1
|
Liu S, Kilian D, Ahlfeld T, Hu Q, Gelinsky M. Egg white improves the biological properties of an alginate-methylcellulose bioink for 3D bioprinting of volumetric bone constructs. Biofabrication 2023; 15. [PMID: 36735961 DOI: 10.1088/1758-5090/acb8dc] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
Three-dimensional microextrusion bioprinting has attracted great interest for fabrication of hierarchically structured, functional tissue substitutes with spatially defined cell distribution. Despite considerable progress, several significant limitations remain such as a lack of suitable bioinks which combine favorable cell response with high shape fidelity. Therefore, in this work a novel bioink of alginate-methylcellulose (AlgMC) blend functionalized with egg white (EW) was developed with the aim of solving this limitation. In this regard, a stepwise strategy was proposed to improve and examine the cell response in low-viscosity alginate inks (3%, w/v) with different EW concentrations, and in high-viscosity inks after gradual methylcellulose addition for enhancing printability. The rheological properties and printability of these cell-responsive bioinks were characterized to obtain an optimized formulation eliciting balanced physicochemical and biological properties for fabrication of volumetric scaffolds. The bioprinted AlgMC + EW constructs exhibited excellent shape fidelity while encapsulated human mesenchymal stem cells showed high post-printing viability as well as adhesion and spreading within the matrix. In a proof-of-concept experiment, the impact of these EW-mediated effects on osteogenesis of bioprinted primary human pre-osteoblasts (hOB) was evaluated. Results confirmed a high viability of hOB (93.7 ± 0.15%) post-fabrication in an EW-supported AlgMC bioink allowing cell adhesion, proliferation and migration. EW even promoted the expression of osteogenic genes, coding for bone sialoprotein (integrin binding sialoprotein/bone sialoprotein precursor (IBSP)) and osteocalcin (BGLAP) on mRNA level. To demonstrate the suitability of the novel ink for future fabrication of multi-zonal bone substitutes, AlgMC + EW was successfully co-printed together with a pasty calcium phosphate bone cement biomaterial ink to achieve a partly mineralized 3D volumetric environment with good cell viability and spreading. Along with the EW-mediated positive effects within bioprinted AlgMC-based scaffolds, this highlighted the promising potential of this novel ink for biofabrication of bone tissue substitutes in clinically relevant dimensions.
Collapse
Affiliation(s)
- Suihong Liu
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China.,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China.,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China.,National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai 200444, People's Republic of China
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
2
|
Alferiev IS, Hooshdaran B, Pressly BB, Zoltick PW, Stachelek SJ, Chorny M, Levy RJ, Fishbein I. Intraprocedural endothelial cell seeding of arterial stents via biotin/avidin targeting mitigates in-stent restenosis. Sci Rep 2022; 12:19212. [PMID: 36357462 PMCID: PMC9649779 DOI: 10.1038/s41598-022-23820-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Impaired endothelialization of endovascular stents has been established as a major cause of in-stent restenosis and late stent thrombosis. Attempts to enhance endothelialization of inner stent surfaces by pre-seeding the stents with endothelial cells in vitro prior to implantation are compromised by cell destruction during high-pressure stent deployment. Herein, we report on the novel stent endothelialization strategy of post-deployment seeding of biotin-modified endothelial cells to avidin-functionalized stents. Acquisition of an avidin monolayer on the stent surface was achieved by consecutive treatments of bare metal stents (BMS) with polyallylamine bisphosphonate, an amine-reactive biotinylation reagent and avidin. Biotin-modified endothelial cells retain growth characteristics of normal endothelium and can express reporter transgenes. Under physiological shear conditions, a 50-fold higher number of recirculating biotinylated cells attached to the avidin-modified metal surfaces compared to bare metal counterparts. Delivery of biotinylated endothelial cells to the carotid arterial segment containing the implanted avidin-modified stent in rats results in immediate cell binding to the stent struts and is associated with a 30% reduction of in-stent restenosis in comparison with BMS.
Collapse
Affiliation(s)
- Ivan S Alferiev
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Stanley J Stachelek
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael Chorny
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Robert J Levy
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ilia Fishbein
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Quinone-based antibody labeling reagent for enzyme-free chemiluminescent immunoassays. Application to avidin and biotinylated anti-rabbit IgG labeling. Biosens Bioelectron 2020; 160:112215. [DOI: 10.1016/j.bios.2020.112215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/27/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
|
4
|
Liang Y, Huang W, Zeng D, Huang X, Chan L, Mei C, Feng P, Tan CH, Chen T. Cancer-targeted design of bioresponsive prodrug with enhanced cellular uptake to achieve precise cancer therapy. Drug Deliv 2018; 25:1350-1361. [PMID: 29869567 PMCID: PMC6058652 DOI: 10.1080/10717544.2018.1477862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Chemical drug design based on the biochemical characteristics of cancer cells has become an important strategy for discovery of novel anticancer drugs to enhance the cancer targeting effects and biocompatibility, and decrease toxic side effects. Camptothecin (CPT) demonstrated strong anticancer activity in clinical trials but also notorious adverse effects. In this study, we presented a smart targeted delivery system (Biotin-ss-CPT) that consists of cancer-targeted moiety (biotin), a cleavable disulfide linker (S-S bond) and the active drug CPT. Biotin-ss-CPT was found to exhibit potent effects on the migration of cancer cells and induced apoptosis by induction of ROS-mediated mitochondrial dysfunction and perturbation of GSH/GPXs system, as well as activation of caspases. In vivo tumor suppression investigation including toxicity evaluation and pathology analysis, accompanied by MR images showed that Biotin-ss-CPT can be recognized specifically and selectively and taken up preferentially by cancers cells, followed by localization and accumulation effectively in tumor site, then released CPT by biological response to achieve high therapeutic effect and remarkably reduced the side effects that free CPT caused, such as liver damage, renal injury, and weight loss to realize precise cancer therapy. Taken together, our results suggest that biotinylation and bioresponsive functionalization of anticancer drugs could be a good way for the discovery of next-generation cancer therapeutics.
