1
|
Komatsu K, Chao D, Matsuura T, Kido D, Ogawa T. Advancing osseointegration research: A dynamic three-dimensional (3D) in vitro culture model for dental implants. J Dent Sci 2025; 20:350-360. [PMID: 39873044 PMCID: PMC11763192 DOI: 10.1016/j.jds.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/22/2024] [Indexed: 01/30/2025] Open
Abstract
Background/purpose In-vitro studies are essential for understanding cellular responses, but traditional culture systems often neglect the three-dimensional (3D) structure of real implants, leading to limitations in cellular recruitment and behavior largely governed by gravity. The objective of this study was to pioneer a novel 3D dynamic osteoblastic culture system for assessing the biological capabilities of dental implants in a more clinically and physiologically relevant manner. Materials and methods Rat bone marrow-derived osteoblasts were cultured in a 24-well dish with a vertically positioned dental implant. Controlled rotation using a 3D rotator with 3° tilts was applied. Cell attachment, proliferation, and differentiation on implant surfaces were evaluated in response to different surface topographies, physicochemical properties, and local environments. Results Among the tested rotational speeds (0, 10, 30, 50 rpm), optimal osteoblast attachment and proliferation were observed at 30 rpm. A linear correlation was found between cell attachment and rotation speed up to 30 rpm, declining at 50 rpm. Alkaline phosphatase (ALP) activity and mineralized matrix formation were elevated on newly acid-etched, hydrophilic surfaces compared to their 4-week-old hydrophobic surfaces. Sandblasted implants showed higher ALP activity and matrix mineralization. Adding N-acetyl cysteine to the culture medium increased ALP activity and mineralization. Conclusion Osteoblasts successfully attached, proliferated, and mineralized on dental implants in vitro under optimized dynamic conditions. This system differentiated the biological capabilities of implants with varying surface topographies, wettability, and biochemically modulated environments. These findings support developing a 3D dynamic dental implant culture model, advancing osseointegration research and innovating dental implant designs.
Collapse
Affiliation(s)
- Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Denny Chao
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Daisuke Kido
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
2
|
Ehlen Q, Costello JP, Mirsky NA, Slavin BV, Parra M, Ptashnik A, Nayak VV, Coelho PG, Witek L. Treatment of Bone Defects and Nonunion via Novel Delivery Mechanisms, Growth Factors, and Stem Cells: A Review. ACS Biomater Sci Eng 2024; 10:7314-7336. [PMID: 39527574 PMCID: PMC11632667 DOI: 10.1021/acsbiomaterials.4c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Bone nonunion following a fracture represents a significant global healthcare challenge, with an overall incidence ranging between 2 and 10% of all fractures. The management of nonunion is not only financially prohibitive but often necessitates invasive surgical interventions. This comprehensive manuscript aims to provide an extensive review of the published literature involving growth factors, stem cells, and novel delivery mechanisms for the treatment of fracture nonunion. Key growth factors involved in bone healing have been extensively studied, including bone morphogenic protein (BMP), vascular endothelial growth factor (VEGF), and platelet-derived growth factor. This review includes both preclinical and clinical studies that evaluated the role of growth factors in acute and chronic nonunion. Overall, these studies revealed promising bridging and fracture union rates but also elucidated complications such as heterotopic ossification and inferior mechanical properties associated with chronic nonunion. Stem cells, particularly mesenchymal stem cells (MSCs), are an extensively studied topic in the treatment of nonunion. A literature search identified articles that demonstrated improved healing responses, osteogenic capacity, and vascularization of fractures due to the presence of MSCs. Furthermore, this review addresses novel mechanisms and materials being researched to deliver these growth factors and stem cells to nonunion sites, including natural/synthetic polymers and bioceramics. The specific mechanisms explored in this review include BMP-induced osteoblast differentiation, VEGF-mediated angiogenesis, and the role of MSCs in multilineage differentiation and paracrine signaling. While these therapeutic modalities exhibit substantial preclinical promise in treating fracture nonunion, there remains a need for further research, particularly in chronic nonunion and large animal models. This paper seeks to identify such translational hurdles which must be addressed in order to progress the aforementioned treatments from the lab to the clinical setting.
Collapse
Affiliation(s)
- Quinn
T. Ehlen
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Joseph P. Costello
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Nicholas A. Mirsky
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Blaire V. Slavin
- University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Marcelo Parra
- Center
of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty
of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
- Department
of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| | - Albert Ptashnik
- Biomaterials
Division, NYU Dentistry, New York, New York 10010, United States
| | - Vasudev Vivekanand Nayak
- Department
of Biochemistry and Molecular Biology, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Paulo G. Coelho
- Department
of Biochemistry and Molecular Biology, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
- Division
of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Lukasz Witek
- Biomaterials
Division, NYU Dentistry, New York, New York 10010, United States
- Department
of Biomedical Engineering, NYU Tandon School
of Engineering, Brooklyn, New York 11201, United States
- Hansjörg
Wyss Department of Plastic Surgery, NYU
Grossman School of Medicine, New
York, New York 10016, United States
| |
Collapse
|
3
|
Guo Q, Zhai Q, Ji P. The Role of Mitochondrial Homeostasis in Mesenchymal Stem Cell Therapy-Potential Implications in the Treatment of Osteogenesis Imperfecta. Pharmaceuticals (Basel) 2024; 17:1297. [PMID: 39458939 PMCID: PMC11510265 DOI: 10.3390/ph17101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Osteogenesis imperfecta (OI) is a hereditary disorder characterized by bones that are fragile and prone to breaking. The efficacy of existing therapies for OI is limited, and they are associated with potentially harmful side effects. OI is primarily due to a mutation of collagen type I and hence impairs bone regeneration. Mesenchymal stem cell (MSC) therapy is an attractive strategy to take advantage of the potential benefits of these multipotent stem cells to address the underlying molecular defects of OI by differentiating osteoblasts, paracrine effects, or immunomodulation. The maintenance of mitochondrial homeostasis is an essential component for improving the curative efficacy of MSCs in OI by affecting the differentiation, signaling, and immunomodulatory functions of MSCs. In this review, we highlight the MSC-based therapy pathway in OI and introduce the MSC regulation mechanism by mitochondrial homeostasis. Strategies aiming to modulate the metabolism and reduce the oxidative stress, as well as innovative strategies based on the use of compounds (resveratrol, NAD+, α-KG), antioxidants, and nanomaterials, are analyzed. These findings may enable the development of new strategies for the treatment of OI, ultimately resulting in improved patient outcomes.
Collapse
Affiliation(s)
- Qingling Guo
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Qiming Zhai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| |
Collapse
|
4
|
Suh J, Lee YS. The multifaceted roles of mitochondria in osteoblasts: from energy production to mitochondrial-derived vesicle secretion. J Bone Miner Res 2024; 39:1205-1214. [PMID: 38907370 PMCID: PMC11371665 DOI: 10.1093/jbmr/zjae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/03/2024] [Indexed: 06/24/2024]
Abstract
Mitochondria in osteoblasts have been demonstrated to play multiple crucial functions in bone formation from intracellular adenosine triphosphate production to extracellular secretion of mitochondrial components. The present review explores the current knowledge about mitochondrial biology in osteoblasts, including mitochondrial biogenesis, bioenergetics, oxidative stress generation, and dynamic changes in morphology. Special attention is given to recent findings, including mitochondrial donut formation in osteoblasts, which actively generates mitochondrial-derived vesicles (MDVs), followed by extracellular secretion of small mitochondria and MDVs. We also discuss the therapeutic effects of targeting osteoblast mitochondria, highlighting their potential applications in improving bone health.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Li Z, Yao X, Zhang J, Yang J, Ni J, Wang Y. Exploring the bone marrow micro environment in thalassemia patients: potential therapeutic alternatives. Front Immunol 2024; 15:1403458. [PMID: 39161767 PMCID: PMC11330836 DOI: 10.3389/fimmu.2024.1403458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Genetic mutations in the β-globin gene lead to a decrease or removal of the β-globin chain, causing the build-up of unstable alpha-hemoglobin. This condition is referred to as beta-thalassemia (BT). The present treatment strategies primarily target the correction of defective erythropoiesis, with a particular emphasis on gene therapy and hematopoietic stem cell transplantation. However, the presence of inefficient erythropoiesis in BT bone marrow (BM) is likely to disturb the previously functioning BM microenvironment. This includes accumulation of various macromolecules, damage to hematopoietic function, destruction of bone cell production and damage to osteoblast(OBs), and so on. In addition, the changes of BT BM microenvironment may have a certain correlation with the occurrence of hematological malignancies. Correction of the microenvironment can be achieved through treatments such as iron chelation, antioxidants, hypoglycemia, and biologics. Hence, This review describes damage in the BT BM microenvironment and some potential remedies.
Collapse
Affiliation(s)
- Zengzheng Li
- Department of Hematology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Xiangmei Yao
- Department of Hematology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| | - Jie Zhang
- Department of Medical Genetics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jinghui Yang
- Department of Pediatrics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Junxue Ni
- Hospital Office, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yajie Wang
- Department of Hematology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China
| |
Collapse
|
6
|
Zheng H, Liu J, Sun L, Meng Z. The role of N-acetylcysteine in osteogenic microenvironment for bone tissue engineering. Front Cell Dev Biol 2024; 12:1435125. [PMID: 39055649 PMCID: PMC11269162 DOI: 10.3389/fcell.2024.1435125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Bone defect is a common clinical symptom which can arise from various causes. Currently, bone tissue engineering has demonstrated positive therapeutic effects for bone defect repair by using seeding cells such as mesenchymal stem cells and precursor cells. N-acetylcysteine (NAC) is a stable, safe and highly bioavailable antioxidant that shows promising prospects in bone tissue engineering due to the ability to attenuate oxidative stress and enhance the osteogenic potential and immune regulatory function of cells. This review systematically introduces the antioxidant mechanism of NAC, analyzes the advancements in NAC-related research involving mesenchymal stem cells, precursor cells, innate immune cells and animal models, discusses its function using the classic oral microenvironment as an example, and places particular emphasis on the innovative applications of NAC-modified tissue engineering biomaterials. Finally, current limitations and future prospects are proposed, with the aim of providing inspiration for targeted readers in the field.
Collapse
Affiliation(s)
- Haowen Zheng
- School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Jiacheng Liu
- School of Dentistry, Tianjin Medical University, Tianjin, China
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Lanxin Sun
- School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Zhaosong Meng
- Department of Oral and Maxillofacial Surgery, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| |
Collapse
|
7
|
Amer NA, Badawi MF, Elbeltagi MG, Badr AE. Effect of Boswellic Acid on Viability of Dental Pulp Stem Cells Compared to the Commonly Used Intracanal Medications: An In Vitro Study. J Contemp Dent Pract 2023; 24:957-966. [PMID: 38317393 DOI: 10.5005/jp-journals-10024-3609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
AIM This study was aimed at evaluating the effect of acetyl-11-keto-β-boswellic acid (AKBA) on dental pulp stem cells (DPSCs) viability and proliferation to be used as a potential root canal medicament. MATERIALS AND METHODS Dental pulp stem cells were isolated from human third molars. The phenotypic characterization of DPSCs was verified by flow cytometry analysis. The viability assay was performed using the methyl-thiazoltetrazolium (MTT) assay. Cells were treated with different concentration of triple antibiotic paste (TAP) and calcium hydroxide Ca(OH2) (5, 2.5, 1, 0.5, and 0.25 mg/mL), AKBA (10, 5, 1, 0.1, and 0.01 µM). All experiments were done in separate triplicate experiments. Results: Dental pulp stem cells were characterized by flow cytometry. Cells treated with Ca(OH)2 (1, 2.5, and 5 mg/mL) showed significantly reduced viability compared with the control cells (p < 0.05). Dental pulp stem cells treated with 1, 2.5, and 5 mg/mL TAP resulted in a significant decrease in viability (p < 0.05). Cells treated with AKBA in concentrations (1, 0.1, and 0.01 µM) demonstrated higher viability than the control group (p < 0.05), while AKBA in concentrations (5 and 10 µM) showed equal or decreased viability than the control group. (p > 0.05). Regarding cell density assay, AKBA showed significant increase in cell density after 5 and 7 days compared with cells medicated with TAP and Ca(OH)2 while TAP revealed marked reduction in cell density in all the tested intervals. CONCLUSION Acetyl-11-keto-β-boswellic acid in lower concentrations (0.01, 0.1, and 1 µM) demonstrated superior cell viability than TAP and Ca(OH)2, and it may possess the potential to be an intracanal medicament in regenerative endodontics. CLINICAL SIGNIFICANCE Studying the effect of different potential root canal medicaments and their capability to induce DPSCs proliferation might be of value. The influence of AKBA on the viability and proliferation of DPSCs tested in this study sheds light on its use as a potential intracanal medication especially in regenerative endodontics. How to cite this article: Amer NA, Badawi MF, Elbeltagi MG, et al. Effect of Boswellic Acid on Viability of Dental Pulp Stem Cells Compared to the Commonly Used Intracanal Medications: An In Vitro Study. J Contemp Dent Pract 2023;24(12):957-966.
