1
|
Carballo-Pedrares N, Ponti F, Lopez-Seijas J, Miranda-Balbuena D, Bono N, Candiani G, Rey-Rico A. Non-viral gene delivery to human mesenchymal stem cells: a practical guide towards cell engineering. J Biol Eng 2023; 17:49. [PMID: 37491322 PMCID: PMC10369726 DOI: 10.1186/s13036-023-00363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
In recent decades, human mesenchymal stem cells (hMSCs) have gained momentum in the field of cell therapy for treating cartilage and bone injuries. Despite the tri-lineage multipotency, proliferative properties, and potent immunomodulatory effects of hMSCs, their clinical potential is hindered by donor variations, limiting their use in medical settings. To address this challenge, gene delivery technologies have emerged as a promising approach to modulate the phenotype and commitment of hMSCs towards specific cell lineages, thereby enhancing osteochondral repair strategies. This review provides a comprehensive overview of current non-viral gene delivery approaches used to engineer MSCs, highlighting key factors such as the choice of nucleic acid or delivery vector, transfection strategies, and experimental parameters. Additionally, it outlines various protocols and methods for qualitative and quantitative evaluation of their therapeutic potential as a delivery system in osteochondral regenerative applications. In summary, this technical review offers a practical guide for optimizing non-viral systems in osteochondral regenerative approaches. hMSCs constitute a key target population for gene therapy techniques. Nevertheless, there is a long way to go for their translation into clinical treatments. In this review, we remind the most relevant transfection conditions to be optimized, such as the type of nucleic acid or delivery vector, the transfection strategy, and the experimental parameters to accurately evaluate a delivery system. This survey provides a practical guide to optimizing non-viral systems for osteochondral regenerative approaches.
Collapse
Affiliation(s)
- Natalia Carballo-Pedrares
- Gene & Cell Therapy Research Group (G-CEL). Centro Interdisciplinar de Química y Biología - CICA, Universidade da Coruña, As Carballeiras, S/N. Campus de Elviña, 15071 A, Coruña, Spain
| | - Federica Ponti
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico Di Milano, 20131, Milan, Italy
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC, Canada
| | - Junquera Lopez-Seijas
- Gene & Cell Therapy Research Group (G-CEL). Centro Interdisciplinar de Química y Biología - CICA, Universidade da Coruña, As Carballeiras, S/N. Campus de Elviña, 15071 A, Coruña, Spain
| | - Diego Miranda-Balbuena
- Gene & Cell Therapy Research Group (G-CEL). Centro Interdisciplinar de Química y Biología - CICA, Universidade da Coruña, As Carballeiras, S/N. Campus de Elviña, 15071 A, Coruña, Spain
| | - Nina Bono
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico Di Milano, 20131, Milan, Italy
| | - Gabriele Candiani
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico Di Milano, 20131, Milan, Italy.
| | - Ana Rey-Rico
- Gene & Cell Therapy Research Group (G-CEL). Centro Interdisciplinar de Química y Biología - CICA, Universidade da Coruña, As Carballeiras, S/N. Campus de Elviña, 15071 A, Coruña, Spain.
| |
Collapse
|
2
|
Idumah CI, Nwuzor IC, Odera SR, Timothy UJ, Ngenegbo U, Tanjung FA. Recent advances in polymeric hydrogel nanoarchitectures for drug delivery applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - I. C. Nwuzor
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - S. R. Odera
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. J. Timothy
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. Ngenegbo
- Department of Parasitology and Entomology, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - F. A. Tanjung
- Faculty of Science and Technology, Universitas Medan Area, Medan, Indonesia
| |
Collapse
|
3
|
Cohen SA, Bar-Am O, Fuoco C, Saar G, Gargioli C, Seliktar D. In vivo restoration of dystrophin expression in mdx mice using intra-muscular and intra-arterial injections of hydrogel microsphere carriers of exon skipping antisense oligonucleotides. Cell Death Dis 2022; 13:779. [PMID: 36085138 PMCID: PMC9463190 DOI: 10.1038/s41419-022-05166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/21/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease caused by a mutation in the X-linked Dytrophin gene preventing the expression of the functional protein. Exon skipping therapy using antisense oligonucleotides (AONs) is a promising therapeutic strategy for DMD. While benefits of AON therapy have been demonstrated, some challenges remain before this strategy can be applied more comprehensively to DMD patients. These include instability of AONs due to low nuclease resistance and poor tissue uptake. Delivery systems have been examined to improve the availability and stability of oligonucleotide drugs, including polymeric carriers. Previously, we showed the potential of a hydrogel-based polymeric carrier in the form of injectable PEG-fibrinogen (PF) microspheres for delivery of chemically modified 2'-O-methyl phosphorothioate (2OMePs) AONs. The PF microspheres proved to be cytocompatible and provided sustained release of the AONs for several weeks, causing increased cellular uptake in mdx dystrophic mouse cells. Here, we further investigated this delivery strategy by examining in vivo efficacy of this approach. The 2OMePS/PEI polyplexes loaded in PF microspheres were delivered by intramuscular (IM) or intra-femoral (IF) injections. We examined the carrier biodegradation profiles, AON uptake efficiency, dystrophin restoration, and muscle histopathology. Both administration routes enhanced dystrophin restoration and improved the histopathology of the mdx mice muscles. The IF administration of the microspheres improved the efficacy of the 2OMePS AONs over the IM administration. This was demonstrated by a higher exon skipping percentage and a smaller percentage of centered nucleus fibers (CNF) found in H&E-stained muscles. The restoration of dystrophin expression found for both IM and IF treatments revealed a reduced dystrophic phenotype of the treated muscles. The study concludes that injectable PF microspheres can be used as a carrier system to improve the overall therapeutic outcomes of exon skipping-based therapy for treating DMD.
