1
|
Amirsadeghi A, Gudeti PKR, Tock S, Koch M, Parisi D, Kamperman M, Włodarczyk-Biegun MK. Melt Electrowriting of Elastic Scaffolds Using PEOT-PBT Multi-block Copolymer. Adv Healthc Mater 2024:e2402914. [PMID: 39659166 DOI: 10.1002/adhm.202402914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/09/2024] [Indexed: 12/12/2024]
Abstract
Melt electrowriting (MEW) is a powerful additive manufacturing technique to produce tissue engineering scaffolds. Despite its strength, it is limited by a small number of processable polymers. Therefore, to broaden the library of materials for MEW, we investigated the printability of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT-PBT), a thermoplastic elastomer. The effect of different printing parameters and material thermal degradation are studied. It is observed that the material is stable for >60 min at a printing temperature of 195 °C in a nitrogen environment. Next, two types of designs are printed and characterized: mesh-like and semi-random scaffolds. For both types of designs, PEOT-PBT scaffolds reveal a higher yield strain, and lower Young's modulus as compared to control polycaprolactone scaffolds. Biological studies performed using mouse embryonic fibroblasts (NIH-3T3) show good cell viability and metabolic activity on all print scaffolds. SEM imaging reveals actively migrating cells on PEOT-PBT mesh scaffolds after 24 h of culture and 98.87% of pore bridging by cells after 28 days of culture. Immunofluorescence staining shows decreased expression of alpha-smooth muscle actin from day 14 to day 28 in PEOT-PBT mesh scaffolds. Overall, it is shown that melt electrowritten PEOT-PBT scaffolds have great potential for soft tissue regeneration.
Collapse
Affiliation(s)
- Armin Amirsadeghi
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands
| | - Pavan Kumar Reddy Gudeti
- Biotechnology Centre, The Silesian University of Technology, B. Krzywoustego 8, Gliwice, 44-100, Poland
| | - Sietse Tock
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Daniele Parisi
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands
| | - Marleen Kamperman
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands
| | - Małgorzata Katarzyna Włodarczyk-Biegun
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands
- Biotechnology Centre, The Silesian University of Technology, B. Krzywoustego 8, Gliwice, 44-100, Poland
| |
Collapse
|
2
|
Wang Y, Yan R, Yang H, Liu Y, Zhong X, Liu S, Xie R, Ren L. Modular Microgel-Based Bioassembly Scaffold Induced Chondrogenic and Osteogenic Differentiation of BMSCs. Macromol Biosci 2024; 24:e2400051. [PMID: 38663437 DOI: 10.1002/mabi.202400051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Indexed: 05/09/2024]
Abstract
Bioactive scaffolds capable of simultaneously repairing osteochondral defects remain a big challenge due to the heterogeneity of bone and cartilage. Currently modular microgel-based bioassembly scaffolds are emerged as potential solution to this challenge. Here, microgels based on methacrylic anhydride (MA) and dopamine modified gelatin (GelMA-DA) are loaded with chondroitin sulfate (CS) (the obtained microgel named GC Ms) or bioactive glass (BG) (the obtained microgel named GB Ms), respectively. GC Ms and GB Ms show good biocompatibility with BMSCs, which suggested by the adhesion and proliferation of BMSCs on their surfaces. Specially, GC Ms promote chondrogenic differentiation of BMSCs, while GB Ms promote osteogenic differentiation. Furthermore, the injectable GC Ms and GB Ms are assembled integrally by bottom-up in situ cross-linking to obtain modular microgel-based bioassembly scaffold (GC-GB/HM), which show a distinct bilayer structure and good porous properties and swelling properties. Particularly, the results of in vivo and in vitro experiments show that GC-GB/HM can simultaneously regulate the expression levels of chondrogenic- and osteogenesis-related genes and proteins. Therefore, modular microgel-based assembly scaffold in this work with the ability to promote bidirectional differentiation of BMSCs and has great potential for application in the minimally invasive treatment of osteochondral tissue defects.
Collapse
Affiliation(s)
- Yanyan Wang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Ruyu Yan
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Hai Yang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Ying Liu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xiupeng Zhong
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Renjian Xie
- School of Medical Information Engineering, Jiangxi Key Laboratory of Tissue Engineering, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou, 341000, China
| | - Li Ren
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
3
|
Eliahoo P, Setayesh H, Hoffman T, Wu Y, Li S, Treweek JB. Viscoelasticity in 3D Cell Culture and Regenerative Medicine: Measurement Techniques and Biological Relevance. ACS MATERIALS AU 2024; 4:354-384. [PMID: 39006396 PMCID: PMC11240420 DOI: 10.1021/acsmaterialsau.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 07/16/2024]
Abstract
The field of mechanobiology is gaining prominence due to recent findings that show cells sense and respond to the mechanical properties of their environment through a process called mechanotransduction. The mechanical properties of cells, cell organelles, and the extracellular matrix are understood to be viscoelastic. Various technologies have been researched and developed for measuring the viscoelasticity of biological materials, which may provide insight into both the cellular mechanisms and the biological functions of mechanotransduction. Here, we explain the concept of viscoelasticity and introduce the major techniques that have been used to measure the viscoelasticity of various soft materials in different length- and timescale frames. The topology of the material undergoing testing, the geometry of the probe, the magnitude of the exerted stress, and the resulting deformation should be carefully considered to choose a proper technique for each application. Lastly, we discuss several applications of viscoelasticity in 3D cell culture and tissue models for regenerative medicine, including organoids, organ-on-a-chip systems, engineered tissue constructs, and tunable viscoelastic hydrogels for 3D bioprinting and cell-based therapies.