Collapse
Affiliation(s)
- Nouran Ahmad Amer
- Department of Endodontics, Faculty of Dentistry, Mansoura University; Horus University, Egypt, Phone: +201068857871, e-mail: , Orcid: https://orcid.org/0000-0001-6818-8626
| | - Manal Farouk Badawi
- Dental Biomaterials, Faculty of Dentistry, Mansoura University, Egypt, Orcid: https://orcid.org/0000-0001-9979-4354
| | - Mohamed Gamal Elbeltagi
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt, Orcid: https://orcid.org/0000-0003-3309-4480
| | - Amany Elsaid Badr
- Department of Endodontics, Faculty of Dentistry, Mansoura University, Egypt, Orcid: https://orcid.org/0000-0002-3811-149X
| |
Collapse
|
8
|
Wang Y, Han X, Shi J, Liao Z, Zhang Y, Li Y, Jiang M, Liu M. Distinct Metabolites in Osteopenia and Osteoporosis: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:4895. [PMID: 38068753 PMCID: PMC10708105 DOI: 10.3390/nu15234895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
Multiple studies have indicated that distinct metabolites are involved in the occurrence and development of osteopenia (ON) and osteoporosis (OP); however, these metabolites in OP and ON have not yet been classified and standardized. This systematic review and meta-analysis included 21 articles aiming to investigate the distinct metabolites in patients with ON and OP. The quality of the included articles was generally high; seventeen studies had >7 stars, and the remaining four received 6 stars. This systematic review showed that three metabolites (phosphatidylcholine (PC) (lipid metabolites), galactose (carbohydrate metabolites), and succinic acid (other metabolites)) increased, four (glycylglycine (gly-gly), cystine (amino acids), sphingomyelin (SM) (lipid metabolites) and glucose (carbohydrate metabolites)) decreased, and five (glutamine, hydroxyproline, taurine (amino acids), lysophosphatidylcholine (LPC) (lipid metabolites), and lactate (other metabolites)) had conflicting directions in OP/ON. The results of the meta-analysis show that gly-gly (MD = -0.77, 95%CI -1.43 to -0.11, p = 0.02) and cystine (MD = -5.52, 95%CI -7.35 to -3.68, p < 0.00001) decreased in the OP group compared with the healthy control group. Moreover, LPC (MD = 1.48, 95%CI 0.11 to 2.86, p = 0.03) increased in the OP group compared with the healthy control group. These results indicate that distinct metabolites were associated with ON and OP, which could be considered a predictor for OP.
Collapse
Affiliation(s)
- Yuhe Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (J.S.); (Z.L.); (Y.Z.); (Y.L.)
| | - Xu Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Jingru Shi
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (J.S.); (Z.L.); (Y.Z.); (Y.L.)
| | - Zeqi Liao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (J.S.); (Z.L.); (Y.Z.); (Y.L.)
| | - Yuanyue Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (J.S.); (Z.L.); (Y.Z.); (Y.L.)
| | - Yuanyuan Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (J.S.); (Z.L.); (Y.Z.); (Y.L.)
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Meijie Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (J.S.); (Z.L.); (Y.Z.); (Y.L.)
| |
Collapse
|
9
|
Duru İ, Büyük NI, Köse GT, Marques DW, Bruce KA, Martin JR, Ege D. Incorporating the Antioxidant Fullerenol into Calcium Phosphate Bone Cements Increases Cellular Osteogenesis without Compromising Physical Cement Characteristics. ADVANCED ENGINEERING MATERIALS 2023; 25:2300301. [PMID: 37982016 PMCID: PMC10656051 DOI: 10.1002/adem.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 11/21/2023]
Abstract
Herein, fullerenol (Ful), a highly water-soluble derivative of C60 fullerene with demonstrated antioxidant activity, is incorporated into calcium phosphate cements (CPCs) to enhance their osteogenic ability. CPCs with added carboxymethyl cellulose/gelatin (CMC/Gel) are doped with biocompatible Ful particles at concentrations of 0.02, 0.04, and 0.1 wt v%-1 and evaluated for Ful-mediated mechanical performance, antioxidant activity, and in vitro cellular osteogenesis. CMC/gel cements with the highest Ful concentration decrease setting times due to increased hydrogen bonding from Ful's hydroxyl groups. In vitro studies of reactive oxygen species (ROS) scavenging with CMC/gel cements demonstrate potent antioxidant activity with Ful incorporation and cement scavenging capacity is highest for 0.02 and 0.04 wt v%-1 Ful. In vitro cytotoxicity studies reveal that 0.02 and 0.04 wt v%-1 Ful cements also protect cellular viability. Finally, increase of alkaline phosphatase (ALP) activity and expression of runt-related transcription factor 2 (Runx2) in MC3T3-E1 pre-osteoblast cells treated with low-dose Ful cements demonstrate Ful-mediated osteogenic differentiation. These results strongly indicate that the osteogenic abilities of Ful-loaded cements are correlated with their antioxidant activity levels. Overall, this study demonstrates exciting potential of Fullerenol as an antioxidant and proosteogenic additive for improving the performance of calcium phosphate cements in bone reconstruction procedures.
Collapse
Affiliation(s)
- İlayda Duru
- Institute of Biomedical Engineering Boğaziçi University Rasathane Street, Üsküdar, İstanbul 34684, Turkey
| | - Nisa Irem Büyük
- Department of Genetics and Bioengineering Faculty of Engineering Yeditepe University Ataşehir, İstanbul 34755, Turkey
| | - Gamze Torun Köse
- Department of Genetics and Bioengineering Faculty of Engineering Yeditepe University Ataşehir, İstanbul 34755, Turkey
| | - Dylan Widder Marques
- Department of Biomedical Engineering College of Engineering and Applied Science University of Cincinnati Cincinnati 45236, OH, USA
| | - Karina Ann Bruce
- Department of Biomedical Engineering College of Engineering and Applied Science University of Cincinnati Cincinnati 45236, OH, USA
| | - John Robert Martin
- Department of Biomedical Engineering College of Engineering and Applied Science University of Cincinnati Cincinnati 45236, OH, USA
| | - Duygu Ege
- Institute of Biomedical Engineering Boğaziçi University Rasathane Street, Üsküdar, İstanbul 34684, Turkey
| |
Collapse
|
10
|
Awad K, Ahuja N, Yacoub AS, Brotto L, Young S, Mikos A, Aswath P, Varanasi V. Revolutionizing bone regeneration: advanced biomaterials for healing compromised bone defects. FRONTIERS IN AGING 2023; 4:1217054. [PMID: 37520216 PMCID: PMC10376722 DOI: 10.3389/fragi.2023.1217054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023]
Abstract
In this review, we explore the application of novel biomaterial-based therapies specifically targeted towards craniofacial bone defects. The repair and regeneration of critical sized bone defects in the craniofacial region requires the use of bioactive materials to stabilize and expedite the healing process. However, the existing clinical approaches face challenges in effectively treating complex craniofacial bone defects, including issues such as oxidative stress, inflammation, and soft tissue loss. Given that a significant portion of individuals affected by traumatic bone defects in the craniofacial area belong to the aging population, there is an urgent need for innovative biomaterials to address the declining rate of new bone formation associated with age-related changes in the skeletal system. This article emphasizes the importance of semiconductor industry-derived materials as a potential solution to combat oxidative stress and address the challenges associated with aging bone. Furthermore, we discuss various material and autologous treatment approaches, as well as in vitro and in vivo models used to investigate new therapeutic strategies in the context of craniofacial bone repair. By focusing on these aspects, we aim to shed light on the potential of advanced biomaterials to overcome the limitations of current treatments and pave the way for more effective and efficient therapeutic interventions for craniofacial bone defects.
Collapse
Affiliation(s)
- Kamal Awad
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
- Department of Materials Science and Engineering, College of Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Neelam Ahuja
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
| | - Ahmed S. Yacoub
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Leticia Brotto
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
| | - Simon Young
- Katz Department of Oral and Maxillofacial Surgery, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Antonios Mikos
- Center for Engineering Complex Tissues, Center for Excellence in Tissue Engineering, J.W. Cox Laboratory for Biomedical Engineering, Rice University, Houston, TX, United States
| | - Pranesh Aswath
- Department of Materials Science and Engineering, College of Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Venu Varanasi
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
- Department of Materials Science and Engineering, College of Engineering, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
11
|
Conditional Mitigation of Dental-Composite Material-Induced Cytotoxicity by Increasing the Cure Time. J Funct Biomater 2023; 14:jfb14030119. [PMID: 36976043 PMCID: PMC10053527 DOI: 10.3390/jfb14030119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Light-cured composite resins are widely used in dental restorations to fill cavities and fabricate temporary crowns. After curing, the residual monomer is a known to be cytotoxic, but increasing the curing time should improve biocompatibility. However, a biologically optimized cure time has not been determined through systematic experimentation. The objective of this study was to examine the behavior and function of human gingival fibroblasts cultured with flowable and bulk-fill composites cured for different periods of time, while considering the physical location of the cells with regard to the materials. Biological effects were separately evaluated for cells in direct contact with, and in close proximity to, the two composite materials. Curing time varied from the recommended 20 s to 40, 60, and 80 s. Pre-cured, milled-acrylic resin was used as a control. No cell survived and attached to or around the flowable composite, regardless of curing time. Some cells survived and attached close to (but not on) the bulk-fill composite, with survival increasing with a longer curing time, albeit to <20% of the numbers growing on milled acrylic even after 80 s of curing. A few cells (<5% of milled acrylic) survived and attached around the flowable composite after removal of the surface layer, but attachment was not cure-time dependent. Removing the surface layer increased cell survival and attachment around the bulk-fill composite after a 20-s cure, but survival was reduced after an 80-s cure. Dental-composite materials are lethal to contacting fibroblasts, regardless of curing time. However, longer curing times mitigated material cytotoxicity exclusively for bulk-fill composites when the cells were not in direct contact. Removing the surface layer slightly improved biocompatibility for cells in proximity to the materials, but not in proportion to cure time. In conclusion, mitigating the cytotoxicity of composite materials by increasing cure time is conditional on the physical location of cells, the type of material, and the finish of the surface layer. This study provides valuable information for clinical decision making and novel insights into the polymerization behavior of composite materials.
Collapse
|
12
|
Matsuura T, Komatsu K, Ogawa T. N-Acetyl Cysteine-Mediated Improvements in Dental Restorative Material Biocompatibility. Int J Mol Sci 2022; 23:ijms232415869. [PMID: 36555541 PMCID: PMC9781091 DOI: 10.3390/ijms232415869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The fibroblast-rich gingival tissue is usually in contact with or adjacent to cytotoxic polymer-based dental restoration materials. The objective of this study was to determine whether the antioxidant amino acid, N-acetyl cysteine (NAC), reduces the toxicity of dental restorative materials. Human oral fibroblasts were cultured with bis-acrylic, flowable composite, bulk-fill composite, self-curing acrylic, and titanium alloy test specimens. Cellular behavior and function were analyzed on and around the materials. Impregnation of the bulk-fill composite and self-curing acrylic with NAC reduced their toxicity, improving the attachment, growth, and function of human oral fibroblasts on and around the materials. These mitigating effects were NAC dose dependent. However, NAC impregnation of the bis-acrylic and flowable composite was ineffective, with no cells attaching to nor around the materials. Although supplementing the culture medium with NAC also effectively improved fibroblast behaviors, direct impregnation of materials with NAC was more effective than supplementing the cultures. NAC-mediated improvements in fibroblast behavior were associated with reduced production of reactive oxygen species and oxidized glutathione together with increased glutathione reserves, indicating that NAC effectively directly scavenged ROS from materials and reinforced the cellular antioxidant defense system. These results establish a proof of concept of NAC-mediated improvements in biocompatibility in the selected dental restorative materials.
