1
|
Liu Q, Yao X, Zhou L, Wu W, Cheng J, Zhang Z, Li Z, Sun H, Jin J, Zhang M, Wu H, Zhu S, Yang W, Zhu L. A General Molecular Structural Design for Highly Efficient Photopyroptosis that can be Activated within 10 s Irradiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401145. [PMID: 38692574 DOI: 10.1002/adma.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Photopyroptosis is an emerging research branch of photodynamic therapy (PDT), whereas there remains a lack of molecular structural principles to fabricate photosensitizers for triggering a highly efficient pyroptosis. Herein, a general and rational structural design principle to implement this hypothesis, is proposed. The principle relies on the clamping of cationic moieties (e.g., pyridinium, imidazolium) onto one photosensitive core to facilitate a considerable mitochondrial targeting (both of the inner and the outer membranes) of the molecules, thus maximizing the photogenerated reactive oxygen species (ROS) at the specific site to trigger the gasdermin E-mediated pyroptosis. Through this design, the pyroptotic trigger can be achieved in a minimum of 10 s of irradiation with a substantially low light dosage (0.4 J cm⁻2), compared to relevant work reported (up to 60 J cm⁻2). Moreover, immunotherapy with high tumor inhibition efficiency is realized by applying the synthetic molecules alone. This structural paradigm is valuable for deepening the understanding of PDT (especially the mitochondrial-targeted PDT) from the perspective of pyroptosis, toward the future development of the state-of-the-art form of PDT.
Collapse
Affiliation(s)
- Qingsong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
- First Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China
- Department of Burns and Plastic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xianxian Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Lulu Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Wenfeng Wu
- First Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China
| | - Jianshuo Cheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Zexin Zhang
- Department of Burns and Plastic & Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Zhongyu Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hao Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jian Jin
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hongwei Wu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Shihui Zhu
- First Affiliated Hospital of Naval Military Medical University, Shanghai, 200438, China
- Department of Burns and Plastic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
2
|
He F, Hu S, Liu R, Li X, Guo S, Wang H, Tian G, Qi Y, Wang T. Decoding the biological toxicity of phenanthrene on intestinal cells of Eisenia fetida: Effects, toxicity pathways and corresponding mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166903. [PMID: 37683861 DOI: 10.1016/j.scitotenv.2023.166903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/13/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Phenanthrene is frequently detected and exists extensively in the soil environment, and its residues inevitably impose a significant threat to soil organisms. Exposure to and toxicity of phenanthrene on earthworms has been extensively studied before, however, the possible mechanisms and related pathways associated with phenanthrene-triggered toxicity at the intestinal cell level remain unclear. Herein, primary intestinal cells isolated from Eisenia fetida (Annelida, Oligochaeta) intestine were used as targeted receptors to probe the molecular mechanisms involved in ROS-mediated damaging effects and the potential pathways of phenanthrene-induced toxicity at cellular and sub-cellular levels. Results indicated that phenanthrene exposure induced oxidative stress by activating intracellular ROS (elevated O2-, H2O2, and OH- content) bursts in E. fetida intestinal cells, causing various oxidative damage effects, including lipid peroxidation (increased MDA content), protein oxidation (enhanced PCO levels), and DNA damage (enhanced 8-OHdG levels). The enzymatic and non-enzymatic strategies in earthworm cells were activated to mitigate these detrimental effects by regulating ROS-mediated pathways involving defense regulation. Also, phenanthrene stress destroyed the cell membrane of E. fetida intestinal cells, resulting in cellular calcium homeostasis disruption and cellular energetic alteration, ultimately causing cytotoxicity and cell apoptosis/death. More importantly, the mitochondrial dysfunction in E. fetida cells was induced by phenanthrene-caused mitochondrial membrane depolarization, which in turn caused un-controlled ROS burst and induced apoptosis through mitochondria-mediated caspase-3 activation and ROS-mediated mitochondrial-dependent pathway. Furthermore, exposure to phenanthrene activated an abnormal mRNA expression profile associated with defense regulation (e.g., Hsp70, MT, CRT, SOD, CAT, and GST genes) in E. fetida intestinal cells, resulting in various cellular dysfunctions and pathological conditions, eventually, apoptotic cell death. Taken together, this study offers valuable insights for probing the toxic effects and underlying mechanisms posed by phenanthrene at the intestinal cell level, and is of great significance to estimate the detrimental side effects of phenanthrene on soil ecological health.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Hao Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| |
Collapse
|
3
|
Zhao K, Pu S, Sun L, Zhou D. Gentiopicroside-Loaded Chitosan Nanoparticles Inhibit TNF-α-Induced Proliferation and Inflammatory Response in HaCaT Keratinocytes and Ameliorate Imiquimod-Induced Dermatitis Lesions in Mice. Int J Nanomedicine 2023; 18:3781-3800. [PMID: 37457802 PMCID: PMC10348341 DOI: 10.2147/ijn.s406649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/15/2023] [Indexed: 07/18/2023] Open
Abstract
Purpose In this study, we aimed to report the biological characteristics of the first successful synthesis of gentiopicroside-loaded chitosan nanoparticles and to evaluate the therapeutic effects and preliminary mechanisms of gentiopicrin-loaded chitosan on psoriasis-like cell and mouse models. Methods Gentiopicroside-loaded chitosan nanoparticles (CHI-GEN) were prepared, and their biological characteristics were evaluated. HaCaT keratinocytes were stimulated with TNF-α to establish a psoriatic keratinocyte model. MTT assay and flow cytometry were used to measure cell viability and apoptosis, respectively. mRNA levels of K17, VEGF A, and IL-6 and IL-23A were detected using qRT-PCR. These tests were used to preliminarily assess the effects of CHI-GEN on keratinocyte proliferation and inflammation. Imiquimod was used to construct a psoriasis-like mice model. The severity of psoriasis was scored based on the psoriasis area severity index (PASI), H&E staining was used to observe the histological changes and the level of inflammation and cell proliferation of skin lesions was evaluated by measuring the mRNA levels of K17, IL-23A, and IL-17A using qRT-PCR. Results The average particle size of CHI-GEN nanoparticles was approximately 100 nm, and the zeta potential was 2.69 ± 0.87 mV. The cumulative release was 67.2% in solutions of pH 5.5 at 24 h. GEN reduced TNF-α-induced excessive proliferation of HaCaT keratinocytes and downregulated mRNA levels of K17, VEGF A, and inflammatory cytokines IL-6 and IL-23A, which was more obvious in the CHI-GEN treatment group. Additionally, CHI-GEN significantly improved the severity of skin lesions in psoriasis-like mice and downregulated the mRNA expressions of IL-6, IL-23A, and IL-17A in mice skin lesions. Conclusion In conclusion, we successfully prepared gentiopicrin-chitosan nanoparticles. Our results show that these nanoparticles have anti-psoriasis activity, inhibits keratinocyte proliferation and improves symptoms in psoriasis model mice and can be used to develop an effective strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Kaixuan Zhao
- Dermatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 10010, People’s Republic of China
| | - Siqi Pu
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Liyun Sun
- Dermatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 10010, People’s Republic of China
| | - Dongmei Zhou
- Dermatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 10010, People’s Republic of China
| |
Collapse
|
4
|
Li X, Li X, Yang J, Du Y, Chen L, Zhao G, Ye T, Zhu Y, Xu X, Deng L, Cui W. In Situ Sustained Macrophage-Targeted Nanomicelle-Hydrogel Microspheres for Inhibiting Osteoarthritis. RESEARCH (WASHINGTON, D.C.) 2023; 6:0131. [PMID: 37223475 PMCID: PMC10202383 DOI: 10.34133/research.0131] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/10/2023] [Indexed: 05/25/2023]
Abstract
There are still challenges in applying drug nanocarriers for in situ sustained macrophage targeting and regulation, due to the rapid clearance of nanocarriers and burst drug release in vivo. Herein, a nanomicelle-hydrogel microsphere, characterized by its macrophage-targeted nanosized secondary structure that allows it to accurately bind to M1 macrophages through active endocytosis, is employed for in situ sustained macrophage targeting and regulation, and addresses the insufficient osteoarthritis therapeutic efficacy caused by rapid clearance of drug nanocarriers. The 3-dimensional structure of a microsphere can prevent the rapid escape and clearance of a nanomicelle, thus keeping it in joints, while the ligand-guided secondary structure can carry drugs to accurately target and enter M1 macrophages, and release drugs via the transition from hydrophobicity to hydrophilicity of nanomicelles under inflammatory stimulation inside the macrophages. The experiments show that the nanomicelle-hydrogel microsphere can in situ sustainably target and regulate M1 macrophages for more than 14 days in joints, and attenuate local "cytokine storm" by continuous M1 macrophage apoptosis promotion and polarization inhibition. This micro/nano-hydrogel system shows excellent ability to sustainably target and regulate macrophage, realizes the improvement of drug utilization and efficacy inside the macrophage, and thereby can be a potential platform for treating macrophage-related diseases.