Collapse
Affiliation(s)
- Payam Eliahoo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| | - Hesam Setayesh
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| | - Tyler Hoffman
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Yifan Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Jennifer B Treweek
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| |
Collapse
|
4
|
Duan QY, Zhu YX, Jia HR, Wang SH, Wu FG. Nanogels: Synthesis, properties, and recent biomedical applications. PROGRESS IN MATERIALS SCIENCE 2023; 139:101167. [DOI: 10.1016/j.pmatsci.2023.101167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Shi W, Meng Q, Hu X, Cheng J, Shao Z, Yang Y, Ao Y. Using a Xenogeneic Acellular Dermal Matrix Membrane to Enhance the Reparability of Bone Marrow Mesenchymal Stem Cells for Cartilage Injury. Bioengineering (Basel) 2023; 10:916. [PMID: 37627801 PMCID: PMC10451227 DOI: 10.3390/bioengineering10080916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Due to its avascular organization and low mitotic ability, articular cartilage possesses limited intrinsic regenerative capabilities. The aim of this study is to achieve one-step cartilage repair in situ via combining bone marrow stem cells (BMSCs) with a xenogeneic Acellular dermal matrix (ADM) membrane. The ADM membranes were harvested from Sprague-Dawley (SD) rats through standard decellularization procedures. The characterization of the scaffolds was measured, including the morphology and physical properties of the ADM membrane. The in vitro experiments included the cell distribution, chondrogenic matrix quantification, and viability evaluation of the scaffolds. Adult male New Zealand white rabbits were used for the in vivo evaluation. Isolated microfracture was performed in the control (MF group) in the left knee and the tested ADM group was included as an experimental group when an ADM scaffold was implanted through matching with the defect after microfracture in the right knee. At 6, 12, and 24 weeks post-surgery, the rabbits were sacrificed for further research. The ADM could adsorb water and had excellent porosity. The bone marrow stem cells (BMSCs) grew well when seeded on the ADM scaffold, demonstrating a characteristic spindle-shaped morphology. The ADM group exhibited an excellent proliferative capacity as well as the cartilaginous matrix and collagen production of the BMSCs. In the rabbit model, the ADM group showed earlier filling, more hyaline-like neo-tissue formation, and better interfacial integration between the defects and normal cartilage compared with the microfracture (MF) group at 6, 12, and 24 weeks post-surgery. In addition, neither intra-articular inflammation nor a rejection reaction was observed after the implantation of the ADM scaffold. This study provides a promising biomaterial-based strategy for cartilage repair and is worth further investigation in large animal models.
Collapse
Affiliation(s)
- Weili Shi
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingyang Meng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin Cheng
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenxing Shao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuping Yang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingfang Ao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China; (W.S.); (Q.M.); (X.H.); (J.C.); (Z.S.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Wang M, Xu P, Lei B. Engineering multifunctional bioactive citrate-based biomaterials for tissue engineering. Bioact Mater 2023; 19:511-537. [PMID: 35600971 PMCID: PMC9096270 DOI: 10.1016/j.bioactmat.2022.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/21/2022] Open
Abstract
Developing bioactive biomaterials with highly controlled functions is crucial to enhancing their applications in regenerative medicine. Citrate-based polymers are the few bioactive polymer biomaterials used in biomedicine because of their facile synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, and functional groups available for modification. In recent years, various multifunctional designs and biomedical applications, including cardiovascular, orthopedic, muscle tissue, skin tissue, nerve and spinal cord, bioimaging, and drug or gene delivery based on citrate-based polymers, have been extensively studied, and many of them have good clinical application potential. In this review, we summarize recent progress in the multifunctional design and biomedical applications of citrate-based polymers. We also discuss the further development of multifunctional citrate-based polymers with tailored properties to meet the requirements of various biomedical applications. Multifunctional bioactive citrate-based biomaterials have broad applications in regenerative medicine. Recent advances in multifunctional design and biomedical applications of citate-based polymers are summarized. Future challenge of citrate-based polymers in various biomedical applications are discussed.
Collapse
|
7
|
Feng Q, Li D, Li Q, Li S, Huang H, Li H, Dong H, Cao X. Dynamic Nanocomposite Microgel Assembly with Microporosity, Injectability, Tissue-Adhesion, and Sustained Drug Release Promotes Articular Cartilage Repair and Regeneration. Adv Healthc Mater 2022; 11:e2102395. [PMID: 34874119 DOI: 10.1002/adhm.202102395] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/22/2022]
Abstract
Owing to the lack of blood vessels, nerves, and lymph, articular cartilage defect is difficult to self-repair. Although several cartilage tissue engineering products have been authorized for clinical use, there are still some problems such as large surgical wounds, weak adhesion with the host tissue, and the limited source of autologous chondrocytes. In this paper, a novel dynamic nanocomposite microgel assembly with excellent microporosity, injectability, tissue-adhesion, and sustained kartogenin (KGN) release is reported. Specifically, KGN-loaded cyclodextrin nanoparticles are synthesized through nanoemulsification and incorporated into bone marrow mesenchymal stem cell (BMSCs)-laden microgels via droplet-based microfluidics and photo-crosslinking, which are then bottom-up assembled via dynamic crosslinking between dopamine-modified hyaluronic acid and phenylboronic acid groups on microgel surface. Results reveal that the microgel assembly can avoid the cell endocytosis of nanoparticles, ensure the high BMSC viability during the regular cell culture, cryopreservation and injection process, promote the chondrogenic differentiation of BMSCs. In addition, animal expriment proves the newborn cartilages present the typical characteristics of articular cartilage. In brief, this microgel assembly not only offers convenience for clinical use (injectability, tissue adhesion) but also provides good microenvironments for chondrogenesis (controlled drug release, interconnected micropores), indicative of its promising application for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Qi Feng
- Department of Biomedical Engineering School of Materials Science and Engineering South China University of Technology Guangzhou 510006 China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC‐TRR) Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
- School of Medicine South China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510641 China
| | - Dingguo Li
- Department of Biomedical Engineering School of Materials Science and Engineering South China University of Technology Guangzhou 510006 China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC‐TRR) Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
- School of Medicine South China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510641 China
| | - Qingtao Li
- Department of Biomedical Engineering School of Materials Science and Engineering South China University of Technology Guangzhou 510006 China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC‐TRR) Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
- School of Medicine South China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510641 China
| | - Shuxian Li
- Department of Biomedical Engineering School of Materials Science and Engineering South China University of Technology Guangzhou 510006 China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC‐TRR) Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
- School of Medicine South China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510641 China
| | - Hanhao Huang
- Department of Biomedical Engineering School of Materials Science and Engineering South China University of Technology Guangzhou 510006 China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC‐TRR) Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
- School of Medicine South China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510641 China
| | - Haofei Li
- Department of Biomedical Engineering School of Materials Science and Engineering South China University of Technology Guangzhou 510006 China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC‐TRR) Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
- School of Medicine South China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510641 China
| | - Hua Dong
- Department of Biomedical Engineering School of Materials Science and Engineering South China University of Technology Guangzhou 510006 China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC‐TRR) Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
- School of Medicine South China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510641 China
| | - Xiaodong Cao
- Department of Biomedical Engineering School of Materials Science and Engineering South China University of Technology Guangzhou 510006 China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC‐TRR) Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
- School of Medicine South China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510641 China
| |
Collapse
|
8
|
Monaco G, El Haj AJ, Alini M, Stoddart MJ. Ex Vivo Systems to Study Chondrogenic Differentiation and Cartilage Integration. J Funct Morphol Kinesiol 2021; 6:E6. [PMID: 33466400 PMCID: PMC7838775 DOI: 10.3390/jfmk6010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Articular cartilage injury and repair is an issue of growing importance. Although common, defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity, which is largely due to its avascular nature. There is a critical need to better study and understand cellular healing mechanisms to achieve more effective therapies for cartilage regeneration. This article aims to describe the key features of cartilage which is being modelled using tissue engineered cartilage constructs and ex vivo systems. These models have been used to investigate chondrogenic differentiation and to study the mechanisms of cartilage integration into the surrounding tissue. The review highlights the key regeneration principles of articular cartilage repair in healthy and diseased joints. Using co-culture models and novel bioreactor designs, the basis of regeneration is aligned with recent efforts for optimal therapeutic interventions.