Collapse
Affiliation(s)
- Shani Attias Cohen
- grid.6451.60000000121102151Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - Orit Bar-Am
- grid.6451.60000000121102151Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - Claudia Fuoco
- grid.6530.00000 0001 2300 0941Department of Biology, Rome University Tor Vergata, Rome, Italy
| | - Galit Saar
- grid.6451.60000000121102151Biomedical Core Facility, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Cesare Gargioli
- grid.6530.00000 0001 2300 0941Department of Biology, Rome University Tor Vergata, Rome, Italy
| | - Dror Seliktar
- grid.6451.60000000121102151Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
4
|
Synthesis of pH-Sensitive Cross-Linked Basil Seed Gum/Acrylic Acid Hydrogels by Free Radical Copolymerization Technique for Sustained Delivery of Captopril. Gels 2022; 8:gels8050291. [PMID: 35621589 PMCID: PMC9140626 DOI: 10.3390/gels8050291] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
The pH-sensitive polymeric matrix of basil seed gum (BSG), with two different monomers, such as acrylic acid (AA) and N, N-Methylene-bis-acrylamide (MBA), was selected to use in hydrogels preparation through a free radical copolymerization technique using potassium per sulfate (KPS) as a cross linker. BSG, AA and MBA were used in multiple ratios to investigate the polymer, monomer and initiator effects on swelling properties and release pattern of captopril. Characterization of formulated hydrogels was done by FTIR, DSC/TGA, XRD and SEM techniques to confirm the stability. The hydrogels were subjected to a variety of tests, including dynamic swelling investigations, drug loading, in vitro drug release, sol–gel analyses and rheological studies. FTIR analysis confirmed that after the polymeric reaction of BSG with the AA monomer, AA chains grafted onto the backbone of BSG. The SEM micrographs illustrated an irregular, rough, and porous form of surface. Gel content was increased by increasing the contents of polymeric gum (BSG) with monomers (AA and MBA). Acidic and basic pH effects highlighted the difference between the swelling properties with BSG and AA on increasing concentration. Kinetic modelling suggested that Korsmeyer Peppas model release pattern was followed by the drug with the non-Fickian diffusion mechanism.
Collapse
|
5
|
Yu W, Maynard E, Chiaradia V, Arno MC, Dove AP. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chem Rev 2021; 121:10865-10907. [DOI: 10.1021/acs.chemrev.0c00883] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Yu
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Edward Maynard
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Maria C. Arno
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| |
Collapse
|
6
|
Fang K, Wang R, Zhang H, Zhou L, Xu T, Xiao Y, Zhou Y, Gao G, Chen J, Liu D, Ai F, Fu J. Mechano-Responsive, Tough, and Antibacterial Zwitterionic Hydrogels with Controllable Drug Release for Wound Healing Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52307-52318. [PMID: 33183010 DOI: 10.1021/acsami.0c13009] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acute wounds subject to frequent deformations are difficult to be treated because the healing process was easily interfered by external mechanical forces. Traditional wound dressings have limited efficacy because of their poor mechanical properties and skin adhesiveness and difficulty in the delivery of therapeutic drugs effectively. As such, tough and skin-adhesive wound dressings with sustainable and stimuli-responsive drug release properties for treatment of those wounds are highly desirable. For this purpose, we have developed a mechano-responsive poly(sulfobetaine methacrylate) hydrogel which aims to control the delivery of antibiotic drug upon application of mechanical forces. Diacrylated Pluronic F127 micelles were used as a macro-cross-linker of the hydrogel and loaded with hydrophobic antimicrobial drugs. The micelle-cross-linked hydrogel has excellent mechanical properties, with the ultimate tensile strength and tensile strain of up to 112 kPa and 1420%, respectively, and compressive stress of up to 1.41 MPa. Adhesiveness of the hydrogel to the skin tissue was ∼6 kPa, and it did not decrease significantly after repetitive adhesion cycles. Protein adsorption on the hydrogel was significantly inhibited compared to that on commercial wound dressings. Because of the mechano-responsive deformation of micelles, the release of drug from the hydrogel could be precisely controlled by the extent and cycles of mechanical loading and unloading, endowing the hydrogel with superior antibacterial property against both Gram-positive and Gram-negative bacteria. In addition, drug penetration into the skin tissue was enhanced by mechanical stress applied to the hydrogel. The micelle-cross-linked zwitterionic hydrogel also showed good cell biocompatibility, negligible skin irritation, and healing capacity to acute skin wounds in mice. Such a tough mechano-responsive hydrogel holds great promise as wound dressings for acute wounds subjected to frequent movements.