Collapse
Affiliation(s)
| | | | | | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Liang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Gang Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Tingjun Ye
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Yuan Zhu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Xiangyang Xu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| |
Collapse
|
5
|
Liu S, Wei W, Wang J, Chen T. Theranostic applications of selenium nanomedicines against lung cancer. J Nanobiotechnology 2023; 21:96. [PMID: 36935493 PMCID: PMC10026460 DOI: 10.1186/s12951-023-01825-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/18/2023] [Indexed: 03/21/2023] Open
Abstract
The incidence and mortality rates of lung cancer are among the highest in the world. Traditional treatment methods include surgery, chemotherapy, and radiotherapy. Although rapid progress has been achieved in the past decade, treatment limitations remain. It is therefore imperative to identify safer and more effective therapeutic methods, and research is currently being conducted to identify more efficient and less harmful drugs. In recent years, the discovery of antitumor drugs based on the essential trace element selenium (Se) has provided good prospects for lung cancer treatments. In particular, compared to inorganic Se (Inorg-Se) and organic Se (Org-Se), Se nanomedicine (Se nanoparticles; SeNPs) shows much higher bioavailability and antioxidant activity and lower toxicity. SeNPs can also be used as a drug delivery carrier to better regulate protein and DNA biosynthesis and protein kinase C activity, thus playing a role in inhibiting cancer cell proliferation. SeNPs can also effectively activate antigen-presenting cells to stimulate cell immunity, exert regulatory effects on innate and regulatory immunity, and enhance lung cancer immunotherapy. This review summarizes the application of Se-based species and materials in lung cancer diagnosis, including fluorescence, MR, CT, photoacoustic imaging and other diagnostic methods, as well as treatments, including direct killing, radiosensitization, chemotherapeutic sensitization, photothermodynamics, and enhanced immunotherapy. In addition, the application prospects and challenges of Se-based drugs in lung cancer are examined, as well as their forecasted future clinical applications and sustainable development.
Collapse
Affiliation(s)
- Shaowei Liu
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Weifeng Wei
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jinlin Wang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Tianfeng Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Deng J, Wang R, Huang S, Ding J, Zhou W. Macrophages-regulating nanomedicines for sepsis therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Balde A, Kim SK, Abdul NR. Crab (Charybdis natator) exoskeleton derived chitosan nanoparticles for the in vivo delivery of poorly water-soluble drug: Ibuprofen. Int J Biol Macromol 2022; 212:283-293. [PMID: 35609839 DOI: 10.1016/j.ijbiomac.2022.05.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 01/01/2023]
Abstract
The study aims to extract and purify chitosan (CS) from the exoskeleton of crab (C. natator) and develop ibuprofen (IBU) encapsulated CS nanoparticles (IBU-CSNPs). Analysis of purified CS revealed characteristic functional and crystallinity peaks. Moreover, morphological analysis of prepared IBU-CSNPs showed uniform spherical shape with a size range of 40-100 nm whereas encapsulation efficiency (EE%) and loading capacity (LC%) were estimated to be 68.94 ± 1.61% and 28 ± 1.18% respectively. Further, in vitro release profile of IBU from IBU-CSNPs was observed to be in biphasic form with initial release up to 15 h followed by the sustained release in different test conditions. Further, the effects of purified CS on the viability of RAW264.7 cells exhibited no toxic effects in higher concentrations. Furthermore, fluorescein isothiocyanate (FITC) conjugated nanoparticles (FITC-IBU-CSNPs) were investigated on in vivo model of adult zebrafish for time-dependent circulation and accumulation of the drug through the nano-carrier system. It was observed that the drug diffusion from the nanoparticles was in a sustained manner throughout the gastrointestinal region which resulted in suppression of inflammation. Overall, this study provides an effective and facile process for preparing a crab CS-based nano-carrier system used for the delivery of IBU in vivo which may help in the curing of prolonged chronic inflammatory diseases. Moreover, it may also help to reduce adverse effects of these drugs in the gastrointestinal tract such as ulcers and bleeding.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, Tamilnadu, India
| | - Se-Kwon Kim
- Department of Marine Life Science, Korea Maritime and Ocean University, Busan, South Korea
| | - Nazeer Rasool Abdul
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, Tamilnadu, India.
| |
Collapse
|
8
|
Liu M, Wu H, Wang S, Hu J, Sun B. Glutathione-triggered nanoplatform for chemodynamic/metal-ion therapy. J Mater Chem B 2021; 9:9413-9422. [PMID: 34746940 DOI: 10.1039/d1tb01330k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The integration of metal-ion therapy and hydroxyl radical (˙OH)-mediated chemodynamic therapy (CDT) holds great potential for anticancer treatment with high specificity and efficiency. Herein, Ag nanoparticles (Ag NPs) were enveloped with Cu2+-based metal-organic frameworks (MOFs) and further decorated with hyaluronic acid (HA) to construct a glutathione (GSH)-activated nanoplatform (Ag@HKU-HA) for specific chemodynamic/metal-ion therapy. The obtained nanoplatform could avoid the premature leakage of Ag in circulation, but realize the release of Ag at the tumor site owing to the degradation of external MOFs triggered by Cu2+-reduced glutathione. The generated Cu+ could catalyze endogenous H2O2 to the highly toxic ˙OH by a Fenton-like reaction. Meanwhile, Ag NPs were oxidized to toxic Ag ions in the tumor environment. As expect, the effect of CDT combined with metal-ion therapy exhibited an excellent inhibition of tumor cells growth. Therefore, this nanoplatform may provide a promising strategy for on-demand site-specific cancer combination treatment.
Collapse
Affiliation(s)
- Min Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Hongshuai Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Senlin Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Jinzhong Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| |
Collapse
|
9
|
Li M, Ge Q, Du H, Lin S. Tricholoma matsutake-Derived Peptides Ameliorate Inflammation and Mitochondrial Dysfunction in RAW264.7 Macrophages by Modulating the NF-κB/COX-2 Pathway. Foods 2021; 10:2680. [PMID: 34828964 PMCID: PMC8621704 DOI: 10.3390/foods10112680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022] Open
Abstract
Tricholoma matsutake is an edible fungus that contains various bioactive substances, some of them with immunostimulatory properties. Presently, there is limited knowledge about the functional components of T. matsutake. Our aim was to evaluate the protective effects and molecular mechanisms of two T. matsutake-derived peptides, SDLKHFPF and SDIKHFPF, on lipopolysaccharide (LPS)-induced mitochondrial dysfunction and inflammation in RAW264.7 macrophages. Tricholoma matsutake peptides significantly ameliorated the production of inflammatory cytokines and inhibited the expression of COX-2, iNOS, IKKβ, p-IκB-α, and p-NF-κB. Immunofluorescence assays confirmed the inhibitory effect of T. matsutake peptides on NF-κB/p65 nuclear translocation. Furthermore, the treatment with T. matsutake peptides prevented the accumulation of reactive oxygen species, increased the Bcl-2/Bax ratio, reversed the loss of mitochondrial membrane potential, and rescued abnormalities in cellular energy metabolism. These findings indicate that T. matsutake peptides can effectively inhibit the activation of NF-κB/COX-2 and may confer an overall protective effect against LPS-induced cell damage.
