molecular imaging and thereby opening up an era of new diagnostic medical imaging agents. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 251-285, 2019.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mohammad Esmaeil Moassesi
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | | |
Collapse
|
29
|
Gu X, Qiu M, Sun H, Zhang J, Cheng L, Deng C, Zhong Z. Polytyrosine nanoparticles enable ultra-high loading of doxorubicin and rapid enzyme-responsive drug release. Biomater Sci 2018; 6:1526-1534. [PMID: 29666858 DOI: 10.1039/c8bm00243f] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite the great significance of clinically viable nanovehicles, very few of them exhibit stability and high anticancer drug loading with fast intracellular drug release. Herein, we report that polytyrosine nanoparticles (PTNs) self-assembled from poly(ethylene glycol)-b-poly(l-tyrosine) block copolymer enable the ultra-high loading and rapid enzyme-responsive release of doxorubicin (DOX). Notably, PTNs achieve a remarkably high DOX loading of 63.1 wt% likely due to the existence of strong π-π stacking between polytyrosine and DOX, as shown by UV-vis analysis. Additionally, PTNs present a high docetaxel loading of 17.5 wt%. Furthermore, PTNs exhibit good colloidal stability in 10% FBS, but are quickly de-stabilized by proteinase K. Interestingly, ca. 90% of DOX is released under 6 U mL-1 proteinase K in 24 h or in RAW 264.7 cells in 8 h. The DOX-loaded PTNs display efficient delivery and release of DOX in both RAW 264.7 cells and HCT-116 human colorectal cancer cells, achieving a better in vitro antiproliferative effect than the clinically used liposomal DOX formulation. Thus, these polytyrosine nanoparticles appear to be a potentially viable platform for the controlled delivery of anthraquinone anticancer agents.
Collapse
Affiliation(s)
- Xiaolei Gu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Myerson JW, Braender B, Mcpherson O, Glassman PM, Kiseleva RY, Shuvaev VV, Marcos-Contreras O, Grady ME, Lee HS, Greineder CF, Stan RV, Composto RJ, Eckmann DM, Muzykantov VR. Flexible Nanoparticles Reach Sterically Obscured Endothelial Targets Inaccessible to Rigid Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802373. [PMID: 29956381 PMCID: PMC6385877 DOI: 10.1002/adma.201802373] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/19/2018] [Indexed: 05/14/2023]
Abstract
Molecular targeting of nanoparticle drug carriers promises maximized therapeutic impact to sites of disease or injury with minimized systemic effects. Precise targeting demands addressing to subcellular features. Caveolae, invaginations in cell membranes implicated in transcytosis and inflammatory signaling, are appealing subcellular targets. Caveolar geometry has been reported to impose a ≈50 nm size cutoff on nanocarrier access to plasmalemma vesicle associated protein (PLVAP), a marker found in caveolae in the lungs. The use of deformable nanocarriers to overcome that size cutoff is explored in this study. Lysozyme-dextran nanogels (NGs) are synthesized with ≈150 or ≈300 nm mean diameter. Atomic force microscopy indicates the NGs deform on complementary surfaces. Quartz crystal microbalance data indicate that NGs form softer monolayers (≈60 kPa) than polystyrene particles (≈8 MPa). NGs deform during flow through microfluidic channels, and modeling of NG extrusion through porous filters yields sieving diameters less than 25 nm for NGs with 150 and 300 nm hydrodynamic diameters. NGs of 150 and 300 nm diameter target PLVAP in mouse lungs while counterpart rigid polystyrene particles do not. The data in this study indicate a role for mechanical deformability in targeting large high-payload drug-delivery vehicles to sterically obscured targets like PLVAP.
Collapse
Affiliation(s)
- Jacob W Myerson
- Department of Systems Pharmacology and Translational Therapeutics and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bruce Braender
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Olivia Mcpherson
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Raisa Y Kiseleva
- Department of Systems Pharmacology and Translational Therapeutics and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Oscar Marcos-Contreras
- Department of Systems Pharmacology and Translational Therapeutics and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martha E Grady
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyun-Su Lee
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Colin F Greineder
- Department of Systems Pharmacology and Translational Therapeutics and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Radu V Stan
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, 03756, USA
| | - Russell J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David M Eckmann
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
31
|
Stéen EJL, Edem PE, Nørregaard K, Jørgensen JT, Shalgunov V, Kjaer A, Herth MM. Pretargeting in nuclear imaging and radionuclide therapy: Improving efficacy of theranostics and nanomedicines. Biomaterials 2018; 179:209-245. [PMID: 30007471 DOI: 10.1016/j.biomaterials.2018.06.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
Pretargeted nuclear imaging and radiotherapy have recently attracted increasing attention for diagnosis and treatment of cancer with nanomedicines. This is because it conceptually offers better imaging contrast and therapeutic efficiency while reducing the dose to radiosensitive tissues compared to conventional strategies. In conventional imaging and radiotherapy, a directly radiolabeled nano-sized vector is administered and allowed to accumulate in the tumor, typically on a timescale of several days. In contrast, pretargeting is based on a two-step approach. First, a tumor-accumulating vector carrying a tag is administered followed by injection of a fast clearing radiolabeled agent that rapidly recognizes the tag of the tumor-bound vector in vivo. Therefore, pretargeting circumvents the use of long-lived radionuclides that is a necessity for sufficient tumor accumulation and target-to-background ratios using conventional approaches. In this review, we give an overview of recent advances in pretargeted imaging strategies. We will critically reflect on the advantages and disadvantages of current state-of-the-art conventional imaging approaches and compare them to pretargeted strategies. We will discuss the pretargeted imaging concept and the involved chemistry. Finally, we will discuss the steps forward in respect to clinical translation, and how pretargeted strategies could be applied to improve state-of-the-art radiotherapeutic approaches.
