1
|
Patle RY, Dongre RS. Recent advances in PAMAM mediated nano-vehicles for targeted drug delivery in cancer therapy. J Drug Target 2024:1-21. [PMID: 39530737 DOI: 10.1080/1061186x.2024.2428966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/02/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
3-D multi-faceted, nano-globular PAMAM dendritic skeleton is a highly significant polymer that offers applications in biomedical, industrial, environmental and agricultural fields. This is mainly due to its enhanced properties, including adjustable surface functionalities, biocompatibility, non-toxicity, high uniformity and reduced cytotoxicity, as well as its numerous internal cavities. This trait inspires further exploration and advancements in tailoring approaches. The implementation of deliberate strategic modifications in the morphological characteristics of PAMAM is crucial through chemical and biological interventions, in addition to its therapeutic advancements. Thus, the production of peripheral groups remains a prominent and highly advanced technique in molecular fabrication, aimed at boosting the potential of PAMAM conjugates. Currently, there exist numerous dendritic-hybrid materials, despite the widespread use of PAMAM-conjugated frameworks as drug delivery systems, which are well regarded for their efficacy in enhancing potency through the incorporation of surface functions. This paper provides a comprehensive review of recent progress in the design and assembly of various components of PAMAM conjugates, focusing on their unique formulations. The review encompasses synthetic methodologies, a thorough evaluation of their applicability, and an analysis of their potential functions in the context of Drug Delivery Systems (DDS) in the current period.
Collapse
Affiliation(s)
- Ramkrishna Y Patle
- PGTD Chemistry, RTM Nagpur University, Nagpur, India
- Mahatma Gandhi College of Science, Chandrapur, India
| | | |
Collapse
|
2
|
Mudhakir D, Sadaqa E, Permana Z, Mumtazah JE, Zefrina NF, Xeliem JN, Hanum LF, Kurniati NF. Dual-Functionalized Mesoporous Silica Nanoparticles for Celecoxib Delivery: Amine Grafting and Imidazolyl PEI Gatekeepers for Enhanced Loading and Controlled Release with Reduced Toxicity. Molecules 2024; 29:3546. [PMID: 39124951 PMCID: PMC11313749 DOI: 10.3390/molecules29153546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The development of targeted drug delivery systems has been a pivotal area in nanomedicine, addressing challenges like low drug loading capacity, uncontrolled release, and systemic toxicity. This study aims to develop and evaluate dual-functionalized mesoporous silica nanoparticles (MSN) for targeted delivery of celecoxib, enhancing drug loading, achieving controlled release, and reducing systemic toxicity through amine grafting and imidazolyl polyethyleneimine (PEI) gatekeepers. MSN were synthesized using the sol-gel method and functionalized with (3-aminopropyl) triethoxysilane (APTES) to create amine-grafted MSN (MSN-NH2). Celecoxib was loaded into MSN-NH2, followed by conjugation of imidazole-functionalized PEI (IP) gatekeepers synthesized via carbodiimide coupling. Characterization was conducted using Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR). Drug loading capacity, entrapment efficiency, and in vitro drug release at pH 5.5 and 7.4 were evaluated. Cytotoxicity was assessed using the MTT assay on RAW 264.7 macrophages. The synthesized IP was confirmed by FTIR and 1H-NMR. Amine-grafted MSN demonstrated a celecoxib loading capacity of 12.91 ± 2.02%, 2.1 times higher than non-functionalized MSN. In vitro release studies showed pH-responsive behavior with significantly higher celecoxib release from MSN-NH2-celecoxib-IP at pH 5.5 compared to pH 7.4, achieving a 33% increase in release rate within 2 h. Cytotoxicity tests indicated significantly higher cell viability for IP-treated cells compared to PEI-treated cells, confirming reduced toxicity. The dual-functionalization of MSN with amine grafting and imidazolyl PEI gatekeepers enhances celecoxib loading and provides controlled pH-responsive drug release while reducing systemic toxicity. These findings highlight the potential of this advanced drug delivery system for targeted anti-inflammatory and anticancer therapies.
Collapse
Affiliation(s)
- Diky Mudhakir
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia; (E.S.); (Z.P.); (J.E.M.); (N.F.Z.); (J.N.X.); (L.F.H.)
| | - Ebrahim Sadaqa
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia; (E.S.); (Z.P.); (J.E.M.); (N.F.Z.); (J.N.X.); (L.F.H.)
| | - Zuliar Permana
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia; (E.S.); (Z.P.); (J.E.M.); (N.F.Z.); (J.N.X.); (L.F.H.)
| | - Jihan Eldia Mumtazah
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia; (E.S.); (Z.P.); (J.E.M.); (N.F.Z.); (J.N.X.); (L.F.H.)
| | - Normalita Faraz Zefrina
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia; (E.S.); (Z.P.); (J.E.M.); (N.F.Z.); (J.N.X.); (L.F.H.)
| | - Jovinka Natalie Xeliem
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia; (E.S.); (Z.P.); (J.E.M.); (N.F.Z.); (J.N.X.); (L.F.H.)
| | - Latifa Fawzia Hanum
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia; (E.S.); (Z.P.); (J.E.M.); (N.F.Z.); (J.N.X.); (L.F.H.)
| | - Neng Fisheri Kurniati
- Department of Clinical and Community Pharmacy, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia;
| |
Collapse
|
3
|
Dosta P, Dion MZ, Prado M, Hurtado P, Riojas-Javelly CJ, Cryer AM, Soria Y, Andrews Interiano N, Muñoz-Taboada G, Artzi N. Matrix Metalloproteinase- and pH-Sensitive Nanoparticle System Enhances Drug Retention and Penetration in Glioblastoma. ACS NANO 2024; 18:14145-14160. [PMID: 38761153 DOI: 10.1021/acsnano.3c03409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Glioblastoma (GBM) is a primary malignant brain tumor with limited therapeutic options. One promising approach is local drug delivery, but the efficacy is hindered by limited diffusion and retention. To address this, we synthesized and developed a dual-sensitive nanoparticle (Dual-NP) system, formed between a dendrimer and dextran NPs, bound by a dual-sensitive [matrix metalloproteinase (MMP) and pH] linker designed to disassemble rapidly in the tumor microenvironment. The disassembly prompts the in situ formation of nanogels via a Schiff base reaction, prolonging Dual-NP retention and releasing small doxorubicin (Dox)-conjugated dendrimer NPs over time. The Dual-NPs were able to penetrate deep into 3D spheroid models and detected at the tumor site up to 6 days after a single intratumoral injection in an orthotopic mouse model of GBM. The prolonged presence of Dual-NPs in the tumor tissue resulted in a significant delay in tumor growth and an overall increase in survival compared to untreated or Dox-conjugated dendrimer NPs alone. This Dual-NP system has the potential to deliver a range of therapeutics for efficiently treating GBM and other solid tumors.
Collapse
Affiliation(s)
- Pere Dosta
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Michelle Z Dion
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- MIT-Harvard Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michaela Prado
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Pau Hurtado
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Cristobal J Riojas-Javelly
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Alexander M Cryer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yael Soria
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Nelly Andrews Interiano
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | | | - Natalie Artzi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- BioDevek Inc., Allston, Massachusetts 02134, United States
| |
Collapse
|
4
|
Lehot V, Neuberg P, Ripoll M, Daubeuf F, Erb S, Dovgan I, Ursuegui S, Cianférani S, Kichler A, Chaubet G, Wagner A. Targeted Anticancer Agent with Original Mode of Action Prepared by Supramolecular Assembly of Antibody Oligonucleotide Conjugates and Cationic Nanoparticles. Pharmaceutics 2023; 15:1643. [PMID: 37376091 DOI: 10.3390/pharmaceutics15061643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Despite their clinical success, Antibody-Drug Conjugates (ADCs) are still limited to the delivery of a handful of cytotoxic small-molecule payloads. Adaptation of this successful format to the delivery of alternative types of cytotoxic payloads is of high interest in the search for novel anticancer treatments. Herein, we considered that the inherent toxicity of cationic nanoparticles (cNP), which limits their use as oligonucleotide delivery systems, could be turned into an opportunity to access a new family of toxic payloads. We complexed anti-HER2 antibody-oligonucleotide conjugates (AOC) with cytotoxic cationic polydiacetylenic micelles to obtain Antibody-Toxic-Nanoparticles Conjugates (ATNPs) and studied their physicochemical properties, as well as their bioactivity in both in vitro and in vivo HER2 models. After optimising their AOC/cNP ratio, the small (73 nm) HER2-targeting ATNPs were found to selectively kill antigen-positive SKBR-2 cells over antigen-negative MDA-MB-231 cells in serum-containing medium. Further in vivo anti-cancer activity was demonstrated in an SKBR-3 tumour xenograft model in BALB/c mice in which stable 60% tumour regression could be observed just after two injections of 45 pmol of ATNP. These results open interesting prospects in the use of such cationic nanoparticles as payloads for ADC-like strategies.