Collapse
Affiliation(s)
| | | | | | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (M.L.); (Q.G.); (H.D.)
| |
Collapse
|
10
|
Du P, Song J, Qiu H, Liu H, Zhang L, Zhou J, Jiang S, Liu J, Zheng Y, Wang M. Polyphenols Extracted from Shanxi-Aged Vinegar Inhibit Inflammation in LPS-Induced RAW264.7 Macrophages and ICR Mice via the Suppression of MAPK/NF-κB Pathway Activation. Molecules 2021; 26:molecules26092745. [PMID: 34067016 PMCID: PMC8124351 DOI: 10.3390/molecules26092745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022] Open
Abstract
Shanxi-aged vinegar, a traditional Chinese grain-fermented food that is rich in polyphenols, has been shown to have therapeutic effects on a variety of diseases. However, there has been no comprehensive evaluation of the anti-inflammatory activity of polyphenols extracted from Shanxi-aged vinegar (SAVEP) to date. The anti-inflammatory activities of SAVEP, both in RAW 264.7 macrophages and mice, were extensively investigated for the potential application of SAVEP as a novel anti-inflammatory agent. In order to confirm the notion that polyphenols could improve inflammatory symptoms, SAVEP was firstly detected by gas chromatography mass spectrometry (GC-MS). In total, 19 polyphenols were detected, including 12 phenolic acids. The study further investigated the protective effect of SAVEP on lipopolysaccharide-induced inflammation in RAW264.7 macrophages and ICR mice. The results showed that compared with those of the model group, SAVEP could remarkably recover the inflammation of macrophage RAW264.7 and ICR mice. SAVEP can normalise the expression of related proteins via the suppression of MAPK/NF-κB pathway activation, inhibiting the expression of iNOS and COX-2 proteins, and consequently the production of inflammatory factors, thus alleviating inflammatory stress. These results suggest that SAVEP may have a potential function against inflammation.
Collapse
Affiliation(s)
- Peng Du
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jia Song
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Correspondence: (J.S.); (Y.Z.); (M.W.); Tel.: +86-022-60601256 (J.S.); +86-022-60601256 (Y.Z.); +86-022-60600045 (M.W.)
| | - Huirui Qiu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haorui Liu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
| | - Li Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
| | - Junhan Zhou
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
| | - Shengping Jiang
- Research Center for Modern Analysis Techniques, Tianjin University of Science & Technology, Tianjin 300457, China; (S.J.); (J.L.)
| | - Jinyu Liu
- Research Center for Modern Analysis Techniques, Tianjin University of Science & Technology, Tianjin 300457, China; (S.J.); (J.L.)
| | - Yu Zheng
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Correspondence: (J.S.); (Y.Z.); (M.W.); Tel.: +86-022-60601256 (J.S.); +86-022-60601256 (Y.Z.); +86-022-60600045 (M.W.)
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China; (P.D.); (H.Q.); (H.L.); (L.Z.); (J.Z.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Correspondence: (J.S.); (Y.Z.); (M.W.); Tel.: +86-022-60601256 (J.S.); +86-022-60601256 (Y.Z.); +86-022-60600045 (M.W.)
| |
Collapse
|
11
|
Zhang X, Zhao X, Tie S, Wang H, Tan M. Ultrasonic Self-Emulsification Nanocarriers for Cellular Enhanced Astaxanthin Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2719-2728. [PMID: 33625837 DOI: 10.1021/acs.jafc.0c05983] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oil in water (O/W) nanocarriers were prepared for cellular enhanced astaxanthin delivery using a (3-carboxypropyl) triphenylphosphonium bromide (TPP)-modified casein by an ultrasonic self-emulsification method. The nanocarriers of casein emulsion loaded with astaxanthin and casein modified by TPP emulsion encapsulated with astaxanthin were 227 and 543 nm, respectively, with a spherical shape. The thermal stability and resistance to ultraviolet (UV) radiation ability of astaxanthin were significantly improved after encapsulation by the nanocarriers. The fluorescence colocalization imaging proved an accumulated effect of astaxanthin encapsulated in casein emulsion nanocarriers modified by TPP. Meanwhile, the astaxanthin loaded on TPP-modified nanocarriers could significantly protect the mitochondrial membrane potential from depolarization in the normal rat kidney (NRK) cells after oxidative damage. The cell viability assay demonstrated that the astaxanthin loaded on TPP-modified nanocarriers could enhance the growth of NRK and RAW264.7 cells as compared with astaxanthin encapsulated by casein emulsion without TPP modification.
Collapse
Affiliation(s)
- Xuedi Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xue Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shanshan Tie
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Haitao Wang
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
12
|
Zhang X, Gao Q, Zhuang Q, Zhang L, Wang S, Du L, Yuan W, Wang C, Tian Q, Yu H, Zhao Y, Liu Y. A dual-functional nanovehicle with fluorescent tracking and its targeted killing effects on hepatocellular carcinoma cells. RSC Adv 2021; 11:10986-10995. [PMID: 35423573 PMCID: PMC8695887 DOI: 10.1039/d0ra10486h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
All-in-one drug delivery nanovehicles with low cytotoxicity, high clinical imaging tracking capability, and targeted- and controlled-releasing performances are regarded as promising nanoplatforms for tumor theranostics. Recently, the design of these novel nanovehicles by low molecular weight amphiphilic chitosan (CS) was proposed. Based on fluorescent gold nanoclusters (AuNCs), a tumor-targeting nanovehicle (i.e. AuNCs-CS–AS1411) was prepared via electrostatic attraction between AuNC-conjugated chitosan (i.e. AuNCs-CS) and the anti-nucleolin aptamer, AS1411. After that, the anticancer drug methotrexate (MTX) was encapsulated into the nanovehicles and then the dual-functional nano-drug (i.e. MTX@AuNCs-CS–AS1411) was comparatively supplied to the human hepatocellular carcinoma cell line HepG2 and the human normal liver cell line LO2, to exhibit its “all in one” behavior. Under the conditions of the same concentration of MTX, MTX@AuNCs-CS–AS1411 demonstrates more intensive cytotoxicity and apoptosis-inducing activity against HepG2 cells than those against normal LO2 cells, mainly due to the targeting effect of AS1411 on the nucleolins that were found at high levels on the surface of tumor cells, but are at low levels or absent on normal cells. On the other hand, the MTX release from the MTX@AuNCs-CS–AS1411 was much faster in mildly acidic solution than that in neutral pH. Thus, it may provide a possibility to more significantly release MTX in intracellular lysosome of tumor cells, rather than let loose MTX during transport of the drug from blood vessels to tumor tissue. In conclusion, our dual-functional nanovehicle possesses high fluorescence efficiency and photostability, low cytotoxicity, pH-dependent controlled release, high sensitivity and target-specificity to cancer cells which allowed concurrent targeted imaging and delivery in cancer chemotherapies. Schematic illustration of the synthesis of the MTX@AuNCs-CS–AS1411, and its targeted delivery and imaging of hepatocellular carcinoma cells.![]()
Collapse
Affiliation(s)
- Xiaojie Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University Beijing P.R. China .,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences 100190 Beijing P. R. China
| | - Qiming Gao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University Beijing P.R. China
| | - Qianfen Zhuang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences 100190 Beijing P. R. China
| | - Lu Zhang
- School of Biomedical Engineering, Capital Medical University Beijing China
| | - Sihan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University Beijing P.R. China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences 100190 Beijing P. R. China
| | - Wenxi Yuan
- School of Pharmaceutical Sciences, Capital Medical University Beijing P. R. China
| | - Caifang Wang
- School of Pharmaceutical Sciences, Capital Medical University Beijing P. R. China
| | - Qiu Tian
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences 100190 Beijing P. R. China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau Macao P. R. China
| | - Yuming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University Beijing P.R. China
| | - Yang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences 100190 Beijing P. R. China
| |
Collapse
|
13
|
Wang W, Yue RF, Jin Z, He LM, Shen R, Du D, Tang YZ. Efficiency comparison of apigenin-7-O-glucoside and trolox in antioxidative stress and anti-inflammatory properties. J Pharm Pharmacol 2020; 72:1645-1656. [PMID: 32743812 DOI: 10.1111/jphp.13347] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/04/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Chamomile has long been used as a medicinal plant due to its antioxidative and anti-inflammatory activity. Apigenin-7-O-glucoside (AG) is one of the major ethanol extract components from chamomile; however, the underlying mechanism remains unclear. METHODS In this study, the antioxidant potential and the anti-inflammatory activities of AG were analysed and compared with those of trolox. We demonstrate the protective effects of AG on free radical-induced oxidative damage of DNA, proteins and erythrocytes. Flow cytometry assay was used to detect ROS production. Additionally, the expression of anti-oxidation-related and inflammation-related factors was detected by ELISA and Western blotting, respectively. KEY FINDINGS AG and trolox showed different efficiency as antioxidant in different experimental systems. AG had similar effect as trolox to inhibit H2 O2 -induced ROS production in RAW264.7 cells, while exerted stronger inhibition against free radical-induced oxidative damage on erythrocytes than trolox. Interestingly, compared with trolox, AG also had stronger inhibitory effect on LPS-induced NF-κB/NLRP3/caspase-1 signalling in RAW246.7 cells. CONCLUSIONS These results suggest the potential of AG as a pharmaceutical drug for anti-oxidation and anti-inflammation, and the combined usage of AG and trolox might promote its efficacy. Our findings will provide new insights into the development of new drugs with antioxidative and anti-inflammatory functions.