Collapse
Affiliation(s)
- Kun Fang
- School of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi, Ningbo 315300, China
| | - Rong Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi, Ningbo 315300, China
| | - Hua Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi, Ningbo 315300, China
| | - Linjie Zhou
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi, Ningbo 315300, China
| | - Ting Xu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi, Ningbo 315300, China
| | - Ying Xiao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi, Ningbo 315300, China
| | - Yang Zhou
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi, Ningbo 315300, China
| | - Guorong Gao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi, Ningbo 315300, China
| | - Jing Chen
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi, Ningbo 315300, China
| | - Donglei Liu
- School of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
| | - Fanrong Ai
- School of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
| | - Jun Fu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Carballo-Pedrares N, Fuentes-Boquete I, Díaz-Prado S, Rey-Rico A. Hydrogel-Based Localized Nonviral Gene Delivery in Regenerative Medicine Approaches-An Overview. Pharmaceutics 2020; 12:E752. [PMID: 32785171 PMCID: PMC7464633 DOI: 10.3390/pharmaceutics12080752] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Hydrogel-based nonviral gene delivery constitutes a powerful strategy in various regenerative medicine scenarios, as those concerning the treatment of musculoskeletal, cardiovascular, or neural tissues disorders as well as wound healing. By a minimally invasive administration, these systems can provide a spatially and temporarily defined supply of specific gene sequences into the target tissue cells that are overexpressing or silencing the original gene, which can promote natural repairing mechanisms to achieve the desired effect. In the present work, we provide an overview of the most avant-garde approaches using various hydrogels systems for controlled delivery of therapeutic nucleic acid molecules in different regenerative medicine approaches.
Collapse
Affiliation(s)
- Natalia Carballo-Pedrares
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (N.C.-P.); (I.F.-B.); (S.D.-P.)
| | - Isaac Fuentes-Boquete
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (N.C.-P.); (I.F.-B.); (S.D.-P.)
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15071 A Coruña, Galicia, Spain
| | - Silvia Díaz-Prado
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (N.C.-P.); (I.F.-B.); (S.D.-P.)
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15071 A Coruña, Galicia, Spain
| | - Ana Rey-Rico
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain; (N.C.-P.); (I.F.-B.); (S.D.-P.)
| |
Collapse
|
8
|
Dilla RA, Xu Y, Zander ZK, Bernard N, Wiener CG, Vogt BD, Becker ML. Mechanically tunable, human mesenchymal stem cell viable poly(ethylene glycol)-oxime hydrogels with invariant precursor composition, concentration, and stoichiometry. MATERIALS TODAY. CHEMISTRY 2019; 11:244-252. [PMID: 31667447 PMCID: PMC6820350 DOI: 10.1016/j.mtchem.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Hydrogels are used widely for exploratory tissue engineering studies. However, currently no hydrogel systems have been reported that exhibit a wide range of elastic modulus without changing precursor concentration, identity, or stoichiometry. Herein, ester and amide-based PEG-oxime hydrogels with tunable moduli (~5-30 kPa) were synthesized with identical precursor mass fraction, stoichiometry, and concentration by varying the pH and buffer concentration of the gelation solution, exploiting the kinetics of oxime bond formation. The observed modulus range can be attributed to increasing amounts of network defects in slower forming gels, as confirmed by equilibrium swelling and small angle neutron scattering (SANS) experiments. Finally, hMSC viability was confirmed in these materials in a 24 h assay. While only an initial demonstration of the potential utility, the controlled variation in defect density and modulus is an important step forward in isolating system variables for hypothesis-driven biological investigations.
Collapse
Affiliation(s)
- Rodger A Dilla
- The University of Akron, Department of Polymer Science, 44325, USA
| | - Yanyi Xu
- The University of Akron, Department of Polymer Science, 44325, USA
| | - Zachary K Zander
- The University of Akron, Department of Polymer Science, 44325, USA
| | - Neil Bernard
- The University of Akron, Department of Polymer Science, 44325, USA
| | - Clinton G Wiener
- The University of Akron, Department of Polymer Engineering, 44325, USA
| | - Bryan D Vogt
- The University of Akron, Department of Polymer Engineering, 44325, USA
| | - Matthew L Becker
- The University of Akron, Department of Polymer Science, 44325, USA
| |
Collapse
|
9
|
Differences between ab initio emulsion and miniemulsion polymerization of styrene mediated by an alkenyl-functionalized amphiphilic RAFT agent. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4386-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Synthesis and evaluation of chondroitin sulfate based hydrogels of loxoprofen with adjustable properties as controlled release carriers. Carbohydr Polym 2018; 181:1169-1179. [DOI: 10.1016/j.carbpol.2017.10.092] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 12/15/2022]
|
11
|
Liu X, Miller AL, Waletzki BE, Lu L. Cross-linkable graphene oxide embedded nanocomposite hydrogel with enhanced mechanics and cytocompatibility for tissue engineering. J Biomed Mater Res A 2018; 106:1247-1257. [PMID: 29280326 DOI: 10.1002/jbm.a.36322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/15/2017] [Accepted: 12/20/2017] [Indexed: 01/24/2023]
Abstract
Graphene oxide (GO) is an attractive material that can be utilized to enhance the modulus and conductivities of substrates and hydrogels. To covalently cross-link graphene oxide sheets into hydrogels, abundant cross-linkable double bonds were introduced to synthesize the graphene-oxide-tris-acrylate sheet (GO-TrisA). Polyacrylamide (PAM) nanocomposite hydrogels were then fabricated with inherent covalently and permanently cross-linked GO-TrisA sheets. Results showed that the covalently cross-linked GO-TrisA/PAM nanocomposite hydrogel had enhanced mechanical strength, thermo stability compared with GO/PAM hydrogel maintained mainly by hydrogen bonding between PAM chains and GO sheets. In vitro cell study showed that the covalently cross-linked rGO-TrisA/PAM nanocomposite hydrogel had excellent cytocompatibility after in situ reduction. These results suggest that rGO-TrisA/PAM nanocomposite hydrogel holds great potential for tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1247-1257, 2018.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, 55905
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, 55905
| | - A Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, 55905
| | - Brian E Waletzki
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, 55905
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, 55905
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, 55905
| |
Collapse
|
12
|
Wang LL, Burdick JA. Engineered Hydrogels for Local and Sustained Delivery of RNA-Interference Therapies. Adv Healthc Mater 2017; 6:10.1002/adhm.201601041. [PMID: 27976524 PMCID: PMC5226889 DOI: 10.1002/adhm.201601041] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/21/2016] [Indexed: 12/20/2022]
Abstract
It has been nearly two decades since RNA-interference (RNAi) was first reported. While there are no approved clinical uses, several phase II and III clinical trials suggest the great promise of RNAi therapeutics. One challenge for RNAi therapies is the controlled localization and sustained presentation to target tissues, to both overcome systemic toxicity concerns and to enhance in vivo efficacy. One approach that is emerging to address these limitations is the entrapment of RNAi molecules within hydrogels for local and sustained release. In these systems, nucleic acids are either delivered as siRNA conjugates or within nanoparticles. A plethora of hydrogels has been implemented using these approaches, including both traditional hydrogels that have already been developed for other applications and new hydrogels developed specifically for RNAi delivery. These hydrogels have been applied to various applications in vivo, including cancer, bone regeneration, inflammation and cardiac repair. This review will examine the design and implementation of such hydrogel RNAi systems and will cover the most recent applications of these systems.