Collapse
Affiliation(s)
| | | | - Takahiro Ogawa
- Correspondence: ; Tel.: +1-310-794-7653; Fax: +1-310-825-6345
| |
Collapse
|
13
|
Meng Z, Liu J, Feng Z, Guo S, Wang M, Wang Z, Li Z, Li H, Sui L. N-acetylcysteine regulates dental follicle stem cell osteogenesis and alveolar bone repair via ROS scavenging. Stem Cell Res Ther 2022; 13:466. [PMID: 36076278 PMCID: PMC9461171 DOI: 10.1186/s13287-022-03161-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background Dental follicle stem cells (DFSCs) show mesenchymal stem cell properties with the potential for alveolar bone regeneration. Stem cell properties can be impaired by reactive oxygen species (ROS), prompting us to examine the importance of scavenging ROS for stem cell-based tissue regeneration. This study aimed to investigate the effect and mechanism of N-acetylcysteine (NAC), a promising antioxidant, on the properties of DFSCs and DFSC-based alveolar bone regeneration. Methods DFSCs were cultured in media supplemented with different concentrations of NAC (0–10 mM). Cytologic experiments, RNA-sequencing and antioxidant assays were performed in vitro in human DFSCs (hDFSCs). Rat maxillary first molar extraction models were constructed, histological and radiological examinations were performed at day 7 post-surgery to investigate alveolar bone regeneration in tooth extraction sockets after local transplantation of NAC, rat DFSCs (rDFSCs) or NAC-treated rDFSCs. Results 5 mM NAC-treated hDFSCs exhibited better proliferation, less senescent rate, higher stem cell-specific marker and immune-related factor expression with the strongest osteogenic differentiation; other concentrations were also beneficial for maintaining stem cell properties. RNA-sequencing identified 803 differentially expressed genes between hDFSCs with and without 5 mM NAC. “Developmental process (GO:0032502)” was prominent, bioinformatic analysis of 394 involved genes revealed functional and pathway enrichment of ossification and PI3K/AKT pathway, respectively. Furthermore, after NAC treatment, the reduction of ROS levels (ROS, superoxide, hydrogen peroxide), the induction of antioxidant levels (glutathione, catalase, superoxide dismutase), the upregulation of PI3K/AKT signaling (PI3K-p110, PI3K-p85, AKT, phosphorylated-PI3K-p85, phosphorylated-AKT) and the rebound of ROS level upon PI3K/AKT inhibition were showed. Local transplantation of NAC, rDFSCs or NAC-treated rDFSCs was safe and promoted oral socket bone formation after tooth extraction, with application of NAC-treated rDFSCs possessing the best effect. Conclusions The proper concentration of NAC enhances DFSC properties, especially osteogenesis, via PI3K/AKT/ROS signaling, and offers clinical potential for stem cell-based alveolar bone regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03161-y.
Collapse
Affiliation(s)
- Zhaosong Meng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Jiacheng Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Zhipeng Feng
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Shuling Guo
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Mingzhe Wang
- School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Zheng Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Zhe Li
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin, 300070, China
| | - Hongjie Li
- School of Stomatology, Tianjin Medical University, Tianjin, China.
| | - Lei Sui
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, 12 Qixiangtai Road, Tianjin, 300070, China.
| |
Collapse
|
14
|
Mesoporous Bioactive Glasses Incorporated into an Injectable Thermosensitive Hydrogel for Sustained Co-Release of Sr2+ Ions and N-Acetylcysteine. Pharmaceutics 2022; 14:pharmaceutics14091890. [PMID: 36145638 PMCID: PMC9504849 DOI: 10.3390/pharmaceutics14091890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/26/2022] Open
Abstract
An injectable delivery platform for promoting delayed bone healing has been developed by combining a thermosensitive polyurethane-based hydrogel with strontium-substituted mesoporous bioactive glasses (MBG_Sr) for the long-term and localized co-delivery of pro-osteogenic Sr2+ ions and an osteogenesis-enhancing molecule, N-Acetylcysteine (NAC). The incorporation of MBG_Sr microparticles, with a final concentration of 20 mg/mL, did not alter the overall properties of the thermosensitive hydrogel, in terms of sol-to-gel transition at a physiological-like temperature, gelation time, injectability and stability in aqueous environment at 37 °C. In particular, the hydrogel formulations (15% w/v polymer concentration) showed fast gelation in physiological conditions (1 mL underwent complete sol-to-gel transition within 3–5 min at 37 °C) and injectability in a wide range of temperatures (5–37 °C) through different needles (inner diameter in the range 0.4–1.6 mm). In addition, the MBG_Sr embedded into the hydrogel retained their full biocompatibility, and the released concentration of Sr2+ ions were effective in promoting the overexpression of pro-osteogenic genes from SAOS2 osteoblast-like cells. Finally, when incorporated into the hydrogel, the MBG_Sr loaded with NAC maintained their release properties, showing a sustained ion/drug co-delivery along 7 days, at variance with the MBG particles as such, showing a strong burst release in the first hours of soaking.
Collapse
|
15
|
Leonurine Protects Bone Mesenchymal Stem Cells from Oxidative Stress by Activating Mitophagy through PI3K/Akt/mTOR Pathway. Cells 2022; 11:cells11111724. [PMID: 35681421 PMCID: PMC9179429 DOI: 10.3390/cells11111724] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/08/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis bears an imbalance between bone formation and resorption, which is strongly related to oxidative stress. The function of leonurine on bone marrow-derived mesenchymal stem cells (BMSCs) under oxidative stress is still unclear. Therefore, this study was aimed at identifying the protective effect of leonurine on H2O2 stimulated rat BMSCs. We found that leonurine can alleviate cell apoptosis and promote the differentiation ability of rat BMSCs induced by oxidative stress at an appropriate concentration at 10 μM. Meanwhile, the intracellular ROS level and the level of the COX2 and NOX4 mRNA decreased after leonurine treatment in vitro. The ATP level and mitochondrial membrane potential were upregulated after leonurine treatment. The protein level of PINK1 and Parkin showed the same trend. The mitophage in rat BMSCs blocked by 3-MA was partially rescued by leonurine. Bioinformatics analysis and leonurine-protein coupling provides a strong direct combination between leonurine and the PI3K protein at the position of Asp841, Glu880, Val882. In conclusion, leonurine protects the proliferation and differentiation of BMSCs from oxidative stress by activating mitophagy, which depends on the PI3K/Akt/mTOR pathway. The results showed that leonurine may have potential usage in osteoporosis and bone defect repair in osteoporosis patients.
Collapse
|
16
|
Park MN, Jeon HW, Rahman MA, Park SS, Jeong SY, Kim KH, Kim SH, Kim W, Kim B. Daemonorops draco Blume Induces Apoptosis Against Acute Myeloid Leukemia Cells via Regulation of the miR-216b/c-Jun. Front Oncol 2022; 12:808174. [PMID: 35356209 PMCID: PMC8959842 DOI: 10.3389/fonc.2022.808174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Daemonorops draco Blume (DD), also called dragon’s blood, has been used as a traditional Korean medicine, especially for relieving pain caused by wound infection. Recently, it has been described that DD has antibacterial and analgesic effects. In this study, the underlying anticancer effect of DD associated with apoptosis was investigated in acute myeloid leukemia cell lines U937 and THP-1. DD exhibited cytotoxic effects and induced apoptosis in U937 and THP-1 cells. Moreover, DD treatment significantly reduced mitochondrial membrane potential (ΔΨ). The protein expression of cleaved poly(ADP-ribose) polymerase, cleaved caspase-3, p-H2A.X, CCAAT/enhancer-binding protein (CHOP), and activating transcription factor 4 was upregulated by DD treatment. Consistently, DD-treated cells had increased reactive oxygen species (ROS) level in a concentration-dependent manner via miR-216b activation in association with c-Jun inhibition. N-acetyl-L-cysteine pretreatment reversed the cytotoxic effect of DD treatment as well as prevented ROS accumulation. Collectively, the results of this study suggest that the anticancer effect of DD in AML was mediated by CHOP-dependent apoptosis along with ROS accumulation and included upregulation of miR-216b followed by a decrease in c-Jun.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hee Won Jeon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Se Sun Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sung-Hoon Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Woojin Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
17
|
Sheppard AJ, Barfield AM, Barton S, Dong Y. Understanding Reactive Oxygen Species in Bone Regeneration: A Glance at Potential Therapeutics and Bioengineering Applications. Front Bioeng Biotechnol 2022; 10:836764. [PMID: 35198545 PMCID: PMC8859442 DOI: 10.3389/fbioe.2022.836764] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 01/24/2023] Open
Abstract
Although the complex mechanism by which skeletal tissue heals has been well described, the role of reactive oxygen species (ROS) in skeletal tissue regeneration is less understood. It has been widely recognized that a high level of ROS is cytotoxic and inhibits normal cellular processes. However, with more recent discoveries, it is evident that ROS also play an important, positive role in skeletal tissue repair, specifically fracture healing. Thus, dampening ROS levels can potentially inhibit normal healing. On the same note, pathologically high levels of ROS cause a sharp decline in osteogenesis and promote nonunion in fracture repair. This delicate balance complicates the efforts of therapeutic and engineering approaches that aim to modulate ROS for improved tissue healing. The physiologic role of ROS is dependent on a multitude of factors, and it is important for future efforts to consider these complexities. This review first discusses how ROS influences vital signaling pathways involved in the fracture healing response, including how they affect angiogenesis and osteogenic differentiation. The latter half glances at the current approaches to control ROS for improved skeletal tissue healing, including medicinal approaches, cellular engineering, and enhanced tissue scaffolds. This review aims to provide a nuanced view of the effects of ROS on bone fracture healing which will inspire novel techniques to optimize the redox environment for skeletal tissue regeneration.
Collapse
Affiliation(s)
- Aaron J. Sheppard
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Ann Marie Barfield
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Shane Barton
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Yufeng Dong
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
18
|
Li X, Xiong F, Wang S, Zhang Z, Dai J, Chen H, Wang J, Wang Q, Yuan H. N-Acetyl-Cysteine-Loaded Biomimetic Nanofibrous Scaffold for Osteogenesis of Induced-Pluripotent-Stem-Cell-Derived Mesenchymal Stem Cells and Bone Regeneration. Front Bioeng Biotechnol 2022; 9:767641. [PMID: 34976966 PMCID: PMC8714946 DOI: 10.3389/fbioe.2021.767641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
To regenerate bone tissues, we investigated the osteogenic differentiation of induced-pluripotent-stem-cell-derived mesenchymal stem cells (iPSC-MSCs) and bone regeneration capacities using N-acetyl cysteine (NAC)-loaded biomimetic nanofibers of hydroxyapatite/silk fibroin (HAp/SF). The addition of HAp and NAC decreased the diameters of the electrospun fibers and enhanced the mechanical properties of the silk scaffold. The release kinetic curve indicated that NAC was released from NAC/HAp/SF nanofibers in a biphasic pattern, with an initial burst release stage and a later sustained release stage. This pattern of release of NAC encapsulated on the NAC/HAp/SF scaffolds prolonged the release of high concentrations of NAC, thereby largely affecting the osteogenic differentiation of iPSC-MSCs and bone regeneration. Thus, a new silk electrospun scaffold was developed. HAp was used as a separate nanocarrier for recharging the NAC concentration, which demonstrated the promising potential for the use of NAC/HAp/SF for bone tissue engineering.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Orthopedics and Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Feng Xiong
- School of Life Sciences, Nantong University, Nantong, China
| | - Shuguang Wang
- Department of Orthopedics and Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Zhuojun Zhang
- School of Life Sciences, Nantong University, Nantong, China
| | - Jihang Dai
- Department of Orthopedics and Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Hui Chen
- Department of Orthopedics and Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Jingcheng Wang
- Department of Orthopedics and Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Qiang Wang
- Department of Orthopedics and Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Huihua Yuan
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
19
|
In vitro evaluation of chemical decontamination of titanium discs. Sci Rep 2021; 11:22753. [PMID: 34815486 PMCID: PMC8611041 DOI: 10.1038/s41598-021-02220-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022] Open
Abstract
Peri-implant diseases are caused by bacterial biofilm colonizing implant surfaces. Prevention and management of peri-implant mucositis and peri-implantitis rely on effective biofilm removal. This study aimed to evaluate biofilm removal and cytocompatibility following chemo-mechanical surface decontamination of biofilm-coated titanium discs. Biofilm-coated (Streptococcus gordonii) discs, with either non-modified (smooth) or modified (rough) surfaces, were instrumented using a sterile gauze soaked in one out of four solutions: saline (NaCl), alkaline electrized water (AEW), citric acid (CA) or N-acetyl-l-cysteine (NAC). Non-contaminated, untreated titanium discs served as controls (C). Residual deposits (bacteria and gauze fibers) and cytocompatibility for osteoblast-like cells were evaluated using SEM and immunofluorescence. Cytotoxicity was assessed using WST-8 assay and immunofluorescence. All protocols were equally effective in removing bacteria from smooth surfaces, while AEW and CA were found to be superior at rough surfaces. AEW and NAC were superior in promoting cytocompatibility over NaCl. NAC and CA had a strong cytotoxic effect on osteoblast-like and fibroblast cells. In conclusion, AEW may be beneficial in the decontamination of implant surfaces, effectively removing bacterial biofilm and restoring cytocompatibility.