Collapse
Affiliation(s)
- Graziana Monaco
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
| | - Alicia J. El Haj
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
- Healthcare Technology Institute, Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
| | - Martin J. Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
| |
Collapse
|
9
|
Calore AR, Sinha R, Harings J, Bernaerts KV, Mota C, Moroni L. Additive Manufacturing Using Melt Extruded Thermoplastics for Tissue Engineering. Methods Mol Biol 2021; 2147:75-99. [PMID: 32840812 DOI: 10.1007/978-1-0716-0611-7_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Melt extrusion of thermoplastic materials is an important technique for fabricating tissue engineering scaffolds by additive manufacturing methods. Scaffold manufacturing is commonly achieved by one of the following extrusion-based techniques: fused deposition modelling (FDM), 3D-fiber deposition (3DF), and bioextrusion. FDM needs the input material to be strictly in the form of a filament, whereas 3DF and bioextrusion can be used to process input material in several forms, such as pellets or powder. This chapter outlines a common workflow for all these methods, going from the material to a scaffold, while highlighting the special requirements of particular methods. A few ways of characterizing the scaffolds are also briefly described.
Collapse
Affiliation(s)
- Andrea Roberto Calore
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, The Netherlands.
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Geleen, The Netherlands.
| | - Ravi Sinha
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, The Netherlands
| | - Jules Harings
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Geleen, The Netherlands
| | - Katrien V Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Geleen, The Netherlands
| | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, The Netherlands
| |
Collapse
|
10
|
Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering. Acta Biomater 2020; 102:192-204. [PMID: 31778830 DOI: 10.1016/j.actbio.2019.11.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023]
Abstract
Although a growing knowledge on the field of tissue engineering of articular cartilage exists, reconstruction or in-vitro growth of functional hyaline tissue still represents an unmet challenge. Despite the simplicity of the tissue in terms of cell population and absence of innervation and vascularization, the outstanding mechanical properties of articular cartilage, which are the result of the specificity of its extra cellular matrix (ECM), are difficult to mimic. Most importantly, controlling the differentiation state or phenotype of chondrocytes, which are responsible of the deposition of this specialized ECM, represents a milestone in the regeneration of native articular cartilage. In this study, we fabricated fused deposition modelled (FDM) scaffolds with different pore sizes and architectures from an elastic and biodegradable poly(ester)urethane (PEU) with mechanical properties that can be modulated by design, and that ranged the elasticity of articular cartilage. Cell culture in additive manufactured 3D scaffolds exceeded the chondrogenic potential of the gold-standard pellet culture. In-vitro cell culture studies demonstrated the intrinsic potential of elastic (PEU) to drive the re-differentiation of de-differentiated chondrocytes when cultured in-vitro, in differentiation or basal media, better than pellet cultures. The formation of neo-tissue was assessed as a high deposition of GAGs and fibrillar collagen II, and a high expression of typical chondrogenic markers. Moreover, the collagen II / collagen I ratio commonly used to evaluate the differentiation state of chondrocytes (ratio > 1 being chondrocytes and, ratio < 0 being de-differentiated chondrocytes) was higher than 5. STATEMENT OF SIGNIFICANCE: Tissue engineering of articular cartilage requires material scaffolds capable of driving the deposition of a coherent and specific ECM representative of articular cartilage. Materials explored so far account for low mechanical properties (hydrogels), or are too stiff to mimic the elasticity of the native tissue (traditional polyesters). Here, we fabricated 3D fibrous scaffolds via FDM with a biodegradable poly(ester)urethane. The compressive Young`s modulus and elastic limit of the scaffolds can be tuned by designed, mimicking those of the native tissue. The designed scaffolds showed an intrinsic potential to drive the formation of a GAG and collagen II rich ECM, and to drive a stable chondrogenic cell phenotype.