Collapse
Affiliation(s)
- Leo L. Wang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
13
|
Krishna L, Dhamodaran K, Jayadev C, Chatterjee K, Shetty R, Khora SS, Das D. Nanostructured scaffold as a determinant of stem cell fate. Stem Cell Res Ther 2016; 7:188. [PMID: 28038681 PMCID: PMC5203716 DOI: 10.1186/s13287-016-0440-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The functionality of stem cells is tightly regulated by cues from the niche, comprising both intrinsic and extrinsic cell signals. Besides chemical and growth factors, biophysical signals are important components of extrinsic signals that dictate the stem cell properties. The materials used in the fabrication of scaffolds provide the chemical cues whereas the shape of the scaffolds provides the biophysical cues. The effect of the chemical composition of the scaffolds on stem cell fate is well researched. Biophysical signals such as nanotopography, mechanical forces, stiffness of the matrix, and roughness of the biomaterial influence the fate of stem cells. However, not much is known about their role in signaling crosstalk, stem cell maintenance, and directed differentiation. Among the various techniques for scaffold design, nanotechnology has special significance. The role of nanoscale topography in scaffold design for the regulation of stem cell behavior has gained importance in regenerative medicine. Nanotechnology allows manipulation of highly advanced surfaces/scaffolds for optimal regulation of cellular behavior. Techniques such as electrospinning, soft lithography, microfluidics, carbon nanotubes, and nanostructured hydrogel are described in this review, along with their potential usage in regenerative medicine. We have also provided a brief insight into the potential signaling crosstalk that is triggered by nanomaterials that dictate a specific outcome of stem cells. This concise review compiles recent developments in nanoscale architecture and its importance in directing stem cell differentiation for prospective therapeutic applications.
Collapse
Affiliation(s)
- Lekshmi Krishna
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Bangalore, Karnataka, India.,School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Kamesh Dhamodaran
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Bangalore, Karnataka, India.,School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Chaitra Jayadev
- Vitreoretina Services, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - S S Khora
- School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Debashish Das
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Bangalore, Karnataka, India.
| |
Collapse
|
14
|
Zhou N, Liu C, Lv S, Sun D, Qiao Q, Zhang R, Liu Y, Xiao J, Sun G. Degradation prediction model and stem cell growth of gelatin-PEG composite hydrogel. J Biomed Mater Res A 2016; 104:3149-3156. [PMID: 27466028 DOI: 10.1002/jbm.a.35847] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Nan Zhou
- Scientific Research Center for Translational Medicine; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
- Department of Oral Pathology; College of Stomatology, Dalian Medical University; Dalian 116044 China
| | - Chang Liu
- Scientific Research Center for Translational Medicine; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
- Dalian Municipal Central Hospital; Dalian 116033 China
| | - Shijie Lv
- Dalian Maternity & Child Healthcare Hospital; Dalian 116033 China
| | - Dongsheng Sun
- Scientific Research Center for Translational Medicine; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Qinglong Qiao
- Scientific Research Center for Translational Medicine; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Rui Zhang
- Department of Stomatology; First Affiliated Hospital, Dalian Medical University; Dalian 116023 China
| | - Yang Liu
- Scientific Research Center for Translational Medicine; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Jing Xiao
- Department of Oral Pathology; College of Stomatology, Dalian Medical University; Dalian 116044 China
| | - Guangwei Sun
- Scientific Research Center for Translational Medicine; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
15
|
Hydrogel-Based Controlled Delivery Systems for Articular Cartilage Repair. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1215263. [PMID: 27642587 PMCID: PMC5011507 DOI: 10.1155/2016/1215263] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022]
Abstract
Delivery of bioactive factors is a very valuable strategy for articular cartilage repair. Nevertheless, the direct supply of such biomolecules is limited by several factors including rapid degradation, the need for supraphysiological doses, the occurrence of immune and inflammatory responses, and the possibility of dissemination to nontarget sites that may impair their therapeutic action and raise undesired effects. The use of controlled delivery systems has the potential of overcoming these hurdles by promoting the temporal and spatial presentation of such factors in a defined target. Hydrogels are promising materials to develop delivery systems for cartilage repair as they can be easily loaded with bioactive molecules controlling their release only where required. This review exposes the most recent technologies on the design of hydrogels as controlled delivery platforms of bioactive molecules for cartilage repair.