Collapse
|
20
|
Yang L, He X, Jing G, Wang H, Niu J, Qian Y, Wang S. Layered Double Hydroxide Nanoparticles with Osteogenic Effects as miRNA Carriers to Synergistically Promote Osteogenesis of MSCs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48386-48402. [PMID: 34618442 DOI: 10.1021/acsami.1c14382] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inefficient differentiation and poor engraftment hinder the clinical applications of mesenchymal stem cell (MSC)-based cell therapies in regenerative medicine. Layered double hydroxide (LDH) nanoparticles are sheet-like materials with desirable biocompatibility and anion-exchange properties and have been widely applied as drug and nucleotide carriers in the field of tissue repair. However, few studies have focused on the biological effects of LDH itself. In this study, we demonstrated the novel function of LDH in stimulating osteogenic differentiation of bone marrow-derived MSCs (BMSCs). The expression of osteogenic-related genes, alkaline phosphatase (ALP) activity, and calcium deposits were significantly increased after LDH treatment. Mechanistic analysis performed with RNA sequencing revealed that LDH promoted osteogenesis by targeting the LGR5/β-catenin axis. LDH also inactivated IKK/NF-κB signaling under LPS-triggered inflamed conditions, suggesting the dual benefits of LDH in enhancing bone regeneration and alleviating the inflammatory response. Furthermore, we utilized LDH as the transport vehicle of the osteoinductive miRNA let-7d to synergistically regulate BMSCs toward the osteoblastic lineage. The LDH/let-7d complex resulted in a better induction of osteogenesis than LDH alone. For cell transplantation, BMSCs were seeded in LDH/let-7d-incorporated fibrin scaffolds, which proved enhanced osteoinduction capability in the subcutaneous ectopic osteogenesis model in nude mice. Taken together, this study provides a novel strategy for effective and synergistic improvement of osteogenesis via LDH-mediated delivery of miRNA let-7d, thus shedding light on the future application of LDH in regenerative medicine.
Collapse
Affiliation(s)
- Li Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolie He
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guoxin Jing
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jintong Niu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yechang Qian
- Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201900, China
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
21
|
Bourne LE, Patel JJ, Davies BK, Neven E, Verhulst A, D'Haese PC, Wheeler-Jones CPD, Orriss IR. N-acetylcysteine (NAC) differentially affects arterial medial calcification and bone formation: The role of l-cysteine and hydrogen sulphide. J Cell Physiol 2021; 237:1070-1086. [PMID: 34658034 DOI: 10.1002/jcp.30605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022]
Abstract
Arterial medial calcification (AMC) is the deposition of calcium phosphate in the arteries. AMC is widely thought to share similarities with physiological bone formation; however, emerging evidence suggests several key differences between these processes. N-acetylcysteine (NAC) displays antioxidant properties and can generate hydrogen sulphide (H2 S) and glutathione (GSH) from its deacetylation to l-cysteine. This study found that NAC exerts divergent effects in vitro, increasing osteoblast differentiation and bone formation by up to 5.5-fold but reducing vascular smooth muscle cell (VSMC) calcification and cell death by up to 80%. In vivo, NAC reduced AMC in a site-specific manner by 25% but had no effect on the bone. The actions of l-cysteine and H2 S mimicked those of NAC; however, the effects of H2 S were much less efficacious than NAC and l-cysteine. Pharmacological inhibition of H2 S-generating enzymes did not alter the actions of NAC or l-cysteine; endogenous production of H2 S was also unaffected. In contrast, NAC and l-cysteine increased GSH levels in calcifying VSMCs and osteoblasts by up to 3-fold. This suggests that the beneficial actions of NAC are likely to be mediated via the breakdown of l-cysteine and the subsequent GSH generation. Together, these data show that while the molecular mechanisms driving the actions of NAC appear similar, the downstream effects on cell function differ significantly between osteoblasts and calcifying VSMCs. The ability of NAC to exert these differential actions further supports the notion that there are differences between the development of pathological AMC and physiological bone formation. NAC could represent a therapeutic option for treating AMC without exerting negative effects on bone.
Collapse
Affiliation(s)
- Lucie E Bourne
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Jessal J Patel
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Bethan K Davies
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Ellen Neven
- Department of Biomedical Sciences, Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Anja Verhulst
- Department of Biomedical Sciences, Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Patrick C D'Haese
- Department of Biomedical Sciences, Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | | | - Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
22
|
N-acetylcysteine promotes cyclic mechanical stress-induced osteogenic differentiation of periodontal ligament stem cells by down-regulating Nrf2 expression. J Dent Sci 2021; 17:750-762. [PMID: 35756790 PMCID: PMC9201541 DOI: 10.1016/j.jds.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/03/2021] [Indexed: 10/25/2022] Open
|
23
|
N-Acetylcysteine Inhibits Patulin-Induced Apoptosis by Affecting ROS-Mediated Oxidative Damage Pathway. Toxins (Basel) 2021; 13:toxins13090595. [PMID: 34564600 PMCID: PMC8473236 DOI: 10.3390/toxins13090595] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Patulin (PAT) belongs to the family of food-borne mycotoxins. Our previous studies revealed that PAT caused cytotoxicity in human embryonic kidney cells (HEK293). In the present research, we systematically explored the detailed mechanism of ROS production and ROS clearance in PAT-induced HEK293 cell apoptosis. Results showed that PAT treatment (2.5, 5, 7.5, 10 μM) for 10 h could regulate the expression of genes and proteins involved in the mitochondrial respiratory chain complex, resulting in dysfunction of mitochondrial oxidative phosphorylation and induction of ROS overproduction. We further investigated the role of N-acetylcysteine (NAC), an ROS scavenger, in promoting the survival of PAT-treated HEK293 cells. NAC improves PAT-induced apoptosis of HEK293 cells by clearing excess ROS, modulating the expression of mitochondrial respiratory chain complex genes and proteins, and maintaining normal mitochondrial function. In addition, NAC protects the activity of antioxidant enzymes, maintains normal GSH content, and relieves oxidative damage. Additionally, 4 mM NAC alleviated 7.5 μM PAT-mediated apoptosis through the caspase pathway in HEK293 cells. In summary, our study demonstrated that ROS is significant in PAT-mediated cytotoxicity, which provides valuable insight into the management of PAT-associated health issues.
Collapse
|
24
|
Ersoy Çallıoğlu E, Berçin S, Başdemir G, Kiriş M, Tatar İ, Tuzuner A, Oğuzhan T, Müderris T, Sargon MF, Korkmaz MH. The effect of N-acetyl cysteine on biofilm layers in an experimental model of chronic otitis media. ACTA ACUST UNITED AC 2021; 40:457-462. [PMID: 33558775 PMCID: PMC7889258 DOI: 10.14639/0392-100x-n0996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/21/2020] [Indexed: 11/23/2022]
Abstract
Objectıve The aim of this study was to investigate the efficacy of N-acetylcysteine (NAC) on biofilm layers and on the course of disease in chronic otitis media. Methods Twenty-five rats that were induced with chronic otitis media (COM) were separated into three groups. In Group 1 (N = 18), 0.2% ciprofloxacin + 0.1% dexamethasone sodium phosphate + 0.5 mg/ml NAC solution was locally injected to the right ear of the rats; in Group 2, (N=18) 0.2% ciprofloxacin + 0.1% dexamethasone sodium phosphate was locally injected to the left ear of the rats. No treatment was applied to either ear of rats in Group 3 (N = 5). Histopathological and scanning electron microscope (SEM) evaluations were performed in all groups. Results SEM revealed biofilm formation in all COM induced groups. No significant difference was seen between groups 1 and 2 in terms of suppuration levels, fibrosis, inner ear involvement, infection staging and biofilm formation (p > 0.05). Conclusıons In this study, while histopathological and SEM evaluation revealed no effect of 0.5 mg/ml NAC on the biofilm layer in COM-induced rats, further studies with NAC at different concentrations are still needed on different types of experimental animals.
Collapse
Affiliation(s)
| | - Sami Berçin
- Yıldırım Beyazıt University Ear Nose and Throat Department, Ankara, Turkey
| | | | - Muzaffer Kiriş
- Yıldırım Beyazıt University Ear Nose and Throat Department, Ankara, Turkey
| | - İlkan Tatar
- Hacettepe University Anatomy Department, Ankara, Turkey
| | - Arzu Tuzuner
- Başkent University Ear Nose and Throat Clinics, Ankara, Turkey
| | - Tolga Oğuzhan
- Istanbul Medicalpark Hospital Ear Nose and Throat Clinics, Istanbul, Turkey
| | - Tuba Müderris
- Izmir Atatürk Training and Investigation Hospital Microbiology Clinics, Izmir, Turkey
| | | | | |
Collapse
|
25
|
Yan G, Guo Y, Guo J, Wang Q, Wang C, Wang X. N-Acetylcysteine Attenuates Lipopolysaccharide-Induced Osteolysis by Restoring Bone Remodeling Balance via Reduction of Reactive Oxygen Species Formation During Osteoclastogenesis. Inflammation 2021; 43:1279-1292. [PMID: 32103436 DOI: 10.1007/s10753-020-01207-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chronic inflammatory diseases affect bone and teeth health tremendously. Characterized by osteolytic lesion and hyperactive osteoclastogenesis, inflammatory bone diseases are short of effective therapeutics and therefore highlight the importance of understanding pathogenesis and developing ideal medications. Reactive oxygen species (ROS) play a prominent role in the innate immune response of activated macrophages, as well as in the physiological signaling of osteoclasts (OCs) differentiation. N-acetylcysteine (NAC) is a potent ROS scavenger and a potential option for treating diseases characterized by excessive ROS generation. However, whether NAC can protect physiological bone remodeling from in vivo inflammatory conditions is largely undefined. We applied NAC treatment on lipopolysaccharide (LPS)-induced inflammatory osteolysis mice model and found that NAC could attenuate bone erosion and protect mice against LPS-induced osteolysis, due to the suppressive effect on osteoclastogenesis and stimulated effect on osteogenesis. Moreover, in vitro study demonstrated that, in OC precursors (pre-OCs), LPS-stimulated expressions of OC marker genes, such as tartrate-resistant acid phosphatase type 5 (Acp5), cathepsin K (Ctsk), OC stimulatory transmembrane protein (Oc-stamp), dendritic cell-specific transmembrane protein (Dc-stamp), and nuclear factor of activated T cells 1 (NFATc1), were all reduced because of the NAC pretreatment, thereby adversely affecting OC function including F-actin ring formation and bone resorption. Further mechanism study showed that NAC blocked LPS-induced ROS formation in both macrophages and pre-OCs, cutting off the LPS-stimulated autocrine/paracrine mechanism during inflammatory osteolysis. Our findings reveal that NAC attenuates inflammatory osteolysis via the elimination of ROS formation during LPS-stimulated osteoclastogenesis, and provide a potential therapeutic approach to treat inflammatory bone disease.