Collapse
Affiliation(s)
- Wei Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ru-Feng Yue
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhen Jin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Li-Min He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rong Shen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Dan Du
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - You-Zhi Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Chen Z, Lai H, Hou L, Chen T. Rational design and action mechanisms of chemically innovative organoselenium in cancer therapy. Chem Commun (Camb) 2020; 56:179-196. [PMID: 31782422 DOI: 10.1039/c9cc07683b] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Organo-seleno compounds (org-Se) have been widely used in antitumor, antiviral, and antiinflammatory therapy; antioxidation and other biological fields. As such, they have made an important contribution to overcoming various kinds of diseases, and researchers are increasingly attracted to org-Se's synthesis and functional design. This review is mainly focused on the design and synthesis of various kinds of org-Se, followed by their anticancer mechanisms such as the mitochondria mediated pathway induced by ROS, death receptor mediated pathways involving p53 phosphorylation, and the activation of the AMPK pathway to promote apoptosis. Org-Se also serves as a sensitizer in chemotherapy and radiotherapy, and an antagonist against the cytotoxic effects induced by chemotherapeutic agents. Finally, we will summarize the development of cancer-targeted org-Se containing complexes, and nanotechnology-based org-Se for anticancer application. This review could provide information for the future design of chemically innovative org-Se with anticancer potential, and shed light on the discovery of nanomaterial-based pharmaceuticals to improve drug development and formation.
Collapse
Affiliation(s)
- Zhen Chen
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | | | | | | |
Collapse
|
15
|
Yu T, Zhen M, Li J, Zhou Y, Ma H, Jia W, Wang C. Anti-apoptosis effect of amino acid modified gadofullerene via a mitochondria mediated pathway. Dalton Trans 2019; 48:7884-7890. [DOI: 10.1039/c9dt00800d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A proposed molecular mechanism of the anti-apoptosis effect of GF-Ala through a mitochondria mediated pathway.
Collapse
Affiliation(s)
- Tong Yu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yue Zhou
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Haijun Ma
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
16
|
Jin F, Liu D, Yu H, Qi J, You Y, Xu X, Kang X, Wang X, Lu K, Ying X, You J, Du Y, Ji J. Sialic Acid-Functionalized PEG-PLGA Microspheres Loading Mitochondrial-Targeting-Modified Curcumin for Acute Lung Injury Therapy. Mol Pharm 2018; 16:71-85. [PMID: 30431285 DOI: 10.1021/acs.molpharmaceut.8b00861] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute lung injury (ALI) is a serious illness without resultful therapeutic methods commonly. Recent studies indicate the importance of oxidative stress in the occurrence and development of ALI, and mitochondria targeted antioxidant has become a difficult and hot topic in the research of ALI. Therefore, a sialic acid (SA)-modified lung-targeted microsphere (MS) for ALI therapy are developed, with triphenylphosphonium cation (TPP)-modified curcumin (Cur-TPP) loaded, which could specifically target the mitochondria, increasing the effect of antioxidant. The results manifest that with the increase of microsphere, lung distribution of microsphere is also increased in murine mice, and after SA modification, the microsphere exhibits the ideal lung-targeted characteristic in ALI model mice, due to SA efficiently targeting to E-selectin expressed on inflammatory tissues. Further investigations indicate that SA/Cur-TPP/MS has better antioxidative capacity, decreases intracellular ROS generation, and increases mitochondrial membrane potential, contributing to a lower apoptosis rate in human umbilical vein endothelial cells (HUVECs) compared to H2O2 group. In vivo efficacy of SA/Cur-TPP/MS demonstrates that the inflammation has been alleviated markedly and the oxidative stress is ameliorated efficiently. Significant histological improvements by SA/Cur-TPP/MS are further proved via HE stains. In conclusion, SA/Cur-TPP/MS might act as a promising drug formulation for ALI therapy.
Collapse
Affiliation(s)
- Feiyang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Hui Yu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Jing Qi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Yuchan You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Xuqi Kang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Xiaojuan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Kongjun Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Xiaoying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Jian You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences , Zhejiang University , 866 Yu-Hang-Tang Road , Hangzhou 310058 , China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research , Lishui Hospital of Zhejiang University , Lishui 323000 , China
| |
Collapse
|
17
|
Guo X, Zhuang Q, Ji T, Zhang Y, Li C, Wang Y, Li H, Jia H, Liu Y, Du L. Multi-functionalized chitosan nanoparticles for enhanced chemotherapy in lung cancer. Carbohydr Polym 2018; 195:311-320. [DOI: 10.1016/j.carbpol.2018.04.087] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 01/28/2023]
|
18
|
Han L, Wang YL, Sun YC, Hu ZY, Hu K, Du LB. tert-Butylhydroperoxide induces apoptosis in RAW264.7 macrophages via a mitochondria-mediated signaling pathway. Toxicol Res (Camb) 2018; 7:970-976. [PMID: 30310674 DOI: 10.1039/c7tx00282c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/22/2018] [Indexed: 01/17/2023] Open
Abstract
Macrophage apoptosis occurs throughout all stages of atherosclerosis, mainly induced by oxidized low density lipoproteins (Ox LDLs), leading to the formation of necrotic cores. Nevertheless, the mechanism of macrophage apoptosis induced by Ox LDLs is not yet clearly understood. In this study, a model of RAW264.7 macrophages exposed to an Ox LDL analogue, i.e. tert-butylhydroperoxide (t-BHP), was established. We thoroughly evaluated the viability and apoptosis of RAW264.7 cells treated with t-BHP at different time intervals. t-BHP treatment decreases the viability of RAW264.7 cells in a dose- and time-dependent manner (IC50: 400 μM) and also induces a loss of the mitochondrial membrane potential (MMP) in RAW264.7 cells. Moreover, the activation of Bid, up-regulation of Bcl-2, and down-regulation of Bax, as well as the proteolysis of pro-caspase 3 and cleavage of PARP, were all also observed in t-BHP treated RAW264.7 cells. Finally, we concluded that t-BHP induces the apoptosis of macrophages via a mitochondria-mediated signaling pathway.