Collapse
|
16
|
Liu J, Pang Y, Bhattacharyya J, Liu W, Weitzhandler I, Li X, Chilkoti A. Developing Precisely Defined Drug-Loaded Nanoparticles by Ring-Opening Polymerization of a Paclitaxel Prodrug. Adv Healthc Mater 2016; 5:1868-73. [PMID: 27111757 PMCID: PMC5279999 DOI: 10.1002/adhm.201600230] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/25/2016] [Indexed: 12/30/2022]
Abstract
Nanoparticles with high paclitaxel (PTX) loading and low systemic toxicity are prepared in scalable and versatile manner via one-step ring-opening polymerization of a prodrug monomer consisting of PTX that is appended to a cyclic carbonate through a hydrolysable ester linker. Initiating this monomer from a hydrophilic macroinitiator results in an amphiphilic diblock copolymer that spontaneously self-assembles into well-defined nanoparticles with tunable size.
Collapse
Affiliation(s)
- Jinyao Liu
- Department of Biomedical Engineering, Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, NC, 27708, USA
| | - Yan Pang
- Department of Biomedical Engineering, Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, NC, 27708, USA
| | - Jayanta Bhattacharyya
- Department of Biomedical Engineering, Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, NC, 27708, USA
| | - Wenge Liu
- Department of Biomedical Engineering, Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, NC, 27708, USA
| | - Isaac Weitzhandler
- Department of Biomedical Engineering, Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, NC, 27708, USA
| | - Xinghai Li
- Department of Biomedical Engineering, Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
17
|
Wang J, Zhang C, Liu L, Kalesh KA, Qiu L, Ding S, Fu M, Gao LQ, Jiang P. A capillary electrophoresis method to explore the self-assembly of a novel polypeptide ligand with quantum dots. Electrophoresis 2016; 37:2156-62. [DOI: 10.1002/elps.201600164] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Jianhao Wang
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Chencheng Zhang
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Li Liu
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Karunakaran A. Kalesh
- Department of Chemical Engineering, Imperial College London; South Kensington Campus; London UK
| | - Lin Qiu
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
- State Key Laboratory of Coordination Chemistry; Nanjing University; Nanjing Jiangsu P. R. China
| | - Shumin Ding
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Minli Fu
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Li-qian Gao
- Department of Chemistry; National University of Singapore; Singapore
| | - Pengju Jiang
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
- Key Laboratory of Synthetic Biology, Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai P. R. China
| |
Collapse
|
18
|
Yang C, Krishnamurthy S, Liu J, Liu S, Lu X, Coady DJ, Cheng W, De Libero G, Singhal A, Hedrick JL, Yang YY. Broad-Spectrum Antimicrobial Star Polycarbonates Functionalized with Mannose for Targeting Bacteria Residing inside Immune Cells. Adv Healthc Mater 2016; 5:1272-81. [PMID: 27028263 DOI: 10.1002/adhm.201600070] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 01/21/2023]
Abstract
In this study, a series of star-shaped polycarbonates are synthesized by metal-free organocatalytic ring-opening polymerization of benzyl chloride (BnCl) and mannose-functionalized cyclic carbonate monomers (MTC-BnCl and MTC-ipman) with heptakis-(2,3-di-O-acetyl)-β-cyclodextrin (DA-β-CD) as macroinitiator. The distributions and compositions of pendent benzyl chloride and protected mannose group (ipman) units are facilely modulated by varying the polymerization sequence and feed ratio of the monomers, allowing precise control over the molecular composition, and the resulting polymers have narrow molecular weight distribution. After deprotection of ipman groups and quaternization with various N,N-dimethylalkylamines, these star polymers with optimized compositions of cationic and mannose groups in block and random forms exhibit strong bactericidal activity and low hemolysis. Furthermore, the optimal mannose-functionalized polymer demonstrates mannose receptor-mediated intracellular bactericidal activity against BCG mycobacteria without inducing cytotoxicity on mammalian cells at the effective dose. Taken together, the materials designed in this study have potential use as antimicrobial agents against diseases such as tuberculosis, which is caused by intracellular bacteria.