Collapse
Affiliation(s)
- Guangqi Yan
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, 110002, Liaoning, China
| | - Yan Guo
- Key Laboratory of Oral Disease Liaoning Province, Shenyang, 110002, Liaoning, China
- Department of Central Laboratory, School of Stomatology, China Medical University, Shenyang, 110002, Liaoning, China
| | - Jingwen Guo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110016, Liaoning, China
| | - Qiang Wang
- Department of Central Laboratory, School of Stomatology, China Medical University, Shenyang, 110002, Liaoning, China
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, and Key Laboratory of Medical Cell Biology, School of Life Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Xue Wang
- Department of Orthodontics, School of Stomatology, China Medical University, 117# Nanjingbei Street, Shenyang, 110002, Liaoning, China.
| |
Collapse
|
26
|
Jaudoin C, Carré F, Gehrke M, Sogaldi A, Steinmetz V, Hue N, Cailleau C, Tourrel G, Nguyen Y, Ferrary E, Agnely F, Bochot A. Transtympanic injection of a liposomal gel loaded with N-acetyl-L-cysteine: A relevant strategy to prevent damage induced by cochlear implantation in guinea pigs? Int J Pharm 2021; 604:120757. [PMID: 34058306 DOI: 10.1016/j.ijpharm.2021.120757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023]
Abstract
Patients with residual hearing can benefit from cochlear implantation. However, insertion can damage cochlear structures and generate oxidative stress harmful to auditory cells. The antioxidant N-acetyl-L-cysteine (NAC) is a precursor of glutathione (GSH), a powerful endogenous antioxidant. NAC local delivery to the inner ear appeared promising to prevent damage after cochlear implantation in animals. NAC-loaded liposomal gel was specifically designed for transtympanic injection, performed both 3 days before and on the day of surgery. Hearing thresholds were recorded over 30 days in implanted guinea pigs with and without NAC. NAC, GSH, and their degradation products, N,N'-diacetyl-L-cystine (DiNAC) and oxidized glutathione (GSSG) were simultaneously quantified in the perilymph over 15 days in non-implanted guinea pigs. For the first time, endogenous concentrations of GSH and GSSG were determined in the perilymph. Although NAC-loaded liposomal gel sustained NAC release in the perilymph over 15 days, it induced hearing loss in both implanted and non-implanted groups with no perilymphatic GSH increase. Under physiological conditions, NAC appeared poorly stable within liposomes. As DiNAC was quantified at concentrations which were twice as high as NAC in the perilymph, it was hypothesized that DiNAC could be responsible for the adverse effects on hearing.
Collapse
Affiliation(s)
- Céline Jaudoin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| | - Fabienne Carré
- Inserm/Institut Pasteur, Institut de l'audition, Technologies et thérapie génique pour la surdité, 63 rue de Charenton, 75012 Paris, France.
| | - Maria Gehrke
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| | - Audrey Sogaldi
- UMS IPSIT, SAMM, Faculté de Pharmacie, Université Paris-Saclay, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| | - Vincent Steinmetz
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France.
| | - Nathalie Hue
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France.
| | - Catherine Cailleau
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| | - Guillaume Tourrel
- Oticon Medical/Neurelec SAS, Research & Technology Department, 2720 chemin Saint-Bernard, Vallauris, France.
| | - Yann Nguyen
- Inserm/Institut Pasteur, Institut de l'audition, Technologies et thérapie génique pour la surdité, 63 rue de Charenton, 75012 Paris, France; Sorbonne Université, AP-HP, GHU Pitié-Salpêtrière, DMU ChIR, Service ORL, GRC Robotique et Innovation Chirurgicale, 47-83, boulevard de l'hôpital, 75013 Paris, France.
| | - Evelyne Ferrary
- Inserm/Institut Pasteur, Institut de l'audition, Technologies et thérapie génique pour la surdité, 63 rue de Charenton, 75012 Paris, France.
| | - Florence Agnely
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| | - Amélie Bochot
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
27
|
Xi X, Zhao Y, Liu H, Li Z, Chen S, Liu D. Nrf2 activation is involved in osteogenic differentiation of periodontal ligament stem cells under cyclic mechanical stretch. Exp Cell Res 2021; 403:112598. [PMID: 33865812 DOI: 10.1016/j.yexcr.2021.112598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 12/28/2022]
Abstract
During orthodontic treatment, mechanical stretch serves a crucial function in osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Up-regulated reactive oxygen species (ROS) level is a result of cyclic mechanical stretch in many cell types. Nuclear factor erythroid-2-related factor-2 (Nrf2) is a master regulator in various antioxidants expression. However, it is not known whether cyclic mechanical stretch could induce the ROS generation in PDLSCs and whether Nrf2 participated in this process. The present study was aimed to investigate the role of Nrf2 in PDLSCs under cyclic mechanical stretch. Our results showed that cyclic mechanical stretch increased ROS level and the nuclear accumulation of Nrf2 during osteoblast differentiation. Knocking down Nrf2 by siRNA transfection increased ROS formation and suppressed osteogenic differentiation in PDLSCs. T-BHQ, a Nrf2 activator, promoted the osteogenic differentiation in PDLSCs under cyclic mechanical stretch, and improved the microstructure of alveolar bone during orthodontic tooth movement in rats by employing micro-CT system. Taken together, Nrf2 activation was involved in osteogenic differentiation under cyclic mechanical stretch in PDLSCs. T-BHQ could promote the osteogenic differentiation in vitro and in vivo, suggesting a promising option for the remodeling of the alveolar bone during orthodontic tooth movement.
Collapse
Affiliation(s)
- Xun Xi
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Yi Zhao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Hong Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Zixuan Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Shuai Chen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Dongxu Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China.
| |
Collapse
|
28
|
Mu P, Hu Y, Ma X, Shi J, Zhong Z, Huang L. Total flavonoids of Rhizoma Drynariae combined with calcium attenuate osteoporosis by reducing reactive oxygen species generation. Exp Ther Med 2021; 21:618. [PMID: 33936275 PMCID: PMC8082640 DOI: 10.3892/etm.2021.10050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
In the present study, the effects of total flavonoids of Rhizoma Drynariae (TFRD) and calcium carbonate (CaCO3) on osteoporosis (OP) were assessed in a rat model of OP. For this purpose, 36 Sprague-Dawley rats, aged 3 months, were randomly divided into a group undergoing sham surgery (sham-operated group), model group (OP group), CaCO3 group (OP + CaCO3 group), TFRD group (OP + TFRD group), TFRD combined with CaCO3 group (OP + TFRD + CaCO3 group) and TFRD and CaCO3 combined with N-acetyl cysteine group (OP + TFRD + CaCO3 + NAC group). The rat model of OP was established by bilateral ovariectomy. The changes in bone mineral density (BMD), bone volume parameters and bone histopathology in the rats from each group were observed. The levels of serum reactive oxygen species, superoxide dismutase (SOD), malondialdehyde, glutathione peroxidase (GSH-Px), interleukin (IL)-6, IL-1β, TNF-α, and the levels of bone tissue runt-related transcription factor 2 (RUNX2), osteoprotegerin (OPG), osteocalcin (BGP), PI3K, p-PI3K, AKT, p-AKT, mammalian target of rapamycin (mTOR) and p-mTOR were measured in the rats of each group. The induction of OP was associated with a marked decrease in BMD, bone mineral content, bone volume fraction and trabecular thickness, and decreased serum levels of SOD and GSH-Px. Moreover, the expressions of RUNX2, OPG, BGP were downregulated and an upregulation of p-PI3K, p-AKT and p-mTOR were observed in osteoporotic rats. However, treatment with TFRD and CaCO3 restored all the aforementioned parameters to almost normal values. Furthermore, the findings on histopathological evaluation were consistent with the biochemical observations. Taken together, the findings of the present study demonstrated that TFRD and CaCO3 significantly increased the antioxidant capacity in rats with OP, increased BMD and reduced bone mineral loss, and may be useful for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Panyun Mu
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Yimei Hu
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Xu Ma
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Jingru Shi
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Zhendong Zhong
- Laboratory Animal Research Institute of Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Lingyuan Huang
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
29
|
Zhang J, Lan T, Han X, Xu Y, Liao L, Xie L, Yang B, Tian W, Guo W. Improvement of ECM-based bioroot regeneration via N-acetylcysteine-induced antioxidative effects. Stem Cell Res Ther 2021; 12:202. [PMID: 33752756 PMCID: PMC7986250 DOI: 10.1186/s13287-021-02237-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/23/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The low survival rate or dysfunction of extracellular matrix (ECM)-based engineered organs caused by the adverse effects of unfavourable local microenvironments on seed cell viability and stemness, especially the effects of excessive reactive oxygen species (ROS), prompted us to examine the importance of controlling oxidative damage for tissue transplantation and regeneration. We sought to improve the tolerance of seed cells to the transplant microenvironment via antioxidant pathways, thus promoting transplant efficiency and achieving better tissue regeneration. METHODS We improved the antioxidative properties of ECM-based bioroots with higher glutathione contents in dental follicle stem cells (DFCs) by pretreating cells or loading scaffolds with the antioxidant NAC. Additionally, we developed an in situ rat alveolar fossa implantation model to evaluate the long-term therapeutic effects of NAC in bioroot transplantation. RESULTS The results showed that NAC decreased H2O2-induced cellular damage and maintained the differentiation potential of DFCs. The transplantation experiments further verified that NAC protected the biological properties of DFCs by repressing replacement resorption or ankylosis, thus facilitating bioroot regeneration. CONCLUSIONS The following findings suggest that NAC could significantly protect stem cell viability and stemness during oxidative stress and exert better and prolonged effects in bioroot intragrafts.
Collapse
Affiliation(s)
- Jiayu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China
| | - Tingting Lan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China
| | - Xue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China
| | - Yuchan Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China. .,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China. .,Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Sec., Ren Min Nan Road, Chengdu, 610041, China.
| |
Collapse
|
30
|
Hsu CN, Jen CY, Chen YH, Peng SY, Wu SC, Yao CL. Glucocorticoid transiently upregulates mitochondrial biogenesis in the osteoblast. CHINESE J PHYSIOL 2021; 63:286-293. [PMID: 33380613 DOI: 10.4103/cjp.cjp_51_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Glucocorticoid (GC)-induced bone loss is the most prevalent form of secondary osteoporosis. Previous studies demonstrated that long-term incubation of dexamethasone (DEX) induced oxidative stress and mitochondrial dysfunctions, consequently leading to apoptosis of differentiated osteoblasts. This DEX-induced cell death might be the main causes of bone loss. We previously described that DEX induced biphasic mitochondrial alternations. As GC affects mitochondrial physiology through several different possible routes, the short-term and long-term effects of GC treatment on mitochondria in the osteoblast have not been carefully characterized. Here, we examined the expression levels of genes that are associated with mitochondrial functions at several different time points after incubation with DEX. Mitochondrial biogenesis-mediated genes nuclear respiratory factor 1 (Nrf1) and Nrf2 were upregulated after 4-h incubation, and then declined after 24-h incubation, suggesting that mitochondrial biogenesis were transiently upregulated by DEX. In contrast, mitochondrial fusion gene optic atrophy 1 (Opa1) and mitofusin 2 (Mfn2) started to be elevated as the biogenesis started to decrease. Finally, the mitochondrial fission increased and apoptosis becomes prominent. Agree with the mitochondrial biphasic alterations hypothesis, the results suggested an early increase of mitochondrial activities and biogenesis upon DEX stimulation to the osteoblasts. The oxidative phosphorylation and inducible nitric oxide synthase levels increased results in oxidative stress accumulation, leading to mitochondrial fusion, and subsequently fission and triggering the apoptosis. Our results indicated that the primary effects of GC on mitochondria are promoting their functions and biogenesis. Mitochondrial breakdown and the activation of the apoptotic pathways appeared to be the secondary effect after long-term treatment.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Orthopedics, Taoyuan General Hospital, Ministry of Health and Welfare; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Chih-Yuan Jen
- Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Yu-Hsu Chen
- Department of Orthopedics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan; Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Shao-Yu Peng
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shinn-Chih Wu
- Department of Animal Science and Technology; Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chao-Ling Yao
- Graduate School of Biotechnology and Bioengineering; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| |
Collapse
|
31
|
Improvement of the skeletal phenotype in a mouse model of diastrophic dysplasia after postnatal treatment with N-acetylcysteine. Biochem Pharmacol 2021; 185:114452. [PMID: 33545117 DOI: 10.1016/j.bcp.2021.114452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by mutations in the SLC26A2 gene encoding for a sulfate/chloride transporter. When SLC26A2 is impaired intracellular level of sulfate is reduced leading to the synthesis of undersulfated proteoglycans. In normal chondrocytes, the main source of intracellular sulfate is the extracellular uptake through SLC26A2, but a small amount comes from the catabolism of sulfur-containing amino acids and other thiols. Here N-acetylcysteine (NAC), an extensively used drug, is proposed as alternative source of intracellular sulfate in an animal model of DTD (dtd mouse). Mutant and wild type mice were treated twice a day with hypodermic injections of 250 mg NAC/kg body weight for one week after birth. At the end of the treatment, an improvement trend in cartilage proteoglycan sulfation and in the skeletal phenotype of treated dtd mice were observed. Thus, a longer treatment lasted three weeks starting from birth was performed. Treated mutant mice showed a significant increase of cartilage proteoglycan sulfation and a relevant improvement of the skeletal phenotype based on measurements of several bony elements and bone quality by DEXA and micro CT. Moreover, the amelioration of the overall growth plate morphology in treated dtd mice suggested a partial rescue of the endochondral ossification process. Overall, the results prove that NAC is an effective source of intracellular sulfate for dtd mice in the postnatal period. This finding paves the way for a potential pharmacological treatment of DTD patients taking advantage from a drug repositioning strategy.