Collapse
Affiliation(s)
- Lu Han
- Beijing Engineering Research Center of Printed Electronics , Beijing Institute of Graphic Communication , Beijing 102600 , PR China .
| | - Yu-Long Wang
- Beijing Engineering Research Center of Printed Electronics , Beijing Institute of Graphic Communication , Beijing 102600 , PR China .
| | - Yan-Chi Sun
- Beijing Engineering Research Center of Printed Electronics , Beijing Institute of Graphic Communication , Beijing 102600 , PR China .
| | - Zi-Yuan Hu
- Beijing Engineering Research Center of Printed Electronics , Beijing Institute of Graphic Communication , Beijing 102600 , PR China .
| | - Kun Hu
- Beijing Engineering Research Center of Printed Electronics , Beijing Institute of Graphic Communication , Beijing 102600 , PR China .
| | - Li-Bo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Center for Molecular Science , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , PR China
| |
Collapse
|
19
|
Induction of ferroptosis and mitochondrial dysfunction by oxidative stress in PC12 cells. Sci Rep 2018; 8:574. [PMID: 29330409 PMCID: PMC5766540 DOI: 10.1038/s41598-017-18935-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases (NDD) are typically associated with neuron loss in nervous system areas. Interventions with related death mechanisms may ameliorate NDD progression. Oxidative stress plays an important role in NDD cell death routines. However, tert-butylhydroperoxide (t-BHP), a widely used oxidative stress stimulus, induces neural cell death through a mechanism that remains elusive. In our study, the ferroptosis marker events occurred after co-treatment with 100 μM t-BHP for 1 h, all of which were reversed in the presence of the ferroptosis inhibitor ferrostatin-1 (Fer-1) and the iron chelator deferoxamine, implying the occurrence of ferroptosis. Moreover, mitochondrial dysfunction accompanied by a decreased in membrane potential and ATP production, increased mitochondrial ROS generation. Furthermore, this mitochondrial dysfunction could be reversed by Fer-1. In addition, JNK1/2 and ERK1/2 were activated upstream of the ferroptosis and mitochondrial dysfunction. In summary, these data suggest that ferroptosis, coupled with mitochondrial dysfunction, was involved in t-BHP-induced PC12 death. JNK1/2 and ERK1/2 played important roles in t-BHP-induced cell death. Overall, this study might provide clues to the oxidative stress-based strategies for cell protection in NDD.
Collapse
|
20
|
Misak A, Grman M, Bacova Z, Rezuchova I, Hudecova S, Ondriasova E, Krizanova O, Brezova V, Chovanec M, Ondrias K. Polysulfides and products of H 2S/S-nitrosoglutathione in comparison to H 2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H 2O 2. Nitric Oxide 2017; 76:136-151. [PMID: 28951200 DOI: 10.1016/j.niox.2017.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 01/20/2023]
Abstract
Exogenous and endogenously produced sulfide derivatives, such as H2S/HS-/S2-, polysulfides and products of the H2S/S-nitrosoglutathione interaction (S/GSNO), affect numerous biological processes in which superoxide anion (O2-) and hydroxyl (OH) radicals play an important role. Their cytoprotective-antioxidant and contrasting pro-oxidant-toxic effects have been reported. Therefore, the aim of our work was to contribute to resolving this apparent inconsistency by studying sulfide derivatives/free radical interactions and their consequent biological effects compared to the antioxidants glutathione (GSH) and Trolox. Using the electron paramagnetic resonance (EPR) spin trapping technique and O2-, we found that a polysulfide (Na2S4) and S/GSNO were potent scavengers of O2- and cPTIO radicals compared to H2S (Na2S), GSH and Trolox, and S/GSNO scavenged the DEPMPO-OH radical. As detected by the EPR spectra of DEPMPO-OH, the formation of OH in physiological solution by S/GSNO was suggested. All the studied sulfide derivatives, but not Trolox or GSH, had a bell-shaped potency to decompose H2O2 and produced OH in the following order: S/GSNO > Na2S4 ≥ Na2S > GSH = Trolox = 0, but they scavenged OH at higher concentrations. In studies of the biological consequences of these sulfide derivatives/H2O2 properties, we found the following: (i) S/GSNO alone and all sulfide derivatives in the presence of H2O2 cleaved plasmid DNA; (ii) S/GSNO interfered with viral replication and consequently decreased the infectivity of viruses; (iii) the sulfide derivatives induced apoptosis in A2780 cells but inhibited apoptosis induced by H2O2; and (iv) Na2S4 modulated intracellular calcium in A87MG cells, which depended on the order of Na2S4/H2O2 application. We suggest that the apparent inconsistency of the cytoprotective-antioxidant and contrasting pro-oxidant-toxic biological effects of sulfide derivatives results from their time- and concentration-dependent radical production/scavenging properties and their interactions with O2-, OH and H2O2. The results imply a direct involvement of sulfide derivatives in O2- and H2O2/OH free radical pathways modulating antioxidant/toxic biological processes.
Collapse
Affiliation(s)
- Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ingeborg Rezuchova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Sona Hudecova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Elena Ondriasova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Olga Krizanova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Vlasta Brezova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic
| | - Miroslav Chovanec
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
21
|
Precise Photodynamic Therapy of Cancer via Subcellular Dynamic Tracing of Dual-loaded Upconversion Nanophotosensitizers. Sci Rep 2017; 7:45633. [PMID: 28361967 PMCID: PMC5374495 DOI: 10.1038/srep45633] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
Recent advances in upconversion nanophotosensitizers (UCNPs-PS) excited by near-infrared (NIR) light have led to substantial progress in improving photodynamic therapy (PDT) of cancer. For a successful PDT, subcellular organelles are promising therapeutic targets for reaching a satisfactory efficacy. It is of vital importance for these nanophotosensitizers to reach specifically the organelles and to perform PDT with precise time control. To do so, we have in this work traced the dynamic subcellular distribution, especially in organelles such as lysosomes and mitochondria, of the poly(allylamine)-modified and dual-loaded nanophotosensitizers. The apoptosis of the cancer cells induced by PDT with the dependence of the distribution status of the nanophotosensitizers in organelles was obtained, which has provided an in-depth picture of intracellular trafficking of organelle-targeted nanophotosensitizers. Our results shall facilitate the improvement of nanotechnology assisted photodynamic therapy of cancers.