Collapse
|
11
|
Kim WK, Choi JH, Shin ME, Kim JW, Kim PY, Kim N, Song JE, Khang G. Evaluation of cartilage regeneration of chondrocyte encapsulated gellan gum-based hyaluronic acid blended hydrogel. Int J Biol Macromol 2019; 141:51-59. [DOI: 10.1016/j.ijbiomac.2019.08.176] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 01/28/2023]
|
12
|
Kurashina Y, Sato R, Onoe H. Microfiber-shaped building-block tissues with endothelial networks for constructing macroscopic tissue assembly. APL Bioeng 2019; 3:046101. [PMID: 31737859 PMCID: PMC6853801 DOI: 10.1063/1.5109966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022] Open
Abstract
We describe a microfiber-shaped hepatic tissue for in vitro macroscopic tissue assembly, fabricated using a double coaxial microfluidic device and composed of cocultured Hep-G2 cells and human umbilical vein endothelial cells (HUVECs). The appropriate coculture conditions for Hep-G2 cells and HUVECs in the microfiber-shaped tissue were optimized by changing the thickness of the core and the cell ratio. The HUVEC networks were formed in the microfiber-shaped tissue following culture for 3 days. Using this microfiber-shaped tissue as a building block, two types of macroscopic assembled tissues were constructed-parallel and reeled tissues. In both tissue types, the connection of the HUVEC network across the adjacent microfiber-shaped tissues was established after 2 days, because the calcium alginate shell of the microfiber-shaped tissue was enzymatically removed. Our approach could facilitate the generation of complex and heterogeneous macroscopic tissues mimicking the major organs including the liver, kidney, and heart for the treatment of critically ill patients.
Collapse
Affiliation(s)
| | - Ryo Sato
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Hiroaki Onoe
- Author to whom correspondence should be addressed:
| |
Collapse
|
13
|
Girão AF, Wieringa P, Pinto SC, Marques PAAP, Micera S, van Wezel R, Ahmed M, Truckenmueller R, Moroni L. Ultraviolet Functionalization of Electrospun Scaffolds to Activate Fibrous Runways for Targeting Cell Adhesion. Front Bioeng Biotechnol 2019; 7:159. [PMID: 31297371 PMCID: PMC6607108 DOI: 10.3389/fbioe.2019.00159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/13/2019] [Indexed: 01/29/2023] Open
Abstract
A critical challenge in scaffold design for tissue engineering is recapitulating the complex biochemical patterns that regulate cell behavior in vivo. In this work, we report the adaptation of a standard sterilization methodology-UV irradiation-for patterning the surfaces of two complementary polymeric electrospun scaffolds with oxygen cues able to efficiently immobilize biomolecules. Independently of the different polymer chain length of poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymers and PEOT/PBT ratio, it was possible to easily functionalize specific regions of the scaffolds by inducing an optimized and spatially controlled adsorption of proteins capable of boosting the adhesion and spreading of cells along the activated fibrous runways. By allowing an efficient design of cell attachment patterns without inducing any noticeable change on cell morphology nor on the integrity of the electrospun fibers, this procedure offers an affordable and resourceful approach to generate complex biochemical patterns that can decisively complement the functionality of the next generation of tissue engineering scaffolds.
Collapse
Affiliation(s)
- André F. Girão
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology, University of Twente, Enschede, Netherlands
- Department of Mechanical Engineering, TEMA, University of Aveiro, Aveiro, Portugal
| | - Paul Wieringa
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology, University of Twente, Enschede, Netherlands
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Susana C. Pinto
- Department of Mechanical Engineering, TEMA, University of Aveiro, Aveiro, Portugal
| | | | - Silvestro Micera
- BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Translational Neural Engineering Laboratory, Center for Neuroprosthetics, School of Engineering, École Polytechnique Fédérale de Lausanne, Institute of Bioengineering, Lausanne, Switzerland
| | - Richard van Wezel
- Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Biomedical Signals and Systems, MedTech Center, University of Twente, Enschede, Netherlands
| | - Maqsood Ahmed
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology, University of Twente, Enschede, Netherlands
| | - Roman Truckenmueller
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology, University of Twente, Enschede, Netherlands
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Lorenzo Moroni
- Tissue Regeneration Department, MIRA Institute for Biomedical Technology, University of Twente, Enschede, Netherlands
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
14
|
Zhou S, Chen S, Jiang Q, Pei M. Determinants of stem cell lineage differentiation toward chondrogenesis versus adipogenesis. Cell Mol Life Sci 2019; 76:1653-1680. [PMID: 30689010 PMCID: PMC6456412 DOI: 10.1007/s00018-019-03017-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/10/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
Adult stem cells, also termed as somatic stem cells, are undifferentiated cells, detected among differentiated cells in a tissue or an organ. Adult stem cells can differentiate toward lineage specific cell types of the tissue or organ in which they reside. They also have the ability to differentiate into mature cells of mesenchymal tissues, such as cartilage, fat and bone. Despite the fact that the balance has been comprehensively scrutinized between adipogenesis and osteogenesis and between chondrogenesis and osteogenesis, few reviews discuss the relationship between chondrogenesis and adipogenesis. In this review, the developmental and transcriptional crosstalk of chondrogenic and adipogenic lineages are briefly explored, followed by elucidation of signaling pathways and external factors guiding lineage determination between chondrogenic and adipogenic differentiation. An in-depth understanding of overlap and discrepancy between these two mesenchymal tissues in lineage differentiation would benefit regeneration of high-quality cartilage tissues and adipose tissues for clinical applications.
Collapse
Affiliation(s)
- Sheng Zhou
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
- Department of Sports Medicine and Adult Reconstructive Surgery, School of Medicine, Drum Tower Hospital, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083, Sichuan, People's Republic of China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, School of Medicine, Drum Tower Hospital, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA.
- Robert C. Byrd Health Sciences Center, WVU Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
15
|
Soni V, Pandey V, Asati S, Gour V, Tekade RK. Biodegradable Block Copolymers and Their Applications for Drug Delivery. BASIC FUNDAMENTALS OF DRUG DELIVERY 2019:401-447. [DOI: 10.1016/b978-0-12-817909-3.00011-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
In Vitro and In Vivo Characterization of N-Acetyl-L-Cysteine Loaded Beta-Tricalcium Phosphate Scaffolds. Int J Biomater 2018; 2018:9457910. [PMID: 30151010 PMCID: PMC6091360 DOI: 10.1155/2018/9457910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/03/2018] [Indexed: 01/29/2023] Open
Abstract
Beta-tricalcium phosphate bioceramics are widely used as bone replacement scaffolds in bone tissue engineering. The purpose of this study is to develop beta-tricalcium phosphate scaffold with the optimum mechanical properties and porosity and to identify the effect of N-acetyl-L-cysteine loaded to beta-tricalcium phosphate scaffold on the enhancement of biocompatibility. The various interconnected porous scaffolds were fabricated using slurries containing various concentrations of beta-tricalcium phosphate and different coating times by replica method using polyurethane foam as a passing material. It was confirmed that the scaffold of 40 w/v% beta-tricalcium phosphate with three coating times had optimum microstructure and mechanical properties for bone tissue engineering application. The various concentration of N-acetyl-L-cysteine was loaded on 40 w/v% beta-tricalcium phosphate scaffold. Scaffold group loaded 5 mM N-acetyl-L-cysteine showed the best viability of MC3T3-E1 preosteoblastic cells in the water-soluble tetrazolium salt assay test.