Collapse
Affiliation(s)
- Victor Lehot
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Patrick Neuberg
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Manon Ripoll
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - François Daubeuf
- UAR3286, Plate-Forme de Chimie Biologique Intégrative de Strasbourg, ESBS, CNRS-Strasbourg University, 67400 Illkirch-Graffenstaden, France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Institut du Médicament de Strasbourg, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Igor Dovgan
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Sylvain Ursuegui
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Institut du Médicament de Strasbourg, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Antoine Kichler
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
5
|
Chen C, Gao P, Wang H, Cheng Y, Lv J. Histidine-based coordinative polymers for efficient intracellular protein delivery via enhanced protein binding, cellular uptake, and endosomal escape. Biomater Sci 2023; 11:1765-1775. [PMID: 36648450 DOI: 10.1039/d2bm01541b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymers are one of the most promising protein delivery carriers; however, their applications are hindered by low delivery efficacy owing to their undesirable performance in protein binding, cellular uptake and endosomal escape. Here, we designed a series of histidine-based coordinative polymers for efficient intracellular protein delivery. Coordination of metal ions such as Ni2+, Zn2+, and Cu2+ with histidine residues on a polymer greatly improved its performance in protein binding, complex stability, cellular uptake and endosomal escape, therefore achieving highly improved protein delivery efficacy. Among the coordinative polymers, the Zn2+-coordinated one exhibited the highest cellular uptake, while the Cu2+-coordinated one exhibited the highest endosomal escape. The Ni2+-coordinated polymer formed large-sized aggregates with cargo proteins and showed insufficient protein release after endocytosis. The results obtained in this study provided new insight into the development of coordinative polymer-based protein delivery systems.
Collapse
Affiliation(s)
- Changyuan Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Peng Gao
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
6
|
Dey AD, Bigham A, Esmaeili Y, Ashrafizadeh M, Moghaddam FD, Tan SC, Yousefiasl S, Sharma S, Maleki A, Rabiee N, Kumar AP, Thakur VK, Orive G, Sharifi E, Kumar A, Makvandi P. Dendrimers as nanoscale vectors: Unlocking the bars of cancer therapy. Semin Cancer Biol 2022; 86:396-419. [PMID: 35700939 DOI: 10.1016/j.semcancer.2022.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/06/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Chemotherapy is the first choice in the treatment of cancer and is always preferred to other approaches such as radiation and surgery, but it has never met the need of patients for a safe and effective drug. Therefore, new advances in cancer treatment are now needed to reduce the side effects and burdens associated with chemotherapy for cancer patients. Targeted treatment using nanotechnology are now being actively explored as they could effectively deliver therapeutic agents to tumor cells without affecting normal cells. Dendrimers are promising nanocarriers with distinct physiochemical properties that have received considerable attention in cancer therapy studies, which is partly due to the numerous functional groups on their surface. In this review, we discuss the progress of different types of dendrimers as delivery systems in cancer therapy, focusing on the challenges, opportunities, and functionalities of the polymeric molecules. The paper also reviews the various role of dendrimers in their entry into cells via endocytosis, as well as the molecular and inflammatory pathways in cancer. In addition, various dendrimers-based drug delivery (e.g., pH-responsive, enzyme-responsive, redox-responsive, thermo-responsive, etc.) and lipid-, amino acid-, polymer- and nanoparticle-based modifications for gene delivery, as well as co-delivery of drugs and genes in cancer therapy with dendrimers, are presented. Finally, biosafety concerns and issues hindering the transition of dendrimers from research to the clinic are discussed to shed light on their clinical applications.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J.F. Kennedy 54-Mostra d'Oltremare pad. 20, 80125 Naples, Italy
| | - Yasaman Esmaeili
- Biosensor Research Center (BRC), School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satar Yousefiasl
- School of Dentistry, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Saurav Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Cancer Research Centre, Shahid Beheshti University of Medical Sciences, 1989934148 Tehran, Iran
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125 Italy.
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Pontedera, 56025 Pisa, Italy.
| |
Collapse
|
7
|
Wang Z, Xu S, Xia H, Liu Y, Li B, Liang Y, Li Z. A cationic cyclodextrin derivative-lipid hybrid nanoparticles for gene delivery effectively promotes stability and transfection efficiency. Drug Dev Ind Pharm 2022; 48:1-11. [PMID: 35410574 DOI: 10.1080/03639045.2022.2059499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genetic medicines hold great promise for treatment of a number of diseases, however, the development of effective gene delivery carrier is still a challenge. The commonly used gene carrier liposomes and cationic polymers have limited their clinical application due to their respective disadvantages. Lipid-polymer hybrid nanoparticles (LHNPs) are novel drug delivery system which exhibit complementary characteristics of both polymeric nanoparticles and liposomes. In this account, we developed the α-cyclodextrin conjugated generation-2 polyamidoamine dendrimers-lipids hybrid nanoparticles (CDG2-LHNPs) for gene delivery. The pDNA/CDG2-LHNPs was stable during 15 days storage period both at 4 °C, 25 °C and 37 °C, whereas the particle size of pDNA/CDG2 and pDNA/liposomes dramatically increased after storage at 4 °C for 8 h. CDG2-LHNPs showed significantly superior transfection efficiencies compared to either CDG2 or liposomes. The mechanism of high transfection efficiency of pDNA/CDG2-LHNPs was further explored using pharmacological inhibitors chlorpromazine, filipin and cytochalasion D. The result demonstrated that cell uptake of pDNA/CDG2-LHNPs was mediated by clathrin-mediated endocytosis (CME), caveolae-mediated endocytosis (CvME) and macropinocytosis together. pDNA/CDG2-LHNPs were more likely be taken up by cells through CVME, which avoided lysosomal degradation to a large extent. Moreover, the liposome component of pDNA/CDG2-LHNPs increased its cell uptake efficiency, and the CDG2 polymer component increased its proton buffer capacity, so the hybrid nanoparticles taken up by CME could also successfully escape from the lysosome. This CDG2-LHNPs with stability and high transfection efficiency overcome the shortcomings of liposomes and polymers applied separately, and has great potential for gene drug delivery.
Collapse
Affiliation(s)
- Zhongjuan Wang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, PR China
| | - Shaobin Xu
- Department of Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Hongying Xia
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, PR China
| | - Yanqiu Liu
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, PR China
| | - Bin Li
- Department of pediatric intensive care unit, Children's Hospital Affiliated to Kunming Medical University, Kunming 650100, PR China
| | - Yueqin Liang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, PR China
| | - Zhongkun Li
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, PR China
| |
Collapse
|
8
|
Baoum AA. The fluorination effect on the transfection efficacy of cell penetrating peptide complexes. Plasmid 2022; 119-120:102619. [DOI: 10.1016/j.plasmid.2022.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
|
9
|
Egorova A, Shtykalova S, Maretina M, Selutin A, Shved N, Deviatkin D, Selkov S, Baranov V, Kiselev A. Polycondensed Peptide Carriers Modified with Cyclic RGD Ligand for Targeted Suicide Gene Delivery to Uterine Fibroid Cells. Int J Mol Sci 2022; 23:1164. [PMID: 35163086 PMCID: PMC8835468 DOI: 10.3390/ijms23031164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Suicide gene therapy was suggested as a possible strategy for the treatment of uterine fibroids (UFs), which are the most common benign tumors inwomen of reproductive age. For successful suicide gene therapy, DNAtherapeutics should be specifically delivered to UF cells. Peptide carriers are promising non-viral gene delivery systems that can be easily modified with ligands and other biomolecules to overcome DNA transfer barriers. Here we designed polycondensed peptide carriers modified with a cyclic RGD moiety for targeted DNA delivery to UF cells. Molecular weights of the resultant polymers were determined, and inclusion of the ligand was confirmed by MALDI-TOF. The physicochemical properties of the polyplexes, as well as cellular DNA transport, toxicity, and transfection efficiency were studied, and the specificity of αvβ3 integrin-expressing cell transfection was proved. The modification with the ligand resulted in a three-fold increase of transfection efficiency. Modeling of the suicide gene therapy by transferring the HSV-TK suicide gene to primary cells obtained from myomatous nodes of uterine leiomyoma patients was carried out. We observed up to a 2.3-fold decrease in proliferative activity after ganciclovir treatment of the transfected cells. Pro- and anti-apoptotic gene expression analysis confirmed our findings that the developed polyplexes stimulate UF cell death in a suicide-specific manner.