Collapse
|
22
|
Wang J, Wang Y, Liu Q, Yang L, Zhu R, Yu C, Wang S. Rational Design of Multifunctional Dendritic Mesoporous Silica Nanoparticles to Load Curcumin and Enhance Efficacy for Breast Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:26511-26523. [PMID: 27619078 DOI: 10.1021/acsami.6b08400] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Breast cancer is the primary reason for cancer-related death in women worldwide and the development of new formulations to treat breast cancer patients is crucial. Curcumin (Cur), a natural product, exerts promising anticancer activities against various cancer types. However, its therapeutic efficacy is hindered as a result of poor water solubility, instability, and low bioavailability. The aim of this work is to assess the curative effect of a novel nanoformulation, i.e., Cur-loaded and calcium-doped dendritic mesoporous silica nanoparticles modified with folic acid (Cur-Ca@DMSNs-FA) for breast cancer therapy. The results manifested that Cur-Ca@DMSNs-FA dispersed very well in aqueous solution, released Cur with a pH-responsible profile, and targeted efficiently to human breast cancer MCF-7 cells. Further investigations indicated that Cur-Ca@DMSNs-FA effectively inhibited cell proliferation, increased intracellular ROS generation, decreased mitochondrial membrane potential, and enhanced cell cycle retardation at G2/M phase, leading to a higher apoptosis rate in MCF-7 compared to free Cur. Moreover, the Western blotting analysis demonstrated that Cur-Ca@DMSNs-FA were more active than free Cur through suppression of PI3K/AKT/mTOR and Wnt/β-catenin signaling, and activation of the mitochondria-mediated apoptosis pathway. In addition, hemolysis assay showed that the Ca@DMSNs-FA exhibited good biocompatibility. Last, in vivo studies indicated that when Cur was encapsulated in Ca@DMSNs-FA, the Cur concentration in blood serum and tumor tissues was increased after 1 h intraperitoneal injection. In conclusion, Cur-Ca@DMSNs-FA might act as a potential anticancer drug formulation for breast cancer therapy.
Collapse
Affiliation(s)
- Jiao Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology Tongji University , Shanghai, PR China
| | - Yue Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Qiang Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology Tongji University , Shanghai, PR China
| | - Linnan Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology Tongji University , Shanghai, PR China
| | - Rongrong Zhu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology Tongji University , Shanghai, PR China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology Tongji University , Shanghai, PR China
| |
Collapse
|
23
|
Shi X, Osaki H, Matsunomoto Y, Fujita C, Shinohe D, Ashida N, Choi H, Ohta Y. Partial contribution of mitochondrial permeability transition to t-butyl hydroperoxide-induced cell death. Biochem Biophys Rep 2016; 7:33-38. [PMID: 28955886 PMCID: PMC5613252 DOI: 10.1016/j.bbrep.2016.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial permeability transition (MPT) is thought to determine cell death under oxidative stress. However, MPT inhibitors only partially suppress oxidative stress-induced cell death. Here, we demonstrate that cells in which MPT is inhibited undergo cell death under oxidative stress. When C6 cells were exposed to 250 μM t-butyl hydroperoxide (t-BuOOH), the loss of a membrane potential-sensitive dye (tetramethylrhodamine ethyl ester, TMRE) from mitochondria was observed, indicating mitochondrial depolarization leading to cell death. The fluorescence of calcein entrapped in mitochondria prior to addition of t-BuOOH was significantly decreased to 70% after mitochondrial depolarization. Cyclosporin A suppressed the decrease in mitochondrial calcein fluorescence, but not mitochondrial depolarization. These results show that t-BuOOH induced cell death even when it did not induce MPT. Prior to MPT, lactate production and respiration were hampered. Taken together, these data indicate that the decreased turnover rate of glycolysis and mitochondrial respiration may be as vital as MPT for cell death induced under moderate oxidative stress. Cell death was induced in C6 cells by 250 μM t-BuOOH. Mitochondrial permeability transition (MPT) occurred before cell death. MPT was confirmed by observing calcein fluorescence in mitochondria. MPT inhibition did not prevent depolarization of mitochondria and cell death. Contribution of MPT to cell death is partial under moderate oxidative stress.
Collapse
Key Words
- AM, acetoxymethyl ester
- Cell death
- CsA, cyclosporin A
- DMEM, Dulbecco's modified Eagle's medium
- FBS, fetal bovine serum
- HBS, HEPES-buffered saline
- MPT, mitochondrial permeability transition
- Mitochondria
- Mitochondrial permeability transition pore
- Oxidative stress
- PPIase, peptidylprolyl cis-trans isomerase
- ROS, reactive oxygen species
- TMRE, tetramethylrhodamine ethyl ester
- t-BuOOH, t-butyl hydroperoxide
- t-butyl hydroperoxide
- ΔΨm, mitochondrial membrane potential
Collapse
Affiliation(s)
- Xiaolei Shi
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Hikaru Osaki
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Yoshihiro Matsunomoto
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Chisako Fujita
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Daisuke Shinohe
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Naoko Ashida
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Hyunjin Choi
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Yoshihiro Ohta
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
24
|
Zhang C, Wang Z, Zhao J, Li Q, Huang C, Zhu L, Lu D. Neuroprotective Effect of Lutein on NMDA-Induced Retinal Ganglion Cell Injury in Rat Retina. Cell Mol Neurobiol 2016; 36:531-40. [PMID: 26119305 DOI: 10.1007/s10571-015-0231-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/20/2015] [Indexed: 12/31/2022]
Abstract
Lutein injection is a possible therapeutic approach for retinal diseases, but the molecular mechanism of its neuroprotective effect remains to be elucidated. The aim of this study was to investigate its protective effects in retinal ganglion cells (RGCs) against N-methyl-D-aspartate (NMDA)-induced retinal damage in vivo. Retinal damage was induced by intravitreal NMDA injection in rats. Each animal was given five daily intraperitoneal injections of Lutein or vehicle along with intravitreal NMDA injections. Electroretinograms were recorded. The number of viable RGCs was quantified using the retinal whole-mount method by immunofluorescence. Proteins were measured by Western blot assays. Lutein reduced the retinal damage and improved the response to light, as shown by an animal behavior assay (the black-and-white box method) in rats. Furthermore, Lutein treatment prevented the NMDA-induced reduction in phNR wave amplitude. Lutein increased RGC number after NMDA-induced retina damage. Most importantly, Bax, cytochrome c, p-p38 MAPK, and p-c-Jun were all upregulated in rats injected with NMDA, but these expression patterns were reversed by continuous Lutein uptake. Bcl-2, p-GSK-3β, and p-Akt in the Lutein-treated eyes were increased compared with the NMDA group. Lutein has neuroprotective effects against retinal damage, its protective effects may be partly mediated by its anti-excitability neurotoxicity, through MAPKs and PI3K/Akt signaling, suggesting a potential approach for suppressing retinal neural damage.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Zhen Wang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Jiayi Zhao
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Qin Li
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Cuiqin Huang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Lihong Zhu
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Daxiang Lu
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong Province, China.
| |
Collapse
|
25
|
Prudencio A, Faig JJ, Song M, Uhrich KE. Phenolic Acid-based Poly(anhydride-esters) as Antioxidant Biomaterials. Macromol Biosci 2016; 16:214-22. [PMID: 26425923 PMCID: PMC4752411 DOI: 10.1002/mabi.201500244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/09/2015] [Indexed: 11/11/2022]
Abstract
Poly(anhydride-esters) comprised of naturally occurring, non-toxic phenolic acids, namely syringic and vanillic acid, with antioxidant properties were prepared via solution polymerization methods. Polymer and polymer precursor physiochemical properties were characterized, including polymer molecular weight and thermal properties. In vitro release studies illustrated that polymer hydrolytic degradation was influenced by relative hydrophobicity and degree of methoxy substitution of the phenolic acids. Further, the released phenolic acids were found to maintain antioxidant potency relative to free phenolic acid controls as determined by a 2,2-diphenyl-1-picrylhydrazyl assay. Polymer cytotoxicity was assessed with L929 fibroblasts in polymer-containing media; appropriate cell morphology and high fibroblast proliferation were obtained for the polymers at the lower concentrations. These polymers deliver non-cytotoxic levels of naturally occurring antioxidants, which could be efficacious in topical delivery of antioxidant therapies.