Collapse
Affiliation(s)
- E Johanna L Stéen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Patricia E Edem
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Kamilla Nørregaard
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Jesper T Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
32
|
Abstract
Ferritin subunits of heavy and light polypeptide chains self-assemble into a spherical nanocage that serves as a natural transport vehicle for metals but can include diverse cargoes. Ferritin nanoparticles are characterized by remarkable stability, small and uniform size. Chemical modifications and molecular re-engineering of ferritin yield a versatile platform of nanocarriers capable of delivering a broad range of therapeutic and imaging agents. Targeting moieties conjugated to the ferritin external surface provide multivalent anchoring of biological targets. Here, we highlight some of the current work on ferritin as well as examine potential strategies that could be used to functionalize ferritin via chemical and genetic means to enable its utility in vascular drug delivery.
Collapse
|
33
|
Khoshnejad M, Greineder CF, Pulsipher KW, Villa CH, Altun B, Pan DC, Tsourkas A, Dmochowski IJ, Muzykantov VR. Ferritin Nanocages with Biologically Orthogonal Conjugation for Vascular Targeting and Imaging. Bioconjug Chem 2018; 29:1209-1218. [PMID: 29429330 DOI: 10.1021/acs.bioconjchem.8b00004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Genetic incorporation of biologically orthogonal functional groups into macromolecules has the potential to yield efficient, controlled, reproducible, site-specific conjugation of affinity ligands, contrast agents, or therapeutic cargoes. Here, we applied this approach to ferritin, a ubiquitous iron-storage protein that self-assembles into multimeric nanocages with remarkable stability, size uniformity (12 nm), and endogenous capacity for loading and transport of a variety of inorganic and organic cargoes. The unnatural amino acid, 4-azidophenylalanine (4-AzF), was incorporated at different sites in the human ferritin light chain (hFTL) to allow site-specific conjugation of alkyne-containing small molecules or affinity ligands to the exterior surface of the nanocage. The optimal positioning of the 4-AzF residue was evaluated by screening a library of variants for the efficiency of copper-free click conjugation. One of the engineered ferritins, hFTL-5X, was found to accommodate ∼14 small-molecule fluorophores (AlexaFluor 488) and 3-4 IgG molecules per nanocage. Intravascular injection in mice of radiolabeled hFTL-5X carrying antibody to cell adhesion molecule ICAM-1, but not control IgG, enabled specific targeting to the lung due to high basal expression of ICAM-1 (43.3 ± 6.99 vs 3.48 ± 0.14%ID/g for Ab vs IgG). Treatment of mice with endotoxin known to stimulate inflammatory ICAM-1 overexpression resulted in 2-fold enhancement of pulmonary targeting (84.4 ± 12.89 vs 43.3 ± 6.99%ID/g). Likewise, injection of fluorescent, ICAM-targeted hFTL-5X nanocages revealed the effect of endotoxin by enhancement of near-infrared signal, indicating potential utility of this approach for both vascular targeting and imaging.
Collapse
|
34
|
Khoshnejad M, Brenner JS, Motley W, Parhiz H, Greineder CF, Villa CH, Marcos-Contreras OA, Tsourkas A, Muzykantov VR. Molecular engineering of antibodies for site-specific covalent conjugation using CRISPR/Cas9. Sci Rep 2018; 8:1760. [PMID: 29379029 PMCID: PMC5789018 DOI: 10.1038/s41598-018-19784-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/08/2018] [Indexed: 11/09/2022] Open
Abstract
Site-specific modification of antibodies has become a critical aspect in the development of next-generation immunoconjugates meeting criteria of clinically acceptable homogeneity, reproducibility, efficacy, ease of manufacturability, and cost-effectiveness. Using CRISPR/Cas9 genomic editing, we developed a simple and novel approach to produce site-specifically modified antibodies. A sortase tag was genetically incorporated into the C-terminal end of the third immunoglobulin heavy chain constant region (CH3) within a hybridoma cell line to manufacture antibodies capable of site-specific conjugation. This enabled an effective enzymatic site-controlled conjugation of fluorescent and radioactive cargoes to a genetically tagged mAb without impairment of antigen binding activity. After injection in mice, these immunoconjugates showed almost doubled specific targeting in the lung vs. chemically conjugated maternal mAb, and concomitant reduction in uptake in the liver and spleen. The approach outlined in this work provides a facile method for the development of more homogeneous, reproducible, effective, and scalable antibody conjugates for use as therapeutic and diagnostic tools.