Collapse
Affiliation(s)
- Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| | - Sofia Shtykalova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| | - Marianna Maretina
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| | - Alexander Selutin
- Department of Immunology and Intercellular Interactions, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.S.); (S.S.)
| | - Natalia Shved
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| | - Dmitriy Deviatkin
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| | - Sergey Selkov
- Department of Immunology and Intercellular Interactions, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.S.); (S.S.)
| | - Vladislav Baranov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (A.E.); (S.S.); (M.M.); (N.S.); (D.D.); (V.B.)
| |
Collapse
|
10
|
Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo. Nat Commun 2021; 12:6742. [PMID: 34795289 PMCID: PMC8602287 DOI: 10.1038/s41467-021-27078-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/03/2021] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy has become a powerful cancer treatment, but only a small fraction of patients have achieved durable benefits due to the immune escape mechanism. In this study, epigenetic regulation is combined with gene therapy-mediated immune checkpoint blockade to relieve this immune escape mechanism. PPD (i.e., mPEG-b-PLG/PEI-RT3/DNA) is developed to mediate plasmid-encoding shPD-L1 delivery by introducing multiple interactions (i.e., electrostatic, hydrogen bonding, and hydrophobic interactions) and polyproline II (PPII)-helix conformation, which downregulates PD-L1 expression on tumour cells to relieve the immunosuppression of T cells. Zebularine (abbreviated as Zeb), a DNA methyltransferase inhibitor (DNMTi), is used for the epigenetic regulation of the tumour immune microenvironment, thus inducing DC maturation and MHC I molecule expression to enhance antigen presentation. PPD plus Zeb combination therapy initiates a systemic anti-tumour immune response and effectively prevents tumour relapse and metastasis by generating durable immune memory. This strategy provides a scheme for tumour treatment and the inhibition of relapse and metastasis.
Collapse
|
11
|
Fan Z, Jan S, Hickey JC, Davies DH, Felgner J, Felgner PL, Guan Z. Multifunctional Dendronized Polypeptides for Controlled Adjuvanticity. Biomacromolecules 2021; 22:5074-5086. [PMID: 34788023 DOI: 10.1021/acs.biomac.1c01052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vaccination has been playing an important role in treating both infectious and cancerous diseases. Nevertheless, many diseases still lack proper vaccines due to the difficulty to generate sufficient amounts of antigen-specific antibodies or T cells. Adjuvants provide an important route to improve and direct immune responses. However, there are few adjuvants approved clinically and many of them lack the clear structure/adjuvanticity relationship. Here, we synthesized and evaluated a series of dendronized polypeptides (denpols) functionalized with varying tryptophan/histidine (W/H) molar ratios of 0/100, 25/75, 50/50, 75/25, and 100/0 as tunable synthetic adjuvants. The denpols showed structure-dependent inflammasome activation in THP1 monocytic cells and structure-related activation and antigen cross-presentation in vitro in bone marrow-derived dendritic cells. We used the denpols with bacterial pathogen Coxiella burnetii antigens in vivo, which showed both high and tunable adjuvating activities, as demonstrated by the antigen-specific antibody and T cell responses. The denpols are easy to make and scalable, biodegradable, and have highly adjustable chemical structures. Taken together, denpols show great potential as a new and versatile adjuvant platform that allows us to adjust adjuvanticity based on structure-activity correlation with the aim to fine-tune the immune response, thus advancing vaccine development.
Collapse
Affiliation(s)
- Zhiyuan Fan
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Sharon Jan
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697, United States
| | - James C Hickey
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - D Huw Davies
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697, United States
| | - Jiin Felgner
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697, United States
| | - Philip L Felgner
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697, United States
| | - Zhibin Guan
- Department of Chemistry, University of California, Irvine, California 92697, United States.,Department of Biomedical Engineering, University of California, Irvine, California 92697, United States.,Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States.,Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
12
|
Coiled coil exposure and histidine tags drive function of an intracellular protein drug carrier. J Control Release 2021; 339:248-258. [PMID: 34563592 DOI: 10.1016/j.jconrel.2021.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023]
Abstract
In recent years, protein engineering efforts have yielded a diverse set of binding proteins that hold promise for various therapeutic applications. Despite this, their inability to reach intracellular targets limits their applications to cell surface or soluble targets. To address this challenge, we previously reported a protein carrier that binds antibodies and delivers them to therapeutic targets inside cancer cells. This carrier, known as the Hex carrier, is comprised of a self-assembling coiled coil hexamer at the core, with each alpha helix fused to a linker, an antibody binding domain, and a six Histidine-tag (His-tag). In this work, we designed different versions of the carrier to determine the role of each building block in cytosolic protein delivery. We found that increasing exposure of the Hex coiled coil on the carriers, through molecular design or removing antibodies, increased internalization, pointing to a role of the coiled coil in promoting endocytosis. We observed a clear increase in endosomal disruption events when His-tags were present on the carrier relative to when they were removed, due to an endosomal buffering effect. Finally, we found that the antibody binding domains of the Hex carrier could be replaced with monomeric ultra-stable GFP for intracellular delivery and endosomal escape. Our results demonstrate that the Hex coiled coil, in conjunction with His-tags, could be a generalizable vehicle for delivering small and large proteins to intracellular targets. This work also highlights new biological applications for oligomeric coiled coils and shows the direct and quantifiable impact of histidine residues on endosomal disruption. These findings could inform the design of future drug delivery vehicles in applications beyond intracellular protein delivery.
Collapse
|
13
|
Kheraldine H, Rachid O, Habib AM, Al Moustafa AE, Benter IF, Akhtar S. Emerging innate biological properties of nano-drug delivery systems: A focus on PAMAM dendrimers and their clinical potential. Adv Drug Deliv Rev 2021; 178:113908. [PMID: 34390777 DOI: 10.1016/j.addr.2021.113908] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
Drug delivery systems or vectors are usually needed to improve the bioavailability and effectiveness of a drug through improving its pharmacokinetics/pharmacodynamics at an organ, tissue or cellular level. However, emerging technologies with sensitive readouts as well as a greater understanding of physiological/biological systems have revealed that polymeric drug delivery systems are not biologically inert but can have innate or intrinsic biological actions. In this article, we review the emerging multiple innate biological/toxicological properties of naked polyamidoamine (PAMAM) dendrimer delivery systems in the absence of any drug cargo and discuss their correlation with the defined physicochemical properties of PAMAMs in terms of molecular size (generation), architecture, surface charge and chemistry. Further, we assess whether any of the reported intrinsic biological actions of PAMAMs such as their antimicrobial activity or their ability to sequester glucose and modulate key protein interactions or cell signaling pathways, can be exploited clinically such as in the treatment of diabetes and its complications.
Collapse
|
14
|
A core-shell nanoplatform as a nonviral vector for targeted delivery of genes to the retina. Acta Biomater 2021; 134:605-620. [PMID: 34329781 DOI: 10.1016/j.actbio.2021.07.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 01/05/2023]
Abstract
Retinal diseases, including age-related macular degeneration (AMD), are a major cause of blindness. Efficient delivery of therapeutic genes to retinal cells to treat retinal disease is a formidable challenge. In this study, we developed a core-shell nanoplatform composed of a core and two external layers for targeted delivery of the gene to the retina. The inner core was composed of amino acid-functionalized dendrimers and a nuclear localization signal (NLS) for DNA complexation, nuclear transport and efficient transfection. The inner core was coated in a lipid bilayer that comprised pH-sensitive lipids as the inner shell layer. Hyaluronic acid (HA)-1,2-dioleoylphosphatidylethanolamine (DOPE) as the outermost shell layer was used for retinal cell targeting. This core-shell nanoplatform was developed so that the mobility in the vitreous body of these negatively charged carriers would not be affected by their surface charge, allowing diffusion into the retina, uptake into the retinal cells via CD44-mediated internalization, and finally transport into the nucleus by the NLS. The designed nanoparticles showed safety both in vitro and in vivo and inhibited the expression of VEGF under hypoxia-mimicking conditions. In vitro angiogenesis assays exhibited significant inhibitory effects on cell migration and tube formation. The in vivo assays indicated that this nanoplatform could be delivered to the retina. Taken together, this nanoplatform has the potential to transfer gene material into the retina for the treatment of retinal diseases, including AMD. STATEMENT OF SIGNIFICANCE: It remains a challenge to develop an efficient nonviral vector for gene therapy, especially retinal gene therapy. Various barriers exist in gene delivery and the unique ocular environment, making gene delivery to the retina difficult. In this study, we designed a negatively charged core-shell nanoplatform (HD-NPPND) for the targeted delivery of gene to the retina. The developed nanoplatform possessed excellent transfection efficiency and safety both in vitro and in vivo. It efficiently delivered a gene to the retina. The results of this study suggested that this core-shell nanoplatform has the potential to deliver genes to the retina to treat retinal diseases, including age-related macular degeneration (AMD).