Collapse
Affiliation(s)
- Almudena Prudencio
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854-8087, USA
| | - Jonathan J Faig
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854-8087, USA
| | - MinJung Song
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854-8087, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854-8087, USA.
| |
Collapse
|
26
|
Luteolin Inhibits Ischemia/Reperfusion-Induced Myocardial Injury in Rats via Downregulation of microRNA-208b-3p. PLoS One 2015; 10:e0144877. [PMID: 26658785 PMCID: PMC4685996 DOI: 10.1371/journal.pone.0144877] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Luteolin (LUT), a kind of flavonoid which is extracted from a variety of diets, has been reported to convey protective effects of various diseases. Recent researches have suggested that LUT can carry out cardioprotective effects during ischemia/reperfusion (I/R). However, there have no reports on whether LUT can exert protective effects against myocardial I/R injury through the actions of specific microRNAs (miRs). The purpose of this study was to determine which miRs and target genes LUT exerted such function through. METHODS Expression of various miRs in perfused rat hearts was detected using a gene chip. Target genes were predicted with TargetScan, MiRDB and MiRanda. Anoxia/reoxygenation was used to simulate I/R. Cells were transfected by miR-208b-3p mimic, inhibitor and small interfering RNA of Ets1 (avian erythroblastosis virus E26 (v ets) oncogene homolog 1). MiR-208b-3p and Ets1 mRNA were quantified by real-time quantitative polymerase chain reaction. The percentage of apoptotic cells was detected by annexin V-fluorescein isothiocyanate/propidium iodide dyeing and flow cytometry. The protein expression levels of cleaved caspase-3, Bcl-2, Bax, and Ets1 were examined by western blot analysis. A luciferase reporter assay was used to verify the combination between miR-208b-3p and the 3'-untranslated region of Ets1. RESULTS LUT pretreatment reduced miR-208b-3p expression in myocardial tissue, as compared to the I/R group. And LUT decreased miR-208b-3p expression and apoptosis caused by I/R. However, overexpression of miR-208b-3p further aggravated the changes caused by I/R and blocked all the effects of LUT. Knockdown of miR-208b-3p expression also attenuated apoptosis, while knockdown of Ets1 promoted apoptosis. Further, the luciferase reporter assay showed that miR-208b-3p could inhibit Ets1 expression. CONCLUSION LUT pretreatment conveys anti-apoptotic effects after myocardial I/R injury by decreasing miR-208b-3p and increasing Ets1 expression levels.
Collapse
|
27
|
Ye S, Kang N, Chen M, Wang C, Wang T, Wang Y, Liu Y, Li D, Ren L. Tat/HA2 Peptides Conjugated AuNR@pNIPAAm as a Photosensitizer Carrier for Near Infrared Triggered Photodynamic Therapy. Mol Pharm 2015; 12:2444-58. [DOI: 10.1021/acs.molpharmaceut.5b00161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shefang Ye
- Research Center of Biomedical Engineering,
Department of Biomaterials,
College of Materials, ‡Medical College, and §State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, PR China
| | - Ning Kang
- Research Center of Biomedical Engineering,
Department of Biomaterials,
College of Materials, ‡Medical College, and §State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, PR China
| | - Min Chen
- Research Center of Biomedical Engineering,
Department of Biomaterials,
College of Materials, ‡Medical College, and §State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, PR China
| | - Caiding Wang
- Research Center of Biomedical Engineering,
Department of Biomaterials,
College of Materials, ‡Medical College, and §State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, PR China
| | - Tianxiao Wang
- Research Center of Biomedical Engineering,
Department of Biomaterials,
College of Materials, ‡Medical College, and §State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, PR China
| | - Yarun Wang
- Research Center of Biomedical Engineering,
Department of Biomaterials,
College of Materials, ‡Medical College, and §State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, PR China
| | - Yongliang Liu
- Research Center of Biomedical Engineering,
Department of Biomaterials,
College of Materials, ‡Medical College, and §State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, PR China
| | - Donghui Li
- Research Center of Biomedical Engineering,
Department of Biomaterials,
College of Materials, ‡Medical College, and §State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, PR China
| | - Lei Ren
- Research Center of Biomedical Engineering,
Department of Biomaterials,
College of Materials, ‡Medical College, and §State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
28
|
da Silva SB, Amorim M, Fonte P, Madureira R, Ferreira D, Pintado M, Sarmento B. Natural extracts into chitosan nanocarriers for rosmarinic acid drug delivery. PHARMACEUTICAL BIOLOGY 2015; 53:642-52. [PMID: 25489634 DOI: 10.3109/13880209.2014.935949] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
CONTEXT Nanotechnology can be applied to deliver and protect antioxidants in order to control the oxidative stress phenomena in several chronic pathologies. Chitosan (CS) nanoparticles are biodegradable carriers that may protect antioxidants with potent biological activity such as rosmarinic acid (RA) in Salvia officinalis (sage) and Satureja montana (savory) extracts for safe and innovative therapies. OBJECTIVE Development and characterization of CS nanoparticles as a stable and protective vehicle to deliver RA for medical applications using natural extracts as sage and savory. MATERIALS AND METHODS Antioxidant-CS based nanoparticles were prepared by ionic gelation with sodium tripolyphosphate (TPP), at pH 5.8 with a mass ratio of 7:1 (CS:TPP), with a theoretical antioxidant-CS loading of 40-50%. The nanoparticles were then characterized by different methods such as photon correlation spectroscopy, laser Doppler anemometry, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR), high-performance liquid chromatographic (HPLC), association efficiency, and antioxidant activity. RESULTS AND DISCUSSION Individual and small sizing nanoparticles, around 300 nm, were obtained. SEM confirmed smooth and spherical nanoparticles after freeze-drying. No chemical interactions were found between antioxidants and CS, after encapsulation, by DSC and FTIR. The association efficiency was 51.2% for RA (with 40% loading) and 96.1 and 98.2% for sage and savory nanoparticles, respectively (both with 50% loading). Antioxidant activity values were higher than 0.0348 eq [Asc. Ac.] g/L/g extract and 0.4251 µmol/eq Trolox/g extract. CONCLUSION The extracts under study are promising vehicles for RA drug delivery in CS nanocarriers.
Collapse
Affiliation(s)
- Sara Baptista da Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto , Porto , Portugal
| | | | | | | | | | | | | |
Collapse
|
29
|
Hou Z, Zhang Y, Deng K, Chen Y, Li X, Deng X, Cheng Z, Lian H, Li C, Lin J. UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. ACS NANO 2015; 9:2584-99. [PMID: 25692960 DOI: 10.1021/nn506107c] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photodynamic therapy (PDT) is a promising antitumor treatment that is based on the photosensitizers that inhibit cancer cells by yielding reactive oxygen species (ROS) after irradiation of light with specific wavelengths. As a potential photosensitizer, titanium dioxide (TiO2) exhibits minimal dark cytotoxicity and excellent ultraviolet (UV) light triggered cytotoxicity, but is challenged by the limited tissue penetration of UV light. Herein, a novel near-infrared (NIR) light activated photosensitizer for PDT based on TiO2-coated upconversion nanoparticle (UCNP) core/shell nanocomposites (UCNPs@TiO2 NCs) is designed. NaYF4:Yb(3+),Tm(3+)@NaGdF4:Yb(3+) core/shell UCNPs can efficiently convert NIR light to UV emission that matches well with the absorption of TiO2 shells. The UCNPs@TiO2 NCs endocytosed by cancer cells are able to generate intracellular ROS under NIR irradiation, decreasing the mitochondrial membrane potential to release cytochrome c into the cytosol and then activating caspase 3 to induce cancer cell apoptosis. NIR light triggered PDT of tumor-bearing mice with UCNPs@TiO2 as photosensitizers can suppress tumor growth efficiently due to the better tissue penetration than UV irradiation. On the basis of the evidence of in vitro and in vivo results, UCNPs@TiO2 NCs could serve as an effective photosensitizer for NIR light mediated PDT in antitumor therapy.