Collapse
Affiliation(s)
- Makan Khoshnejad
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jacob S Brenner
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - William Motley
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Hamideh Parhiz
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colin F Greineder
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carlos H Villa
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oscar A Marcos-Contreras
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Shuvaev VV, Kiseleva RY, Arguiri E, Villa CH, Muro S, Christofidou-Solomidou M, Stan RV, Muzykantov VR. Targeting superoxide dismutase to endothelial caveolae profoundly alleviates inflammation caused by endotoxin. J Control Release 2017; 272:1-8. [PMID: 29292038 DOI: 10.1016/j.jconrel.2017.12.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/16/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory mediators binding to Toll-Like receptors (TLR) induce an influx of superoxide anion in the ensuing endosomes. In endothelial cells, endosomal surplus of superoxide causes pro-inflammatory activation and TLR4 agonists act preferentially via caveolae-derived endosomes. To test the hypothesis that SOD delivery to caveolae may specifically inhibit this pathological pathway, we conjugated SOD with antibodies (Ab/SOD, size ~10nm) to plasmalemmal vesicle-associated protein (Plvap) that is specifically localized to endothelial caveolae in vivo and compared its effects to non-caveolar target CD31/PECAM-1. Plvap Ab/SOD bound to endothelial cells in culture with much lower efficacy than CD31 Ab/SOD, yet blocked the effects of LPS signaling with higher efficiency than CD31 Ab/SOD. Disruption of cholesterol-rich membrane domains by filipin inhibits Plvap Ab/SOD endocytosis and LPS signaling, implicating the caveolae-dependent pathway(s) in both processes. Both Ab/SOD conjugates targeted to Plvap and CD31 accumulated in the lungs after IV injection in mice, but the former more profoundly inhibited LPS-induced pulmonary inflammation and elevation of plasma level of interferon-beta and -gamma and interleukin-27. Taken together, these results indicate that targeted delivery of SOD to specific cellular compartments may offer effective, mechanistically precise interception of pro-inflammatory signaling mediated by reactive oxygen species.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Pharmacology, Center for Translational Targeted Therapeutics, Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Raisa Yu Kiseleva
- Department of Pharmacology, Center for Translational Targeted Therapeutics, Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Evguenia Arguiri
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Carlos H Villa
- Department of Pharmacology, Center for Translational Targeted Therapeutics, Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Silvia Muro
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Melpo Christofidou-Solomidou
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Radu V Stan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Vladimir R Muzykantov
- Department of Pharmacology, Center for Translational Targeted Therapeutics, Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
36
|
Pellico J, Llop J, Fernández-Barahona I, Bhavesh R, Ruiz-Cabello J, Herranz F. Iron Oxide Nanoradiomaterials: Combining Nanoscale Properties with Radioisotopes for Enhanced Molecular Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:1549580. [PMID: 29358900 PMCID: PMC5735613 DOI: 10.1155/2017/1549580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/01/2017] [Indexed: 12/12/2022]
Abstract
The combination of the size-dependent properties of nanomaterials with radioisotopes is emerging as a novel tool for molecular imaging. There are numerous examples already showing how the controlled synthesis of nanoparticles and the incorporation of a radioisotope in the nanostructure offer new features beyond the simple addition of different components. Among the different nanomaterials, iron oxide-based nanoparticles are the most used in imaging because of their versatility. In this review, we will study the different radioisotopes for biomedical imaging, how to incorporate them within the nanoparticles, and what applications they can be used for. Our focus is directed towards what is new in this field, what the nanoparticles can offer to the field of nuclear imaging, and the radioisotopes hybridized with nanomaterials for use in molecular imaging.
Collapse
Affiliation(s)
- Juan Pellico
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia, Spain
| | - Irene Fernández-Barahona
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Riju Bhavesh
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jesús Ruiz-Cabello
- Departamento Química Física II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Fernando Herranz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
37
|
Pant K, Sedláček O, Nadar RA, Hrubý M, Stephan H. Radiolabelled Polymeric Materials for Imaging and Treatment of Cancer: Quo Vadis? Adv Healthc Mater 2017; 6. [PMID: 28218487 DOI: 10.1002/adhm.201601115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/24/2016] [Indexed: 12/15/2022]
Abstract
Owing to their tunable blood circulation time and suitable plasma stability, polymer-based nanomaterials hold a great potential for designing and utilising multifunctional nanocarriers for efficient imaging and effective treatment of cancer. When tagged with appropriate radionuclides, they may allow for specific detection (diagnosis) as well as the destruction of tumours (therapy) or even customization of materials, aiming to both diagnosis and therapy (theranostic approach). This review provides an overview of recent developments of radiolabelled polymeric nanomaterials (natural and synthetic polymers) for molecular imaging of cancer, specifically, applying nuclear techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Different approaches to radiolabel polymers are evaluated from the methodical radiochemical point of view. This includes new bifunctional chelating agents (BFCAs) for radiometals as well as novel labelling methods. Special emphasis is given to eligible strategies employed to evade the mononuclear phagocytic system (MPS) in view of efficient targeting. The discussion encompasses promising strategies currently employed as well as emerging possibilities in radionuclide-based cancer therapy. Key issues involved in the clinical translation of radiolabelled polymers and future scopes of this intriguing research field are also discussed.