Collapse
|
32
|
Barajaa MA, Nair LS, Laurencin CT. Bioinspired Scaffold Designs for Regenerating Musculoskeletal Tissue Interfaces. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020; 6:451-483. [PMID: 33344758 PMCID: PMC7747886 DOI: 10.1007/s40883-019-00132-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/14/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
Abstract
The musculoskeletal system works at a very advanced level of synchrony, where all the physiological movements of the body are systematically performed through well-organized actions of bone in conjunction with all the other musculoskeletal soft tissues, such as ligaments, tendons, muscles, and cartilage through tissue-tissue interfaces. Interfaces are structurally and compositionally complex, consisting of gradients of extracellular matrix components, cell phenotypes as well as biochemical compositions and are important in mediating load transfer between the distinct orthopedic tissues during body movement. When an injury occurs at interface, it must be re-established to restore its function and stability. Due to the structural and compositional complexity found in interfaces, it is anticipated that they presuppose a concomitant increase in the complexity of the associated regenerative engineering approaches and scaffold designs to achieve successful interface regeneration and seamless integration of the engineered orthopedic tissues. Herein, we discuss the various bioinspired scaffold designs utilized to regenerate orthopedic tissue interfaces. First, we start with discussing the structure-function relationship at the interface. We then discuss the current understanding of the mechanism underlying interface regeneration, followed by discussing the current treatment available in the clinic to treat interface injuries. Lastly, we comprehensively discuss the state-of-the-art scaffold designs utilized to regenerate orthopedic tissue interfaces.
Collapse
Affiliation(s)
- Mohammed A Barajaa
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Lakshmi S Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Raymond & Beverly Sackler Center for Biomedical, Biological, Physical & Engineering Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
- Department of Chemical & Bimolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Raymond & Beverly Sackler Center for Biomedical, Biological, Physical & Engineering Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, USA
- Department of Chemical & Bimolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| |
Collapse
|
33
|
Thioredoxin 1 is upregulated in the bone and bone marrow following experimental myocardial infarction: evidence for a remote organ response. Histochem Cell Biol 2020; 155:89-99. [PMID: 33161477 PMCID: PMC7847876 DOI: 10.1007/s00418-020-01939-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 10/31/2022]
Abstract
Ischemia and reperfusion events, such as myocardial infarction (MI), are reported to induce remote organ damage severely compromising patient outcomes. Tissue survival and functional restoration relies on the activation of endogenous redox regulatory systems such as the oxidoreductases of the thioredoxin (Trx) family. Trxs and peroxiredoxins (Prxs) are essential for the redox regulation of protein thiol groups and for the reduction of hydrogen peroxide, respectively. Here, we determined whether experimental MI induces changes in Trxs and Prxs in the heart as well as in secondary organs. Levels and localization of Trx1, TrxR1, Trx2, Prx1, and Prx2 were analyzed in the femur, vertebrae, and kidneys of rats following MI or sham surgery. Trx1 levels were significantly increased in the heart (P = 0.0017) and femur (P < 0.0001) of MI animals. In the femur and lumbar vertebrae, Trx1 upregulation was detected in bone-lining cells, osteoblasts, megakaryocytes, and other hematopoietic cells. Serum levels of Trx1 increased significantly 2 days after MI compared to sham animals (P = 0.0085). Differential regulation of Trx1 in the bone was also detected by immunohistochemistry 1 month after MI. N-Acetyl-cysteine treatment over a period of 1 month induced a significant reduction of Trx1 levels in the bone of MI rats compared to sham and to MI vehicle. This study provides first evidence that MI induces remote organ upregulation of the redox protein Trx1 in the bone, as a response to ischemia-reperfusion injury in the heart.
Collapse
|
34
|
Patel JJ, Bourne LE, Thakur S, Farrington K, Gorog DA, Orriss IR, Baydoun AR. 2-Oxothiazolidine-4-carboxylic acid inhibits vascular calcification via induction of glutathione synthesis. J Cell Physiol 2020; 236:2696-2705. [PMID: 32918744 DOI: 10.1002/jcp.30036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/01/2023]
Abstract
Arterial medial calcification (AMC), the deposition of hydroxyapatite in the medial layer of the arteries, is a known risk factor for cardiovascular events. Oxidative stress is a known inducer of AMC and endogenous antioxidants, such as glutathione (GSH), may prevent calcification. GSH synthesis, however, can be limited by cysteine levels. Therefore, we assessed the effects of the cysteine prodrug 2-oxothiazolidine-4-carboxylic acid (OTC), on vascular smooth muscle cell (VSMC) calcification to ascertain its therapeutic potential. Human aortic VSMCs were cultured in basal or mineralising medium (1 mM calcium chloride/sodium phosphate) and treated with OTC (1-5 mM) for 7 days. Cell-based assays and western blot analysis were performed to assess cell differentiation and function. OTC inhibited calcification ≤90%, which was associated with increased ectonucleotide pyrophosphatase/phosphodiesterase activity, and reduced apoptosis. In calcifying cells, OTC downregulated protein expression of osteoblast markers (Runt-related transcription factor 2 and osteopontin), while maintaining expression of VSMC markers (smooth muscle protein 22α and α-smooth muscle actin). GSH levels were significantly reduced by 90% in VSMCs cultured in calcifying conditions, which was associated with declines in expression of gamma-glutamylcysteine synthetase and GSH synthetase. Treatment of calcifying cells with OTC blocked the reduction in expression of both enzymes and prevented the decline in GSH. This study shows OTC to be a potent and effective inhibitor of in vitro VSMC calcification. It appears to maintain GSH synthesis which may, in turn, prevent apoptosis and VSMCs gaining osteoblast-like characteristics. These findings may be of clinical relevance and raise the possibility that treatment with OTC could benefit patients susceptible to AMC.
Collapse
Affiliation(s)
- Jessal J Patel
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Lucie E Bourne
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Shori Thakur
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Ken Farrington
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK.,East and North Hertfordshire NHS Trust, Hertfordshire, UK
| | - Diana A Gorog
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK.,East and North Hertfordshire NHS Trust, Hertfordshire, UK.,Faculty of Medicine, National Heart and Lung Institute, London, UK
| | - Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Anwar R Baydoun
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK.,Faculty of Health and Life Sciences, School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
35
|
Novel Osteogenic Behaviors around Hydrophilic and Radical-Free 4-META/MMA-TBB: Implications of an Osseointegrating Bone Cement. Int J Mol Sci 2020; 21:ijms21072405. [PMID: 32244335 PMCID: PMC7177939 DOI: 10.3390/ijms21072405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022] Open
Abstract
Poly(methyl methacrylate) (PMMA)-based bone cement, which is widely used to affix orthopedic metallic implants, is considered bio-tolerant but lacks osteoconductivity and is cytotoxic. Implant loosening and toxic complications are significant and recognized problems. Here we devised two strategies to improve PMMA-based bone cement: (1) adding 4-methacryloyloxylethyl trimellitate anhydride (4-META) to MMA monomer to render it hydrophilic; and (2) using tri-n-butyl borane (TBB) as a polymerization initiator instead of benzoyl peroxide (BPO) to reduce free radical production. Rat bone marrow-derived osteoblasts were cultured on PMMA-BPO, common bone cement ingredients, and 4-META/MMA-TBB, newly formulated ingredients. After 24 h of incubation, more cells survived on 4-META/MMA-TBB than on PMMA-BPO. The mineralized area was 20-times greater on 4-META/MMA-TBB than PMMA-BPO at the later culture stage and was accompanied by upregulated osteogenic gene expression. The strength of bone-to-cement integration in rat femurs was 4- and 7-times greater for 4-META/MMA-TBB than PMMA-BPO during early- and late-stage healing, respectively. MicroCT and histomorphometric analyses revealed contact osteogenesis exclusively around 4-META/MMA-TBB, with minimal soft tissue interposition. Hydrophilicity of 4-META/MMA-TBB was sustained for 24 h, particularly under wet conditions, whereas PMMA-BPO was hydrophobic immediately after mixing and was unaffected by time or condition. Electron spin resonance (ESR) spectroscopy revealed that the free radical production for 4-META/MMA-TBB was 1/10 to 1/20 that of PMMA-BPO within 24 h, and the substantial difference persisted for at least 10 days. The compromised ability of PMMA-BPO in recruiting cells was substantially alleviated by adding free radical-scavenging amino-acid N-acetyl cysteine (NAC) into the material, whereas adding NAC did not affect the ability of 4-META/MMA-TBB. These results suggest that 4-META/MMA-TBB shows significantly reduced cytotoxicity compared to PMMA-BPO and induces osteoconductivity due to uniquely created hydrophilic and radical-free interface. Further pre-clinical and clinical validations are warranted.
Collapse
|
36
|
Luo ML, Jiao Y, Gong WP, Li Y, Niu LN, Tay FR, Chen JH. Macrophages enhance mesenchymal stem cell osteogenesis via down-regulation of reactive oxygen species. J Dent 2020; 94:103297. [DOI: 10.1016/j.jdent.2020.103297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
|
37
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part I – Modulation of inflammation. Clin Hemorheol Microcirc 2020; 73:381-408. [PMID: 31177205 DOI: 10.3233/ch-199102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rebecca Rothe
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
38
|
Cytoprotective Preconditioning of Osteoblast-Like Cells with N-Acetyl- L-Cysteine for Bone Regeneration in Cell Therapy. Int J Mol Sci 2019; 20:ijms20205199. [PMID: 31635184 PMCID: PMC6834301 DOI: 10.3390/ijms20205199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress hinders tissue regeneration in cell therapy by inducing apoptosis and dysfunction in transplanted cells. N-acetyl-L-cysteine (NAC) reinforces cellular antioxidant capabilities by increasing a major cellular endogenous antioxidant molecule, glutathione, and promotes osteogenic differentiation. This study investigates the effects of pretreatment of osteoblast-like cells with NAC on oxidative stress-induced apoptosis and dysfunction and bone regeneration in local transplants. Rat femur bone marrow-derived osteoblast-like cells preincubated for 3 h with and without 5 mM NAC were cultured in a NAC-free osteogenic differentiation medium with continuous exposure to 50 μM hydrogen peroxide to induce oxidative stress. NAC preincubation prevented disruption of intracellular redox balance and alleviated apoptosis and negative impact on osteogenic differentiation, even under oxidative stress. Autologous osteoblast-like cells with and without NAC pretreatment in a collagen sponge vehicle were implanted in critical-size defects in rat femurs. In the third week, NAC-pretreated cells yielded complete defect closure with significantly matured lamellar bone tissue in contrast with poor bone healing by cells without pretreatment. Cell-tracking analysis demonstrated direct bone deposition by transplanted cells pretreated with NAC. Pretreatment of osteoblast-like cells with NAC enhances bone regeneration in local transplantation by preventing oxidative stress-induced apoptosis and dysfunction at the transplanted site.