Collapse
Affiliation(s)
- Chuan Yang
- Institute of Bioengineeringand Nanotechnology (IBN); 31 Biopolis Way The Nanos #04-01 138669 Singapore
| | - Sangeetha Krishnamurthy
- Institute of Bioengineeringand Nanotechnology (IBN); 31 Biopolis Way The Nanos #04-01 138669 Singapore
- NUS Graduate School for Integrative Sciences & Engineering; National University of Singapore; 117456 Singapore
| | - Jie Liu
- Singapore Immunology Network; 8A Biomedical Grove, Immunos Building 138648 Singapore
| | - Shaoqiong Liu
- Institute of Bioengineeringand Nanotechnology (IBN); 31 Biopolis Way The Nanos #04-01 138669 Singapore
| | - Xiaohua Lu
- Singapore Immunology Network; 8A Biomedical Grove, Immunos Building 138648 Singapore
| | - Daniel J. Coady
- IBM Almaden Research Center; 650 Harry Road San Jose CA 95120 USA
| | - Wei Cheng
- Institute of Bioengineeringand Nanotechnology (IBN); 31 Biopolis Way The Nanos #04-01 138669 Singapore
| | - Gennaro De Libero
- Singapore Immunology Network; 8A Biomedical Grove, Immunos Building 138648 Singapore
- University Hospital Basel; Basel Switzerland
| | - Amit Singhal
- Singapore Immunology Network; 8A Biomedical Grove, Immunos Building 138648 Singapore
| | - James L. Hedrick
- IBM Almaden Research Center; 650 Harry Road San Jose CA 95120 USA
| | - Yi Yan Yang
- Institute of Bioengineeringand Nanotechnology (IBN); 31 Biopolis Way The Nanos #04-01 138669 Singapore
| |
Collapse
|
19
|
Nojoomi A, Tamjid E, Simchi A, Bonakdar S, Stroeve P. Injectable polyethylene glycol-laponite composite hydrogels as articular cartilage scaffolds with superior mechanical and rheological properties. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1182914] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Dong D, Li J, Cui M, Wang J, Zhou Y, Luo L, Wei Y, Ye L, Sun H, Yao F. In Situ "Clickable" Zwitterionic Starch-Based Hydrogel for 3D Cell Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4442-4455. [PMID: 26817499 DOI: 10.1021/acsami.5b12141] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Three-dimensional (3D) cell encapsulation in hydrogel provides superb methods to investigate the biochemical cues in directing cellular fate and behaviors outside the organism, the primary step of which is to establish suitable "blank platform" to mimic and simplify native ECM microenvironment. In this study, zwitterionic starch-based "clickable" hydrogels were fabricated via a "copper- and light- free" Michael-type "thiol-ene" addition reaction between acylated-modified sulfobetaine-derived starch (SB-ST-A) and dithiol-functionalized poly(ethylene glycol) (PEG-SH). By incorporating antifouling SB-ST and PEG, the hydrogel system would be excellently protected from nontarget protein adsorption to act as a "blank platform". The hydrogels could rapidly gel under physiological conditions in less than 7 min. Dynamic rheology experiments suggested the stiffness of the hydrogel was close to the native tissues, and the mechanical properties as well as the gelation times and swelling behaviors could be easily tuned by varying the precursor proportions. The protein and cell adhesion assays demonstrated that the hydrogel surface could effectively resist nonspecific protein and cell adhesion. The degradation study in vitro confirmed that the hydrogel was biodegradable. A549 cells encapsulated in the hydrogel maintained high viability (up to 93%) and started to proliferate in number and extend in morphology after 2 days' culture. These results indicated the hydrogel presented here could be a potential candidate as "blank platform" for 3D cell encapsulation and biochemical cues induced cellular behavior investigation in vitro.
Collapse
Affiliation(s)
- Dianyu Dong
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
| | - Junjie Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , Beijing 100850, China
| | - Man Cui
- Department of Basic Medical Sciences, North China University of Science and Technology , Tangshan 063000, China
| | - Jinmei Wang
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
| | - Yuhang Zhou
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
| | - Liu Luo
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
| | - Yufei Wei
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
| | - Lei Ye
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
| | - Hong Sun
- Department of Basic Medical Sciences, North China University of Science and Technology , Tangshan 063000, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University , Tianjin 300072, China
| |
Collapse
|
21
|
Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J. Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:2054-2130. [PMID: 28347111 PMCID: PMC5304774 DOI: 10.3390/nano5042054] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
Due to their unique structures and properties, three-dimensional hydrogels and nanostructured particles have been widely studied and shown a very high potential for medical, therapeutic and diagnostic applications. However, hydrogels and nanoparticulate systems have respective disadvantages that limit their widespread applications. Recently, the incorporation of nanostructured fillers into hydrogels has been developed as an innovative means for the creation of novel materials with diverse functionality in order to meet new challenges. In this review, the fundamentals of hydrogels and nanoparticles (NPs) were briefly discussed, and then we comprehensively summarized recent advances in the design, synthesis, functionalization and application of nanocomposite hydrogels with enhanced mechanical, biological and physicochemical properties. Moreover, the current challenges and future opportunities for the use of these promising materials in the biomedical sector, especially the nanocomposite hydrogels produced from hydrogels and polymeric NPs, are discussed.
Collapse
Affiliation(s)
- Fuli Zhao
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Dan Yao
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ruiwei Guo
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Liandong Deng
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
22
|
Introduction to In Situ Forming Hydrogels for Biomedical Applications. IN-SITU GELLING POLYMERS 2015. [DOI: 10.1007/978-981-287-152-7_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
The interaction of bacteria with engineered nanostructured polymeric materials: a review. ScientificWorldJournal 2014; 2014:410423. [PMID: 25025086 PMCID: PMC4084677 DOI: 10.1155/2014/410423] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 12/17/2022] Open
Abstract
Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections.
Collapse
|
24
|
Xu J, Feng E, Song J. Renaissance of Aliphatic Polycarbonates: New Techniques and Biomedical Applications. J Appl Polym Sci 2014; 131:10.1002/app.39822. [PMID: 24994939 PMCID: PMC4076343 DOI: 10.1002/app.39822] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aliphatic polycarbonates were discovered a long time ago, with their conventional applications mostly limited to low molecular weight oligomeric intermediates for copolymerization with other polymers. Recent developments in polymerization techniques have overcome the difficulty in preparing high molecular weight aliphatic polycarbonates. These in turn, along with new functional monomers, have enabled the preparation of a wide range of aliphatic polycarbonates with diverse chemical compositions and structures. This review summarizes the latest polymerization techniques for preparing well-defined functional aliphatic polycarbonates, as well as the new applications of those aliphatic polycarbonates, esecially in the biomedical field.