Collapse
Affiliation(s)
- Kritee Pant
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiopharmaceutical Cancer Research; Bautzner Landstraße 400 01328 Dresden Germany
| | - Ondřej Sedláček
- Institute of Macromolecular Chemistry; The Academy of Sciences of the Czech Republic; Heyrovského námeˇstí 2 16206 Prague 6 Czech Republic
| | - Robin A. Nadar
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiopharmaceutical Cancer Research; Bautzner Landstraße 400 01328 Dresden Germany
| | - Martin Hrubý
- Institute of Macromolecular Chemistry; The Academy of Sciences of the Czech Republic; Heyrovského námeˇstí 2 16206 Prague 6 Czech Republic
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiopharmaceutical Cancer Research; Bautzner Landstraße 400 01328 Dresden Germany
| |
Collapse
|
38
|
Kim EJ, Lee H, Yeom A, Hong KS. In vivo fluorescence imaging to assess early therapeutic response to tumor progression in a xenograft cancer model. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Qaim SM. Nuclear data for production and medical application of radionuclides: Present status and future needs. Nucl Med Biol 2016; 44:31-49. [PMID: 27821344 DOI: 10.1016/j.nucmedbio.2016.08.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The significance of nuclear data in the choice and medical application of a radionuclide is considered: the decay data determine its suitability for organ imaging or internal therapy and the reaction cross section data allow optimisation of its production route. A brief discussion of reaction cross sections and yields is given. STANDARD RADIONUCLIDES The standard SPECT, PET and therapeutic radionuclides are enumerated and their decay and production data are considered. The status of nuclear data is generally good. Some existing discrepancies are outlined. A few promising alternative production routes of 99mTc and 68Ga are discussed. RESEARCH-ORIENTED RADIONUCLIDES The increasing significance of non-standard positron emitters in organ imaging and of low-energy highly-ionizing radiation emitters in internal therapy is discussed, their nuclear data are considered and a brief review of their status is presented. Some other related nuclear data issues are also mentioned. PRODUCTION OF RADIONUCLIDES USING NEWER TECHNOLOGIES The data needs arising from new directions in radionuclide applications (multimode imaging, theranostic approach, radionanoparticles, etc.) are considered. The future needs of data associated with possible utilization of newer irradiation technologies (intermediate energy cyclotron, high-intensity photon accelerator, spallation neutron source, etc.) are outlined. CONCLUSION Except for a few small discrepancies, the available nuclear data are sufficient for routine production and application of radionuclides. Considerable data needs exist for developing novel radionuclides for applications. The developing future technologies for radionuclide production will demand further data-related activities.
Collapse
Affiliation(s)
- Syed M Qaim
- Institut für Neurowissenschaften und Medizin, INM-5 (Nuklearchemie), Forschungszentrum Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
40
|
Rahmani S, Villa CH, Dishman AF, Grabowski ME, Pan DC, Durmaz H, Misra AC, Colón-Meléndez L, Solomon MJ, Muzykantov VR, Lahann J. Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications. J Drug Target 2016; 23:750-8. [PMID: 26453170 DOI: 10.3109/1061186x.2015.1076428] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Nanoparticles with controlled physical properties have been widely used for controlled release applications. In addition to shape, the anisotropic nature of the particles can be an important design criterion to ensure selective surface modification or independent release of combinations of drugs. PURPOSE Electrohydrodynamic (EHD) co-jetting is used for the fabrication of uniform anisotropic nanoparticles with individual compartments and initial physicochemical and biological characterization is reported. METHODS EHD co-jetting is used to create nanoparticles, which are characterized at each stage with scanning electron microscopy (SEM), structured illumination microscopy (SIM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Surface immobilization techniques are used to incorporate polyethylene glycol (PEG) and I(125) radiolabels into the nanoparticles. Particles are injected in mice and the particle distribution after 1, 4 and 24 hours is assessed. RESULTS AND DISCUSSION Nanoparticles with an average diameter of 105.7 nm are prepared by EHD co-jetting. The particles contain functional chemical groups for further surface modification and radiolabeling. The density of PEG molecules attached to the surface of nanoparticles is determined to range between 0.02 and 6.04 ligands per square nanometer. A significant fraction of the nanoparticles (1.2% injected dose per mass of organ) circulates in the blood after 24 h. CONCLUSION EHD co-jetting is a versatile method for the fabrication of nanoparticles for drug delivery. Circulation of the nanoparticles for 24 h is a pre-requisite for subsequent studies to explore defined targeting of the nanoparticles to a specific anatomic site.