Collapse
|
39
|
Feng T, Niu J, Pi B, Lu Y, Wang J, Zhang W, Li B, Yang H, Zhu X. Osteogenesis enhancement of silk fibroin/ α-TCP cement by N-acetyl cysteine through Wnt/β-catenin signaling pathway in vivo and vitro. J Mech Behav Biomed Mater 2019; 101:103451. [PMID: 31585350 DOI: 10.1016/j.jmbbm.2019.103451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 06/11/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022]
Abstract
High brittleness and lack osteogenesis are two major limitations of calcium phosphate cement (CPC) in application in bone defect reconstruction. Here we prepared a composite calcium phosphate cement by mixing N-acetyl cysteine loaded silk fibroin solution with α-tricalcium phosphate. In vitro cytology experiment revealed that SF-NAC/α-TCP could significantly increase the activity of exocrine ALP and up-regulated expression of bone-related genes. However, NAC up-regulated gene expression could be significantly suppressed by DKK1. We propose that NAC functioning as osteogenic factor by activating the Wnt/β-catenin signaling pathway may be the possible mechanism of up-regulation of osteogenic genes. Bone regeneration in vivo shown in a rat femur defect was enhanced by the addition of NAC in SF/α-TCP. In addition, the combination intensity of cement-bone interface was improved. The combination SF-NAC/α-TCP might be developed into a promising tool for bone tissue repair in the clinic.
Collapse
Affiliation(s)
- Tao Feng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Junjie Niu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Bin Pi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yingjie Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jinning Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Wen Zhang
- Orthopedic Institute of Soochow University, Suzhou, 215006, China
| | - Bin Li
- Orthopedic Institute of Soochow University, Suzhou, 215006, China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xuesong Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
40
|
Li Y, Chen G, He Y, Zhang X, Zeng B, Wang C, Yi C, Yu D. Ebselen rescues oxidative-stress-suppressed osteogenic differentiation of bone-marrow-derived mesenchymal stem cells via an antioxidant effect and the PI3K/Akt pathway. J Trace Elem Med Biol 2019; 55:64-70. [PMID: 31345368 DOI: 10.1016/j.jtemb.2019.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Patients with metabolic bone diseases often have high risk of titanium implant failure due to compromised bone regeneration ability. Clinical evidence indicates that the poor osteogenic ability is partly because of excessive oxidative stress. To date, specific treatments for these patients are urgently needed. Ebselen, a non-toxic organoselenium compound, is reported to be a potent antioxidant agent. In this study, we hypothesized that ebselen exerted protective effects on osteogenic differentiation of bone-marrow-derived mesenchymal stem cells (BMSCs) under oxidative stress. METHODS BMSCs were isolated from SD rats, and their morphology and multiple differentiation abilities were characterized. Proliferation rates of BMSCs treated with different concentrations of ebselen were analyzed. Then BMSCs were pretreated by hydrogen peroxide (H2O2), after which ebselen at different concentrations (0, 1, 5, 10 μM) was added, alkaline phosphatase (ALP) activity, mineralization and osteogenic-related protein levels were evaluated and an optimum concentration of ebselen was selected. Subsequently, intracellular reactive oxygen species (ROS) generation and the role of the PI3K/AKT pathway were also investigated. RESULTS Ebselen within a proper range could promote the proliferation of BMSCs. H2O2-induced oxidative stress suppressed osteogenic differentiation of BMSCs, which was verified by the decrease in ALP activity, calcium deposition, Runx2 and β-catenin expression. However, ebselen could alleviate osteogenic dysfunction of BMSCs. We also observed that ebselen reduced ROS accumulation in H2O2-pretreated BMSCs. Moreover, the pro-osteogenic effects afforded by ebselen were almost abolished by the Akt inhibitor. CONCLUSION We concluded that ebselen could attenuate osteogenic dysfunction of BMSCs induced by H2O2 through an antioxidant effect and the activation of the PI3K/Akt pathway, suggesting that ebselen has a potential therapeutic effect for patients with metabolic bone diseases.
Collapse
Affiliation(s)
- Yiming Li
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Guanhui Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Yi He
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Xiliu Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Binghui Zeng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Chao Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Chen Yi
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Dongsheng Yu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China.
| |
Collapse
|
41
|
Bioink formulations to ameliorate bioprinting-induced loss of cellular viability. Biointerphases 2019; 14:051006. [DOI: 10.1116/1.5111392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Jun SK, Yoon JY, Mahapatra C, Park JH, Kim HW, Kim HR, Lee JH, Lee HH. Ceria-incorporated MTA for accelerating odontoblastic differentiation via ROS downregulation. Dent Mater 2019; 35:1291-1299. [PMID: 31255251 DOI: 10.1016/j.dental.2019.05.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Odontoblast differentiation from dental pulp stem cells (DPSCs) is involved in a cascade of key biological events for maintaining pulp-dentin homeostasis, repair and regeneration. A pulp regeneration biomaterial (mineral trioxide aggregate (MTA)) increased intracellular reactive oxygen species (ROS) levels during differentiation, ameliorating the differentiating of DPSCs into odontoblasts. Here, ceria nanoparticles (CNP) were incorporated as an insoluble antioxidant into commercially available MTA (CMTA), and the odontoblastic differentiation of human DPSCs was investigated. METHODS The CMTA was fabricated from MTA and CNP conjugation up to 4wt%, and the compressive strength, surface morphology after setting and setting time were investigated. Furthermore, the alkaline phosphatase (ALP) assay, Alizarin Red staining (ARS) and quantitative real-time polymerase chain reaction (qPCR) were performed to evaluate odontoblastic differentiation in an indirect co-culture system using inserts with pores. To reveal the underlying mechanism, the ROS levels and ion release were measured. Statistical analysis was performed by one-way analysis of variance with a Tukey post hoc test (P<0.05). RESULTS CMTA significantly elevated the odontoblastic differentiation of hDPSCs measured by ALP activity, ARS, and odontoblastic gene expression, whereas the other physico-mechanical properties were relatively maintained. Upregulation of gene expression from CMTA was reversed with hydrogen peroxide. CMTA could reduce the increased intracellular ROS levels of hDPSCs by approximately 70% during differentiation, similar to when an antioxidant was used, without changing the ion release and pH of the media. SIGNIFICANCE CMTA could be useful dental materials for regenerating dentin-pulp complexes by instructing intracellular ROS during differentiation to achieve beneficial biological functions. This study suggests a new direction of dental nanomaterials in treating pulp-dentin complexes.
Collapse
Affiliation(s)
- Soo-Kyung Jun
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, South Korea.
| | - Ji-Young Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 330-714, South Korea.
| | - Chinmaya Mahapatra
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 330-714, South Korea.
| | - Jeong Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, South Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 330-714, South Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea.
| | - Hyung-Ryong Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, South Korea
| | - Jung-Hwan Lee
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 330-714, South Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea.
| | - Hae-Hyoung Lee
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, South Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
43
|
Zhao K, Pi B, Zhao L, Tian S, Ge J, Yang H, Sha W, Wang L. Influence of N-acetyl cysteine (NAC) and 2-methylene-1,3-dioxepane (MDO) on the properties of polymethyl methacrylate (PMMA) bone cement. RSC Adv 2019; 9:11833-11841. [PMID: 35517041 PMCID: PMC9063513 DOI: 10.1039/c9ra01638d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 11/25/2022] Open
Abstract
The properties of polymethyl methacrylate (PMMA) bone cement make it a popular bone filling material. However, its disadvantages, such as lack of biodegradability and osteogenesis, restrict its clinical application. Studies have indicated the osteogenic properties of N-acetyl cysteine (NAC) and the biodegradability of 2-methylene-1,3-dioxepane/methyl methacrylate-based (MDO/MMA) copolymers. In this study, we developed bioactive PMMA cements through modification with fixed concentrations of NAC and different proportions of MDO. The purpose of this study was to compare the mechanical properties, morphology, NAC release, biocompatibility, degradability and mineralization capability of modified bone cements with those of conventional cement. The specific-modified specimens (NAC-p (5% MDO-co-MMA)) exhibited a lower bending modulus but had little effect on compressive strength. This material was morphologically compact and nonporous, similar to conventional PMMA bone cement. NAC could be released from NAC-p (5% MDO-co-MMA) continuously and appropriately. NAC-p (5% MDO-co-MMA) was biologically safe and showed satisfactory tissue compatibility. Ester was introduced into the polymer, which reinforced the degradation properties of NAC-p (5% MDO-co-MMA). NAC-p (5% MDO-co-MMA) enhanced the mineralization capability of osteoblastic cells.
Collapse
Affiliation(s)
- Kangquan Zhao
- Department of Orthopedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, The First People's Hospital of Zhangjiagang Suzhou 215000 China
| | - Bin Pi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University Suzhou 215000 China
| | - Liping Zhao
- Department of Orthopedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, The First People's Hospital of Zhangjiagang Suzhou 215000 China
| | - Shoujin Tian
- Department of Orthopedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, The First People's Hospital of Zhangjiagang Suzhou 215000 China
| | - Jianfei Ge
- Department of Orthopedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, The First People's Hospital of Zhangjiagang Suzhou 215000 China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University Suzhou 215000 China
| | - Weiping Sha
- Department of Orthopedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, The First People's Hospital of Zhangjiagang Suzhou 215000 China
| | - Liming Wang
- Department of Orthopedic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, The First People's Hospital of Zhangjiagang Suzhou 215000 China
| |
Collapse
|
44
|
Zhu Y, Song F, Ju Y, Huang L, Zhang L, Tang C, Yang H, Huang C. NAC-loaded electrospun scaffolding system with dual compartments for the osteogenesis of rBMSCs in vitro. Int J Nanomedicine 2019; 14:787-798. [PMID: 30774333 PMCID: PMC6361317 DOI: 10.2147/ijn.s183233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In this study, we aimed to develop a unique N-acetyl cysteine (NAC)-loaded polylactic-co-glycolic acid (PLGA) electrospun system with separate compartments for the promotion of osteogenesis. Materials and methods We first prepared solutions of NAC-loaded mesoporous silica nanoparticles (MSNs), PLGA, and NAC in N, N-dimethylformamide and tetrahydrofuran for the construction of the electrospun system. We then fed solutions to a specific injector for electrospinning. The physical and chemical properties of the scaffold were characterized through scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. The release of NAC and Si from different PLGA scaffolds was estimated. The cell viability, cell growth, and osteogenic potential of rat bone marrow-derived stroma cell (rBMSCs) on different PLGA scaffolds were evaluated through MTT assay, live/dead staining, phalloidin staining, and Alizarin red staining. The expression levels of osteogenic-related markers were analyzed through real-time PCR (qRT-PCR). Results NAC was successfully loaded into MSNs. The addition of MSNs and NAC decreased the diameters of the electrospun fibers, increased the hydrophilicity and mechanical property of the PLGA scaffold. The release kinetic curve indicated that NAC was released from (PLGA + NAC)/(NAC@MSN) in a biphasic pattern, that featured an initial burst release stage and a later sustained release stage. This release pattern of NAC encapsulated on the (PLGA + NAC)/(NAC@MSN) scaffolds enabled to prolong the high concentrations of release of NAC, thus drastically affecting the osteogenic differentiation of rBMSCs. Conclusion A PLGA electrospun scaffold was developed, and MSNs were used as separate nanocarriers for recharging NAC concentration, demonstrating the promising use of (PLGA + NAC)/(NAC@MSN) for bone tissue engineering.