Collapse
|
17
|
Sun Y, Yan L, Chen S, Pei M. Functionality of decellularized matrix in cartilage regeneration: A comparison of tissue versus cell sources. Acta Biomater 2018; 74:56-73. [PMID: 29702288 PMCID: PMC7307012 DOI: 10.1016/j.actbio.2018.04.048] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 01/12/2023]
Abstract
Increasing evidence indicates that decellularized extracellular matrices (dECMs) derived from cartilage tissues (T-dECMs) or chondrocytes/stem cells (C-dECMs) can support proliferation and chondrogenic differentiation of cartilage-forming cells. However, few review papers compare the differences between these dECMs when they serve as substrates for cartilage regeneration. In this review, after an introduction of cartilage immunogenicity and decellularization methods to prepare T-dECMs and C-dECMs, a comprehensive comparison focuses on the effects of T-dECMs and C-dECMs on proliferation and chondrogenic differentiation of chondrocytes/stem cells in vitro and in vivo. Key factors within dECMs, consisting of microarchitecture characteristics and micromechanical properties as well as retained insoluble and soluble matrix components, are discussed in-depth for potential mechanisms underlying the functionality of these dECMs in regulating chondrogenesis. With this information, we hope to benefit dECM based cartilage engineering and tissue regeneration for future clinical application. STATEMENT OF SIGNIFICANCE The use of decellularized extracellular matrix (dECM) is becoming a promising approach for tissue engineering and regeneration. Compared to dECM derived from cartilage tissue, recently reported dECM from cell sources exhibits a distinct role in cell based cartilage regeneration. In this review paper, for the first time, tissue and cell based dECMs are comprehensively compared for their functionality in cartilage regeneration. This information is expected to provide an update for dECM based cartilage regeneration.
Collapse
Affiliation(s)
- Yu Sun
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Department of Orthopaedics, Orthopaedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - Lianqi Yan
- Department of Orthopaedics, Orthopaedics Institute, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, Sichuan 610083, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA; Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA; WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
18
|
Sánchez-Téllez DA, Téllez-Jurado L, Rodríguez-Lorenzo LM. Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids. Polymers (Basel) 2017; 9:E671. [PMID: 30965974 PMCID: PMC6418920 DOI: 10.3390/polym9120671] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
The aims of this paper are: (1) to review the current state of the art in the field of cartilage substitution and regeneration; (2) to examine the patented biomaterials being used in preclinical and clinical stages; (3) to explore the potential of polymeric hydrogels for these applications and the reasons that hinder their clinical success. The studies about hydrogels used as potential biomaterials selected for this review are divided into the two major trends in tissue engineering: (1) the use of cell-free biomaterials; and (2) the use of cell seeded biomaterials. Preparation techniques and resulting hydrogel properties are also reviewed. More recent proposals, based on the combination of different polymers and the hybridization process to improve the properties of these materials, are also reviewed. The combination of elements such as scaffolds (cellular solids), matrices (hydrogel-based), growth factors and mechanical stimuli is needed to optimize properties of the required materials in order to facilitate tissue formation, cartilage regeneration and final clinical application. Polymer combinations and hybrids are the most promising materials for this application. Hybrid scaffolds may maximize cell growth and local tissue integration by forming cartilage-like tissue with biomimetic features.
Collapse
Affiliation(s)
- Daniela Anahí Sánchez-Téllez
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
| | - Lucía Téllez-Jurado
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
| | - Luís María Rodríguez-Lorenzo
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
- Department Polymeric Nanomaterials and Biomaterials, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
19
|
Sun AX, Lin H, Fritch MR, Shen H, Alexander PG, DeHart M, Tuan RS. Chondrogenesis of human bone marrow mesenchymal stem cells in 3-dimensional, photocrosslinked hydrogel constructs: Effect of cell seeding density and material stiffness. Acta Biomater 2017; 58:302-311. [PMID: 28611002 DOI: 10.1016/j.actbio.2017.06.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022]
Abstract
Three-dimensional hydrogel constructs incorporated with live stem cells that support chondrogenic differentiation and maintenance offer a promising regenerative route towards addressing the limited self-repair capabilities of articular cartilage. In particular, hydrogel scaffolds that augment chondrogenesis and recapitulate the native physical properties of cartilage, such as compressive strength, can potentially be applied in point-of-care procedures. We report here the synthesis of two new materials, [poly-l-lactic acid/polyethylene glycol/poly-l-lactic acid] (PLLA-PEG 1000) and [poly-d,l-lactic acid/polyethylene glycol/poly-d,l-lactic acid] (PDLLA-PEG 1000), that are biodegradable, biocompatible (>80% viability post fabrication), and possess high, physiologically relevant mechanical strength (∼1500 to 1800kPa). This study examined the effects of physiologically relevant cell densities (4, 8, 20, and 50×106/mL) and hydrogel stiffnesses (∼150kPa to∼1500kPa Young's moduli) on chondrogenesis of human bone marrow stem cells incorporated in hydrogel constructs fabricated with these materials and a previously characterized PDLLA-PEG 4000. Results showed that 20×106cells/mL, under a static culture condition, was the most efficient cell seeding density for extracellular matrix (ECM) production on the basis of hydroxyproline and glycosaminoglycan content. Interestingly, material stiffness did not significantly affect chondrogenesis, but rather material concentration was correlated to chondrogenesis with increasing levels at lower concentrations based on ECM production, chondrogenic gene expression, and histological analysis. These findings establish optimal cell densities for chondrogenesis within three-dimensional cell-incorporated hydrogels, inform hydrogel material development for cartilage tissue engineering, and demonstrate the efficacy and potential utility of PDLLA-PEG 1000 for point-of-care treatment of cartilage defects. STATEMENT OF SIGNIFICANCE Engineering cartilage with physiologically relevant mechanical properties for point-of-care applications represents a major challenge in orthopedics, given the generally low mechanical strengths of traditional hydrogels used in cartilage tissue engineering. In this study, we characterized a new material that possesses high mechanical strength similar to native cartilage, and determined the optimal cell density and scaffold stiffness to achieve the most efficient chondrogenic response from seeded human bone marrow stem cells. Results show robust chondrogenesis and strongly suggest the potential of this material to be applied clinically for point-of-care repair of cartilage defects.