Collapse
Affiliation(s)
- Sahar Rahmani
- a Biointerfaces Institute, University of Michigan , Ann Arbor , MI , USA .,b Biomedical Engineering, University of Michigan , Ann Arbor , MI , USA .,c Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT) , Germany
| | - Carlos H Villa
- d Department of Pharmacology , University of Pennsylvania , Philadelphia , PA , USA , and
| | - Acacia F Dishman
- a Biointerfaces Institute, University of Michigan , Ann Arbor , MI , USA
| | - Marika E Grabowski
- a Biointerfaces Institute, University of Michigan , Ann Arbor , MI , USA .,b Biomedical Engineering, University of Michigan , Ann Arbor , MI , USA
| | - Daniel C Pan
- d Department of Pharmacology , University of Pennsylvania , Philadelphia , PA , USA , and
| | - Hakan Durmaz
- a Biointerfaces Institute, University of Michigan , Ann Arbor , MI , USA .,e Department of Chemical Engineering , University of Michigan , Ann Arbor , MI , USA
| | - Asish C Misra
- a Biointerfaces Institute, University of Michigan , Ann Arbor , MI , USA .,b Biomedical Engineering, University of Michigan , Ann Arbor , MI , USA
| | - Laura Colón-Meléndez
- a Biointerfaces Institute, University of Michigan , Ann Arbor , MI , USA .,e Department of Chemical Engineering , University of Michigan , Ann Arbor , MI , USA
| | - Michael J Solomon
- a Biointerfaces Institute, University of Michigan , Ann Arbor , MI , USA .,e Department of Chemical Engineering , University of Michigan , Ann Arbor , MI , USA
| | - Vladimir R Muzykantov
- d Department of Pharmacology , University of Pennsylvania , Philadelphia , PA , USA , and
| | - Joerg Lahann
- a Biointerfaces Institute, University of Michigan , Ann Arbor , MI , USA .,b Biomedical Engineering, University of Michigan , Ann Arbor , MI , USA .,c Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT) , Germany .,e Department of Chemical Engineering , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
41
|
Mahajan S, Divgi CR. The role of iodine-124 positron emission tomography in molecular imaging. Clin Transl Imaging 2016. [DOI: 10.1007/s40336-016-0186-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Tang C, Edelstein J, Mikitsh JL, Xiao E, Hemphill AH, Pagels R, Chacko AM, Prud'homme R. Biodistribution and fate of core-labeled 125I polymeric nanocarriers prepared by Flash NanoPrecipitation (FNP). J Mater Chem B 2016; 4:2428-2434. [PMID: 27073688 PMCID: PMC4826598 DOI: 10.1039/c5tb02172c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-invasive medical imaging techniques such as positron emission tomography (PET) imaging are powerful platforms to track the fate of radiolabeled materials for diagnostic or drug delivery applications. Polymer-based nanocarriers tagged with non-standard PET radionuclides with relatively long half-lives (e.g. 64Cu: t1/2 = 12.7 h, 76Br: t1/2 = 16.2h, 89Zr: t1/2 = 3.3 d, 124I: t1/2 = 4.2 d) may greatly expand applications of nanomedicines in molecular imaging and therapy. However, radiolabeling strategies that ensure stable in vivo association of the radiolabel with the nanocarrier remain a significant challenge. In this study, we covalently attach radioiodine to the core of pre-fabricated nanocarriers. First, we encapsulated polyvinyl phenol within a poly(ethylene glycol) coating using Flash NanoPrecipitation (FNP) to produce stable 75 nm and 120 nm nanocarriers. Following FNP, we radiolabeled the encapsulated polyvinyl phenol with 125I via electrophilic aromatic substitution in high radiochemical yields (> 90%). Biodistribution studies reveal low radioactivity in the thyroid, indicating minimal leaching of the radiolabel in vivo. Further, PEGylated [125I]PVPh nanocarriers exhibited relatively long circulation half-lives (t1/2 α = 2.9 h, t1/2 β = 34.9 h) and gradual reticuloendothelial clearance, with 31% of injected dose in blood retained at 24 h post-injection.