Collapse
Affiliation(s)
- Yuanjing Zhu
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, China,
| | - Fangfang Song
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, China,
| | - Yanyun Ju
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, China
| | - Liyuan Huang
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, China,
| | - Lu Zhang
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, China,
| | - Chuliang Tang
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, China,
| | - Hongye Yang
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, China,
| | - Cui Huang
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, China,
| |
Collapse
|
45
|
White KA, Olabisi RM. Spatiotemporal Control Strategies for Bone Formation through Tissue Engineering and Regenerative Medicine Approaches. Adv Healthc Mater 2019; 8:e1801044. [PMID: 30556328 DOI: 10.1002/adhm.201801044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/06/2018] [Indexed: 02/06/2023]
Abstract
Global increases in life expectancy drive increasing demands for bone regeneration. The gold standard for surgical bone repair is autografting, which enjoys excellent clinical outcomes; however, it possesses significant drawbacks including donor site morbidity and limited availability. Although collagen sponges delivered with bone morphogenetic protein, type 2 (BMP2) are a common alternative or supplement, they do not efficiently retain BMP2, necessitating extremely high doses to elicit bone formation. Hence, reports of BMP2 complications are rising, including cancer promotion and ectopic bone formation, the latter inducing complications such as breathing difficulties and neurologic impairments. Thus, efforts to exert spatial control over bone formation are increasing. Several tissue engineering approaches have demonstrated the potential for targeted and controlled bone formation. These approaches include biomaterial scaffolds derived from synthetic sources, e.g., calcium phosphates or polymers; natural sources, e.g., bone or seashell; and immobilized biofactors, e.g., BMP2. Although BMP2 is the only protein clinically approved for use in a surgical device, there are several proteins, small molecules, and growth factors that show promise in tissue engineering applications. This review profiles the tissue engineering advances in achieving control over the location and onset of bone formation (spatiotemporal control) toward avoiding the complications associated with BMP2.
Collapse
Affiliation(s)
- Kristopher A. White
- Department of Chemical and Biochemical Engineering; Rutgers University; 98 Brett Road Piscataway NJ 08854 USA
| | - Ronke M. Olabisi
- Department of Biomedical Engineering; Rutgers University; 599 Taylor Road Piscataway NJ 08854 USA
| |
Collapse
|
46
|
Nicotine and Cotinine Inhibit Catalase and Glutathione Reductase Activity Contributing to the Impaired Osteogenesis of SCP-1 Cells Exposed to Cigarette Smoke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3172480. [PMID: 30533170 PMCID: PMC6250005 DOI: 10.1155/2018/3172480] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/20/2018] [Accepted: 08/29/2018] [Indexed: 01/13/2023]
Abstract
Cigarette smoking has been identified as a major risk factor for osteoporosis decades ago. Several studies have shown a direct relationship between cigarette smoking, decreased bone mineral density, and impaired fracture healing. However, the mechanisms behind impaired fracture healing and cigarette smoking are yet to be elucidated. Migration and osteogenesis of mesenchymal stem/stromal cells (MSCs) into the fracture site play a vital role in the process of fracture healing. In human nicotine, the most pharmacologically active and major addictive component present in tobacco gets rapidly metabolized to the more stable cotinine. This study demonstrates that physiological concentrations of both nicotine and cotinine do not affect the osteogenic differentiation of MSCs. However, cigarette smoke exposure induces oxidative stress by increasing superoxide radicals and reducing intracellular glutathione in MSCs, negatively affecting osteogenic differentiation. Although, not actively producing reactive oxygen species (ROS) nicotine and cotinine inhibit catalase and glutathione reductase activity, contributing to an accumulation of ROS by cigarette smoke exposure. Coincubation with N-acetylcysteine or L-ascorbate improves impaired osteogenesis caused by cigarette smoke exposure by both activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling and scavenging of ROS, which thus might represent therapeutic targets to support fracture healing in smokers.
Collapse
|
47
|
Lee D, Heo DN, Nah HR, Lee SJ, Ko WK, Lee JS, Moon HJ, Bang JB, Hwang YS, Reis RL, Kwon IK. Injectable hydrogel composite containing modified gold nanoparticles: implication in bone tissue regeneration. Int J Nanomedicine 2018; 13:7019-7031. [PMID: 30464456 PMCID: PMC6219106 DOI: 10.2147/ijn.s185715] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND For effective bone regeneration, it is necessary to implant a biocompatible scaffold that is capable of inducing cell growth and continuous osteogenic stimulation at the defected site. Here, we suggest an injectable hydrogel system using enzymatic cross-linkable gelatin (Gel) and functionalized gold nanoparticles (GNPs). METHODS In this work, tyramine (Ty) was synthesized on the gelatin backbone (Gel-Ty) to enable a phenol crosslinking reaction with horseradish peroxidase (HRP). N-acetyl cysteine (NAC) was attached to the GNPs surface (G-NAC) for promoting osteodifferentiation. RESULTS The Gel-Ty hydrogels containing G-NAC (Gel-Ty/G-NAC) had suitable mechanical strength and biocompatibility to embed and support the growth of human adipose derived stem cells (hASCs) during a proliferation test for three days. In addition, G-NAC promoted osteodifferentiation both when it was included in Gel-Ty and when it was used directly in hASCs. The osteogenic effects were demonstrated by the alkaline phosphatase (ALP) activity test. CONCLUSION These findings indicate that the phenol crosslinking reaction is suitable for injectable hydrogels for tissue regeneration and G-NAC stimulate bone regeneration. Based on our results, we suggest that Gel-Ty/G-NAC hydrogels can serve both as a biodegradable graft material for bone defect treatment and as a good template for tissue engineering applications such as drug delivery, cell delivery, and various tissue regeneration uses.
Collapse
Affiliation(s)
- Donghyun Lee
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea,
| | - Dong Nyoung Heo
- Department of Engineering Science and Mechanics, Pennsylvania State University, Pennsylvania 16802, USA
| | - Ha Ram Nah
- Department of Detistry, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sang Jin Lee
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea,
| | - Wan-Kyu Ko
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 13496, Republic of Korea
| | - Jae Seo Lee
- Department of Detistry, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho-Jin Moon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea,
| | - Jae Beum Bang
- Department of Dental Education, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yu-Shik Hwang
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Rui L Reis
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea,
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea,
| |
Collapse
|
48
|
Raffaele M, Barbagallo I, Licari M, Carota G, Sferrazzo G, Spampinato M, Sorrenti V, Vanella L. N-Acetylcysteine (NAC) Ameliorates Lipid-Related Metabolic Dysfunction in Bone Marrow Stromal Cells-Derived Adipocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:5310961. [PMID: 30416532 PMCID: PMC6207898 DOI: 10.1155/2018/5310961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/27/2018] [Indexed: 12/24/2022]
Abstract
Recent experimental data suggest that fatty acids and lipotoxicity could play a role in the initiation and evolution of metabolic bone diseases such as osteoporosis. A functional bone marrow adipose tissue (BMAT) may provide support to surrounding cells and tissues or may serve as a lipid reservoir that protects skeletal osteoblasts from lipotoxicity. The present study examined the effect of N-acetylcysteine (NAC), a powerful antioxidant and precursor of glutathione, commonly used to treat chronic obstructive pulmonary disease, on triglycerides accumulation in bone marrow stromal cells-derived adipocytes. Quantification of Oil Red O stained cells showed that lipid droplets decreased following NAC treatment. Additionally, exposure of bone marrow stromal cells (HS-5) to NAC increased adiponectin, PPARγ, HO-1, and SIRT-1 and increased beta-oxidation markers such as PPARα and PPARδ mRNA levels. As there is now substantial interest in alternative medicine, the observed therapeutic value of NAC should be taken into consideration in diabetic patients.
Collapse
Affiliation(s)
- Marco Raffaele
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Ignazio Barbagallo
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria Licari
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Carota
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Sferrazzo
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Mariarita Spampinato
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug Science, Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
49
|
Watanabe J, Yamada M, Niibe K, Zhang M, Kondo T, Ishibashi M, Egusa H. Preconditioning of bone marrow-derived mesenchymal stem cells with N-acetyl-L-cysteine enhances bone regeneration via reinforced resistance to oxidative stress. Biomaterials 2018; 185:25-38. [PMID: 30216807 DOI: 10.1016/j.biomaterials.2018.08.055] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/25/2022]
Abstract
Oxidative stress on transplanted bone marrow-derived mesenchymal stem cells (BMSCs) during acute inflammation is a critical issue in cell therapies. N-acetyl-L cysteine (NAC) promotes the production of a cellular antioxidant molecule, glutathione (GSH). The aim of this study was to investigate the effects of pre-treatment with NAC on the apoptosis resistance and bone regeneration capability of BMSCs. Rat femur-derived BMSCs were treated in growth medium with or without 5 mM NAC for 6 h, followed by exposure to 100 μM H2O2 for 24 h to induce oxidative stress. Pre-treatment with NAC significantly increased intracellular GSH levels by up to two fold and prevented H2O2-induced intracellular redox imbalance, apoptosis and senescence. When critical-sized rat femur defects were filled with a collagen sponge containing fluorescent-labeled autologous BMSCs with or without NAC treatment, the number of apoptotic and surviving cells in the transplanted site after 3 days was significantly lower and higher in the NAC pre-treated group, respectively. By the 5th week, significantly enhanced new bone formation was observed in the NAC pre-treated group. These data suggest that pre-treatment of BMSCs with NAC before local transplantation enhances bone regeneration via reinforced resistance to oxidative stress-induced apoptosis at the transplanted site.
Collapse
Affiliation(s)
- Jun Watanabe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan.
| | - Kunimichi Niibe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Maolin Zhang
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Minoru Ishibashi
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan; Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
50
|
Zhao Q, Shen H, Su KJ, Zhang JG, Tian Q, Zhao LJ, Qiu C, Zhang Q, Garrett TJ, Liu J, Deng HW. Metabolomic profiles associated with bone mineral density in US Caucasian women. Nutr Metab (Lond) 2018; 15:57. [PMID: 30116286 PMCID: PMC6086033 DOI: 10.1186/s12986-018-0296-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/30/2018] [Indexed: 02/08/2023] Open
Abstract
Background Individuals’ peak bone mineral density (BMD) achieved and maintained at ages 20–40 years is the most powerful predictor of low bone mass and osteoporotic fractures later in life. The aim of this study was to identify metabolomic factors associated with peak BMD variation in US Caucasian women. Methods A total of 136 women aged 20–40 years, including 65 subjects with low and 71 with high hip BMD, were enrolled. The serum metabolites were assessed using a liquid chromatography-mass spectrometry (LC-MS) method. The partial least-squares discriminant analysis (PLS-DA) method and logistic regression models were used, respectively, to examine the associations of metabolomic profiles and individual metabolites with BMD. Results The low and high BMD groups could be differentiated by the detected serum metabolites using PLS-DA (Ppermutation = 0.008). A total of 14 metabolites, including seven amino acids and amino acid derivatives, five lipids (including three bile acids), and two organic acids, were significantly associated with the risk for low BMD. Most of these metabolites are novel in that they have never been linked with BMD in humans earlier. The prediction model including the newly identified metabolites significantly improved the classification of the groups with low and high BMD. The area under the receiver operating characteristic curve without and with metabolites were 0.88 (95% CI: 0.83–0.94) and 0.97 (95% CI: 0.94–0.99), respectively (P for the difference = 0.0004). Conclusion Metabolomic profiling may improve the risk prediction of osteoporosis among Caucasian women. Our findings also suggest the potential importance of the metabolism of amino acids and bile acids in bone health.
Collapse
Affiliation(s)
- Qi Zhao
- 1Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, 66 N, Memphis, TN 38163 USA
| | - Hui Shen
- 2Tulane Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, 1440 Canal St., RM 1619F, New Orleans, LA 70112 USA
| | - Kuan-Jui Su
- 2Tulane Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, 1440 Canal St., RM 1619F, New Orleans, LA 70112 USA
| | - Ji-Gang Zhang
- 2Tulane Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, 1440 Canal St., RM 1619F, New Orleans, LA 70112 USA
| | - Qing Tian
- 2Tulane Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, 1440 Canal St., RM 1619F, New Orleans, LA 70112 USA
| | - Lan-Juan Zhao
- 2Tulane Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, 1440 Canal St., RM 1619F, New Orleans, LA 70112 USA
| | - Chuan Qiu
- 2Tulane Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, 1440 Canal St., RM 1619F, New Orleans, LA 70112 USA
| | - Qiang Zhang
- 2Tulane Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, 1440 Canal St., RM 1619F, New Orleans, LA 70112 USA
| | - Timothy J Garrett
- 3Southeast Center for Integrated Metabolomics Core, University of Florida, Gainesville, FL 32610 USA
| | - Jiawang Liu
- 4Medicinal Chemistry Core, Office of Research, University of Tennessee Health Science Center, Memphis, TN 38163 USA.,5Department of Pharmaceutical Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Hong-Wen Deng
- 2Tulane Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, 1440 Canal St., RM 1619F, New Orleans, LA 70112 USA.,6School of Basic Medical Science, Central South University, Changsha, 410013 Hunan China.,7National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410078 Hunan China
| |
Collapse
|