Collapse
Affiliation(s)
- Aaron X Sun
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, USA
| | - Madalyn R Fritch
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, USA
| | - He Shen
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, USA; Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, China
| | - Pete G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, USA
| | - Michael DeHart
- Department of Biology, University of Pittsburgh Dietrich School of Arts and Sciences, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, USA.
| |
Collapse
|
20
|
Kurashina Y, Hirano M, Imashiro C, Totani K, Komotori J, Takemura K. Enzyme-free cell detachment mediated by resonance vibration with temperature modulation. Biotechnol Bioeng 2017. [PMID: 28627736 DOI: 10.1002/bit.26361] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell detachment is an essential process in adherent cell culture. However, trypsinization, which is the most popular detachment technique used in culture, damages cellular membranes. Reducing cellular membrane damage during detachment should improve the quality of cell culture. In this article, we propose an enzyme-free cell detachment method based on resonance vibration with temperature modulation. We developed a culture device that can excite a resonance vibration and control temperature. We then evaluated the cell detachment ratio and the growth response, observed the morphology, and analyzed the cellular protein of the collected cells-mouse myoblast cell line (C2C12). With the temperature of 10°C and the maximum vibration amplitude of 2 μm, 77.9% of cells in number were successfully detached compared with traditional trypsinization. The 72-h proliferation ratio of the reseeded cells was similar to that with trypsinization, whereas the proliferation ratio of proposed method was 12.6% greater than that of trypsinization after freezing and thawing. Moreover, the cells can be collected relatively intact and both intracellular and cell surface proteins in the proposed method were less damaged than in trypsinization. These results show that this method has definite advantages over trypsinization, which indicates that it could be applied to subcultures of cells that are more susceptible to trypsin damage for mass culture of sustainable clinical use. Biotechnol. Bioeng. 2017;114: 2279-2288. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuta Kurashina
- School of Science for Open and Environmental Systems, Graduate School of Science and Technology, Keio University, Yokohama, Japan
| | - Makoto Hirano
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo, Japan.,Department of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Chikahiro Imashiro
- School of Science for Open and Environmental Systems, Graduate School of Science and Technology, Keio University, Yokohama, Japan
| | - Kiichiro Totani
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo, Japan
| | - Jun Komotori
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kenjiro Takemura
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
21
|
Takei T, Yoshitomi H, Fukumoto K, Danjo S, Yoshinaga T, Nishimata H, Yoshida M. Toxic Chemical Cross-linker-free Cryosponges Made from Chitosan-Gluconic Acid Conjugate for Chondrocyte Culture. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2017. [DOI: 10.1252/jcej.16we145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takayuki Takei
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| | - Hiroki Yoshitomi
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| | - Kohei Fukumoto
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| | - So Danjo
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| | | | | | - Masahiro Yoshida
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| |
Collapse
|
22
|
Man Z, Hu X, Liu Z, Huang H, Meng Q, Zhang X, Dai L, Zhang J, Fu X, Duan X, Zhou C, Ao Y. Transplantation of allogenic chondrocytes with chitosan hydrogel-demineralized bone matrix hybrid scaffold to repair rabbit cartilage injury. Biomaterials 2016; 108:157-67. [DOI: 10.1016/j.biomaterials.2016.09.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 02/06/2023]
|
23
|
Neves SC, Mota C, Longoni A, Barrias CC, Granja PL, Moroni L. Additive manufactured polymeric 3D scaffolds with tailored surface topography influence mesenchymal stromal cells activity. Biofabrication 2016; 8:025012. [DOI: 10.1088/1758-5090/8/2/025012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Abstract
One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of current research in the field, it is known that 90% of new drugs that advance past animal studies fail clinical trials. The objective of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products.
Collapse
|
25
|
Huang BJ, Hu JC, Athanasiou KA. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 2016; 98:1-22. [PMID: 27177218 DOI: 10.1016/j.biomaterials.2016.04.018] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/12/2022]
Abstract
One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of current research in the field, it is known that 90% of new drugs that advance past animal studies fail clinical trials. The objective of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products.
Collapse
Affiliation(s)
- Brian J Huang
- Department of Biomedical Engineering, University of California Davis, USA.
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Davis, USA.
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Davis, USA; Department of Orthopedic Surgery, University of California Davis, USA.
| |
Collapse
|
26
|
Vikingsson L, Antolinos-Turpin C, Gómez-Tejedor J, Gallego Ferrer G, Gómez Ribelles J. Prediction of the “in vivo” mechanical behavior of biointegrable acrylic macroporous scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:651-8. [DOI: 10.1016/j.msec.2015.12.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 10/28/2015] [Accepted: 12/28/2015] [Indexed: 01/31/2023]
|
27
|
Camarero-Espinosa S, Rothen-Rutishauser B, Foster EJ, Weder C. Articular cartilage: from formation to tissue engineering. Biomater Sci 2016; 4:734-67. [PMID: 26923076 DOI: 10.1039/c6bm00068a] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hyaline cartilage is the nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective tissue that serves as friction-reducing and load-bearing cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature, low cell density, low proliferative activity and the tendency of chondrocytes to de-differentiate, cartilage cannot regenerate after injury, wear and tear, or degeneration through common diseases such as osteoarthritis. Therefore severe damage usually requires surgical intervention. Current clinical strategies to generate new tissue include debridement, microfracture, autologous chondrocyte transplantation, and mosaicplasty. While articular cartilage was predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Despite significant research efforts, only a limited number of studies have evolved up to the clinical trial stage. This review article summarizes the current state of cartilage tissue engineering in the context of relevant biological aspects, such as the formation and growth of hyaline cartilage, its composition, structure and biomechanical properties. Special attention is given to materials development, scaffold designs, fabrication methods, and template-cell interactions, which are of great importance to the structure and functionality of the engineered tissue.