Collapse
Affiliation(s)
- Christina Tang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ United States; Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Jasmine Edelstein
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ United States; Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - John L Mikitsh
- Department of Radiology, Division of Nuclear Medicine and Clinical Molecular Imaging
| | - Edward Xiao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ United States; Department of Radiology, Division of Nuclear Medicine and Clinical Molecular Imaging
| | | | - Robert Pagels
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ United States
| | - Ann-Marie Chacko
- Department of Radiology, Division of Nuclear Medicine and Clinical Molecular Imaging; Department of Radiation Oncology
| | - Robert Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ United States
| |
Collapse
|
43
|
Greineder CF, Hood ED, Yao A, Khoshnejad M, Brenner JS, Johnston IH, Poncz M, Gottstein C, Muzykantov VR. Molecular engineering of high affinity single-chain antibody fragment for endothelial targeting of proteins and nanocarriers in rodents and humans. J Control Release 2016; 226:229-37. [PMID: 26855052 DOI: 10.1016/j.jconrel.2016.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/03/2016] [Indexed: 11/30/2022]
Abstract
Endothelial cells (EC) represent an important target for pharmacologic intervention, given their central role in a wide variety of human pathophysiologic processes. Studies in lab animal species have established that conjugation of drugs and carriers with antibodies directed to surface targets like the Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1, a highly expressed endothelial transmembrane protein) help to achieve specific therapeutic interventions in ECs. To translate such "vascular immunotargeting" to clinical practice, it is necessary to replace antibodies by advanced ligands that are more amenable to use in humans. We report the molecular design of a single chain variable antibody fragment (scFv) that binds with high affinity to human PECAM-1 and cross-reacts with its counterpart in rats and other animal species, allowing parallel testing in vivo and in human endothelial cells in microfluidic model. Site-specific modification of the scFv allows conjugation of protein cargo and liposomes, enabling their endothelial targeting in these models. This study provides a template for molecular engineering of ligands, enabling studies of drug targeting in animal species and subsequent use in humans.
Collapse
Affiliation(s)
- Colin F Greineder
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Elizabeth D Hood
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Anning Yao
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Makan Khoshnejad
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jake S Brenner
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ian H Johnston
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Mortimer Poncz
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Claudia Gottstein
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| | - Vladimir R Muzykantov
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, 3400 Civic Center Blvd, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
44
|
Khoshnejad M, Shuvaev VV, Pulsipher KW, Dai C, Hood ED, Arguiri E, Christofidou-Solomidou M, Dmochowski IJ, Greineder CF, Muzykantov VR. Vascular Accessibility of Endothelial Targeted Ferritin Nanoparticles. Bioconjug Chem 2016; 27:628-37. [PMID: 26718023 DOI: 10.1021/acs.bioconjchem.5b00641] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Targeting nanocarriers to the endothelium, using affinity ligands to cell adhesion molecules such as ICAM-1 and PECAM-1, holds promise to improve the pharmacotherapy of many disease conditions. This approach capitalizes on the observation that antibody-targeted carriers of 100 nm and above accumulate in the pulmonary vasculature more effectively than free antibodies. Targeting of prospective nanocarriers in the 10-50 nm range, however, has not been studied. To address this intriguing issue, we conjugated monoclonal antibodies (Ab) to ICAM-1 and PECAM-1 or their single chain antigen-binding fragments (scFv) to ferritin nanoparticles (FNPs, size 12 nm), thereby producing Ab/FNPs and scFv/FNPs. Targeted FNPs retained their typical symmetric core-shell structure with sizes of 20-25 nm and ∼4-5 Ab (or ∼7-9 scFv) per particle. Ab/FNPs and scFv/FNPs, but not control IgG/FNPs, bound specifically to cells expressing target molecules and accumulated in the lungs after intravenous injection, with pulmonary targeting an order of magnitude higher than free Ab. Most intriguing, the targeting of Ab/FNPs to ICAM-1, but not PECAM-1, surpassed that of larger Ab/carriers targeted by the same ligand. These results indicate that (i) FNPs may provide a platform for targeting endothelial adhesion molecules with carriers in the 20 nm size range, which has not been previously reported; and (ii) ICAM-1 and PECAM-1 (known to localize in different domains of endothelial plasmalemma) differ in their accessibility to circulating objects of this size, common for blood components and nanocarriers.