Collapse
Affiliation(s)
- Zhiyao Hou
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Yuanxin Zhang
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Kerong Deng
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- ‡University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yinyin Chen
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- ‡University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xuejiao Li
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xiaoran Deng
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- ‡University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ziyong Cheng
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Hongzhou Lian
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Chunxia Li
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jun Lin
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
30
|
Gurunathan S, Jeong JK, Han JW, Zhang XF, Park JH, Kim JH. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. NANOSCALE RESEARCH LETTERS 2015; 10:35. [PMID: 25852332 PMCID: PMC4384991 DOI: 10.1186/s11671-015-0747-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/10/2015] [Indexed: 05/18/2023]
Abstract
Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- />Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwanjgin-gu, 143-701 Seoul South Korea
- />GS Institute of Bio and Nanotechnology, Coimbatore, Tamilnadu India
| | - Jae-Kyo Jeong
- />Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwanjgin-gu, 143-701 Seoul South Korea
| | - Jae Woong Han
- />Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwanjgin-gu, 143-701 Seoul South Korea
| | - Xi-Feng Zhang
- />Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwanjgin-gu, 143-701 Seoul South Korea
| | - Jung Hyun Park
- />Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwanjgin-gu, 143-701 Seoul South Korea
| | - Jin-Hoi Kim
- />Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwanjgin-gu, 143-701 Seoul South Korea
| |
Collapse
|
31
|
The protective effects of Trolox-loaded chitosan nanoparticles against hypoxia-mediated cell apoptosis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1411-20. [DOI: 10.1016/j.nano.2014.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 03/15/2014] [Accepted: 04/04/2014] [Indexed: 12/21/2022]
|
32
|
Han JW, Gurunathan S, Jeong JK, Choi YJ, Kwon DN, Park JK, Kim JH. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line. NANOSCALE RESEARCH LETTERS 2014; 9:459. [PMID: 25242904 PMCID: PMC4167841 DOI: 10.1186/1556-276x-9-459] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/18/2014] [Indexed: 05/14/2023]
Abstract
The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate. The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.
Collapse
Affiliation(s)
- Jae Woong Han
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu Seoul 143-701, Korea
| | - Sangiliyandi Gurunathan
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu Seoul 143-701, Korea
- GS Institute of Bio and Nanotechnology, Coimbatore, Tamilnadu 641024, India
| | - Jae-Kyo Jeong
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu Seoul 143-701, Korea
| | - Yun-Jung Choi
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu Seoul 143-701, Korea
| | - Deug-Nam Kwon
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu Seoul 143-701, Korea
| | - Jin-Ki Park
- Animal Biotechnology Division, National Institute of Animal Science, Suwon 441-350, Korea
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwangin-gu Seoul 143-701, Korea
| |
Collapse
|
33
|
Wang J, Zhu R, Sun X, Zhu Y, Liu H, Wang SL. Intracellular uptake of etoposide-loaded solid lipid nanoparticles induces an enhancing inhibitory effect on gastric cancer through mitochondria-mediated apoptosis pathway. Int J Nanomedicine 2014; 9:3987-98. [PMID: 25187702 PMCID: PMC4149454 DOI: 10.2147/ijn.s64103] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The objective of this study was to prepare and characterize etoposide (VP16)-loaded solid lipid nanoparticles (SLNs) and evaluate their antitumor activity in vitro. VP16-SLNs were prepared using emulsification and low-temperature solidification methods. The physicochemical properties of the VP16-SLNs were investigated by particle-size analysis, zeta potential measurement, drug loading, drug entrapment efficiency, stability, and in vitro drug-release behavior. In contrast to free VP16, the VP16-SLNs were well dispersed in aqueous medium, showing a narrow size distribution at 30–50 nm, a zeta potential value of −28.4 mV, high drug loading (36.91%), and an ideal drug entrapment efficiency (75.42%). The drug release of VP16-SLNs could last up to 60 hours and exhibited a sustained profile, which made it a promising vehicle for drug delivery. Furthermore, VP16-SLNs could significantly enhance in vitro cytotoxicity against SGC7901 cells compared to the free drug. Furthermore, VP16-SLNs could induce higher apoptotic rates, more significant cell cycle arrest effects, and greater cellular uptake in SGC7901 cells than free VP16. Moreover, results demonstrated that the mechanisms of VP16-SLNs were similar to those claimed for free VP16, including induction of cellular apoptosis by activation of p53, release of cytochrome c, loss of membrane potential, and activation of caspases. Thus, these results suggested that the SLNs might be a promising nanocarrier for VP16 to treat gastric carcinoma.
Collapse
Affiliation(s)
- Jiao Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Rongrong Zhu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xiaoyu Sun
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yanjing Zhu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Hui Liu
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Shi-Long Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
34
|
Du L, Li J, Chen C, Liu Y. Nanocarrier: A potential tool for future antioxidant therapy. Free Radic Res 2014; 48:1061-9. [DOI: 10.3109/10715762.2014.924625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Zhuang Q, Jia H, Du L, Li Y, Chen Z, Huang S, Liu Y. Targeted surface-functionalized gold nanoclusters for mitochondrial imaging. Biosens Bioelectron 2014; 55:76-82. [DOI: 10.1016/j.bios.2013.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/16/2013] [Accepted: 12/01/2013] [Indexed: 01/14/2023]
|
36
|
Polyamidoamine dendrimer conjugated chitosan nanoparticles for the delivery of methotrexate. Carbohydr Polym 2013; 98:1173-8. [DOI: 10.1016/j.carbpol.2013.07.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 12/14/2022]
|
37
|
Pereira MM, Raposo NRB, Brayner R, Teixeira EM, Oliveira V, Quintão CCR, Camargo LSA, Mattoso LHC, Brandão HM. Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers. NANOTECHNOLOGY 2013; 24:075103. [PMID: 23358497 DOI: 10.1088/0957-4484/24/7/075103] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cellulose nanofibers (CNF) have mechanical properties that make them very attractive for applications in the construction of polymeric matrices, drug delivery and tissue engineering. However, little is known about their impact on mammalian cells. The objective of this study was to evaluate the cytotoxicity of CNF and their effect on gene expression of fibroblasts cultured in vitro. The morphology of CNF was analyzed by transmission electron microscopy and the surface charge by Zeta potential. Cell viability was analyzed by flow cytometry assay and gene expression of biomarkers focused on cell stress response such as Heat shock protein 70.1 (HSP70.1) and Peroxiredoxin 1 (PRDX1) and apoptosis as B-cell leukemia (BCL-2) and BCL-2 associated X protein (BAX) by RT-PCR assay. Low concentrations of CNF (0.02-100 μg ml(-1)) did not cause cell death; however, at concentrations above 200 μg ml(-1), the nanofibers significantly decreased cell viability (86.41 ± 5.37%). The exposure to high concentrations of CNF (2000 and 5000 μg ml(-1)) resulted in increased HSP70.1, PRDX1 and BAX gene expression. The current study concludes that, under the conditions tested, high concentrations (2000 and 5000 μg ml(-1)) of CNF cause decreased cell viability and affect the expression of stress- and apoptosis-associated molecular markers.
Collapse
Affiliation(s)
- M M Pereira
- Nucleus of Analytical Identification and Quantification (NIQUA), Department of Pharmaceutical Sciences, Pharmacy Faculty, Federal University of Juiz de Fora, Juiz de Fora, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Li Y, Li X, Zheng W, Fan C, Zhang Y, Chen T. Functionalized selenium nanoparticles with nephroprotective activity, the important roles of ROS-mediated signaling pathways. J Mater Chem B 2013; 1:6365-6372. [DOI: 10.1039/c3tb21168a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Du L, Gao Y, Yang H, Li Y, Zhuang Q, Jia H, Nie G, Liu Y. Hydroxyethyl-functionalized ultrasmall chitosan nanoparticles as a gene delivery carrier. RSC Adv 2013. [DOI: 10.1039/c3ra42100g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|