Collapse
Affiliation(s)
- Sandra Camarero-Espinosa
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | | | | | | |
Collapse
|
28
|
Hendrikson WJ, Zeng X, Rouwkema J, van Blitterswijk CA, van der Heide E, Moroni L. Biological and Tribological Assessment of Poly(Ethylene Oxide Terephthalate)/Poly(Butylene Terephthalate), Polycaprolactone, and Poly (L\DL) Lactic Acid Plotted Scaffolds for Skeletal Tissue Regeneration. Adv Healthc Mater 2016; 5:232-43. [PMID: 26775915 DOI: 10.1002/adhm.201500067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 09/08/2015] [Indexed: 12/22/2022]
Abstract
Additive manufactured scaffolds are fabricated from three commonly used biomaterials, polycaprolactone (PCL), poly (L\DL) lactic acid (P(L\DL)LA), and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT). Scaffolds are compared biologically and tribologically. Cell-seeded PEOT/PBT scaffolds cultured in osteogenic and chondrogenic differentiation media show statistical significantly higher alkaline phosphatase (ALP) activity/DNA and glycosaminoglycans (GAG)/DNA ratios, followed by PCL and P(L\DL)LA scaffolds, respectively. The tribological performance is assessed by determining the friction coefficients of the scaffolds at different loads and sliding velocities. With increasing load or decreasing sliding velocity, the friction coefficient value decreases. PEOT/PBT show to have the lowest friction coefficient value, followed by PCL and P(L\DL)LA. The influence of the scaffold architecture is further determined with PEOT/PBT. Reducing of the fiber spacing results in a lower friction coefficient value. The best and the worst performing scaffold architecture are chosen to investigate the effect of cell culture on the friction coefficient. Matrix deposition is low in the cell-seeded scaffolds and the effect is, therefore, undetermined. Taken together, our studies show that PEOT/PBT scaffolds support better skeletal differentiation of seeded stromal cells and lower friction coefficient compared to PCL and P(L/DL)A scaffolds.
Collapse
Affiliation(s)
- Wilhelmus J. Hendrikson
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede 7500 AE The Netherlands
| | - Xiangqiong Zeng
- Laboratory for Surface Technology and Tribology; Faculty of Engineering Technology; University of Twente; Enschede 7500 AE The Netherlands
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede 7500 AE The Netherlands
| | - Clemens A. van Blitterswijk
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede 7500 AE The Netherlands
- Complex Tissue Regeneration; Maastricht University; Maastricht 6229ER The Netherlands
| | - Emile van der Heide
- Laboratory for Surface Technology and Tribology; Faculty of Engineering Technology; University of Twente; Enschede 7500 AE The Netherlands
- TNO; Eindhoven 5600 HE The Netherlands
| | - Lorenzo Moroni
- Department of Tissue Regeneration; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; Enschede 7500 AE The Netherlands
- Complex Tissue Regeneration; Maastricht University; Maastricht 6229ER The Netherlands
| |
Collapse
|
29
|
Karimi T, Barati D, Karaman O, Moeinzadeh S, Jabbari E. A developmentally inspired combined mechanical and biochemical signaling approach on zonal lineage commitment of mesenchymal stem cells in articular cartilage regeneration. Integr Biol (Camb) 2015; 7:112-27. [PMID: 25387395 DOI: 10.1039/c4ib00197d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Articular cartilage is organized into multiple zones including superficial, middle and calcified zones with distinct cellular and extracellular components to impart lubrication, compressive strength, and rigidity for load transmission to bone, respectively. During native cartilage tissue development, changes in biochemical, mechanical, and cellular factors direct the formation of stratified structure of articular cartilage. The objective of this work was to investigate the effect of combined gradients in cell density, matrix stiffness, and zone-specific growth factors on the zonal organization of articular cartilage. Human mesenchymal stem cells (hMSCs) were encapsulated in acrylate-functionalized lactide-chain-extended polyethylene glycol (SPELA) gels simulating cell density and stiffness of the superficial, middle and calcified zones. The cell-encapsulated gels were cultivated in a medium supplemented with growth factors specific to each zone and the expression of zone-specific markers was measured with incubation time. Encapsulation of 60 × 10(6) cells per mL hMSCs in a soft gel (80 kPa modulus) and cultivation with a combination of TGF-β1 (3 ng mL(-1)) and BMP-7 (100 ng mL(-1)) led to the expression of markers for the superficial zone. Conversely, encapsulation of 15 × 10(6) cells per mL hMSCs in a stiff gel (320 MPa modulus) and cultivation with a combination of TGF-β1 (30 ng mL(-1)) and hydroxyapatite (3%) led to the expression of markers for the calcified zone. Further, encapsulation of 20 × 10(6) cells per mL hMSCs in a gel with 2.1 MPa modulus and cultivation with a combination of TGF-β1 (30 ng mL(-1)) and IGF-1 (100 ng mL(-1)) led to up-regulation of the middle zone markers. Results demonstrate that a developmental approach with gradients in cell density, matrix stiffness, and zone-specific growth factors can potentially regenerate zonal structure of the articular cartilage.