Collapse
Affiliation(s)
| | | | | | | | | | - Evguenia Arguiri
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania , 835W Gates Building, 3600 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| | - Melpo Christofidou-Solomidou
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania , 835W Gates Building, 3600 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
45
|
Shuvaev VV, Brenner JS, Muzykantov VR. Targeted endothelial nanomedicine for common acute pathological conditions. J Control Release 2015; 219:576-595. [PMID: 26435455 DOI: 10.1016/j.jconrel.2015.09.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
Endothelium, a thin monolayer of specialized cells lining the lumen of blood vessels is the key regulatory interface between blood and tissues. Endothelial abnormalities are implicated in many diseases, including common acute conditions with high morbidity and mortality lacking therapy, in part because drugs and drug carriers have no natural endothelial affinity. Precise endothelial drug delivery may improve management of these conditions. Using ligands of molecules exposed to the bloodstream on the endothelial surface enables design of diverse targeted endothelial nanomedicine agents. Target molecules and binding epitopes must be accessible to drug carriers, carriers must be free of harmful effects, and targeting should provide desirable sub-cellular addressing of the drug cargo. The roster of current candidate target molecules for endothelial nanomedicine includes peptidases and other enzymes, cell adhesion molecules and integrins, localized in different domains of the endothelial plasmalemma and differentially distributed throughout the vasculature. Endowing carriers with an affinity to specific endothelial epitopes enables an unprecedented level of precision of control of drug delivery: binding to selected endothelial cell phenotypes, cellular addressing and duration of therapeutic effects. Features of nanocarrier design such as choice of epitope and ligand control delivery and effect of targeted endothelial nanomedicine agents. Pathological factors modulate endothelial targeting and uptake of nanocarriers. Selection of optimal binding sites and design features of nanocarriers are key controllable factors that can be iteratively engineered based on their performance from in vitro to pre-clinical in vivo experimental models. Targeted endothelial nanomedicine agents provide antioxidant, anti-inflammatory and other therapeutic effects unattainable by non-targeted counterparts in animal models of common acute severe human disease conditions. The results of animal studies provide the basis for the challenging translation endothelial nanomedicine into the clinical domain.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
46
|
Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:271-99. [PMID: 26314803 DOI: 10.1002/wnan.1364] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 12/22/2022]
Abstract
Polymeric nanoparticles (NPs) are one of the most studied organic strategies for nanomedicine. Intense interest lies in the potential of polymeric NPs to revolutionize modern medicine. To determine the ideal nanosystem for more effective and distinctly targeted delivery of therapeutic applications, particle size, morphology, material choice, and processing techniques are all research areas of interest. Utilizations of polymeric NPs include drug delivery techniques such as conjugation and entrapment of drugs, prodrugs, stimuli-responsive systems, imaging modalities, and theranostics. Cancer, neurodegenerative disorders, and cardiovascular diseases are fields impacted by NP technologies that push scientific boundaries to the leading edge of transformative advances for nanomedicine.
Collapse
Affiliation(s)
- Brittany L Banik
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Pouria Fattahi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Justin L Brown
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
47
|
Chacko AM, Han J, Greineder CF, Zern BJ, Mikitsh JL, Nayak M, Menon D, Johnston IH, Poncz M, Eckmann DM, Davies PF, Muzykantov VR. Collaborative Enhancement of Endothelial Targeting of Nanocarriers by Modulating Platelet-Endothelial Cell Adhesion Molecule-1/CD31 Epitope Engagement. ACS NANO 2015; 9:6785-6793. [PMID: 26153796 PMCID: PMC4761649 DOI: 10.1021/nn505672x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanocarriers (NCs) coated with antibodies (Abs) to extracellular epitopes of the transmembrane glycoprotein PECAM (platelet endothelial cell adhesion molecule-1/CD31) enable targeted drug delivery to vascular endothelial cells. Recent studies revealed that paired Abs directed to adjacent, yet distinct epitopes of PECAM stimulate each other's binding to endothelial cells in vitro and in vivo ("collaborative enhancement"). This phenomenon improves targeting of therapeutic fusion proteins, yet its potential role in targeting multivalent NCs has not been addressed. Herein, we studied the effects of Ab-mediated collaborative enhancement on multivalent NC spheres coated with PECAM Abs (Ab/NC, ∼180 nm diameter). We found that PECAM Abs do mutually enhance endothelial cell binding of Ab/NC coated by paired, but not "self" Ab. In vitro, collaborative enhancement of endothelial binding of Ab/NC by paired Abs is modulated by Ab/NC avidity, epitope selection, and flow. Cell fixation, but not blocking of endocytosis, obliterated collaborative enhancement of Ab/NC binding, indicating that the effect is mediated by molecular reorganization of PECAM molecules in the endothelial plasmalemma. The collaborative enhancement of Ab/NC binding was affirmed in vivo. Intravascular injection of paired Abs enhanced targeting of Ab/NC to pulmonary vasculature in mice by an order of magnitude. This stimulatory effect greatly exceeded enhancement of Ab targeting by paired Abs, indicating that '"collaborative enhancement"' effect is even more pronounced for relatively large multivalent carriers versus free Abs, likely due to more profound consequences of positive alteration of epitope accessibility. This phenomenon provides a potential paradigm for optimizing the endothelial-targeted nanocarrier delivery of therapeutic agents.