Collapse
|
15
|
Wahane A, Malik S, Shih KC, Gaddam RR, Chen C, Liu Y, Nieh MP, Vikram A, Bahal R. Dual-Modality Poly-l-histidine Nanoparticles to Deliver Peptide Nucleic Acids and Paclitaxel for In Vivo Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45244-45258. [PMID: 34524806 DOI: 10.1021/acsami.1c11981] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cationic polymeric nanoformulations have been explored to increase the transfection efficiency of small molecules and nucleic acid-based drugs. However, an excessive positive charge density often leads to severe cell and tissue-based toxicity that restricts the clinical translation of cationic polymeric nanoformulations. Herein, we investigate a series of cationic poly(lactic-co-glycolic acid) (PLGA)-histidine-based nanoformulations for enhanced cytoplasmic delivery with minimal toxicity. PLGA/poly-l-histidine nanoparticles show promising physico-biochemical features and transfection efficiency in a series of in vitro and cell culture-based studies. Further, the use of acetone/dichloromethane as a solvent mixture during the formulation process significantly improves the morphology and size distribution of PLGA/poly-l-histidine nanoparticles. PLGA/poly-l-histidine nanoformulations undergo clathrin-mediated endocytosis. A contrast-matched small-angle neutron scattering experiment confirmed poly-l-histidine's distribution on the PLGA nanoformulations. PLGA/poly-l-histidine formulations containing paclitaxel as a small molecule-based drug and peptide nucleic acids targeting microRNA-155 as nucleic acid analog are efficacious in in vitro and in vivo studies. PLGA/poly-l-histidine NPs significantly decrease tumor growth in PNA-155 (∼6 fold) and paclitaxel (∼6.5 fold) treatment groups in a lymphoma cell line derived xenograft mice model without inducing any toxicity. Hence, PLGA/poly-l-histidine nanoformulations exhibit substantial transfection efficiency and are safe to deliver reagents ranging from small molecules to synthetic nucleic acid analogs and can serve as a novel platform for drug delivery.
Collapse
Affiliation(s)
- Aniket Wahane
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Kuo-Chih Shih
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ravinder Reddy Gaddam
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Chaohao Chen
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yun Liu
- NIST Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Mu-Ping Nieh
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, 191 Auditorium Road, Storrs, Connecticut 06269, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ajit Vikram
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
16
|
Alfei S, Schito AM, Zuccari G. Considerable Improvement of Ursolic Acid Water Solubility by Its Encapsulation in Dendrimer Nanoparticles: Design, Synthesis and Physicochemical Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2196. [PMID: 34578512 PMCID: PMC8464973 DOI: 10.3390/nano11092196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid found in many medicinal plants and aromas endowed with numerous in vitro pharmacological activities, including antibacterial effects. Unfortunately, UA is poorly administered in vivo, due to its water insolubility, low bioavailability, and residual systemic toxicity, thus making urgent the development of water-soluble UA formulations. Dendrimers are nonpareil macromolecules possessing highly controlled size, shape, and architecture. In dendrimers with cationic surface, the contemporary presence of inner cavities and of hydrophilic peripheral functions, allows to encapsulate hydrophobic non-water-soluble drugs as UA, to enhance their water-solubility and stability, and to promote their protracted release, thus decreasing their systemic toxicity. In this paper, aiming at developing a new UA-based antibacterial agent administrable in vivo, we reported the physical entrapment of UA in a biodegradable not cytotoxic cationic dendrimer (G4K). UA-loaded dendrimer nanoparticles (UA-G4K) were obtained, which showed a drug loading (DL%) much higher than those previously reported, a protracted release profile governed by diffusion mechanisms, and no cytotoxicity. Also, UA-G4K was characterized by principal components analysis (PCA)-processed FTIR spectroscopy, by NMR and elemental analyses, and by dynamic light scattering experiments (DLS). The water solubility of UA-G4K was found to be 1868-fold times higher than that of pristine UA, thus making its clinical application feasible.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4-16148 Genoa, Italy;
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6-16132 Genova, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4-16148 Genoa, Italy;
| |
Collapse
|
17
|
Tan G, Li J, Liu D, Pan H, Zhu R, Yang Y, Pan W. Amino acids functionalized dendrimers with nucleus accumulation for efficient gene delivery. Int J Pharm 2021; 602:120641. [PMID: 33901600 DOI: 10.1016/j.ijpharm.2021.120641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 01/24/2023]
|
18
|
Escaping the endosome: assessing cellular trafficking mechanisms of non-viral vehicles. J Control Release 2021; 335:465-480. [PMID: 34077782 DOI: 10.1016/j.jconrel.2021.05.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Non-viral vehicles hold therapeutic promise in advancing the delivery of a variety of cargos in vitro and in vivo, including small molecule drugs, biologics, and especially nucleic acids. However, their efficacy at the cellular level is limited by several delivery barriers, with endolysosomal degradation being most significant. The entrapment of vehicles and their cargo in the acidified endosome prevents access to the cytosol, nucleus, and other subcellular compartments. Understanding the factors that contribute to uptake and intracellular trafficking, especially endosomal entrapment and release, is key to overcoming delivery obstacles within cells. In this review, we summarize and compare experimental techniques for assessing the extent of endosomal escape of a variety of non-viral vehicles and describe proposed escape mechanisms for different classes of lipid-, polymer-, and peptide-based delivery agents. Based on this evaluation, we present forward-looking strategies utilizing information gained from mechanistic studies to inform the rational design of efficient delivery vehicles.
Collapse
|
19
|
Dosta P, Cryer AM, Prado M, Dion MZ, Ferber S, Kalash S, Artzi N. Delivery of Stimulator of Interferon Genes (STING) Agonist Using Polypeptide‐Modified Dendrimer Nanoparticles in the Treatment of Melanoma. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Pere Dosta
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Alexander M. Cryer
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Michaela Prado
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Michelle Z. Dion
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Shiran Ferber
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Santhosh Kalash
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Natalie Artzi
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| |
Collapse
|
20
|
Liu T, Lin M, Wu F, Lin A, Luo D, Zhang Z. Development of a nontoxic and efficient gene delivery vector based on histidine grafted chitosan. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1885407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tianhui Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Pharmaceutical and Medical Technology College, Putian University, Putian, China
| | - Mei Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, China
| | - Fan Wu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Aizhu Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Daoshu Luo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ziyang Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
21
|
Li R, Wang H, John JV, Song H, Teusink MJ, Xie J. 3D Hybrid Nanofiber Aerogels Combining with Nanoparticles Made of a Biocleavable and Targeting Polycation and MiR-26a for Bone Repair. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005531. [PMID: 34326714 PMCID: PMC8315031 DOI: 10.1002/adfm.202005531] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 05/24/2023]
Abstract
The healing of large bone defects represents a clinical challenge, often requiring some form of grafting. Three-dimensional (3D) nanofiber aerogels could be a promising bone graft due to their biomimetic morphology and controlled porous structures and composition. miR-26a has been reported to induce the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and facilitate bone formation. Introducing miR-26a with a suitable polymeric vector targeting BMSCs could improve and enhance the functions of 3D nanofiber aerogels for bone regeneration. Herein, we first developed the comb-shaped polycation (HA-SS-PGEA) carrying a targeting component, biocleavable groups and short ethanolamine (EA)-decorated poly(glycidyl methacrylate) (PGMA) (abbreviated as PGEA) arms as miR-26a delivery vector. We then assessed the cytotoxicity and transfection efficiency of this polycation and cellular response to miR-26a-incorporated nanoparticles (NPs) in vitro. HA-SS-PGEA exhibited a stronger ability to transport miR-26a and exert its functions than the gold standard polyethyleneimine (PEI) and low-molecular-weight linear PGEA. We finally examined the efficacy of HA-SS-PGEA/miR-26a NPs loaded 3D hybrid nanofiber aerogels showing a positive effect on the cranial bone defect healing. Together, the combination of 3D nanofiber aerogels and functional NPs consisting of a biodegradable and targeting polycation and therapeutic miRNA could be a promising approach for bone regeneration.