Collapse
Affiliation(s)
- Tahereh Karimi
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Swearingen Engineering Center, Rm 2C11, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
30
|
Kutikov AB, Song J. Biodegradable PEG-Based Amphiphilic Block Copolymers for Tissue Engineering Applications. ACS Biomater Sci Eng 2015; 1:463-480. [PMID: 27175443 PMCID: PMC4860614 DOI: 10.1021/acsbiomaterials.5b00122] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biodegradable tissue engineering scaffolds have great potential for delivering cells/therapeutics and supporting tissue formation. Polyesters, the most extensively investigated biodegradable synthetic polymers, are not ideally suited for diverse tissue engineering applications due to limitations associated with their hydrophobicity. This review discusses the design and applications of amphiphilic block copolymer scaffolds integrating hydrophilic poly(ethylene glycol) (PEG) blocks with hydrophobic polyesters. Specifically, we highlight how the addition of PEG results in striking changes to the physical properties (swelling, degradation, mechanical, handling) and biological performance (protein & cell adhesion) of the degradable synthetic scaffolds in vitro. We then perform a critical review of how these in vitro characteristics translate to the performance of biodegradable amphiphilic block copolymer-based scaffolds in the repair of a variety of tissues in vivo including bone, cartilage, skin, and spinal cord/nerve. We conclude the review with recommendations for future optimizations in amphiphilic block copolymer design and the need for better-controlled in vivo studies to reveal the true benefits of the amphiphilic synthetic tissue scaffolds.
Collapse
Affiliation(s)
- Artem B. Kutikov
- Department of Orthopedics and Physical Rehabilitation. University of Massachusetts Medical School. 55 Lake Ave North, Worcester, MA 01655, USA
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation. University of Massachusetts Medical School. 55 Lake Ave North, Worcester, MA 01655, USA
- Department of Cell and Developmental Biology. University of Massachusetts Medical School. 55 Lake Ave North, Worcester, MA 01655, USA
| |
Collapse
|
31
|
Wang Z, Wang Y, Zhang P, Chen X. Methylsulfonylmethane-loaded electrospun poly(lactide-co-glycolide) mats for cartilage tissue engineering. RSC Adv 2015. [DOI: 10.1039/c5ra19183a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The electrospun MSM-loaded PLGA mat is a promising candidate for cartilage regeneration.
Collapse
Affiliation(s)
- Zongliang Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
32
|
Georgi N, van Blitterswijk C, Karperien M. Mesenchymal Stromal/Stem Cell–or Chondrocyte-Seeded Microcarriers as Building Blocks for Cartilage Tissue Engineering. Tissue Eng Part A 2014; 20:2513-23. [DOI: 10.1089/ten.tea.2013.0681] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Nicole Georgi
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Clemens van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Marcel Karperien
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
33
|
Lou T, Wang X, Song G, Gu Z, Yang Z. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. Int J Biol Macromol 2014; 69:464-70. [PMID: 24933519 DOI: 10.1016/j.ijbiomac.2014.06.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 05/19/2014] [Accepted: 06/09/2014] [Indexed: 01/06/2023]
Abstract
Polymer and ceramic composite scaffolds play a crucial role in bone tissue engineering. In an attempt to mimic the architecture of natural extracellular matrix (ECM), poly(l-lactic acid)/β-tricalcium phosphate (PLLA/β-TCP) nanocomposite scaffolds with a hierarchical pore structure were fabricated by combining thermal induced phase separation and salt leaching techniques. The nanocomposite scaffold consisted of a nanofibrous PLLA matrix with a highly interconnected, high porosity (>93%) hierarchical pore structure with pore diameters ranging from 500nm to 300μm and a homogeneously distributed β-TCP nanoparticle phase. The nanofibrous PLLA matrix had a fiber diameter of 70-300nm. The nanocomposite scaffolds possess three levels of hierarchical structure: (1) porosity; (2) nanofibrous PLLA struts comprising the pore walls; and (3) β-TCP nanoparticle phase. The β-TCP nanoparticle phase improved the mechanical properties and bioactivity of the PLLA matrix. The nanocomposite scaffolds supported MG-63 osteoblast proliferation, penetration, and ECM deposition, indicating the potential of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering applications.
Collapse
Affiliation(s)
- Tao Lou
- College of Chemistry, Chemical Engineering, and Environmental Science, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xuejun Wang
- College of Chemistry, Chemical Engineering, and Environmental Science, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Guojun Song
- College of Chemistry, Chemical Engineering, and Environmental Science, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zheng Gu
- College of Chemistry, Chemical Engineering, and Environmental Science, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhen Yang
- College of Chemistry, Chemical Engineering, and Environmental Science, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
34
|
Man Z, Yin L, Shao Z, Zhang X, Hu X, Zhu J, Dai L, Huang H, Yuan L, Zhou C, Chen H, Ao Y. The effects of co-delivery of BMSC-affinity peptide and rhTGF-β1 from coaxial electrospun scaffolds on chondrogenic differentiation. Biomaterials 2014; 35:5250-60. [DOI: 10.1016/j.biomaterials.2014.03.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/14/2014] [Indexed: 01/03/2023]
|
35
|
Chen CH, Shyu VBH, Chen JP, Lee MY. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. Biofabrication 2014; 6:015004. [DOI: 10.1088/1758-5082/6/1/015004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Hoshiba T, Lu H, Kawazoe N, Yamada T, Chen G. Effects of extracellular matrix proteins in chondrocyte-derived matrices on chondrocyte functions. Biotechnol Prog 2013; 29:1331-6. [PMID: 23847171 DOI: 10.1002/btpr.1780] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 06/16/2013] [Indexed: 11/08/2022]
Abstract
Loss of cartilaginous phenotype during in vitro expansion culture of chondrocytes is a major barrier to the application of chondrocytes for tissue engineering. In previous study, we showed that dedifferentiation of chondrocytes during the passage culture was delayed by matrices formed by primary chondrocytes (P0-ECM). In this study, we investigated bovine chondrocyte functions when being cultured on isolated extracellular matrix (ECM) protein-coated substrata and P0-ECM. Low chondrocyte attachment was observed on aggrecan-coated substratum and P0-ECM. Cell proliferation on aggrecan- and type II collagen/aggrecan-coated substrata and P0-ECM was lower than that on the other ECM protein (type I collagen and type II collagen)-coated substrata. When chondrocytes were subcultured on aggrecan-coated substratum, decline of cartilaginous gene expression was delayed, which was similar to the cells subcultured on P0-ECM. These results indicate that aggrecan plays an important role in the regulation of chondrocyte functions and P0-ECM may be a good experimental control for investigating the role of each ECM protein in cartilage ECM.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| | | | | | | | | |
Collapse
|