Collapse
Affiliation(s)
- Yuanwei Liang
- a The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou , China
| | - Wei Huang
- a The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou , China
| | - Delong Zeng
- a The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou , China
| | - Xiaoting Huang
- a The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou , China
| | - Leung Chan
- a The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou , China
| | - Chaoming Mei
- a The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou , China
| | - Pengju Feng
- a The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou , China
| | - Choon-Hong Tan
- b Division of Chemistry and Biological Chemistry , Nanyang Technological University , Singapore
| | - Tianfeng Chen
- a The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou , China
| |
Collapse
|
5
|
Abbott A, Oxburgh L, Kaplan DL, Coburn JM. Avidin Adsorption to Silk Fibroin Films as a Facile Method for Functionalization. Biomacromolecules 2018; 19:3705-3713. [PMID: 30041518 DOI: 10.1021/acs.biomac.8b00824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Silk fibroin biomaterials are highly versatile in terms of materials formation and functionalization, with applications in tissue engineering and drug delivery, but necessitate modifications for optimized biological activity. Herein, a facile, avidin-based technique is developed to noncovalently functionalize silk materials with bioactive molecules. The ability to adsorb avidin to silk surfaces and subsequently couple biotinylated macromolecules via avidin-biotin interaction is described. This method better preserved functionality than standard covalent coupling techniques using carbodiimide cross-linking chemistry. The controlled release of avidin from the silk surface was demonstrated by altering the adsorption parameters. Application of this technique to culturing human foreskin fibroblasts (hFFs) and human mesenchymal stem cells (hMSCs) on arginine-glycine-aspartic-acid-modified (RGD-modified) silk showed increased cell growth over a seven-day period. This technique provides a facile method for the versatile functionalization of silk materials for biomedical applications including tissue engineering, drug delivery, and biological sensing.
Collapse
Affiliation(s)
- Alycia Abbott
- Worcester Polytechnic Institute , Worcester , Massachusetts 01605 , United States
| | - Leif Oxburgh
- Maine Medical Center Research Institute , Scarborough , Maine 04074 , United States
| | - David L Kaplan
- Tufts University , Medford , Massachusetts 02155 , United States
| | - Jeannine M Coburn
- Worcester Polytechnic Institute , Worcester , Massachusetts 01605 , United States.,Tufts University , Medford , Massachusetts 02155 , United States
| |
Collapse
|
6
|
Vedamalai M, Gupta I. Design and synthesis of the BODIPY-BSA complex for biological applications. LUMINESCENCE 2017; 33:10-14. [PMID: 28681566 DOI: 10.1002/bio.3365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/16/2022]
Abstract
A quinoxaline-functionalized styryl-BODIPY derivative (S1) was synthesized by microwave-assisted Knoevenagel condensation. It exhibited fluorescence enhancement upon micro-encapsulation into the hydrophobic cavity of bovine serum albumin (BSA). The S1-BSA complex was characterized systematically using ultraviolet (UV)-visible absorption, fluorescence emission, kinetics, circular dichroism and time-resolved lifetime measurements. The binding nature of BSA towards S1 was strong, and was found to be stable over a period of days. The studies showed that the S1-BSA complex could be used as a new biomaterial for fluorescence-based high-throughput assay for kinase enzymes.
Collapse
Affiliation(s)
- Mani Vedamalai
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Village Palaj, Simkheda, Gandhinagar, Gujarat, India.,Department of Chemistry, Lovely Professional University, Phagwara, Punjab, India
| | - Iti Gupta
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Village Palaj, Simkheda, Gandhinagar, Gujarat, India
| |
Collapse
|
7
|
Ahrens CC, Welch ME, Griffith LG, Hammond PT. Uncharged Helical Modular Polypeptide Hydrogels for Cellular Scaffolds. Biomacromolecules 2015; 16:3774-83. [DOI: 10.1021/acs.biomac.5b01076] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Caroline C. Ahrens
- Department of Chemical Engineering, ‡Koch Institute for
Integrative
Cancer Research, §Department of Biological Engineering, and ∥Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| | - M. Elizabeth Welch
- Department of Chemical Engineering, ‡Koch Institute for
Integrative
Cancer Research, §Department of Biological Engineering, and ∥Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| | - Linda G. Griffith
- Department of Chemical Engineering, ‡Koch Institute for
Integrative
Cancer Research, §Department of Biological Engineering, and ∥Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| | - Paula T. Hammond
- Department of Chemical Engineering, ‡Koch Institute for
Integrative
Cancer Research, §Department of Biological Engineering, and ∥Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts United States
| |
Collapse
|
8
|
Wujcik EK, Wei H, Zhang X, Guo J, Yan X, Sutrave N, Wei S, Guo Z. Antibody nanosensors: a detailed review. RSC Adv 2014. [DOI: 10.1039/c4ra07119k] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Rodda AE, Meagher L, Nisbet DR, Forsythe JS. Specific control of cell–material interactions: Targeting cell receptors using ligand-functionalized polymer substrates. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.11.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|