Collapse
Affiliation(s)
- Ruiquan Li
- Department of Surgery-Transplant and Holland Regenerative Medicine Program University of Nebraska Medical Center, Omaha, NE 68130, United States
| | - Hongjun Wang
- Department of Surgery-Transplant and Holland Regenerative Medicine Program University of Nebraska Medical Center, Omaha, NE 68130, United States
| | - Johnson V John
- Department of Surgery-Transplant and Holland Regenerative Medicine Program University of Nebraska Medical Center, Omaha, NE 68130, United States
| | - Haiqing Song
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Matthew J Teusink
- Department of Orthopedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Holland Regenerative Medicine Program University of Nebraska Medical Center, Omaha, NE 68130, United States
| |
Collapse
|
22
|
Brain gene delivery using histidine and arginine-modified dendrimers for ischemic stroke therapy. J Control Release 2020; 330:907-919. [PMID: 33152393 DOI: 10.1016/j.jconrel.2020.10.064] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
Polyamidoamine dendrimer has been studied as an efficient gene carrier. Due to its anti-inflammatory properties, polyamidoamine is a useful gene carrier, especially for inflammatory diseases. However, the commonly used polyamidoamine generation 6 dendrimer (PG6) has higher cytotoxicity than low-molecular weight polyamidoamines, which limits its applications. Therefore, early-generation polyamidoamine dendrimers, such as generation 2 (PG2), have been investigated as an alternative to PG6, although PG2 has a lower transfection efficiency. In this study, to improve gene delivery efficiency, histidine and arginine were conjugated on the primary amines of PG2, synthesizing PG2HR. The gene delivery efficiency of PG2HR was higher than that of PG2 or of PG2 conjugated with only arginine (PG2R), which may be due to higher cellular uptake and endosomal escape of the plasmid DNA (pDNA)/PG2HR complex. In addition, PG2HR had lower cytotoxicity than polyethylenimine (25 kDa, PEI25k), PG2, and PG2R. Mechanism studies showed that PG2HR delivered pDNA into the cells mainly by clathrin-independent endocytosis and partly by macropinocytosis. The therapeutic potential of PG2HR-mediated gene delivery was evaluated in middle cerebral artery occlusion (MCAO)-reperfusion stroke animal models. Heme oxygenase-1 (HO-1) plasmid was delivered into the brain by local injection. The results showed that PG2HR had higher gene delivery efficiency in the brain than did PEI25k, PG2, or PG2R. Furthermore, compared to the pHO-1/PEI25k, pHO-1/PG2, and pHO-1/PG2R complexes, the pHO-1/PG2HR complex had reduced apoptosis levels and infarct sizes in ischemic brains. Therefore, because of its low cytotoxicity and high gene delivery efficiency, PG2HR may be useful for gene therapy of inflammatory diseases including ischemic stroke.
Collapse
|
23
|
Alfei S, Catena S, Turrini F. Biodegradable and biocompatible spherical dendrimer nanoparticles with a gallic acid shell and a double-acting strong antioxidant activity as potential device to fight diseases from "oxidative stress". Drug Deliv Transl Res 2020; 10:259-270. [PMID: 31628606 DOI: 10.1007/s13346-019-00681-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gallic acid (GA) is a natural polyphenol with remarkable antioxidant power present in several vegetables and fruits. A normal feeding regime leads to a daily intake of GA which is reasonably regarded as "natural" and "safe" for humans. It owns strong potentials as alternative to traditional drugs to treat several diseases triggered by oxidative stress (OS), but poor gastrointestinal absorbability, pharmacokinetic drawbacks, and fast metabolism limit its clinical application. In this work, a fifth-generation polyester-based dendrimer was firstly prepared as a better absorbable carrier to protect and deliver GA. Then, by its peripheral esterification with GA units, a GA-enriched delivering system (GAD) with remarkable antioxidant power and high potential against diseases from OS was achieved. Scanning electron microscopy results and dynamic light scattering analysis revealed particles with an average size around 387 and 375 nm, respectively, and an extraordinarily spherical morphology. These properties, by determining a large particles surface area, typically favour higher systemic residence time and bio-efficiency. Z-potential of - 25 mV suggests satisfactory stability in solution with tendency to form megamers and low polydispersity index. GAD showed intrinsic antioxidant power, higher than GA by 4 times and like prodrugs, and it can carry contemporary several bioactive GA units versus cells. In physiological condition, the action of pig liver esterase (PLE), selected as a model of cells esterase, hydrolyses GAD to non-cytotoxic small molecules, thus setting free the bioactive GA units, for further antioxidant effects. Cytotoxicity studies performed on two cell lines demonstrated a high cell viability. Graphical Abstract Graphical Abstract.
Collapse
Affiliation(s)
- Silvana Alfei
- Dipartimento di Farmacia, Sezione di Chimica e Tecnologie Farmaceutiche e Alimentari, Università di Genova, Viale Cembrano 4, I-16148, Genova, Italy.
| | - Silvia Catena
- Dipartimento di Farmacia, Sezione di Chimica e Tecnologie Farmaceutiche e Alimentari, Università di Genova, Viale Cembrano 4, I-16148, Genova, Italy
| | - Federica Turrini
- Dipartimento di Farmacia, Sezione di Chimica e Tecnologie Farmaceutiche e Alimentari, Università di Genova, Viale Cembrano 4, I-16148, Genova, Italy
| |
Collapse
|
24
|
Chen T, Yang H, Yang M, Liu F, Wu J, Yang S, Wang J. Controlling DOPA adsorption via interacting with polyelectrolytes: layer structure and corrosion resistance. SOFT MATTER 2020; 16:4912-4918. [PMID: 32393946 DOI: 10.1039/d0sm00420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein adsorption on polyelectrolyte (PE) surfaces has aroused intensive attraction, but there are still few investigations on tuning the protein adsorption at a solid surface by controllable layer structures and surface properties of PE adlayers. Furthermore, there is a lack of understanding regarding the correlation between molecular conformation and anticorrosion performance of composite materials. With this in mind, we synthesized a series of PEs and constructed 3,4-dihydroxy-l-phenylalanine (l-DOPA) adlayers on the PE surfaces, monitoring the whole adsorption process in situ. A highly charged cationic PE surface exhibits a low adhesion of DOPA molecules, leading to a loose structure, rough surface morphology, and strong solvation effects and, accordingly, this kind of multilayer provides a poor anticorrosion capacity. In comparison, amphiphilic and highly charged cationic PE surfaces are in favor of DOPA adsorption and the formation of compact and smooth multilayers due to cation-π and hydrophobic interactions between DOPA and PEs. Interestingly, one of the multilayers exhibits a remarkable enhancement of inhibition efficiency of about 460-fold compared with that of the bare substrate, which is much higher than that of other anticorrosion coatings reported previously. Our findings reveal the interaction mechanism between DOPA and PE surfaces to achieve the controllable adsorption of biomolecules, providing a promising way to optimize the layer structures to improve the anticorrosion capacity.
Collapse
Affiliation(s)
- Ting Chen
- CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Hu Q, Wang Y, Xu L, Chen D, Cheng L. Transferrin Conjugated pH- and Redox-Responsive Poly(Amidoamine) Dendrimer Conjugate as an Efficient Drug Delivery Carrier for Cancer Therapy. Int J Nanomedicine 2020; 15:2751-2764. [PMID: 32368053 PMCID: PMC7184127 DOI: 10.2147/ijn.s238536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/21/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction A multifunctional redox- and pH-responsive polymeric drug delivery system is designed and investigated for targeted anticancer drug delivery to liver cancer. Methods The nanocarrier (His-PAMAM-ss-PEG-Tf, HP-ss-PEG-Tf) is constructed based on generation 4 polyamidoamine dendrimer (G4 PAMAM). Optimized amount of histidine (His) residues is grafted on the surface of PAMAM to obtain enhanced pH-sensitivity and proton-buffering capacity. Disulfide bonds (ss) are introduced between PAMAM and PEG to reach accelerated intracellular drug release. Transferrin (Tf) was applied to achieve active tumor targeting. Doxorubicin (DOX) is loaded in the hydrophobic cavity of the nanocarrier to exert its anti-tumor effect. Results The results obtained from in vitro and in vivo evaluation indicate that HP-ss-PEG-Tf/DOX complex has pH and redox dual-sensitive properties, and exhibit higher cellular uptake and cytotoxicity than the other control groups. Flow cytometry and confocal microscopy display internalization of HP-ss-PEG-Tf/DOX via clathrin mediated endocytosis and effective endosomal escape in HepG2 cancer cells. Additionally, cyanine 7 labeled HP-ss-PEG-Tf conjugate could quickly accumulate in the HepG2 tumor. Remarkably, HP-ss-PEG-Tf/DOX present superior anticancer activity, enhanced apoptotic activity and lower heart and kidney toxicity in vivo. Discussion Thus, HP-ss-PEG-Tf is proved to be a promising candidate for effective targeting delivery of DOX into the tumor.