Collapse
Affiliation(s)
- Ann-Marie Chacko
- Department of Radiology, Division of Nuclear Medicine and Clinical Molecular Imaging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jingyan Han
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Colin F. Greineder
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Blaine J. Zern
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - John L. Mikitsh
- Department of Radiology, Division of Nuclear Medicine and Clinical Molecular Imaging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Madhura Nayak
- Department of Radiology, Division of Nuclear Medicine and Clinical Molecular Imaging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Divya Menon
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ian H. Johnston
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Mortimer Poncz
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - David M. Eckmann
- Department of Anesthesiology & Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Peter F. Davies
- Department of Pathology and Institute for Medicine and Engineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vladimir R. Muzykantov
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
48
|
Tamba BI, Dondas A, Leon M, Neagu AN, Dodi G, Stefanescu C, Tijani A. Silica nanoparticles: preparation, characterization and in vitro/in vivo biodistribution studies. Eur J Pharm Sci 2015; 71:46-55. [PMID: 25681629 DOI: 10.1016/j.ejps.2015.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 01/09/2015] [Accepted: 02/02/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND The current progress in pharmaceutical nanotechnology field has been exploited in the design of functionalized radiolabelled nanoparticles that are able to deliver radionuclides in a selective manner to improve the outcome of diagnosis and treatment. Silica nanoparticles (SNPs) have been widely developed for biomedical applications due to their high versatility, excellent functional properties and low cost production, with the possibility to control different topological parameters relevant for multidisciplinary applications. PURPOSE The aim of the present study was to characterize and evaluate both in vitro, by microscopy techniques, and in vivo, by scintigraphic imaging, the biodistribution of silica nanostructures derivatives (Cy5.5 conjugated SNPs and (99m)Tc radiolabelled SNPs) to be applied as radiotracers in biomedicine. METHODS SNPs were synthesized by hydrolysis and condensation of silicon alkoxides, followed by surface functionalization with amino groups available for fluorescent dye and radiolabelling possibility. RESULTS Our data showed the particles size distribution (200-350 nm), the surface charge (negative for bare and fluorescent SNPs and positive for amino SNPs), polydispersity index (broad distribution), the qualitative composition and the toxicity assessments (safe material) that made the obtained SNPs candidates for in vitro/in vivo studies. A high uptake of fluorescent SNPs in all the investigated organs was evidenced by confocal microscopy. The (99m)Tc radiolabelled SNPs biodistribution was quantified in the range of 12-100% counts/g organ using the scintigraphic images. CONCLUSIONS The obtained results reveal improved properties, namely, reduced toxicity with a low level of side effects, an improved biodistribution, high labelling efficiency and stability of the radiolabelled SNPs with potential to be applied in biomedical science, particularly in nuclear medicine as a radiotracer.
Collapse
Affiliation(s)
- B I Tamba
- Centre for the Study and Therapy of Pain, "Gr. T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - A Dondas
- Centre for the Study and Therapy of Pain, "Gr. T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - M Leon
- Centre for the Study and Therapy of Pain, "Gr. T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - A N Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Romania
| | - G Dodi
- Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, Romania; SCIENT - Research Centre for Instrumental Analysis, Bucharest, Romania
| | - C Stefanescu
- Department of Biophysics and Medical Physics, "Gr. T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania.
| | - A Tijani
- FHNW, School of Life Sciences, Switzerland
| |
Collapse
|
49
|
de Barros ALB, Chacko AM, Mikitsh JL, Al Zaki A, Salavati A, Saboury B, Tsourkas A, Alavi A. Assessment of global cardiac uptake of radiolabeled iron oxide nanoparticles in apolipoprotein-E-deficient mice: implications for imaging cardiovascular inflammation. Mol Imaging Biol 2015; 16:330-9. [PMID: 24297372 DOI: 10.1007/s11307-013-0709-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Atherosclerosis is a leading cause of death in industrialized countries and is characterized by the accumulation of lipids and inflammatory cells, including macrophages, in blood vessel walls. Therefore, the ability to image macrophages could help identify plaques that are precursors of acute thrombotic events. Previous research has shown that long-circulating nanoparticles could be used to detect macrophages within atherosclerotic plaques of the aorta. By conducting this study, we investigated whether global cardiac uptake of radiolabeled nanoparticles could allow assessment of total macrophage burden in the coronary arteries. PROCEDURES Dextran-coated iron oxide nanoparticles (IONPs) were labeled with iodine-125 via Bolton-Hunter (sulfosuccinimidyl-3-[4-hydroxyphenyl]propionate) method. IONPs were characterized by means of dynamic light scattering and transmission electronic microscopy. Biodistribution studies were performed in healthy and atherosclerotic mice. Additionally, digital autoradiography of hearts from both healthy and atherosclerotic mice was performed to assess regional and global atherosclerotic burden. RESULTS The [(125)I]IONPs exhibited high radiolabel stability and long blood circulation, which eventually led to high heart uptake in apoE -/- mice when compared with healthy controls. Furthermore, digital autoradiography showed substantially enhanced emission of signals from the hearts of atherosclerotic mice, while no or minimal cardiac signals were detected in healthy mice. CONCLUSIONS This preparation showed adequate physical-chemical properties for in vivo studies, such as small size (∼30 nm), good radiolabel stability, and long circulation time. There was also significant accumulation in the heart of apoE-/- mice compared with that of healthy control animals. These findings suggest that radiolabeled dextran-coated iron oxide nanoparticles may have potential to become a useful tool to detect macrophages in the atherosclerosis plaques of coronary arteries; however, these preliminary findings should be confirmed by further studies in a larger scale in various atherosclerosis models.
Collapse
Affiliation(s)
- André Luís Branco de Barros
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Hospital of the University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA,
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sedláček O, Kučka J, Hrubý M. Optimized protocol for the radioiodination of hydrazone-type polymer drug delivery systems. Appl Radiat Isot 2015; 95:129-134. [DOI: 10.1016/j.apradiso.2014.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/12/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022]
|