Collapse
Affiliation(s)
- Jianwen Xu
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Ellva Feng
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Jie Song
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School 55 Lake Avenue North, Worcester, MA 01655, USA
- Department of Cell and Developmental Biology, University of Massachusetts Medical School 55 Lake Avenue North, Worcester, MA 01655, USA
| |
Collapse
|
25
|
Yom-Tov O, Seliktar D, Bianco-Peled H. Cell morphology in injectable nanostructured biosynthetic hydrogels. J Biomed Mater Res A 2014; 102:4371-9. [DOI: 10.1002/jbm.a.35134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 02/12/2014] [Indexed: 01/26/2023]
Affiliation(s)
- Ortal Yom-Tov
- Inter-Departmental Program for Biotechnology; Technion-Israel Institute of Technology; Haifa 32000 Israel
| | - Dror Seliktar
- Department of Biomedical Engineering; Technion-Israel Institute of Technology; Haifa 32000 Israel
- The Russell Berrie Nanotechnology Institute; Technion-Israel Institute of Technology; Haifa 32000 Israel
| | - Havazelet Bianco-Peled
- The Russell Berrie Nanotechnology Institute; Technion-Israel Institute of Technology; Haifa 32000 Israel
- Department of Chemical Engineering; Technion-Israel Institute of Technology; Haifa 32000 Israel
| |
Collapse
|
26
|
Patenaude M, Smeets NMB, Hoare T. Designing Injectable, Covalently Cross-Linked Hydrogels for Biomedical Applications. Macromol Rapid Commun 2014; 35:598-617. [PMID: 24477984 DOI: 10.1002/marc.201300818] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/11/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Mathew Patenaude
- Department of Chemical Engineering; McMaster University; 1280 Main St. W. Hamilton Ontario Canada L8S 4L7
| | - Niels M. B. Smeets
- Department of Chemical Engineering; McMaster University; 1280 Main St. W. Hamilton Ontario Canada L8S 4L7
| | - Todd Hoare
- Associate Professor, Department of Chemical Engineering; McMaster University; 1280 Main St. W. Hamilton Ontario Canada L8S 4L7
| |
Collapse
|
27
|
Khade SM, Behera B, Sagiri SS, Singh VK, Thirugnanam A, Pal K, Ray SS, Pradhan DK, Bhattacharya MK. Gelatin–PEG based metronidazole-loaded vaginal delivery systems: preparation, characterization and in vitro antimicrobial efficiency. IRANIAN POLYMER JOURNAL 2014. [DOI: 10.1007/s13726-013-0213-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A. 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:85-123. [PMID: 24741694 PMCID: PMC3925010 DOI: 10.1002/adma.201303233] [Citation(s) in RCA: 884] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Hydrogels are hydrophilic polymer-based materials with high water content and physical characteristics that resemble the native extracellular matrix. Because of their remarkable properties, hydrogel systems are used for a wide range of biomedical applications, such as three-dimensional (3D) matrices for tissue engineering, drug-delivery vehicles, composite biomaterials, and as injectable fillers in minimally invasive surgeries. In addition, the rational design of hydrogels with controlled physical and biological properties can be used to modulate cellular functionality and tissue morphogenesis. Here, the development of advanced hydrogels with tunable physiochemical properties is highlighted, with particular emphasis on elastomeric, light-sensitive, composite, and shape-memory hydrogels. Emerging technologies developed over the past decade to control hydrogel architecture are also discussed and a number of potential applications and challenges in the utilization of hydrogels in regenerative medicine are reviewed. It is anticipated that the continued development of sophisticated hydrogels will result in clinical applications that will improve patient care and quality of life.
Collapse
Affiliation(s)
- Nasim Annabi
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Ali Tamayol
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jorge Alfredo Uquillas
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohsen Akbari
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Luiz E. Bertassoni
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chaenyung Cha
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gulden Camci-Unal
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mehmet R. Dokmeci
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas A. Peppas
- Department of Biomedical Engineering, Biomedical Engineering Building 3.110B, The University of Texas at Austin, 1 University Station, C0800, Austin, Texas, 78712–1062, USA
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
29
|
Luo K, He B, Wu Y, Shen Y, Gu Z. Functional and biodegradable dendritic macromolecules with controlled architectures as nontoxic and efficient nanoscale gene vectors. Biotechnol Adv 2014; 32:818-30. [PMID: 24389086 DOI: 10.1016/j.biotechadv.2013.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 12/28/2022]
Abstract
Gene therapy has provided great potential to revolutionize the treatment of many diseases. This therapy is strongly relied on whether a delivery vector efficiently and safely directs the therapeutic genes into the target tissue/cells. Nonviral gene delivery vectors have been emerging as a realistic alternative to the use of viral analogs with the potential of a clinically relevant output. Dendritic polymers were employed as nonviral vectors due to their branched and layered architectures, globular shape and multivalent groups on their surface, showing promise in gene delivery. In the present review, we try to bring out the recent trend of studies on functional and biodegradable dendritic polymers as nontoxic and efficient gene delivery vectors. By regulating dendritic polymer design and preparation, together with recent progress in the design of biodegradable polymers, it is possible to precisely manipulate their architectures, molecular weight and chemical composition, resulting in predictable tuning of their biocompatibility as well as gene transfection activities. The multifunctional and biodegradable dendritic polymers possessing the desirable characteristics are expected to overcome extra- and intracellular obstacles, and as efficient and nontoxic gene delivery vectors to move into the clinical arena.
Collapse
Affiliation(s)
- Kui Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China; Center for Bionanoengineering, Zhejiang University, Hangzhou 310027, China.