Collapse
Affiliation(s)
- Qing Hu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China.,Department of Pharmaceutics, College of Pharmaceutical Sciences, Fujian Medical University, Fuzhou 350122, People's Republic of China
| | - Yifei Wang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Lu Xu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Dawei Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China.,School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Lifang Cheng
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
26
|
Dendrimers in gene delivery. PHARMACEUTICAL APPLICATIONS OF DENDRIMERS 2020. [DOI: 10.1016/b978-0-12-814527-2.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Gao YG, Lin X, Dang K, Jiang SF, Tian Y, Liu FL, Li DJ, Li Y, Miao ZP, Qian AR. Structure-activity relationship of novel low-generation dendrimers for gene delivery. Org Biomol Chem 2019; 16:7833-7842. [PMID: 30084471 DOI: 10.1039/c8ob01767k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Structure-activity relationship (SAR) studies are very critical to design ideal gene vectors for gene delivery. However, It is difficult to obtain SAR information of low-generation dendrimers due to the lack of easy structural modification ways. Here, we synthesized a novel family of rigid aromatic backbone-based low-generation polyamidoamine (PAMAM) dendrimers. According to the number of primary amines, they were divided into two types: four-amine-containing PAMAM (DL1-DL5) and eight-amine-containing PAMAM (DL6-DL10). Due to the introduction of a rigid aromatic backbone, the low-generation PAMAM could be modified easier by different hydrophobic aliphatic chains. Several assays were used to study the interactions of the PAMAM dendrimers with plasmid DNA, and the results revealed that they not only had good DNA binding ability but also could efficiently condense DNA into spherical-shaped nanoparticles with suitable sizes and zeta potentials. The SAR studies indicated that the gene-transfection efficiency of the synthesized materials depended on not only the structure of their hydrophobic chains but also the number of primary amines. It was found that four-amine-containing PAMAM prepared from oleylamine (DL5) gave the best transfection efficiency, which was 3 times higher than that of lipofectamine 2000 in HEK293 cells. The cellular uptake mechanism mediated by DL5 was further investigated, and the results indicated that DL5/DNA complexes entered the cells mainly via caveolae and clathrin-mediated endocytosis. In addition, these low-generation PAMAMs modified with a single hydrophobic tail showed lower toxicity than lipofectamine 2000 in MC3T3-E1, MG63, HeLa, and HEK293 cells. These results reveal that such a type of low-generation polyamidoamines might be promising non-viral gene vectors, and also give us clues for the design of safe and high-efficiency gene vectors.
Collapse
Affiliation(s)
- Yong-Guang Gao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Drug delivery systems are molecular platforms in which an active compound is packed into or loaded on a biocompatible nanoparticle. Such a solution improves the activity of the applied drug or decreases its side effects. Dendrimers are promising molecular platforms for drug delivery due to their unique properties. These macromolecules are known for their defined size, shape, and molecular weight, as well as their monodispersity, the presence of the void space, tailorable structure, internalization by cells, selectivity toward cells and intracellular components, protection of guest molecules, and controllable release of the cargo. Dendrimers were tested as carriers of various molecules and, simultaneously, their toxicity was examined using different cell lines. It was discovered that, in general, dendrimer cytotoxicity depended on the generation, the number of surface groups, and the nature of terminal moieties (anionic, neutral, or cationic). Higher cytotoxicity occurred for higher-generation dendrimers and for dendrimers with positive charges on the surface. In order to decrease the cytotoxicity of dendrimers, scientists started to introduce different chemical modifications on the periphery of the nanomolecule. Dendrimers grafted with polyethylene glycol (PEG), acetyl groups, carbohydrates, and other moieties did not affect cell viability, or did so only slightly, while still maintaining other advantageous properties. Dendrimers clearly have great potential for wide utilization as drug and gene carriers. Moreover, some dendrimers have biological properties per se, being anti-fungal, anti-bacterial, or toxic to cancer cells without affecting normal cells. Therefore, intrinsic cytotoxicity is a comprehensive problem and should be considered individually depending on the potential destination of the nanoparticle.
Collapse
|
29
|
Sun X, Jiang L, Wang C, Sun S, Mei L, Huang L. Systematic investigation of intracellular trafficking behavior of one-dimensional alumina nanotubes. J Mater Chem B 2019; 7:2043-2053. [PMID: 32254808 DOI: 10.1039/c8tb03349h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanotube materials exhibit high drug loading capacity and controlled drug release properties, providing new opportunities for drug delivery. However, the intracellular trafficking paths of 1-dimensional (1D) nanostructured materials are poorly understood compared to their spherical counterparts, impeding the broad application of 1D materials as drug carriers. Here, we report the intracellular trafficking mechanism of nontoxic and biocompatible nanomaterials called anodic alumina nanotubes (AANTs), a model for 1D materials with a geometry that can be precisely engineered. The results indicated that AANTs enter the cells mainly by caveolin endocytosis and micropinocytosis and that cells use a novel macropinocytosis-late endosomes (LEs)-lysosomes route to transport AANTs. Moreover, liposomes (marked by DsRed-Rab18) are fully involved in the classical pathway of early endosomes (EEs)/LEs developing into lysosomes. The AANTs were delivered to the cells via two pathways: slow endocytosis recycling and GLUT4 exocytosis vesicles. The AANTs also induced intracellular autophagy and then degraded via the endolysosomal pathway. Blocking endolysosomal pathways using autophagy inhibitors prevented the degradation of AANTs through lysosomes. Our results add new insights into the pathways and mechanisms of intracellular trafficking of AANTs, and suggest that intracellular trafficking and lysosomal degradation are highly interdependent and important for efficient drug delivery, and should be evaluated together for drug carrier development.
Collapse
Affiliation(s)
- Xiangyu Sun
- Department of Physics, Tsinghua University, Beijing 10008, China.
| | | | | | | | | | | |
Collapse
|
30
|
Alfei S, Turrini F, Catena S, Zunin P, Parodi B, Zuccari G, Pittaluga AM, Boggia R. Preparation of ellagic acid micro and nano formulations with amazingly increased water solubility by its entrapment in pectin or non-PAMAM dendrimers suitable for clinical applications. NEW J CHEM 2019. [DOI: 10.1039/c8nj05657a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Innovative antioxidant ellagic acid (EA) formulations suitable for oral and parenteral EA administration were achieved avoiding the use of harmful additives.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DiFAR)
- University of Genoa
- 4-I-16148 - Genova (GE)
- Italy
| | - Federica Turrini
- Department of Pharmacy (DiFAR)
- University of Genoa
- 4-I-16148 - Genova (GE)
- Italy
| | - Silvia Catena
- Department of Pharmacy (DiFAR)
- University of Genoa
- 4-I-16148 - Genova (GE)
- Italy
| | - Paola Zunin
- Department of Pharmacy (DiFAR)
- University of Genoa
- 4-I-16148 - Genova (GE)
- Italy
| | - Brunella Parodi
- Department of Pharmacy (DiFAR)
- University of Genoa
- 4-I-16148 - Genova (GE)
- Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DiFAR)
- University of Genoa
- 4-I-16148 - Genova (GE)
- Italy
| | | | - Raffaella Boggia
- Department of Pharmacy (DiFAR)
- University of Genoa
- 4-I-16148 - Genova (GE)
- Italy
| |
Collapse
|
31
|
Jiang L, Zhou S, Zhang X, Wu W, Jiang X. Dendrimer-based nanoparticles in cancer chemotherapy and gene therapy. SCIENCE CHINA MATERIALS 2018; 61:1404-1419. [DOI: 10.1007/s40843-018-9242-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/05/2018] [Indexed: 01/06/2025]
|
32
|
Jiang L, Liang X, Liu G, Zhou Y, Ye X, Chen X, Miao Q, Gao L, Zhang X, Mei L. The mechanism of lauric acid-modified protein nanocapsules escape from intercellular trafficking vesicles and its implication for drug delivery. Drug Deliv 2018; 25:985-994. [PMID: 29667445 PMCID: PMC6058570 DOI: 10.1080/10717544.2018.1461954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022] Open
Abstract
Protein nanocapsules have exhibited promising potential applications in the field of protein drug delivery. A major issue with various promising nano-sized biotherapeutics including protein nanocapsules is that owing to their particle size they are subject to cellular uptake via endocytosis, and become entrapped and then degraded within endolysosomes, which can significantly impair their therapeutic efficacy. In addition, many nano-sized biotherapeutics could be also sequestered by autophagosomes and degraded through the autolysosomal pathway. Thus, a limiting step in achieving an effective protein therapy is to facilitate the endosomal escape and auto-lysosomal escape to ensure cytosolic delivery of the protein drugs. Here, we prepared a protein nanocapsule based on BSA (nBSA) and the BSA nanocapsules modified with a bilayer of lauric acid (LA-nBSA) to investigate the escape effects from the endosome and autophagosome. The size distribution of nBSA and LA-nBSA analyzed using DLS presents a uniform diameter centered at 10 nm and 16 nm. The data also showed that FITC-labeled nBSA and LA-nBSA were taken up by the cells mainly through Arf-6-dependent endocytosis and Rab34-mediated macropinocytosis. In addition, LA-nBSA could efficiently escape from endosomal before the degradation in endo-lysosomes. Autophagy could also sequester the LA-nBSA through p62 autophagosome vesicles. These two types of nanocapsules underwent different intracellular destinies and lauric acid (LA) coating played a vital role in intracellular particle retention. In conclusion, the protein nanocapsules modified with LA could enhance the protein nanocapsules escape from intercellular trafficking vesicles, and protect the protein from degradation by the lysosomes.
Collapse
Affiliation(s)
- Lijuan Jiang
- School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Xin Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, PR China
| | - Gan Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, PR China
| | - Yun Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, PR China
| | - Xinyu Ye
- School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Xiuli Chen
- School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Qianwei Miao
- School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Li Gao
- The Affiliated Hospital of Guilin Medical College, Guilin, PR China
| | - Xudong Zhang
- School of Life Sciences, Tsinghua University, Beijing, PR China
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
33
|
Saher O, Rocha CSJ, Zaghloul EM, Wiklander OPB, Zamolo S, Heitz M, Ezzat K, Gupta D, Reymond JL, Zain R, Hollfelder F, Darbre T, Lundin KE, El Andaloussi S, Smith CIE. Novel peptide-dendrimer/lipid/oligonucleotide ternary complexes for efficient cellular uptake and improved splice-switching activity. Eur J Pharm Biopharm 2018; 132:29-40. [PMID: 30193928 DOI: 10.1016/j.ejpb.2018.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/15/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022]
Abstract
Despite the advances in gene therapy and in oligonucleotide (ON) chemistry, efficient cellular delivery remains an obstacle. Most current transfection reagents suffer from low efficacy or high cytotoxicity. In this report, we describe the synergism between lipid and dendrimer delivery vectors to enhance the transfection efficiency, while avoiding high toxicity. We screened a library of 20 peptide dendrimers representing three different generations and evaluated their capability to deliver a single-stranded splice-switching ON after formulating with lipids (DOTMA/DOPE). The transfection efficiency was analyzed in 5 reporter cell lines, in serum-free and serum conditions, and with 5 different formulation protocols. All formulations displayed low cytotoxicity to the majority of the tested cell lines. The complex sizes were < 200 nm; particle size distributions of effective mixtures were < 80 nm; and, the zeta potential was dependent on the formulation buffer used. The best dendrimer enhanced transfection in a HeLa reporter cell line by 30-fold compared to untreated cells under serum-free conditions. Interestingly, addition of sucrose to the formulation enabled - for the first time - peptide dendrimers/lipid complexes to efficiently deliver splice-switching ON in the presence of serum, reaching 40-fold increase in splice switching. Finally, in vivo studies highlighted the potential of these formulae to change the biodistribution pattern to be more towards the liver (90% of injected dose) compared to the kidneys (5% of injected dose) or to unformulated ON. This success encourages further development of peptide dendrimer complexes active in serum and future investigation of mechanisms behind the influence of additives on transfection efficacy.
Collapse
Affiliation(s)
- Osama Saher
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden; Department Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Cristina S J Rocha
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Eman M Zaghloul
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Oscar P B Wiklander
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Susanna Zamolo
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Marc Heitz
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Kariem Ezzat
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Dhanu Gupta
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden; Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden.
| |
Collapse
|
34
|
Alfei S, Catena S, Ponassi M, Rosano C, Zoppi V, Spallarossa A. Hydrophilic and amphiphilic water-soluble dendrimer prodrugs suitable for parenteral administration of a non-soluble non-nucleoside HIV-1 reverse transcriptase inhibitor thiocarbamate derivative. Eur J Pharm Sci 2018; 124:153-164. [PMID: 30170211 DOI: 10.1016/j.ejps.2018.08.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/27/2018] [Accepted: 08/25/2018] [Indexed: 12/20/2022]
Abstract
Drugs delivered by proper carriers enter into the cells much more rapidly and carry out their action much more promptly than in the free forms. A high drug concentration can be sustained for longer periods of time at the target site in the cell. In in vivo conditions, this would translate into a reduction of systemic toxicity, dosage and frequency of dosing. Dendritic polymers significantly affect drug delivery in terms of reaching the target site, modifying the bio-distribution of the drug, and enhancing the efficacy of different drugs including anticancer compounds. 2-({[2-({[(2-tolyl)amino]carbonothioyl}oxy)ethyl]amino}carbo-nyl)benzoic acid 1 is a thiocarbamate derivative belonging to an already reported class of non-nucleoside HIV-1 reverse transcriptase inhibitors. In in vitro assay it showed no cytotoxic effects but was endowed with very low solubility and poor activity against wild-type HIV-1 (EC50 = 27 μM). With the aim at improving its water solubility, 1 has been successfully incorporated inside non-toxic amino acids-modified core-shell hetero dendrimers. IR, NMR, zeta potential, mean size of particles, buffer capacity and in vitro release profile of prepared materials were reported. All dendriplexes were evaluated in cell-based assays to assess their cytotoxic profile. The obtained complexes, which harmonize a peripheral polycationic character and a buffer capacity which presuppose efficient cells penetration and increased residence time with a not PAMAM structured biodegradable scaffold, were well water-soluble and could rationally appear as a promising set of prodrugs for safe in vivo administrations.
Collapse
Affiliation(s)
- Silvana Alfei
- Dipartimento di Farmacia, Università di Genova, Viale Cembrano 4, I-16148 Genova, Italy.
| | - Silvia Catena
- Dipartimento di Farmacia, Università di Genova, Viale Cembrano 4, I-16148 Genova, Italy
| | - Marco Ponassi
- IRCCS Policlinico San Martino, Largo R. Benzi 10, I-16132 Genova, Italy
| | - Camillo Rosano
- IRCCS Policlinico San Martino, Largo R. Benzi 10, I-16132 Genova, Italy
| | - Vittoria Zoppi
- Dipartimento di Farmacia, Università di Genova, Viale Cembrano 4, I-16148 Genova, Italy
| | - Andrea Spallarossa
- Dipartimento di Farmacia, Università di Genova, Viale Cembrano 4, I-16148 Genova, Italy
| |
Collapse
|
35
|
Alfei S, Catena S. Synthesis and characterization of versatile amphiphilic dendrimers peripherally decorated with positively charged amino acids. POLYM INT 2018. [DOI: 10.1002/pi.5680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Silvana Alfei
- Dipartimento di Farmacia, Sezione di Chimica e Tecnologie Farmaceutiche e Alimentari; Università di Genova; Genoa Italy
| | - Silvia Catena
- Dipartimento di Farmacia, Sezione di Chimica e Tecnologie Farmaceutiche e Alimentari; Università di Genova; Genoa Italy
| |
Collapse
|
36
|
Alfei S, Catena S. Synthesis and characterization of fourth generation polyester-based dendrimers with cationic amino acids-modified crown as promising water soluble biomedical devices. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4396] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Silvana Alfei
- Dipartimento di Farmacia, Sezione di Chimica e Tecnologie Farmaceutiche e Alimentari; Università di Genova; Viale Cembrano 4 I-16148 Genoa Italy
| | - Silvia Catena
- Dipartimento di Farmacia, Sezione di Chimica e Tecnologie Farmaceutiche e Alimentari; Università di Genova; Viale Cembrano 4 I-16148 Genoa Italy
| |
Collapse
|
37
|
Tang B, Zaro JL, Shen Y, Chen Q, Yu Y, Sun P, Wang Y, Shen WC, Tu J, Sun C. Acid-sensitive hybrid polymeric micelles containing a reversibly activatable cell-penetrating peptide for tumor-specific cytoplasm targeting. J Control Release 2018; 279:147-156. [DOI: 10.1016/j.jconrel.2018.04.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/20/2018] [Accepted: 04/09/2018] [Indexed: 12/29/2022]
|
38
|
Karim ME, Tha KK, Othman I, Borhan Uddin M, Chowdhury EH. Therapeutic Potency of Nanoformulations of siRNAs and shRNAs in Animal Models of Cancers. Pharmaceutics 2018; 10:E65. [PMID: 29861465 PMCID: PMC6026921 DOI: 10.3390/pharmaceutics10020065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
RNA Interference (RNAi) has brought revolutionary transformations in cancer management in the past two decades. RNAi-based therapeutics including siRNA and shRNA have immense scope to silence the expression of mutant cancer genes specifically in a therapeutic context. Although tremendous progress has been made to establish catalytic RNA as a new class of biologics for cancer management, a lot of extracellular and intracellular barriers still pose a long-lasting challenge on the way to clinical approval. A series of chemically suitable, safe and effective viral and non-viral carriers have emerged to overcome physiological barriers and ensure targeted delivery of RNAi. The newly invented carriers, delivery techniques and gene editing technology made current treatment protocols stronger to fight cancer. This review has provided a platform about the chronicle of siRNA development and challenges of RNAi therapeutics for laboratory to bedside translation focusing on recent advancement in siRNA delivery vehicles with their limitations. Furthermore, an overview of several animal model studies of siRNA- or shRNA-based cancer gene therapy over the past 15 years has been presented, highlighting the roles of genes in multiple cancers, pharmacokinetic parameters and critical evaluation. The review concludes with a future direction for the development of catalytic RNA vehicles and design strategies to make RNAi-based cancer gene therapy more promising to surmount cancer gene delivery challenges.