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
30
|
Ke X, Coady DJ, Yang C, Engler AC, Hedrick JL, Yang YY. pH-sensitive polycarbonate micelles for enhanced intracellular release of anticancer drugs: a strategy to circumvent multidrug resistance. Polym Chem 2014. [DOI: 10.1039/c3py01784b] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Keeney M, Onyiah S, Zhang Z, Tong X, Han LH, Yang F. Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness. Biomaterials 2013; 34:9657-65. [DOI: 10.1016/j.biomaterials.2013.08.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/19/2013] [Indexed: 01/03/2023]
|
32
|
Fajardo AR, Fávaro SL, Rubira AF, Muniz EC. Dual-network hydrogels based on chemically and physically crosslinked chitosan/chondroitin sulfate. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2013.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Wu KC, Tseng CL, Wu CC, Kao FC, Tu YK, C So E, Wang YK. Nanotechnology in the regulation of stem cell behavior. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2013; 14:054401. [PMID: 27877605 PMCID: PMC5090368 DOI: 10.1088/1468-6996/14/5/054401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/16/2013] [Indexed: 05/19/2023]
Abstract
Stem cells are known for their potential to repair damaged tissues. The adhesion, growth and differentiation of stem cells are likely controlled by the surrounding microenvironment which contains both chemical and physical cues. Physical cues in the microenvironment, for example, nanotopography, were shown to play important roles in stem cell fate decisions. Thus, controlling stem cell behavior by nanoscale topography has become an important issue in stem cell biology. Nanotechnology has emerged as a new exciting field and research from this field has greatly advanced. Nanotechnology allows the manipulation of sophisticated surfaces/scaffolds which can mimic the cellular environment for regulating cellular behaviors. Thus, we summarize recent studies on nanotechnology with applications to stem cell biology, including the regulation of stem cell adhesion, growth, differentiation, tracking and imaging. Understanding the interactions of nanomaterials with stem cells may provide the knowledge to apply to cell-scaffold combinations in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- King-Chuen Wu
- Department of Anesthesiology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chi-Chang Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Feng-Chen Kao
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Edmund C So
- Department of Anesthesiology, Tainan Municipal An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yang-Kao Wang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
- Medical Device Innovation Center, National Cheng-Kung University, Tainan, Taiwan
| |
Collapse
|
34
|
Andrejecsk JW, Cui J, Chang WG, Devalliere J, Pober JS, Saltzman WM. Paracrine exchanges of molecular signals between alginate-encapsulated pericytes and freely suspended endothelial cells within a 3D protein gel. Biomaterials 2013; 34:8899-908. [PMID: 23973174 DOI: 10.1016/j.biomaterials.2013.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/02/2013] [Indexed: 12/12/2022]
Abstract
Paracrine signals, essential for the proper survival and functioning of tissues, may be mimicked by delivery of therapeutic proteins within engineered tissue constructs. Conventional delivery methods are of limited duration and are unresponsive to the local environment. We developed a system for sustained and regulated delivery of paracrine signals by encapsulating living cells of one type in alginate beads and co-suspending these cell-loaded particles along with unencapsulated cells of a second type within a 3D protein gel. This system was applied to vascular tissue engineering by placing human placental microvascular pericytes (PCs) in the particulate alginate phase and human umbilical vein endothelial cells (HUVECs) in the protein gel phase. Particle characteristics were optimized to keep the encapsulated PCs viable for at least two weeks. Encapsulated PCs were bioactive in vitro, secreting hepatocyte growth factor, an angiogenic protein, and responding to externally applied HUVEC-derived signals. Encapsulated PCs influenced HUVEC behavior in the surrounding gel by enhancing the formation of vessel-like structures when compared to empty alginate bead controls. In vivo, encapsulated PCs modulated the process of vascular self-assembly by HUVECs in 3D gels following implantation into immunodeficient mice. We conclude that alginate encapsulated cells can provide functional paracrine signals within engineered tissues.
Collapse
|
35
|
Zhou J, Chen P, Deng C, Meng F, Cheng R, Zhong Z. A Simple and Versatile Synthetic Strategy to Functional Polypeptides via Vinyl Sulfone-Substituted l-Cysteine N-Carboxyanhydride. Macromolecules 2013. [DOI: 10.1021/ma4014669] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianren Zhou
- Biomedical Polymers Laboratory, and
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s
Republic of China
| | - Peipei Chen
- Biomedical Polymers Laboratory, and
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s
Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, and
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s
Republic of China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s
Republic of China
| | - Ru Cheng
- Biomedical Polymers Laboratory, and
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s
Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application,
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s
Republic of China
| |
Collapse
|
36
|
Li X, Wang L, Fan Y, Feng Q, Cui FZ, Watari F. Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res A 2013; 101:2424-35. [PMID: 23377988 DOI: 10.1002/jbm.a.34539] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/25/2012] [Accepted: 11/26/2012] [Indexed: 12/20/2022]
Abstract
It has been demonstrated that nanostructured materials, compared with conventional materials, may promote greater amounts of specific protein interactions, thereby more efficiently stimulating new bone formation. It has also been indicated that, when features or ingredients of scaffolds are nanoscaled, a variety of interactions can be stimulated at the cellular level. Some of those interactions induce favorable cellular functions while others may leads to toxicity. This review presents the mechanism of interactions between nanoscaled materials and cells and focuses on the current research status of nanostructured scaffolds for bone tissue engineering. Firstly, the main requirements for bone tissue engineering scaffolds were discussed. Then, the mechanism by which nanoscaled materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed.
Collapse
Affiliation(s)
- Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | | | | | | | | | | |
Collapse
|