Collapse
Affiliation(s)
- Md Emranul Karim
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| | - Kyi Kyi Tha
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| | - Mohammad Borhan Uddin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
39
|
Alfei S, Taptue GB, Catena S, Bisio A. Synthesis of Water-soluble, Polyester-based Dendrimer Prodrugs for Exploiting Therapeutic Properties of Two Triterpenoid Acids. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2124-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Hu C, Gu F, Tai Z, Yao C, Gong C, Xia Q, Gao Y, Gao S. Synergistic effect of reduced polypeptide micelle for co-delivery of doxorubicin and TRAIL against drug-resistance in breast cancer. Oncotarget 2018; 7:61832-61844. [PMID: 27557520 PMCID: PMC5308694 DOI: 10.18632/oncotarget.11451] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022] Open
Abstract
Cationic peptides as a non-viral gene vector have become a hotspot of research because of their high transfection efficcacy and safety. Based on our previous study, we synthesized a cationic reduction-responsive vector based on disulfide cross-linked L-arginine, L-histidine and lipoic acid (LHRss) as the co-carrier of both doxorubicin (DOX) and the necrosis factor-related apoptosis-inducing ligand (pTRAIL). The LHRss/DOX/TRAIL construct has reduction-sensitive behavior and an enhanced endosomal escape ability to increase the cytotoxicity of DOX and the transfection efficiency. Further, the LHRss/DOX/TRAIL construct increased the accumulation of DOX and promoted the expression of pTRAIL, thus increasing cellular apoptosis by 83.7% in MCF-7/ADR cells. In addition, the in vivo biodistribution results showed that the LHRss/DOX/TRAIL construct could target tumors well. The in vivo anti-tumor effect study demonstrated that the LHRss/DOX/TRAIL construct inhibited tumor growth markedly, with a tumor inhibitory rate of 94.0%. The co-delivery system showed a significant synergistic anti-tumor effect. The LHRss/DOX/TRAIL construct may prove to be a promising co-delivery vector for the effective treatment of drug resistant breast cancer.
Collapse
Affiliation(s)
- Chuling Hu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Fenfen Gu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zongguang Tai
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chong Yao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chunai Gong
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Qingming Xia
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yuan Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shen Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
41
|
He D, Lin H, Yu Y, Shi L, Tu J. Precisely Defined Polymers for Efficient Gene Delivery. Top Curr Chem (Cham) 2018; 376:2. [PMID: 29335799 DOI: 10.1007/s41061-017-0183-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/27/2017] [Indexed: 01/03/2023]
|
42
|
Synthesis and characterization of polyester-based dendrimers containing peripheral arginine or mixed amino acids as potential vectors for gene and drug delivery. Macromol Res 2017. [DOI: 10.1007/s13233-017-5160-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Gene Delivery Approaches for Mesenchymal Stem Cell Therapy: Strategies to Increase Efficiency and Specificity. Stem Cell Rev Rep 2017; 13:725-740. [DOI: 10.1007/s12015-017-9760-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Sun P, Huang W, Kang L, Jin M, Fan B, Jin H, Wang QM, Gao Z. siRNA-loaded poly(histidine-arginine) 6-modified chitosan nanoparticle with enhanced cell-penetrating and endosomal escape capacities for suppressing breast tumor metastasis. Int J Nanomedicine 2017; 12:3221-3234. [PMID: 28458542 PMCID: PMC5402910 DOI: 10.2147/ijn.s129436] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An ideal carrier that delivers small interfering RNA (siRNA) should be designed based on two criteria: cellular-mediated internalization and endosomal escape. Poly(histidine-arginine)6(H6R6) peptide was introduced into chitosan (CS) to create a new CS derivative for siRNA delivery, 6-polyarginine (R6) as cell-penetrating peptides facilitated nanoparticle cellular internalization has been proved in our previous research, and 6-polyhistidine (H6) mediated the nanoparticle endosome escape resulted in the siRNA rapid releasing into tumor cytoplasm. H6R6-modified CS nanoparticles showed higher transfection efficiency and better endosomal escape capacity compared to ungroomed CS nanoparticle in vitro. Noticeably, H6R6-modified CS nanoparticles effectively inhibited tumor cell growth and metastases in vivo and significantly improved survival ratio. Therefore, we concluded that H6R6-modified CS copolymer can act as an ideal carrier for siRNA delivery and as a promising candidate in breast cancer therapy.
Collapse
Affiliation(s)
- Ping Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Lin Kang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Bo Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Hongyan Jin
- Yanbian University Hospital, Jilin, People's Republic of China
| | - Qi-Ming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| |
Collapse
|
45
|
Chen J, Guan X, Hu Y, Tian H, Chen X. Peptide-Based and Polypeptide-Based Gene Delivery Systems. Top Curr Chem (Cham) 2017; 375:32. [DOI: 10.1007/s41061-017-0115-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
|
46
|
Achieving high gene delivery performance with caveolae-mediated endocytosis pathway by (l)-arginine/(l)-histidine co-modified cationic gene carriers. Colloids Surf B Biointerfaces 2016; 148:73-84. [DOI: 10.1016/j.colsurfb.2016.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/02/2016] [Accepted: 08/21/2016] [Indexed: 11/20/2022]
|
47
|
Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies. Pharmacol Res 2016; 114:56-66. [DOI: 10.1016/j.phrs.2016.10.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/08/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022]
|
48
|
Duan X, Chen H, Fan L, Kong J. Drug Self-Assembled Delivery System with Dual Responsiveness for Cancer Chemotherapy. ACS Biomater Sci Eng 2016; 2:2347-2354. [DOI: 10.1021/acsbiomaterials.6b00559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao Duan
- MOE
Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key
Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Heng Chen
- MOE
Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key
Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Li Fan
- Department
of Pharmaceutical Chemistry and Analysis, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, P. R. China
| | - Jie Kong
- MOE
Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key
Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| |
Collapse
|
49
|
Liu C, Jiang K, Tai L, Liu Y, Wei G, Lu W, Pan W. Facile Noninvasive Retinal Gene Delivery Enabled by Penetratin. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19256-67. [PMID: 27400087 DOI: 10.1021/acsami.6b04551] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Gene delivery to the posterior segment of the eye is severely hindered by the impermeability of defensive barriers; therefore, in clinical settings, genomic medicines are mainly administered by intravitreal injection. We previously found that penetratin could transport the covalently conjugated fluorophore to the fundus oculi by topical instillation. In this study, gene delivery systems enabled by penetratin were designed based on electrostatic binding to target the retina via a noninvasive administration route and prepared with red fluorescent protein plasmid (pRFP) and/or poly(amidoamine) dendrimer of low molecular weight (G3 PAMAM). Formulation optimization, structure confirmation, and characterization were subsequently conducted. Penetratin alone showed limited ability to condense the plasmid but had powerful uptake and transfection by corneal and conjunctival cells. G3 PAMAM was nontoxic to the ocular cells, and when introduced into the penetratin-incorporated complex, the plasmid was condensed more compactly. Therefore, further improved cellular uptake and transfection were observed. After being instilled in the conjunctival sac of rats, the intact complexes penetrated rapidly from the ocular surface into the fundus and resided in the retina for more than 8 h, which resulted in efficient expression of RFP in the posterior segment. Intraocular distribution of the complexes suggested that the plasmids were absorbed into the eyes through a noncorneal pathway during which penetratin played a crucial role. This study provides a facile and friendly approach for intraocular gene delivery and is an important step toward the development of noninvasive gene therapy for posterior segment diseases.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Kuan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Lingyu Tai
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 201203, China
- School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, China
| | - Yu Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, China
| |
Collapse
|
50
|
Gu J, Chen X, Ren X, Zhang X, Fang X, Sha X. CD44-Targeted Hyaluronic Acid-Coated Redox-Responsive Hyperbranched Poly(amido amine)/Plasmid DNA Ternary Nanoassemblies for Efficient Gene Delivery. Bioconjug Chem 2016; 27:1723-36. [DOI: 10.1021/acs.bioconjchem.6b00240] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jijin Gu
- Key
Laboratory of Smart Drug Delivery (Fudan University), Ministry of
Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
- Laboratory
for Drug Delivery and Biomaterials, Faculty of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, Manitoba R3E 0T5, Canada
| | - Xinyi Chen
- Key
Laboratory of Smart Drug Delivery (Fudan University), Ministry of
Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Xiaoqing Ren
- Key
Laboratory of Smart Drug Delivery (Fudan University), Ministry of
Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Xiulei Zhang
- Key
Laboratory of Smart Drug Delivery (Fudan University), Ministry of
Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Xiaoling Fang
- Key
Laboratory of Smart Drug Delivery (Fudan University), Ministry of
Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Xianyi Sha
- Key
Laboratory of Smart Drug Delivery (Fudan University), Ministry of
Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| |
Collapse
|